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Abstract 

 

Porous nickel oxide films were deposited onto unheated indium tin oxide coated glass 

substrates by reactive dc magnetron sputtering. These films had a cubic NiO structure. 

Electrochromic properties were evaluated in 1 M potassium hydroxide (KOH) and in 1 M 

lithium perchlorate in propylene carbonate (Li–PC). Large optical modulation was obtained 

for ~500-nm-thick films both in KOH and in Li–PC (~70 % and ~50 % at 550 nm, 

respectively). In KOH, tensile and compressive stress, due to expansion and contraction of the 

lattice, were found for films in their bleached and colored state, respectively. In Li–PC, 

compressive stress was seen both in colored and bleached films. Durability tests with voltage 

sweeps between –0.5 to 0.65 V vs Ag/AgCl in KOH showed good durability for 10,000 

cycles, whereas voltage sweeps between 2.0 to 4.7 V vs Li/Li+ in Li–PC yielded significant 

degradation after 1000 cycles.  
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1. Introduction 

       The atmospheric content of carbon dioxide has risen from ~315 ppm in the late 1950s to 

~400 ppm in 2013, and the increase rate has tripled—from ~0.7 to ~2.1 ppm per year—during 

the same period. The increased amount of CO2 is largely an effect of fossil fuel burning and 

other human activities and is generally believed to have far reaching consequences with 

regard to human life, as recently reported by the Intergovernmental Panel on Climatic 

Change, under the auspices of the United Nations [1]. Drastic reductions in the use of fossil 

fuel, as well as a global transition to renewable energy sources, are needed to combat the 

effects of the growing CO2 concentration. The buildings sector is of particular interest in this 

context since it accounts for 30 to 40 % of today’s use of primary energy globally [2]. This 

fraction tends to increase and, to take a specific example, the buildings’ share of the primary 

energy consumption in the USA was 41 % in 2010, whereas it was only 34 % in 1980 [3]. 

       Energy savings in buildings is a huge and largely untapped resource for CO2 abatement 

[4]. Many ―green‖ technologies—often with nanostructural attributes—can be implemented in 

buildings [5–7], and energy efficient fenestration is a particularly attractive option that can 

offer also improved indoor comfort [8] and financial benefits [9]. Windows are usually weak 

links in the buildings’ energy systems and typically let in or out too much energy that needs to 

be compensated by cooling or heating. It is obvious that ―smart windows‖, with variable 

throughput of solar energy and visible light, can diminish the energy expenditure. 

Electrochromic (EC) ―smart windows‖ have been under development for decades and are 

currently being implemented in buildings [10]. These windows normally include a multilayer 

structure with two different EC thin oxide films joined by an electrolyte, and this three-layer 

stack is surrounded by transparent electrical conductors [11]. Optical absorption is modulated 

when a voltage is applied between the electrodes and is associated with charge transfer 

between the EC films [11]. 

       Electrochromism in tungsten oxide films has been known for about forty years; these 

films color under charge insertion (cathodically) [12]. In practical constructions, the W oxide 

films need to be complemented by films that ideally color under charge extraction 

(anodically). Iridium oxide films have this desired property, and devices based of W-oxide-

based and Ir-oxide-based thin films have been cycled electrochemically for millions of times 

[11]. However Ir oxide is too expensive for large scale applications, even when diluted with 
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less costly Ta  oxide [13,14] or Sn oxide [15–17], and nickel-oxide-based alternatives have 

been studied since the mid-1980s [18–20]. Devices incorporating W-oxide-based and Ni-

oxide-based films have attracted much interest [21], and EC ―smart windows‖ using this 

combination of materials are currently introduced on the market [10].  However, the Ni-oxide-

based films are still in need of refinement, and research on Ni-oxide-based films is pursued 

vigorously; recent (2009 and later) studies have been published on such films prepared by 

evaporation [22], sputtering [23–27], chemical vapor deposition [28], various wet-chemical 

techniques such as sol–gel deposition [29–36] and chemical bath deposition [37–44], and 

electrodeposition [44–49]. Electrochromic Ni-oxide-based films have been made also by 

electrophoretic deposition of Ni hydroxide nanoparticles [50] and from Ni oxide pigments 

deposited from water dispersion [51]. The electrochromism of binary Ni-based mixed oxides 

have attracted much attention during recent years, and results have been presented for such 

oxides containing Li [52–54], C [55,56], N [57], F [58], Al [59], Ti [60], V [61,62], Mn [49], 

Co [33], Cu [63], and W [25]. Ternary Ni-based oxides or nanocomposites containing Li–Al 

[64], Li–Zr [65], and Li–W [66] have given particularly interesting results. Finally we note 

that work has been reported also for number of hybrid materials of NiO–Q, where Q stands 

for poly(3,4-ethylenedioxythiophene) [67], polypyrrole [68], polyaniline [42], graphene oxide 

[69], and LiPON [70]. 

       Generally speaking, the EC and other properties of Ni-oxide-based films can be improved 

by adding a second element, which explains the intense interest in them as noted above. The 

present paper lays a foundation for a comprehensive investigation of electrochromism in the 

Ni–Ir oxide system—with a scope that is similar to the one in our recent work on the 

electrochromism in the full Ni–W system [23,25,71–73]—but is of interest also in its own 

right. Data on pure Ir oxide immersed in propionic acid, potassium hydroxide (KOH), and 

lithium perchlorate in propylene carbonate (Li–PC) were presented recently [74]. Below we 

investigate pure Ni oxide in KOH and Li–PC under experimental conditions that were 

carefully chosen in order to allow direct comparison with data on Ir oxide (propionic acid was 

not considered since Ni oxide is not stable in acids).  

 

2. Experimental details 

2.1 Thin film deposition 
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       Thin films of nickel oxide were made by reactive dc magnetron sputtering in a coating 

system based on a Balzers UTT 400 unit. The substrates were 5 × 5 cm2 glass plates with 

transparent and electrically conducting layers of In2O3:Sn (known as ITO) having a sheet 

resistance of 60 Ω. No substrate heating was used. The target was a 5-cm-diameter plate of 

metallic nickel (99.95 %), and the target–substrate separation was 13 cm. Pre-sputtering took 

place in argon (99.998 %) for 5 minutes, and oxygen (99.998 %) was then introduced.  During 

deposition, the O2/Ar gas-flow ratio was set at a constant value of 2.5 %. The total pressure 

during sputtering was maintained at ~4 Pa, and the power at the target was 200 W. Film 

uniformity was ensured by substrate rotation during the depositions. The film thickness d was 

determined by surface profilometry using a DektakXT instrument. Most films had a thickness 

d of ~500 nm. Further experimental details are given elsewhere [75]. 

 

2.2 Structural and compositional characterization 

       Film structures were determined by X-ray diffraction (XRD) using a Siemens D5000 

diffractometer operating with CuKα radiation at a wavelength λx = 0.154 nm. The 

measurement took place at room temperature with a grazing incidence angle of one degree in 

parallel beam geometry with a 2θ (θ was defined as the diffraction angle) between 10° and 

90°. The step size was 0.0200°. Structure and phase composition were obtained by 

comparison with the Joint Committee on Powder Diffraction Standards (JCDPS) data base.  

       Linear grain sizes D were determined by use of Scherrer’s formula [76], i.e.,  

                          



cos

xk
D        ,                                                                                       (1) 

where k ~ 0.9 is a dimensionless ―shape factor‖, β is the full width at half-maximum of an X-

ray diffraction peak, and θ denotes diffraction angle.  

       Morphology and porosity of the films were characterized by scanning electron 

microscopy (SEM) using a LEO 1550 FEG Gemini instrument with an acceleration voltage of 

10 to 15 kV. 

       Elemental compositions and atomic concentrations were determined by Rutherford 

Backscattering Spectrometry (RBS) at the Uppsala Tandem Laboratory, specifically using 

2MeV 4He ions back scattered at an angle of 170 degrees. The RBS data were fitted to a 

model of the film–substrate system by use of the SIMNRA program [77].  
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       Film density ρ was computed from  

                       
dNn

MN

Aa

s
  
,                                                                                      (2) 

where M is molar mass, Ns is areal density of atoms, na is the number of atoms in a molecule, 

and NA is Avogadro’s constant. 

 

2.3 Electrochemical and optical measurements 

       Cyclic voltammetry (CV) was performed in a three-electrode electrochemical cell by use 

of a computer-controlled ECO Chemie Autolab/GPES Interface. The Ni oxide film served as 

working electrode and was electrochemically cycled in electrolytes consisting of 1 M KOH 

and 1 M Li–PC. For the KOH electrolyte, the counter electrode was a Pt foil and the reference 

electrode was Ag/AgCl; the voltage range was –0.5 to 0.65 V vs Ag/AgCl. In the case of Li–

PC, both counter and reference electrodes were Li foils, and the voltage range was 2.0 to 4.7 

V vs Li/Li+ which, importantly, was chosen to be the same as in our earlier investigation of Ir 

oxide films [74]. The voltage sweep rate was 10 mV/s, except for studies of long-term cycling 

durability when it was 50 mV/s. 

       Optical transmittance measurements were recorded in situ during electrochemical cycling 

of Ni-oxide-based films in the 380–800 nm wavelength range by using a fiber-optical 

instrument from Ocean Optics. The electrochemical cell was positioned between a tungsten 

halogen lamp and the detector, and the 100-%-level was taken as the transmittance recorded 

before immersion of the sample in the electrolyte. 

       Electrochemical and optical measurements were employed to record the coloration 

efficiency (CE), which is defined as the difference in optical density per amount of charge 

exchange (ΔQ). Specific data were obtained from  

                           
Q

T

T

CE
col

bl













log

    ,                                                                    (3) 

where Tbl and Tcol are the transmittance values for films in their fully bleached and colored 

states, respectively, and it is assumed that the related modulation in reflectance is small. It is 

desirable for most electrochromic devices, including ―smart windows‖, that the CE should be 

as large as possible. 
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3. Results and discussion 

       Fig. 1 shows SEM images of a typical ~500-nm-thick as-deposited Ni oxide film. Panels 

(a) and (b) show that the film has a distinct surface morphology with triangular features 

having linear extents of ~40 nm or less. The cross-sectional image in Fig. 1(c) indicates a 

columnar nanostructure. This structure is as expected from the thin film deposition 

conditions—with a high pressure in the sputter plasma and a low substrate temperature—and 

is consistent with zone 1 in a ―Thornton diagram‖ [78]. The columnar features are favorable 

for electrochromism [79]. 

         

   

Fig. 1. SEM images of a Ni oxide thin film. Panels (a) and (b) are top views at different 
magnifications, and panel (c) shows a cross-sectional view of the film on an ITO-coated glass 

substrate. 

 

       RBS data showed that as-deposited films could be represented as NiO1.22. It should be 

noted that the hydrogen content cannot be determined by RBS. The film density was 3.9 

g/cm3, which is consistent with earlier results [23,80]. 

 

3.1 Nickel oxide films in KOH: Electrochemical, optical and structural properties  

       Electrochemical cycling of Ni oxide in alkaline media has been investigated for decades, 

initially in the context of electrical batteries and later also for electrochromics [11]. Several 

different electrochemical reaction schemes have been proposed, and it appears that the 
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reactions can proceed via the exchange of H+ and OH– depending on the nature of the film as 

well as on the electrolyte. Further complications arise since the films can evolve during 

electrochemical cycling [20,44]. A detailed study on sputter-deposited Ni-oxide-based films 

in 1 M KOH was presented by Avendaño et al. [80,81] and pointed at the general applicability 

of the Bode reaction scheme, which is well established for batteries [82,83]; specifically the 

bleached and colored states were associated with Ni(OH)2 and NiOOH, respectively, and the 

EC reaction can be written, schematically, as 

 Ni(OH)2  ↔  NiOOH + H+ + e–   (4) 

or, alternatively, 

 Ni(OH)2 + OH–  ↔  NiOOH + H2O + e–  ,  (5) 

where e– denotes electrons. 

Fig. 2 displays cyclic voltammograms of Ni-oxide-based films in the KOH electrolyte for 

the first 15 cycles. Broad oxidation and reduction features appear, and it is evident that some 

minor evolution takes place during the initial cycles, but that the properties are stable after a 

few cycles. The charge density during the voltammetric cycling shows some unbalance during 

the first cycle but then remains at 15.6 ± 0.4 mC/cm2 for cycles 2 to 15, as apparent from Fig. 

3.   

 

Fig. 2. Cyclic voltammograms for a ~500-nm-thick Ni oxide film in 1 M KOH; the voltage sweep rate 
was 10 mV/s and arrows indicate sweep direction. 
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Fig. 3. Charge density corresponding to the endpoints of cyclic voltammograms such as those in Fig. 
2. The charge inserted/extracted was taken to be positive. 

 

       Fig. 4(a) reports spectral transmittance for Ni-oxide-based films in as-deposited state and 

after full coloration and bleaching. Inserted photos show the bleached and colored states. The 

optical modulation at a mid-luminous wavelength of 550 nm is as large as ~70 %, as apparent 

in Fig. 4(b). The fact that the transmittance is lower after 15 CV cycles than for the first cycle 

can be reconciled with the increased charge extraction seen in Fig. 3. The coloration 

efficiency was evaluated from Eq. 3 and was found to be 44 ± 2 cm2/C at 550 nm, which is of 

the expected magnitude [11,23,80]. 
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Fig. 4. Panel (a) shows spectral transmittance of a ~500-nm-thick Ni oxide film in 1 M KOH; data 
were taken on films in as-deposited, colored and bleached states. Inserted images refer to Ni oxide in 
fully bleached and colored states. Panel (b) reports corresponding optical transmittance modulation at 

a wavelength of 550 nm.  

 

       XRD patterns of Ni-oxide-based films in as-deposited, bleached and colored states are 

reported in Fig. 5. The latter data were taken after 15 CV cycles. The XRD peaks can be 

assigned to NiO with a cubic structure (JCDPS card number 47–1049), and additional peaks 

originate from ITO. No diffraction features could be associated with Ni(OH)2 or NiOOH, and 

it appears that the XRD signal emerges from crystalline Ni oxide grains on which thin and/or 

heavily disordered hydrogen-containing phases have formed. The grain size was estimated to 

be ~40 nm, as obtained from the broadening of the diffraction peaks denoted (111), (200), 

(220), and (311) (cf. Eq. 1). This grain size is consistent with our SEM images and is 

somewhat larger than in earlier work [23,80].  
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 Fig. 5. X-ray diffractograms of a ~500-nm-thick Ni oxide film, backed by ITO, in 1 M KOH. Data (in 
arbitrary units, a.u.) were taken on films in as-deposited, colored and bleached states as well as for the 

ITO-coated substrate. The diffraction peaks indicated by red dots are assigned to the shown lattice 
planes in cubic NiO. Upper panel shows survey scans and lower panel shows magnifications of the 

(111) and (220) peaks and illustrate displaced peak positions (indicated by dotted vertical lines).  

 

       A detailed analysis of the XRD data for films in as-deposited, colored and bleached states 

indicated that the peak positions were different for colored and bleached Ni-oxide-based 

films. Specifically, the most prominent diffraction peaks—corresponding to the (111) and 

(220) lattice planes—occurred at somewhat smaller angles for bleached films than for colored 

films. Thus the transition from coloration to bleaching is associated with lattice expansion and 

ensuing evolution from compressive to tensile stress [84].   

 

3.2 Nickel oxide films in Li–PC: Electrochemical, optical and structural properties  

       Nickel oxide can show electrochromism in Li-containing electrolytes. As discussed by 

Passerini et al. [85–88], the Li intercalation proceeds via a two-step process with an initial 

―activation‖ by 
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 NiO + yLi+ + ye
–  →  LiyNiO   (6) 

followed by a reversible reaction capable of going reversibly between bleached LiyNiO and 

colored Li(y – x)NiO according to  

 LiyNiO ↔  Li(y – z)NiO + zLi+ + ze
–  .   (7) 

Figs. 6 to 9 below show the electrochemical, optical and structural properties of Ni-oxide-

based films in 1 M Li–PC in a way that allows easy comparison with analogous data for such 

films in 1 M KOH as given in Figs. 2 to 5. Cyclic voltammograms are shown in Fig. 6. The 

shape of the curves deviates from the corresponding data in Fig. 2, which indicates that the 

electrochemistry for the charge insertion and extraction is different in Li–PC and KOH, and, 

more importantly, the voltammograms evolve during the 15 initial scans in the voltage range 

from 2.0 to 4.7 V vs Li/Li+. This evolution can be seen more clearly in data on charge density 

upon CV cycling, and Fig. 7 shows that the charge density drops distinctly during the first few 

charge insertions, which can be understood as an effect of ―activation‖ of the Ni-oxide-based 

film according to reaction (6) above. Subsequent amounts of charge insertion and extraction 

differ by a constant value of ~1.4 mC/cm2 after the fourth CV cycle, and these amounts 

decline monotonically upon extended voltammetric cycling, which points at irreversible 

electrochemical reactions leading to continuous sample degradation. We note that no similar 

effect was found for CV cycling in the 2.0 – 4.7 V vs Li/Li+ range for our earlier study of Ir-

oxide-based films [74]. 
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Fig. 6. Cyclic voltammograms for a ~500-nm-thick Ni oxide film in 1 M Li–PC; the voltage sweep 
rate was 10 mV/s and arrows indicate sweep direction. 

 

 

Fig. 7. Charge density corresponding to the endpoints of cyclic voltammograms such as those in Fig. 
6. Data points are joined by dotted lines for convenience. The charge inserted/extracted was taken to 

be positive. 

 

       Fig. 8(a) illustrates spectral transmittance data for Ni-oxide-based films in as-deposited 

states and after 15 CV cycles in Li–PC. Inserted photos show the bleached and colored states. 

The overall shapes of the curves are similar to those in Fig. 4 for films in KOH, and the mid-

luminous transmittance modulation is ~50 %, as indicated by Fig. 8(b). The CE was found to 

be ~44 cm2/C, i.e., the same as for films in KOH.  
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Fig. 8. Panel (a) shows spectral transmittance of a ~500-nm-thick Ni oxide film in 1 M Li–PC; data 
were taken on films in as-deposited state and after 15 coloration and bleaching cycles. Inserted images 

refer to Ni oxide in fully bleached and colored states. Panel (b) reports corresponding optical 
transmittance modulation at a wavelength of 550 nm.  

 

       XRD data are given in Fig. 9. Survey scans in panel (a) for as-deposited films and for 

films that had undergone 15 coloration–bleaching cycles in Li–PC look very similar to 

analogous data for films in KOH as shown in Fig. 5. The details differ, however, and the main 

diffraction peaks corresponding to the (111) and (220) lattice planes are shifted slightly 

towards higher diffraction angles for colored as well as bleached films, which implies a 

shrinkage of the separation between these lattice planes compared to their separation in as-

deposited films. This effect is connected with the irreversible Li insertion and has been noted 

also in earlier work on lithiated Ni oxide [52–54,89]. It is associated with compressive stress 

whose origin is not known. 
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Fig. 9. X-ray diffractograms of a ~500-nm-thick Ni oxide film in 1 M Li–PC. Data (in arbitrary 
units, a.u.) were taken on films in as-deposited, colored and bleached states. The diffraction peaks 

indicated by red dots are assigned to the shown lattice planes in cubic NiO. Unassigned peaks are due 
to ITO, as shown in Fig. 5. Upper panel shows survey scans and lower panel shows magnifications of 

the (111) and (220) peaks and illustrate displaced peak positions (indicated by the vertical dotted 
lines). 

 

3.3 Durability assessment of nickel oxide films in KOH and Li–PC 

       Cycling durability is important for most applications of electrochromism and is essential 

for EC ―smart windows‖. Voltammetric cycling was performed as described above although 

at a higher voltage sweep rate of 50 mV/s.  

        Fig. 10(a) shows data taken in 1 M KOH. Degradation progresses slowly and the charge 

capacity was 9.5 mC/cm2 and 7.2 mC/cm2 after 1,000 and 10,000 cycles, whereas it was 9.9 

mC/cm2 after the second cycle. Significant degradation was observed after 15,000 cycles and 

was due to structural disintegration of the film at the electrolyte–air interface. Degradation 

was much faster in 1 M Li–PC, as shown in Fig. 10(b). Now only 67 % and 46 % of the initial 

charge capacity remained after 100 and 1000 cycles, and no electrochemical activity was 

noted after 2000 cycles. 
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Fig. 10. Cyclic voltammograms of ~500-nm-thick Ni oxide film in 1 M KOH (panel a) and 1 M Li–
PC (panel b); the voltage sweep rate was 50 mV/s and arrows indicate sweep direction. 

 

4. Conclusions 

       Ni oxide films with a thickness of ~500 nm were prepared by reactive dc magnetron 

sputtering onto ITO-coated glass. The films had a columnar nanostructure and a density that 

was lower than that of bulk NiO. X-ray diffraction showed that the films had a cubic NiO 

structure. Cyclic voltammetry and in situ optical transmittance measurements were performed 

on films that were cycled between –0.5 and 0.65 V vs Ag/AgCl in 1 M KOH and between 2.0 

and 4.7 V vs Li/Li+ in 1 M Li–PC. Pronounced electrochromism was found, and the mid-

luminous transmittance modulation was 70 % in KOH and ~50 % in Li–PC. X-ray diffraction 

data showed that tensile stress was present during bleaching in KOH whereas compressive 

stress occurred during coloring. Compressive stress was found for both bleached and colored 
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films in Li–PC. The stresses may contribute to the cycling durability of electrochromic Ni-

oxide-based films. Extended color–bleach cycling of the films showed good durability for 

10,000 cycles in KOH, whereas films degraded strongly already after 1000 cycles in Li–PC.  

       The voltage sweep ranges were chosen to enable direct comparisons with data for Ir oxide 

films in earlier work of ours [74]. These Ir oxide films were very stable for electrochemical 

cycling in the voltage interval where the Ni-oxide-based films were decomposed. Hence our 

results in the present work serve as a baseline for in-depth studies of Ni–Ir-oxide-based 

electrochromic films and of devices based on those. 
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