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Keyword advertising, or sponsored search, is one of the most successful advertising models on the Internet.
One distinctive feature of keyword auctions is that they enable advertisers to adjust their bids and rankings

dynamically, and the payoffs are realized in real time. We capture this unique feature with a dynamic model
and identify an equilibrium bidding strategy. We find that under certain conditions, advertisers may engage in
cyclical bid adjustments, and equilibrium bidding prices may follow a cyclical pattern: price-escalating phases
interrupted by price-collapsing phases, similar to an “Edgeworth cycle” in the context of dynamic price com-
petitions. Such cyclical bidding patterns can take place in both first- and second-price auctions. We obtain two
data sets containing detailed bidding records of all advertisers for a sample of keywords in two leading search
engines. Our empirical framework, based on a Markov switching regression model, suggests the existence of
such cyclical bidding strategies. The cyclical bid-updating behavior we find cannot be easily explained with
static models. This paper emphasizes the importance of adopting a dynamic perspective in studying equilibrium
outcomes of keyword auctions.
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1. Introduction
Keyword advertising, or sponsored search, is one of
the most successful advertising models on the Inter-
net. One unique feature of keyword auctions is that
they enable advertisers to adjust their bids and rank-
ings dynamically, and the payoffs are realized in real
time. We study bid adjustments in keyword adver-
tising and demonstrate dynamic interactions among
advertisers.

We argue that one of the most distinctive features
of search advertising is precisely the dynamic nature
of interactions among advertisers. Compared to tra-
ditional auctions, keyword auctions possess unique
characteristics. First, bidders are not required to be
present at the same place at the same time. This
nonsynchronicity in time naturally leads to bidders’
learning and dynamic interactions. Second, unlike
bids in a typical open auction, which can move in
only one direction, bids in keyword auctions can be
either higher or lower than previous bids. As a result,
the strategy space does not shrink with the submis-
sion of new bids. Third, keyword auctions do not
close. The payoffs are realized in real time while the
auctions are still in progress. These properties enable
advertisers to evaluate positions, examine competi-
tors, and adjust their bids in real time. The bidders’

capability to learn and react makes these keyword
auctions markedly different from traditional auctions
and creates a need to model them differently. For
example, in traditional second-price auctions, it is
well known that a bidder does not want to deviate
from her true value by raising her bid; however, in
second-price keyword auctions, a bidder can adopt a
strategy called “bid jamming” such that her bid is just
one cent below her competitor’s.1 Bid jamming allows
a bidder to increase her competitor’s cost at almost
no cost for herself. Without dynamic learning, it is
impossible to implement this strategy. This study sug-
gests that bid adjustments are an important feature
of keyword auctions and highlights the importance of
using dynamic models to examine this market.

Figure 1 shows some bid-adjustment patterns
in two popular search engines (Yahoo.com and
Baidu.com) that adopt first- and second-price auc-
tion mechanisms, respectively.2 These patterns fore-
shadow our core findings and suggest that (1) cyclical

1 This strategy is commonly suggested by search-engine market-
ing experts and is widely used in practice (Ganchev et al. 2007,
Stokes 2010).
2 A detailed description of the data is provided in §3. The two fig-
ures are based on data extracted from 15 days from Yahoo! and
30 days from Baidu.
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Figure 1 Close-ups of the Bidding History
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bid adjustments take place frequently, and (2) static
models cannot describe these dynamics properly.

In this paper, we first establish a theoretical frame-
work of search advertising and focus on dynamic
reactions among bidders. Our model suggests that
under certain equilibrium conditions, for both first-
and second-price auctions, bids can display cyclical
patterns and may not converge to a static equilibrium.
Using data directly obtained from search engines, we
demonstrate the existence of cyclical patterns in both
first- and second-price auctions.

Keyword auction-based search-engine advertising
attracts much academic interest across the disciplines
of marketing (Goldfarb and Tucker 2011; Rutz and
Bucklin 2007, 2008; Wilbur and Zhu 2009; Chen et al.
2009b; Feng 2008; Katona and Sarvary 2010; Yang and
Ghose 2009), information systems (Ghose and Yang
2009; Feng et al. 2007; Chen et al. 2009a; Animesh et al.
2010, 2011; Liu and Chen 2006; Liu et al. 2010), eco-
nomics (Varian 2007, Edelman et al. 2007, Arnold et al.
2011), and computer science (e.g., Ganchev et al. 2007).
Edelman et al. (2007) and Varian (2007) establish the-
oretical models of the market and find that prices
and allocations of positions are equivalent to those
obtained from a static dominant-strategy Nash equi-
librium of a multi-item Vickrey auction. Borgers et al.
(2007) suggest that the models of Edelman et al. (2007)
and Varian (2007) focus on only a small subset of mul-
tiple possible equilibria. Most existing studies have
treated keyword auctions as if they were in a static
environment; these static models can leave important
equilibrium outcomes unnoticed. Although Cary et al.
(2008) find that dynamic responses in their model
may lead to a static equilibrium under specific con-
ditions, they also suggest that researchers need to
rigorously examine how results in static equilibria
can be generalized to dynamic games. Different from

prior models of static games, we examine equilib-
rium bidding in a dynamic setting. Whereas Zhang
and Feng (2005) and Feng and Zhang (2007) consider
price cycles only in first-price keyword auctions, this
paper presents theoretical and empirical results for
both first- and second-price auctions.

This paper is also related to price wars, an ever-
lasting theme in the literature of dynamic price com-
petition. Collusion, demand and cost shocks, and
information asymmetry resulting from noisy signals
or detection lags (Stigler 1964; Green and Porter 1984;
Rotemberg and Saloner 1986; Porter 1983; Lee and
Porter 1984; Ellison 1994; Athey et al. 2004; Athey
and Bagwell 2001, 2004, 2008) can all induce price-war
patterns. In reality, firms react to each other’s actions
continually, especially in industries with only a small
number of firms.

One possible outcome predicted by our model, the
cyclical pattern of bid adjustments, is similar to Edge-
worth cycles in the literature of duopoly price com-
petition. In these studies, two firms with identical
marginal costs undercut each other’s price in an alter-
nating manner. Edgeworth (1925) proposes this the-
ory in criticizing the standard “Bertrand competition”
result that both competitors set their prices equal to
their marginal costs. Maskin and Tirole (1988a, b) for-
mally characterize Edgeworth cycles with the con-
cept of Markov perfect equilibrium (MPE) in a class
of sequential-move duopoly models. Building on
Maskin and Tirole’s model, Noel (2007a, b) identifies
Edgeworth cycles in retail gasoline prices. Our paper
extends these studies to model heterogeneous players
competing for multiple, heterogeneous objects. In our
model, bidders have different private valuations for
clicks, and different ad positions also offer different
values. The structure of the optimal strategy in this
study is thus different from that of the symmetric-
player framework that other researchers examine.
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We contribute to the literature in a few ways.
First, whereas most models in the search-advertising
literature are static, we theoretically demonstrate the
existence of cyclical bidding patterns in a dynamic
framework. Our results therefore emphasize the
importance of developing dynamic models to better
understand bidding strategies in keyword auctions.
Second, few previous studies use field data directly
obtained from search engines. Our empirical analy-
sis offers a quantitative assessment of how bidders
behave in the real world. Finally, this paper is the first
to document Edgeworth-like cycles in a setting unre-
lated to gasoline prices.

This paper proceeds as follows. Section 2 devel-
ops the general theoretical framework and examines
the existence of cyclical bid adjustments. In §3, we
describe two data sets and present the empirical anal-
ysis. Section 4 discusses the implications of our find-
ings, and §5 concludes.

2. The Model
2.1. Setup
Our notation and model setup closely follow Maskin
and Tirole’s (1988b) framework. Noel (2007a, b)
adopts a similar theoretical framework in his model
of retail gasoline prices. Consider two risk-neutral
advertisers competing for two advertising positions
for a keyword.3 Denote �i as advertiser i’s exogenous
valuation for a click directed from the ad, which mea-
sures the profit that an advertiser expects to obtain
from a click-through.

Assume that each advertising position has a pos-
itive inherent expected click-through rate (CTR) �j ∈

40115, which is solely determined by the position, j ,
of the advertisement. More specifically, the higher an
advertisement’s position, the more click-throughs it
attracts; thus �1 ≥ �2.4 Accordingly, an advertiser i’s
expected revenue from the winning position j can be
represented by �i�j .

In the auction of advertising positions, advertisers
submit their bids for the amount that they are willing
to pay for one click. The ad with the higher bid is
displayed at the top position, and the other ad is dis-
played at the second position. Major search engines

3 In the theoretical model, we do not discuss the case of more than
two bidders or the case when the number of bidders is different
from the number of slots. As Maskin and Tirole (1988a, p. 551)
argue, “at the cost of simplicity, considering more players yields no
additional insights.” In our context, this means that bidding wars
among more than two bidders can often be broken into segments
of bidding wars between just two bidders. We can see in Figure 1
that advertisers are often paired together by their bid adjustments.
4 This is a common assumption in the literature that many industry
reports confirm (Breese et al. 1998). This reflects the fact that ads in
higher positions attract more attention.

often rank ads by a quality score, in addition to the
bids. We extend our model to accommodate this prac-
tice in §4.1. The payment scheme for each position
can be either first price (that is, advertisers pay their
own bids), or second price (that is, the advertiser at
the top position pays the bid of the second position,
and the other advertiser pays the reserve price). The
competition for advertising positions can last arbi-
trarily long. To capture the dynamic feature of bid
adjustments, we focus on a game that takes place in
discrete time in infinitely many periods with a dis-
count factor � ∈ 40115. Similar to Maskin and Tirole
(1988b), we assume that advertisers adjust their bids
in an alternating manner; that is, in each period t,
only one advertiser is allowed to update her bid, and
in the next period, only the other bidder is allowed to
update.5

Previous studies used the “locally envy-free”
assumption to rule out the possibility of dynamic
interactions in bids.6 The assumption helps reduce the
model to a one-shot game. Because the objective of
this paper is to study dynamic interactions, we can no
longer adopt this assumption. Instead, we focus on
a dynamic-equilibrium approach to study keyword
auctions.

2.2. Main Model
Following (Maskin and Tirole 1988a, p. 553), we
assume “recent actions have a stronger bearing on
current and future payoffs than those of the more dis-
tant past.” In each period, a bidder’s strategy depends
only on the variables that directly enter her payoff
function (that is, the bid set by the other bidder in
the last period and the resulting allocation of ad posi-
tions). We focus on the perfect equilibrium of this
game, which means, starting from any period, the
advertiser who is about to act selects the bid that max-
imizes her intertemporal profit, given the subsequent
optimal strategies of the other advertiser and of her
own. We are interested in stationary properties; there-
fore, initial conditions are irrelevant.

We make the following assumptions:
1. The inherent CTR (�j ) for each position j is

exogenously given and remains constant across all
periods.

5 This assumption is necessary to establish our dynamic, sequential-
move equilibrium. As Maskin and Tirole (1988a, p. 549) argue, “The
fact that, once it has moved, a firm cannot move again for two
periods implies a degree of commitment.”
6 Edelman et al. (2007, p. 243) wrote, “By the folk theorem, however,
such a game will have an extremely large set of equilibria, and so
we focus instead on the one-shot, simultaneous-move, complete infor-
mation stage [italics added by authors] game, introducing restric-
tions on advertisers’ behavior suggested by the market’s dynamic
structure. We call the equilibria satisfying these restrictions ‘locally
envy-free.’ ”
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2. Both bidders are willing to pay at least r , the
minimum reserve price, to participate in the auction;
that is, �i − r > 01∀ i.

3. The bidding space is discrete; that is, firms can-
not set prices in units smaller than, for example, one
cent. Let � denote this smallest unit of valuation.
This implies that all values and bids discussed in this
paper are multiples of �.

4. Both advertisers discount future profits with the
same discount factor �.

Denote bi as a focal bidder’s bid, and let b−i

represent the other bidder’s previous bid. Define
R = 4R11R25 as a dynamic equilibrium strategy pro-
file, which represents the dynamic reaction functions
forming the perfect equilibrium. Strategy profile R
is an equilibrium if and only if, for each bidder
i, bi = Ri4b−i5 maximizes the bidder’s intertemporal
profit at any time, given both bidders bid according
to 4Ri1R−i5 thereafter. Bidder i’s single-period payoff
�i4bi3 b−i5, when the current competing bid is b−i, is
determined by her own bid bi, as well as the posi-
tion she wins. Following industry practice, we assume
that if the bids are the same, the bidders will split the
chance to share the top position. We can then write
�i4bi3 b−i5 in a first-price auction as

�i4bi3 b−i5=























4�i − bi5�1 if bi > b−i1

1
2 4�i − bi5�1 + 1

2 4�i − bi5�2 if bi = b−i1

4�i − bi5�2 if bi < b−i0

(1)

Similarly, �i4bi3 b−i5 in a second-price auction can
be written as

�i4bi3 b−i5=























4�i − b−i5�1 if bi > b−i1

1
2 4�i − b−i5�1 + 1

2 4�i − r5�2 if bi = b−i1

4�i − r5�2 if bi < b−i0
(2)

Define a pair of value functions, V14 5 and W14 5, for
advertiser 1 as below (the other advertiser’s valuation
functions can be defined in the same way). Let

V14b25= max
b1

6�14b13 b25+ �W14b157 (3)

represent bidder 1’s expected payoff if (a) she is about
to move, (b) the other bidder just bid b2 in the pre-
vious period, and (c) both bidders play according to
R= 4R11R25 thereafter. W14b15 is defined as

W14b15= Eb2
6�14b13 b25+ �V14b2571 (4)

which represents bidder 1’s valuation if (a) she
played b1 in the previous period and (b) both bidders
play optimally according to R = 4R21R25 thereafter.
Thus, R = 4R11R25 is an equilibrium if R14b25 = b1 is

the solution to Equation (3), the expectation in Equa-
tion (4) is taken with respect to the distribution of b2,
and the symmetric conditions hold for advertiser 2.
Without loss of generality, assume �1 > �2. We can pro-
pose the following equilibrium strategy for first-price
auctions:

Proposition 1 (Equilibrium Bidding Strategy
(First Price)). In a first-price auction, for heterogeneous
advertisers (�1 − �2 > �) and a sufficiently fine grid (i.e.,
� is sufficiently small compared to �i, i = 112), there exist
threshold values b1 and b̄2, such that each bidder’s equilib-
rium strategy can be specified as

b1 = R14b25=







b2 + � if b2 < b11

b̄2 otherwise3

b2 = R24b15=







b1 + � if b1 < b̄21

r otherwise1

(5)

where r is the reserve price, and � is the smallest increment.

Proof. Proofs for Propositions 1 and 2 are in the
appendix. Other proofs are in the online appendix
(http://blog.mikezhang.com/files/bidadjustments
_appendix.pdf). �

Proposition 1 specifies an MPE as in Maskin and
Tirole (1988b) and describes bidders’ equilibrium bid-
ding strategies characterized by b1 and b̄2, which are
functions of �i, �, and r . Proposition 1 shows that
sequential bid adjustments can be supported as an
equilibrium strategy. More specifically, bid patterns
can be grouped into two phases: a price-escalating
phase and a price-collapsing phase. Beginning with
the reserve price r , bidders will wage a price war (out-
bidding each other by � until price b1 is reached), then
bidder 1 (the higher-valued bidder) will jump to bid
b̄2, which is the highest bid that bidder 2 can afford to
get the top slot. Now bidder 2 can no longer afford the
costly competition and will be forced to remain at the
second position. She can choose any price lower than
b̄2 and keep the same position, but she is strictly better
off by choosing to bid the reserve price r . When she
does so, she switches from the escalating state to the
collapsing state. Consequently, bidder 1 should fol-
low this drop to bid r + �, at which price she remains
at the first position and pays much less. Then a new
round of the price war begins, and so on. This pro-
cess is structurally similar to the price wars, or Edge-
worth cycles, presented by Maskin and Tirole (1988b)
and Noel (2007a, b). The driver behind the cycles in
Proposition 1 is that bidders can outbid each other in
each period to obtain more click-throughs while only
paying slightly more than before. In Edgeworth cycles
in a duopolistic price competition, the driver of the
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cycles is that firms undercut each other by a little bit,
obtaining a higher market share through reducing the
price only slightly.

Proposition 1 gives a general characterization when
the bidders’ per-click values are different. When the
bidders’ valuations are identical, their equilibrium
strategy needs to be modified slightly:

Corollary 1. When �1 = �2, with a sufficiently fine
grid (small �), there exist b, b̄, and probability � ∈ 60117,
such that bidder i’s equilibrium strategy is

bi =



































b−i + � if r ≤ b−i < b1

b̄ if b ≤ b−i < b̄1

b̄+ � with probability �

r with probability 1 −�

}

if b−i = b̄1

r if b−i > b̄0
(6)

This reduces to the Edgeworth cycle described by
Maskin and Tirole (1988b, Proposition 7). The equi-
librium strategy reported there can be understood as
a special case of Proposition 1.7 The major difference
between the equilibrium strategy played by homoge-
neous bidders (as in Corollary 1) and that played by
heterogeneous bidders (as in Proposition 1) is that,
with heterogeneous bidders, on the equilibrium path,
it is the higher-valued bidder (bidder 1) who jumps
up to end the “escalating” phase, and it is always the
lower-valued bidder (bidder 2) who first drops to bid
r and restarts the cycle. In the case of homogeneous
bidders, when the price reaches b̄, it is equally costly
for both bidders to bid higher. Whoever drops the
price down first, however, does a favor to the other
bidder, because the other bidder then can occupy the
top position for two rounds.

The cycles we identify in Proposition 1 differ from
Edgeworth cycles in the literature in a number of
ways. First of all, we study price cycles in a dif-
ferent context (auction/bidding versus oligopolistic
price competition). So the price cycles in our setting
exhibit a reversed pattern (outbidding to raise prices
in our setting versus undercutting to reduce prices
in Edgeworth cycles). Second, and more importantly,
because we relax the assumption of homogeneity of
players, bidders’ equilibrium bidding strategies dis-
play unique properties. In the first-price case, mixed
strategy at the point of state switching is avoided with
heterogeneous bidders. In the second-price case that
we present next, the strategies of the two bidders are
no longer symmetric.

We next turn to discuss the equilibrium of second-
price auctions. Existing literature on “generalized

7 In their setting, firms are homogeneous, and �2 = 0 (because the
firm with a higher price will get zero demand).

second-price auctions” has predicted that there exists a
locally “envy-free” equilibrium, in which advertisers’
ranks, as well as bids, are constant in the equilib-
rium (Edelman et al. 2007, Varian 2007). The envy-free
equilibrium concept is built upon the assumption that
there exists a resting point such that “a player can-
not improve his payoff by exchanging bids with the
player ranked one position above him” (Edelman et al.
2007, p. 249). This assumption simplifies the model to
a one-shot game and misses one important aspect of
bidders’ considerations: Although bid increases by the
lower-valued bidder may not change the ranks or her
own payoff, they could introduce a higher cost for the
higher-valued bidder. For example, consider a situa-
tion in which advertiser 1 bids $5 and advertiser 2 bids
$3. Even though an “envy-free” advertiser 2 may be
happy to keep the bid unchanged at $3, a “jealous”
advertiser strictly prefers to bid $4 to $3: By increasing
the bid by $1, advertiser 2’s cost remains unchanged at
the reserve price, but advertiser 1’s cost is increased by
$1. This observation is especially conspicuous in prac-
tice when advertisers have daily or weekly advertis-
ing budgets.8 Even without budget constraints, ceteris
paribus, a strategy that raises competitor’s cost should
be considered as strictly preferable to one that does
not. We therefore explicitly assume that among the
strategies that maximize their own discounted utilities,
advertisers strictly prefer one that imposes the highest
costs on their competitors. This assumption is not only
intuitive and empirically valid, but also useful in elim-
inating many possible but unrealistic deviations from
the equilibrium. The following proposition examines
the bidding strategy in second-price auctions.

Proposition 2 (Equilibrium Bidding Strategy
(Second Price)). In a second-price auction, for heteroge-
neous bidders who prefer strategies that, ceteris paribus,
impose the highest costs on competitors, there exists an
equilibrium bidding strategy for a sufficiently fine grid (i.e.,
� is sufficiently small). Specifically, when � < �1 − �2 <
4�1/4�1 − �255443�− 15/41 − �55�, define

bi =







b−i + � (Strategy I)1

b−i − � (Strategy II)3
(7)

then there exists an equilibrium with

b2 =















b1 − � if b1 ≥ b′

2 or when bidder 1 plays
Strategy II1

b1 + � if otherwise3

b1 =







b2 + � if bidder 2 plays Strategy I,

r if bidder 2 plays Strategy II.

(8)

8 If the lower-valued bidder can successfully push her competitor
to a higher price level, she could enjoy the top position with a very
low price once the higher-valued advertiser runs out of budget.
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Proposition 2 indicates that the equilibrium bid-
updating pattern under the second-price scheme can
exhibit two phases, as in the first-price case. Starting
from the lowest possible price r , bidders engage in a
price war in which each advertiser outbids the other
by the minimum increment until the price reaches
b′

2. At this price, the lower-valued advertiser (adver-
tiser 2) can no longer afford to bid higher, and she
would choose to stay at the second slot. To induce
the highest cost for bidder 1, she chooses to bid just �
below bidder 1. If bidder 1’s value is not significantly
higher than that of bidder 2 (i.e., when �1 − �2 <
4�1/4�1 − �255443�− 15/41 − �55�), bidder 1 would drop
the bid to the reserve price and start the cycle again. It
is important to note that although there is some simi-
larity in the equilibrium strategies described in Propo-
sitions 1 and 2, the equilibrium concept in Proposi-
tion 2 is not an MPE. As a result, one caveat is that
Proposition 2 is not as “robust” as the MPE discussed
in Maskin and Tirole (1988b).

The threshold condition determines two possible
scenarios. In the first scenario, when the difference
in valuations is large, the higher-valued bidder can
dominate the keyword by submitting a relatively high
bid, b∗

1 . The lower-valued bidder then adopts the bid-
jamming strategy by submitting b∗

1 −�. The high level
of b∗

1 is the the premium that bidder 1 pays to main-
tain the control of the top position. In the second
scenario, if the difference in valuations is not large
enough, then our model shows the existence of cycli-
cal pattern in equilibrium. To illustrate, consider two
bidders. If one bidder always bids r and takes the sec-
ond position, her click-throughs will always be lower
than her competitor’s. Now if she bids a little higher
(e.g., r+2�), she can easily take the first position. This
creates the momentum for the cycle to start. Their
competition will reach to the point that the lower-
valued bidder finds it not profitable to raise the bid
any more. The lower-valued bidder will keep the
price to be � lower than the bid of the higher-valued
bidder. At this point, the bidder at the lower position
only pays the reserve price, which is close to zero, but
the bidder at the higher position has to pay a much
higher price. Because the difference in valuation is not
large enough, the higher-valued bidder finds it more
profitable dropping her bid to the reserve price than
maintaining the top position.

There is an important similarity in the above two
scenarios: the higher-valued bidder has to pay a pre-
mium in equilibrium. In the stable-equilibrium sce-
nario, the higher-valued bidder pays a much higher
price to stay in the first position. In the cyclical-
equilibrium scenario, the higher-valued bidder would
not drop to r earlier in the cycle because she has to
pay a premium to induce higher cost for the lower-
valued bidder.

Figure 2 Markov Chain Associated with Bidding War

Escalating Collapsing

�ec

�ce
�ee �cc

Figure 2 gives the Markov chain representation of
Equations (5) and (8). Beginning from any bid, the
bidders’ dynamic bid adjustments will create a price
pattern. Each bid is in one of two states: e (escalating)
or c (collapsing). Escalating bids will beat the com-
petitor’s bid, and collapsing bids will drop the price
to a lower level. The transition probabilities are indi-
cated with �ij , with i1 j ∈ 8e1 c9.

Games with an infinite horizon often have a mul-
tiplicity of equilibria, and thus the two equilibria
presented in our propositions may not be unique.
Given our focus on demonstrating the existence of
dynamic equilibrium outcomes, we refrain from dis-
cussing other possible static or dynamic outcomes. We
want to emphasize that our results do not rule out the
existence of other types of equilibria.

2.3. Bounds of Cyclical Bidding
Propositions 1 and 2 describe two equilibrium bid-
ding strategies when the advertising slots are auc-
tioned off using different pricing schemes. Although
bidders’ bidding strategies are different in these two
auction mechanisms, the bounds of cyclical bid-
ding in these two mechanisms share some common
characteristics. Under both schemes, the bounds of
cyclical bidding can be associated with (1) the gap
between advertisers’ valuations and (2) the differenti-
ation between advertising slots.

Proposition 3. Assuming �1 ≥ �2, cyclical bidding is
less likely to be sustained when

1. the difference between the per-click valuations of bid-
ders become more significant ( for given �1), and

2. the differentiation between the slots reduces ( for
given �1).

Proposition 3 emphasizes that the cyclical equilib-
rium outcomes of bid adjustment exist only under
specific conditions. Both advertiser- and visitor-
specific characteristics can affect the sustainability of
the cycles. The intuition behind this proposition is
straightforward. First, when a bidder’s valuation for a
keyword is sufficiently higher than her competitor’s,
she will simply submit a very high bid and domi-
nate the first position, without giving a chance for the
lower-valued bidder to reach the first position. The
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Table 1 Summary Statistics

Variable Mean Std. dev. Median Minimum Maximum

Panel A: First-price auction (Yahoo!)
Bid price (USD) 0040 0034 0039 0005 4097
Time in market (days) 120067 137026 59000 0071 364074
Number of bids submitted by firms (#) 36070 60087 9 1 245
Time between consecutive bids (hours) 4077 8065 1063 1/60 88020
Time between consecutive bids submitted by the same player (days) 2033 6073 0071 1/424 ∗ 605 98008

Panel B: Second-price auction (Baidu)
Bid price (RMB) 18060 5046 20000 0072 44080
Time in market (days) 68008 17020 72087 35034 83021
Number of bids submitted by firms (#) 50091 93044 9 1 265
Time between consecutive bids (hours) 3060 6056 1000 1/60 44020
Time between consecutive bids submitted by the same player (days) 1031 5063 0015 3/424 ∗ 605 79089

higher her valuation is, the easier it is for her to find
it profitable to submit a dominating high bid. One
sufficient condition for this to happen is 4�1 − �25�1 ≥

4�1 − r5�2. Second, the ranking becomes less important
when the two positions are equally attractive. In this
case, both bidders can simply bid the reserve price r ,
and there will be no price war.

Based on comparative statics, Proposition 3 de-
scribes conditions for price cycles to exist. For a search
engine, greater heterogeneity in bidders’ valuations
may lead to a stable equilibrium, with one bidder
always paying a high price. Similarity of CTRs in
adjacent positions can also lead to a stable equilib-
rium, but because of the lack of competition, both
bidders stay close to the reserve price.

In summary, a profit-maximizing search engine
should (1) differentiate advertising slots so that they
generate significantly different click-throughs and
(2) facilitate bid-updating behavior and try to reduce
bidders’ costs of changing their bids. This is consistent
with the observation that search engines often (1) dif-
ferentiate the ad positions on the top from those on
the right-hand side and (2) offer bid research tools to
advertisers.

3. Empirical Analysis
3.1. Data
To identify the existence of cyclical bidding behavior,
we obtained data from two sources. The data set for
first-price auction were obtained from Yahoo!. Before
the Yahoo! acquisition, Overture adopted the first-
price mechanism. Our data set therefore covers the
period when Overture was operated independently.
The data set for second-price auction were obtained
from Baidu, the largest search engine in China.

Yahoo!’s data set contains year 2002’s complete
bidding history for one keyword, which for confi-
dentiality reasons, we do not know. Each time an
advertiser submitted a new bid, the system would

record the bidder’s ID, the date and time, and the
bid value. A total of 1,800 bid adjustments have been
recorded for this keyword. Forty-nine bidders submit-
ted at least one bid during this period. Among these,
seven bidders submitted more than 100 bids. Sum-
mary statistics are given in panel A of Table 1. Time in
market is calculated by counting the number of days
between the first and last observations of bid adjust-
ments. Time between consecutive bids is measured by the
number of hours between bid changes. Time between
consecutive bids submitted by the same player measures
the number of days between consecutive adjustments
made by the same bidder.

Baidu was founded in 2000. It is now listed on
the NASDAQ (symbol: BIDU) and serves more than
77% of Internet searches in China. Google and Baidu
together account for more than 95% of China’s search
advertising market. Baidu has gained a greater mar-
ket share because of a recent dispute between Google
and the Chinese government. According to official
numbers, Baidu can reach 95% of Internet users in
China. It now indexes more than 10 billion web-
pages.9 Similar to Google’s AdWords and AdSense,
Baidu offers search advertising and affiliate advertis-
ing. Advertisers on the search advertising platform
compete through a second-price mechanism similar
to that of Google’s. A bidder’s rank is determined by
her own bid, the next-highest bid, and a quality score
depending on the ad’s historical performance. The
second-price auction data from Baidu contain click
events. Each time a visitor clicks on an ad, there is
a record. The disadvantage of this data set is that
we cannot observe all bid adjustments. If an adver-
tiser makes several bid adjustments between two
click events, we can only observe the latest change.
Although this brings some inconvenience in data pro-
cessing, the data set still satisfies our need to test for
cyclical bidding patterns. First, an inability to observe

9 See http://home.baidu.com/product/product.html (accessed
July 2010).
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some of the bid changes biases against our finding bid
adjustments; our finding of bid adjustments would
be strengthened had we been able to observe all bid
changes. Second, this concern is alleviated for key-
words with frequent clicks. Intuitively, an advertiser
would not want to change bids more frequently than
changes in clicks, especially if there is even a very
small cost associated with bid adjustments. Third,
the data set reports the next-highest bid for all click
events. This frees us from the need to retrieve the his-
tory of all bids. The records we have span the dura-
tion from April 27 to July 19, 2009. In panel B of
Table 1, we report the summary statistics for the key-
word from Baidu’s second-price auction.

For both data sets, bidders are very active in mak-
ing adjustments. The median time between consecu-
tive bids is about 1.6 hours on Yahoo! and 1 hour on
Baidu.

Figures 3 and 4 show the complete bidding history
of the Yahoo! and Baidu keywords, respectively. Each
symbol represents a bidder. From these figures, bid
adjustments can be clearly visualized. The lower parts
of these figures show the estimated state probabilities
calculated with our ensuing empirical model.

3.2. A Markov Switching Regression Model
We adopt the empirical strategy of the Markov
switching regression to examine the patterns.
The Markov switching regression was proposed by
Goldfeld and Quandt (1973) to characterize changes
in the parameters of an autoregressive process. From
the cyclical trajectory of the bids shown in the fig-
ures, it is very tempting for us to assign one of two
states (escalating state (e) or collapsing state (c)) to
each observation of the bids and directly estimate the
parameters with a discrete-choice model. Using the
Markov switching regression gives us a few advan-
tages. First, the result of the Markov switching regres-
sion matches nicely with the theoretical Markov chain
depicted in Figure 2. Second, serial correlation is
incorporated into the model. The parameters of an
autoregression are viewed as the outcome of a two-
state, first-order Markov process. Third, when the
price trajectory is not as regular as that displayed by
the data, the Markov switching regression can help
identify the latent states. This eliminates the need
for subjectively assigning dummy-variable values for
the states, thus making it less dependent on subjec-
tive human judgment. Finally, from the estimation
process, we can easily derive the Markov transition
matrix, and the parameter estimates can be inter-
preted directly.

Formally, consider a two-state, ergodic Markov
chain shown in Figure 2, with state space S4St5 =

8e1 c9, where st = e represents the escalating phase,
st = c represents the collapsing phase, and t =

11 0 0 0 1 T . These states are latent because we do not
directly observe them. The process 8St9 is a Markov
chain with the stationary transition probability matrix
å= 4�ij5, where

�ij = Prob4st = j � st−1 = i51 i1 j ∈ 8e1 c90 (9)

This matrix gives us a total of four transition prob-
abilities: �ee, �ec, �cc, and �ce, for which we have �ij =

1 −�ii, i ∈ 8e1 c9 and j 6= i.
Denote the ergodic probabilities for this chain as �.

This vector � is defined as the eigenvector of å asso-
ciated with the unit eigenvalue; that is, the vector of
ergodic probabilities � satisfies å�= �. The eigenvec-
tor � is normalized so that its elements sum to unity
1′�=1. For the two-state Markov chain studied here,
we can derive the stationary probability vector as

�=

[

�e

�c

]

=

[

41 −�cc5/42 −�ee −�cc5

41 −�ee5/42 −�ee −�cc5

]

0 (10)

After defining the latent states, we write the follow-
ing model:

bt =







�e +Xt�e + �et if st = e1

�c +Xt�c + �ct if st = c1
t = 11 0 0 0 1 T 1 (11)

where bt is the bid submitted at time t, and Xt is
a vector of independent variables.10 The error terms
�st t are assumed to be independent of Xt . Following
the standard approach, we assume �et ∼ N401�2

e 5, and
�ct ∼ N401�2

c 5. Notice that for each period, the regime
variable (Markov state st) is unobservable.

Because of a lack of information, such as the bid-
ders’ private per-click values and the CTR of each
position, the theoretical model cannot be tested struc-
turally. Many idealistic conditions assumed in the
theoretical model, such as the absence of budget con-
straints, only two bidders, rational bids, no entry,
complete information on competitor’s bid in the pre-
vious round, and so on, are necessarily violated in
the real world. Consequently, the main objective of
this empirical model is to document and character-
ize observed cycles in the two markets. The result we
obtain next is meant to offer a quantitative way to
examine the cycles that we can observe and is by no
means a proof of the theory. We discuss alternative
explanations in the next subsection.

Our empirical model would yield state probabilities
for each bid based on the history of bids. The gen-
eral derivation of the estimation procedure follows

10 For expositional simplicity, we suppress subscript i here, which
indicates the bidder. We later add the subscript to distinguish bids
submitted by different bidders.
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Figure 3 Bidding History and Smoothed Probabilities (Yahoo!)
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Cosslett and Lee (1985) and Hamilton (1989, 1990).
We relegate a detailed description of the estimation
procedure to the online appendix.

If transition probabilities are restricted only by the
conditions that �kl ≥ 0 and

∑N
l=1 �kl = 1, for all k and l,

Figure 4 Bidding History and Smoothed Probabilities (Baidu)
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Hamilton (1990) shows that the maximum-likelihood
estimates for the transition probabilities satisfy

�̂kl =

∑T
t=2 Prob4st = l1 st−1 = k � YT 3 Â̂5
∑T

t=2 Prob4st−1 = k � YT 3 Â̂5
1 (12)
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where Yt is a vector containing all observations
obtained through date t, and Â̂ denotes the full vec-
tor of maximum-likelihood estimates. Equation (12)
shows that the estimated transition probability �̂kl is
the number of times state k has been followed by
state l divided by the number of times the process is
in state k.

Equipped with estimates of the transition probabili-
ties, we can obtain other useful measures to character-
ize the cycles. The expected duration (ED) of a typical
escalating or collapsing phase can be calculated with11

EDk ≡ E4duration of phase st5=
1

1 −�st1 st

1 (13)

where �st1 st
are the transition probabilities.

Thus, the expected duration of a cycle is

ED ≡ E4duration of a cycle5

=
∑

st∈8e1 c9

1
1 −�st1 st

=
1

1 −�ee

+
1

1 −�cc

0

We consider the following specification for
model (11):

bi1t =







�e0 +�e1bi1t−1 +�2b−i1t+�t+�et if st =e1

�c0 +�c1bi1t−1 +�2b−i1t+�t+�ct if st =c1
(14)

where bi1 t is the bid submitted by bidder i at time t,
and b−i1 t is the competitor’s bid at time t. We also
include bidder i’s previous bid, bi1 t−1, as a proxy
for the competitor’s previous bid.12 The variable �t

represents a vector of day-of-week and month fixed
effects.13 The model fits an autoregressive process and
estimates two sets of parameters corresponding to the
two underlying states. We use a maximum-likelihood
estimation to determine the parameters and the states
simultaneously. The variable b−i1 t is modeled as state
independent, so the parameter estimate �2 is the same
for both states.14 We have chosen Equation (14) as the
specification because of its desirable feature of possi-
bly being consistent with bidder i’s decision-making
process at time t. When a bidder determines her strat-
egy in a period, she should look at her competitor’s

11 For details, refer to Gallager (1996, Chap. 4).
12 The bid submitted immediately before bi1 t may not be from the
competitor because bidder i’s bid at time t might be reacting to
some earlier bid.
13 We thank an anonymous reviewer for suggesting this effect.
A model without time-fixed effects yields almost the same parame-
ter estimates for the �s. Inclusion of these time-fixed effects slightly
reduces the standard errors.
14 The smoothed state probabilities remain qualitatively the same
when we (1) estimate a marketwide AR(1) model (i.e., Equation (14)
without including the term b−i1 t) or (2) relax the state independence
on �2 and estimate separate parameters for each state as �e2 and �c2.

bid, compare it with her threshold value, and then
decide whether she wants to outbid her competitor
or drop the bid to some lower level. The bidder’s
state-switching decision is most likely triggered by
her competitor’s bid, so the parameter for bi1t−1 is
state dependent. After choosing the state, her decision
would be related to the desired price level of her bid,
which should be based on the competitor’s bid, b−i1 t ,
and thus state independent.

Because our objective is to estimate price cycles to
describe the bid-adjustment patterns we observe, we
do not really rely on the form of Equation (14) to char-
acterize the cycles. For each bidder, for example, we
can run the following autoregressive AR(1) model to
obtain individual-level cycle characteristics:

bi1 t =







�i1 e0 +�i1 e1bi1 t−1 +�t + �i1 et if st = e1

�i1 c0 +�i1 c1bi1 t−1 +�t + �i1 ct if st = c0
(15)

What is important in these specifications is the
derived state-probability vector with which we calcu-
late transition probabilities and cycle durations. We
next report our estimation results based on Equa-
tion (14).

The empirical model yields the latent state for each
of the bids, along with estimated probabilities. We can
also get parameter estimates for �e and �c, where Âe ≡

4�e01�e11�25 and Âc ≡ 4�c01�c11�25.
Estimation results for both markets are reported in

Table 2.
Our next objective is to characterize the cycles by

applying the results of Markov chain theory. We use
the smoothed probabilities to obtain the latent state of
each bid. By examining the change of states following
Equation (12), we calculate the transition matrices, as
shown in Tables 3 and 4.

The transition matrices for both auctions suggest
that, starting from either state, the next bid is much
more likely to end up as escalating than collapsing.
The imbalance between the two states can be shown

Table 2 Markov Switching Estimates

First price (Yahoo!) Second price (Baidu)

Escalating Collapsing Escalating Collapsing

�̂0 0038 0002 6004 1016
(Intercept) 400025 400005 410525 400445

�̂1 1001 0004 1028 0006
(Previous bid) 400005 400065 400075 400025
�̂2 0.80 0.90
(Next-highest bid) (0.02) (0.02)

Note. Standard errors are reported in parentheses.
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Table 3 Transition Matrix for Yahoo! Cycles

�ij e c

e 0094 0006
c 0092 0008

Table 4 Transition Matrix for Baidu Cycles

�ij e c

e 00852 00148
c 00998 00002

by calculating the limiting unconditional probabili-
ties. From Equation (10),

�Yahoo! =

[

009388

000612

]

and

�Baidu =

[

008709

001291

]

0

Therefore, in the long run, for the first-price
(second-price) auction, about 93.88% (87.09%) of the
states are in the escalating phase, and only about
6.12% (12.91%) of the states are in the collapsing
phase.

With Equation (13), we can calculate the duration
of the escalating (collapsing) phase. For Yahoo!, we
have EDYahoo!

E = 160671 and EDYahoo!
C = 1009. For Baidu,

we have EDBaidu
E = 60761 and EDBaidu

C = 10002. These
results suggest that a typical escalating phase lasts
about 16 and 7 periods for the first- and second-price
auctions, respectively. A typical collapsing phase lasts
about 1 period in both cases.

We also estimate the length of a cycle in terms of
hours. For the recorded bids, the distribution of the
duration between consecutive bids is heavily skewed
to the right. We adopt the median time between bids
for each auction type and determine that one cycle
would last for 28.93 hours in Yahoo! and 7.76 hours
in Baidu.

4. Discussions
4.1. Ads’ Quality Score
To facilitate better matching between ads and
searches, search engines often reward higher-quality
ads with a higher position, even when their bids
are lower than those of some other ads. “Quality-
adjusted” bids are calculated by multiplying the raw
bids by such a quality score. Our model can be
adapted to incorporate this quality adjustment. Fol-
lowing Varian (2007), let ei represent the quality score
of the ad of bidder i. The actual CTR of bidder i at

position j , or zij , is then determined by both ei and �j ,
j = 112, so we have zij = ei�j .

With the above setup, ads will be ranked by eibi.
Like in our analysis before, each advertiser needs to
pay only the minimum amount to participate.15 Let
pij be the minimum amount that advertiser i needs to
pay to take position j , and we have pi1ei = e−ib−i and
pi2 = r , i = 112. So, pi1 = e−i/4ei5b2. Then,

�i4bi3 b−i5

=



































(

�i −
e−i

ei
b−i

)

zi1 if biei > b−ie−i1

1
2

(

�i −
e−i

ei
b−i

)

zi1 +
1
2
4�i − r5zi2 if biei = b−ie−i1

4�i − r5zi2 if biei < b−ie−i0

Or equivalently, plugging in zij ,

�i4bi3 b−i5

=























4�iei − e−ib−i5�1 if biei > b−ie−i1

1
2 4�iei − e−ib−i5�1 + 1

2 4�iei − rei5�2 if biei = b−ie−i1

4�iei − rei5�2 if biei < b−ie−i0

Let �∗
i = �iei, r∗ = eir , b∗

i = eibi, and b∗
−i = e−ib−i. We

then can rewrite the above payoff function as

�i4b
∗

i 3 b
∗

−i5=























4�∗
i − b∗

−i5�1 if b∗
i > b∗

−i1

1
2 4�

∗
i − b∗

−i5�1 + 1
2 4�

∗
i − r5�2 if b∗

i = b∗
−i1

4�∗
i − r∗5�2 if b∗

i < b∗
−i0

We can see that with the slightly modified interpreta-
tion of quality-adjusted value, reserve price, and bids,
the payoff function remains structurally the same as
in §2. Hence, the analysis and equilibrium outcomes
follow as before. The transformation is achieved by
considering the actual click-through rate as the prod-
uct of a “position effect” and a “quality effect.” The
“position effect” is equivalent to � in our baseline
model, and the “quality effect” is related only to the
ad itself. Here one implicit assumption is that when
an ad moves to a new position, it carries the ad-
quality effect; that is, the quality score is independent
from the ad position.

15 In this section, we consider only the case of second-price auc-
tion, because it is now the most commonly adopted mechanism.
We are not aware of a similar practice for first-price auctions, but
the argument for the first-price mechanism follows the same logic.
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Table 5 Payoffs of Matching Pennies

Head Tail

Head +11−1 −11+1
Tail −11+1 +11−1

4.2. The Analogy Between Dynamic Reactions
and Mixed Strategy

Although the dynamic equilibrium in our framework
is based on pure strategies, the connection between
this type of cyclical equilibrium and a traditional
mixed-strategy equilibrium can be illustrated with a
simple example.

Consider the familiar “matching pennies” game in
Table 5. There is no pure-strategy equilibrium for
either player. When they move simultaneously, they
must play the mixed-strategy equilibrium in which
both of them randomize, even in a repeated game set-
ting. If the market allows them to move sequentially
and observe each other’s actions, the game’s equilib-
rium outcome would be a special case of the Edge-
worth cycle. Specifically, suppose player 1 plays heads
first, then player 2’s best response is to play tails in
the second period. In the next period, when player 1
moves, she would switch to play tails. Then player 2
would switch to play heads, and so on. The Markov
chain of this outcome is exactly the same as the one
depicted in Figure 2. We only need to change “esca-
lating” for “heads,” and “collapsing” for “tails.”

The implications may not be limited to the search-
advertising market. Our results suggest that adver-
tisers adjust their bids quite frequently because of
the low menu cost of changing bids and low moni-
toring cost of observing competitors’ bids. Similar to
the Edgeworth-cycle patterns of retail gasoline prices
(Noel 2007a, b), these bids display a pattern of price
dispersion. This form of price dispersion is yet to
be understood. Varian (1980) distinguished between
“spatial price dispersion,” in which some firms per-
sistently sell the product at a lower price than oth-
ers, and “temporal price dispersion,” in which firms
play a mixed strategy and randomize the price. The
price dispersion resulting from Edgeworth-like cycles
is obviously not spatial, because no bidder consis-
tently bids higher than the others. It is not tempo-
ral, either, because the advertisers are not necessarily
randomizing from period to period. We can refer to
this form of price dispersion as “reactive price disper-
sion,” because the price pattern is a result of players
reacting to each other’s strategies. In oligopolistic
markets, firms usually cannot perfectly make their
decisions simultaneously. When players have to move
sequentially, late movers often can observe the strate-
gies played by early movers and adjust their strat-
egy accordingly. Neither a one-shot nor a repeated

game framework is appropriate to model this form of
reaction.

4.3. Autobidders and Alternative Causes
Autobidders are software agents that an advertiser
can use to automatically change the bids on advertis-
ers’ behalf. Advertisers may use such autobidders to
reduce the cost of changing bids.

We cannot perfectly rule out the possibility of the
use of autobidders, but a few observations make us
believe that the cyclical patterns we document cannot
be attributed entirely to the use of autobidders, even
if they exist. First, autobidders typically revisit a key-
word in a fixed time interval (e.g., every 10 minutes,
every day, etc.). Hence, the time between consecu-
tive bids by autobidders should be close to a multiple
of a constant. We cannot identify such regularity in
bids in either market. Second, even if autobidders are
used, the advertisers still need to determine a strategy
for the program, and these autobidders would merely
carry out a predefined strategy.

Can demand and cost shocks or date and time
effects explain the observed cycles? We cannot fully
rule out these possible causes. Summary statistics
in Table 1 suggest, however, that advertisers change
their bids every 2.3 days on Yahoo! and every 1.3 days
on Baidu. If there are demand and cost shocks or date
and time effects, bid changes should be closely related
to daily or weekly human-activity patterns. Moreover,
unless the shocks are extremely regular, such that
the bidders are affected sequentially, it would also
be unreasonable to observe sequential adjustments of
bids in both search engines.

5. Conclusion
One distinctive feature of keyword auctions is that
they are dynamic: Bids can be adjusted, ranks of ads
can be updated, and payoffs are realized, all in real
time. Recognizing the dynamic nature of these auc-
tions, we find equilibrium bid adjustments that are
not easily modeled and explained in static games. Our
theoretical framework gives equilibrium conditions
under which bidders engage in cyclical bid adjust-
ments. In these cycles, the bids gradually rise up to a
certain level, drop sharply, and then the cycles restart.
We find that the cyclical pattern exists in both first-
and second-price auctions. We also provide empirical
evidence of cyclical bid adjustments with data from
leading search engines. Our results show that adver-
tisers not only change their bids, but they do so quite
frequently.

A central message of this study is that there can be
many types of equilibria in the search-engine adver-
tising market. Although earlier studies offer impor-
tant insights into the static properties of this market,
we identify and emphasize dynamic interactions in
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this context. Data limitations preclude us from empiri-
cally studying the conditions under which cyclical bid
adjustments are more easily observed. We nonetheless
demonstrate the existence of such cycles and high-
light the importance of adopting dynamic models to
examine market participants’ real-world actions.

One limitation of our study is that each data sam-
ple contains only one keyword. In this study, we
look at each keyword as existing in a separate mar-
ket. In reality, advertisers typically bid on multiple
keywords. It is true that such issues as budgeting
may affect bidding behavior, but within each indi-
vidual keyword market, the advertisers still need to
adopt a bidding strategy such as the one modeled
and observed here and those in the literature. If the
patterns we observe are rare, the generalizability of
the study’s findings could be significantly limited.
To this end, the literature suggests that bid adjust-
ments are far from isolated, idiosyncratic events. Edel-
man and Ostrovsky (2007, p. 194) document what
they call a “saw-tooth” pattern in Yahoo!’s first-
price data. From their description, it is obvious that
the cyclical bidding pattern is quite prevalent. For
second-price keyword auctions, the strongest support
is from Ganchev et al. (2007), who show that (1)
observed bid deviations from simple static models
are likely to be the result of strategic bidding, and
(2) there is evidence to support the practice of bid
jamming.16

A dynamic perspective of the search-advertising
market can potentially open a new door for important
future works. There are a number of ways that our
work can be improved upon to examine more real-
istic market conditions. For example, although this
paper adopts a discrete-time framework to highlight
bid reactions, the timing between consecutive bids
can be endogenized in future studies. Richer strate-
gic bidding patterns can also be studied if we explic-
itly consider issues that arise only in dynamic games,
such as discount factors, budget constraints, menu
costs, entry and exit, learning and heuristics, etc. In
addition, future studies inevitably will have to deal
with the issue of advertisers’ bidding simultaneously
in multiple keyword auctions. Finally, position- and
advertiser-specific characteristics may affect the val-
ues of different slots, such that different slots may
bring different sets of prospective customers, and dif-
ferent advertisers may value these slots differently.
These nuances would be fruitful topics to examine
in dynamic settings. We believe that further stud-
ies of dynamic reactions among advertisers will offer
even more interesting insights about this important
market.

16 We thank an anonymous reviewer for pointing out this reference.
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Appendix

ProofofProposition1. We use the concept of MPE in this
proof. First we show the conditions that the parameters (bi, b̄i)
must satisfy to constitute an MPE.

Let Vi4b−i5 denote advertiser i’s valuation if (1) she is
about to move, (2) the other firm just bid b−i, and (3) both
firms follow the equilibrium strategy thereafter. Define
V14b2 = r5 = V̄1 and V24b1 = r + �5 = V̄2. Depending on
whether b1 − r is an odd or an even multiple of �, V̄1 and
V̄2 can be expressed as follows:

Case 1. b1 − r = 42t + 15�:

V̄1 = V14b2 = r5

= 4�1 − r − �54�1 + ��25

+ �24�1 − r − 3�54�1 + ��25+ · · · + �2t4�1 − b154�1 + ��25

+ �2t+24�1 − b̄2541 + �5�1 + �2t+4V̄13 (16)

V̄2 = V24b1 = r + �5

= 4�2 − r − 2�54�1 + ��25

+ �24�2 − r − 4�54�1 + ��25+ · · · + �2t4�2 − b1 − �5

· 4�1 + ��25+ �2t+24�2 − r541 + �5�2 + �2t+4V̄20 (17)

Case 2. b1 − r = 2t�:

V̄1 = V14b2 = r5

= 4�1 − r − �54�1 + ��25

+ �24�1 − r − 3�54�1 + ��25+ · · · + �2t−24�1 − b1 + �5

· 4�1 + ��25+ �2t4�1 − b̄2541 + �5�1 + �2t+2V̄13 (18)

V̄2 = V24b1 = r + �5

= 4�2 − r − 2�54�1 + ��25

+ �24�2 − r − 4�54�1 + ��25+ · · · + �2t−24�2 − b15

· 4�1 + ��25+ �2t4�2 − r541 + �5�2 + �2t+2V̄20 (19)

Now given V̄1 and V̄2, how is b̄2 determined? Threshold
b̄2 is the highest bid that advertiser 2 will submit for posi-
tion 1. Given �1 > �2 and that advertiser 1 will bid � more
than advertiser 2 when the current price is lower than b̄1,
if the current price is b̄2 − �, advertiser 2 should be better
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off outbidding advertiser 1 by � than dropping back to r . If
the current price is b̄2, advertiser 2 should be weakly bet-
ter off by dropping back to r than outbidding advertiser 1
by �, so

4�2 − b̄254�1 + ��25+ �24�2 − r541 + �5�2 + �4V̄2

> 4�2 − r541 + �5�2 + �2V̄2

≥ 4�2 − b̄2 − �54�1 + ��25+ �24�2 − r541 + �5�2 + �4V̄20 (20)

More specifically, b̄2 is determined when the the second
inequality is binding

4�2 − r541 + �5�2 + �2V̄2

= 4�2 − b̄2 − �54�1 + ��25+ �24�2 − r541 + �5�2 + �4V̄20 (21)

It is obvious that b̄2 < �2, because by dropping to bid r ,
advertiser 2 can receive the second position and make a
positive profit. This can be shown by reorganizing the sec-
ond inequality of Equation (20) as 4�2 − b̄2 − �54�1 + ��25 =

41 − �254�2 − r541 + �5�2 + �2V̄2 > 0; thus �2 − b̄2 − � > 0.
Then what condition should b1 satisfy? Threshold b1

is the threshold value that advertiser 1 prefers to jump
to bid advertiser 2’s maximum bid to guarantee the first
position and end the price war. Therefore, given �1 > �2
and that advertiser 2 follows the strategy to outbid adver-
tiser 1 by � when the current price is lower than b1,
it should be the case that if the current price is b1 − �,
advertiser 1 is better off by bidding b1 than jumping
to b̄2; whereas if the current price is b1, advertiser 1 is
weakly better off by jumping to b̄2 in the current period
than bidding b1 + �. Thus, the following needs to be
satisfied:

4�1 −b154�1 +��25+�24�1 − b̄2541+�5�1 +�4V̄1

>4�1 − b̄2541+�5�1 +�2V̄1

≥ 4�1 −b1 −�54�1 +��25+�24�1 − b̄2541+�5�1 +�4V̄10 (22)

Then b1 is determined by the second inequality when it
is binding

4�1 − b̄2541 + �5�1 + �2V̄1

= 4�1 − b1 − �54�1 + ��25+ �24�1 − b̄2541 + �5�1 + �4V̄10 (23)

It can be shown that b1 < �1 by reorganizing the second
inequality as 4�1 − b1 − �54�1 + ��25 = 41 − �2544�1 − b̄15 ·

41 + �5�1 + �2V̄15 > 0. It can also be shown that b1 should
be lower than b̄2, otherwise the first inequality can not be
satisfied, because V̄1 ≥ 4�1 − b̄2541 + �5�1 + �2V̄1.

Solving Equations (21) and (23) gives b1 and b̄2.
Next we show that 4R11R25 constitutes an MPE. We have

the following claims:
1. Both advertisers will never bid lower than r , because

r is the smallest allowed bid.
2. Advertiser 2 will never raise her bid to more than

b̄2 + �. To show this, compare advertiser 2’s payoff when
bidding b̄2 + 2� to that when she drops to bid r :

4�2 − b̄2 − 2�54�1 + ��25+ �24�2 − r541 + �5�2 + �4V̄2

< 4�2 − r541 + �5�2 + �2V̄20

This inequality follows from Equation (20), because � −

b̄2 − 2� < �− b̄2 − �.
3. Advertiser 1 will never bid between 6b1 + �1 b̄2 − �7.

This can be seen from (22), and the fact that �1 − b1 − 2� <
�1 − b1 − �.

4. For r < b−i < b1, no advertiser is willing to unilaterally
deviate from bidding b−i + � to b−i + 2� (in turn, b−i + k�
for k > 2). To show this, let the current bid price be p. We
consider only the case of b1 − p = 42t + 15�. The case when
b1 − p = 2t� can be worked out similarly:

V14b2 = p5 = 4�1 − p− �54�1 + ��25

+ �24�1 − p− 3�54�1 + ��25+ · · · + �2t4�1 − b15

· 4�1 + ��25+ �2t+24�1 − b̄2541 + �5�1 + �2t+4V̄13

V24b1 = p5 = 4�2 − p− �54�1 + ��25

+ �24�2 − p− 3�54�1 + ��25+ · · · + �2t4�2 − b15

· 4�1 + ��25+ �2t+24�2 − r541 + �5�2 + �2t+4V̄20

If advertiser 1 switches to bid b2 + 2� for only one period
when advertiser 2 keeps the original strategy, then

Ṽ14b2 = p5 = 4�1 − p− 2�54�1 + ��25

+ �24�1 − p− 4�54�1 + ��25+ · · · + �2t4�1 − b1 − �5

· 4�1 + ��25+ �2t+24�1 − b̄2541 + �5�1 + �2t+4V̄1

< V14b2 = p50

This inequality is obvious because the first t terms in V14p5
are greater than those in Ṽ14p5. The same reasoning works
for advertiser 2:

Ṽ24b1 = p5 = 4�2 − p− 2�54�1 + ��25

+�24�2 −p−4�54�1 +��25+···+�2t4�2 −b2 −�5

· 4�1 + ��25+ �2t+24�2 − r541 + �5�2 + �2t+4V̄2

< V24b2 = p50

This inequality is straightforward because the first t terms
in V24p5 are greater than those in Ṽ24p5. Thus, neither adver-
tiser has incentives to deviate to bid bi + 2�.

5. For r < b−i < b2, no advertiser is willing to deviate to
bid p < bi + �. This follows the same logic as (4) thus is
omitted.

6. For b1 < b−i < b̄2, advertiser 1 prefers to jumping to
bid b̄−i. This is straightforward from (22).

By all of these claims, (R11R2) constitutes an MPE for this
game.

Finally we show the existence of the MPE. Consider an
arbitrary V̄1 and V̄2 ∈ 401 44�i − r − �5�15/41 − �55,17 and b̄24V̄25
is defined by Equation (21). It can be shown that b̄24V̄25 is
continuous in V̄2 and is in 6r1 �27.

Similarly, given V̄1, V̄2, and b̄14V̄25, b24V̄15 is defined by
Equation (23). It is continuous in V̄1 and is in 6r1 �17.

17 From Equations (16)–(19), it is straightforward to obtain that both
V̄1 and V̄2 are in 601 44�i − r − �5�15/41 − �57.
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Consider V̄1 first. Define

U14p1 V̄15= 4�1 − p− �54�1 + ��25+ · · · +


























�2t4�1 − b154�1 + ��25+ �2t+24�1 − b̄2541 + �5�1 + �2t+4V̄1

if b2 − p = 42t + 15�1

�2t−24�1 −b1 +�54�1 +��25+�2t4�1 − b̄2541+�5�1 +�2t+2V̄1

if b2 − p = 2t�0

(24)

We must show that there exists a V̄1 such that V̄1 =

U14b14V̄151 b̄24V̄255, V̄1 = Ũ14V̄11 V̄25. It is easy to show that
U14V̄11 V̄25 is continuous in V̄1. It can be shown U14V̄11 V̄25
is continuous in V̄2, because U1 is continuous in b̄24V̄25,
and b̄24V̄25 is continuous in V̄2. To show that Ũ1 has a
fixed point, we only need to show that Ũ1 maps 601 44�1 −

r − �5�15/41 − �57 into 601 44�1 − r − �5�15/41 − �57. Obviously,
Ũ1 ≥ 0 if V̄1 ≥ 0. To show Ũ1 ≤ 44�1 − r − �5�15/41 − �5 if V̄1 ≤

44�1 − r − �5�15/41 − �5, note that from Equation (24), when
b1 − r = 42t + 15�,

Ũ14V̄15 ≤ 4�1 −r−�541+�+···+�2t+35�1 +�2t+4 4�1 −r−�5

41−�5
�1

=
4�1 − r − �541 − �2t+45

41 − �5
�1 + �2t+4 4�1 − r − �5

41 − �5
�1

=
4�1 − r − �5

41 − �5
�10

The same works for the case when b1 − r = 2t�. It can
also be shown, if we define Ũ2 in the same way, that Ũ2 ≤

44�i − r − �5�15/41 − �5 if V̄2 ≤ 44�i − r − �5�15/41 − �5. Apply-
ing the fixed-point theorem, we complete the proof of the
existence of the equilibrium. �

Proof of Proposition 2. The proof follows the same
logic as in the proof of Proposition 1. The difference is
that we embed the bidders’ relative positions of the last
period into the strategy profile 4R11R25 so that the response
depends on both the other player’s last bid and the bid-
ders’ relative positions. In other words, the bidders’ payoff-
relevant states are determined by both the last bid and how
the bid was reached (i.e., from an escalating state or a col-
lapsing state). Because the same bid price can be in different
states, the responses can be different even when the last bids
were the same. The equilibrium here is not an MPE and
therefore is not “robust” in the sense discussed by Maskin
and Tirole (1988b). Because the objective is to show exis-
tence, it is sufficient to identify one equilibrium out of many
possible equilibria.

First we establish the necessary conditions under which
there does not exist price cycles. If there exists an equilib-
rium in which both advertisers have no incentives to devi-
ate by updating their bids, assuming that �1 > �2, it must be
the case that bidder 1 bids some b∗

1 and bidder 2 bids b∗
1 −�,

and bidders 1 and 2 obtain payoffs of 41/41 − �554�1 − b∗
1 +

�5�1 and 41/41 − �554�2 − r5�2, respectively. Consider such a
pair of bids 4b∗

11 b
∗
1 − �5; because bidder 1 has no incentive

to raise her bid as she already occupies the first position,
we only need to consider her deviation of lowering her bid.
Bidder 1’s best option is to bid b∗

1 − 2� because this induces

the highest cost for bidder 2. In response, bidder 2 will drop
the bid to b∗

1 − 3�. In this scenario, bidder 1’s deviation can
be prevented if

4�1 − r5�2 +
�

1 − �
4�1 −b∗

1 +3�5�1 ≤
1

1 − �
4�1 −b∗

1 +�5�10 (25)

Similarly, bidder 2 should have no incentive to lower her
bid because it only lowers the cost of bidder 1. Thus, we
only need to consider bidder 2’s deviation of raising her
bid. The best deviation option for bidder 2 is to bid b∗

1 + �.
When bidder 2 deviates, bidder 1 responds to outbid bid-
der 2 with b∗

1 + 2�. In this case, the following inequality
should be satisfied to prevent bidder 2 from deviating:

4�2 − b∗

15�1 + �
1

1 − �
4�2 − r5�2 ≤

1
1 − �

4�2 − r5�20 (26)

From Equations (25) and (26), we have

�2 −
�2

�1
4�2 − r5≤ b∗

1 ≤ �1 −
�2

�1
4�1 − r5−

3�− 1
1 − �

�0

Because � > −443�− 15/41 − �55�, we obtain that the nec-
essary condition for the existence of a stable equilibrium is
that there exists a b∗

i such that

�2 −
�2

�1
4�2 − r5≤ b∗

1 ≤ �1 −
�2

�1
4�1 − r5−

3�− 1
1 − �

�0

So if a stable equilibrium exists such that bidder 1 and 2
bid b∗

1 and b∗
1 − �, respectively, the following must be

satisfied:

�2 −
�2

�1
4�2 − r5≤ �1 −

�2

�1
4�1 − r5−

3�− 1
1 − �

�0

Or equivalently,

�1 − �2 ≥
�1

�1 − �2

3�− 1
1 − �

�0 (27)

Thus, a necessary condition for the existence of cyclical
equilibrium is

�1 − �2 <
�1

�1 − �2

3�− 1
1 − �

�0 (28)

Now we consider the equilibrium with price cycles. We
first show the conditions that b′

2 must satisfy to constitute a
perfect dynamic equilibrium.

Define V14b2 = r + �5= V̄1 and V24b1 = r5= V̄2.
1. If b′

2 = r + 2t�, then V̄1 can be written as

V̄1 = V14b2 = r + �5

= 4�1 − r − �5�1 + �4�1 − r5�2

+ �264�1 − r − 3�5�1 + �4�1 − r5�27

+ · · · + �2t−24�1 − b′

2 + �5�141 + �5

+ �2t4�1 − r5�241 + �5�2t+2V̄11 (29)

and V̄2 can be written as

V̄2 = V24b1 = r5

= 4�2 − r5�1 + �4�2 − r5�2 + �264�2 − r − 2�5�1 + �4�2 − r5�27

+ · · · + �2t−264�2 − b′

2 + 2�5�1 + �4�2 − r5�27

+ �2t64�2 − r5�2 + �4�2 − r5�17+ �2t+2V̄20 (30)
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2. If b′

2 = r + 42t + 15�, then V̄1 can be written as

V̄1 = V14b2 = r + �5

= 4�1 − r − �5�1 + �4�1 − r5�2 + �264�1 − r − 3�5�1

+ �4�1 − r5�27+ · · · + �2t−24�1 − b′

2 + 2�5�1 + �4�1 − r5�2

+ �2t4�1 − b′

25�141 + �5

+ �2t+24�1 − r5�241 + �5�2t+4V̄11 (31)

and V̄2 can be written as

V̄2 = V24b1 = r5

= 4�2 − r5�1 + �4�2 − r5�2 + �264�2 − r − 2�5�1 + �4�2 − r5�27

+ · · · + �2t64�2 − b′

2 + �5�1 + �4�2 − r5�27

+ �2t+264�2 − r5�2 + �4�2 − r5�17+ �2t+4V̄20 (32)

Now how is b′

2 determined? It is a threshold value above
which bidder 2 is not willing to pay for staying at the top
position. So when b1 = b′

2 − �, bidder 2 is strictly better off
outbidding bidder 1; when b1 = b′

2, bidder 2 is weakly better
off by bidding b1 −� and staying at the bottom position than
outbidding bidder 1. So we have

4�2 −b′

2 +�5�1 +�4�2 −r5�2 +�264�2 −r5�2 +�4�2 −r5�17+�4V̄2

> 4�2 − r5�2 + �4�2 − r5�1 + �2V̄21 (33)

and

4�2 − b′

25�1 + �4�2 − r5�2 + �264�2 − r5�2 + �4�2 − r5�17+ �4V̄2

≤ 4�2 − r5�2 + �4�2 − r5�1 + �2V̄20 (34)

In summary,

4�2 − b′

25�1 + �4�2 − r5�2

≤ 41 − �2564�2 − r5�2 + �4�2 − r5�1 + �2V̄27

< 4�2 − b′

2 + �5�1 + �4�2 − r5�21 (35)

and b′

2 is determined by the first inequality:

4�2 − b′

25�1 + �4�2 − r5�2

= 41 − �2564�2 − r5�2 + �4�2 − r5�1 + �2V̄270 (36)

We next show that 4R11R25 constitutes a perfect dynamic
equilibrium by checking the following claims:

1. Neither advertiser will bid lower than r .
2. Advertiser 2 will never bid more than b′

2, according
to (35).

3. Advertiser 1 will never bid more than b′

2 +

�, because given advertiser 2’s strategy to bid b1 − � when
b1 ≥ b′

2, bidding more will only harm bidder 1’s own per-
click profit.

4. Neither advertiser has incentive to bid more than
b−i +�. The argument is similar to that in the first-price case
(point 4).

5. When advertiser 2 plays strategy b1 −�, and when b2 =

b′

2, advertiser 1 has no incentive to deviate from bidding r .
This can be seen from (36) and the violation of (27).

6. When b2 = b′

2, advertiser 1 has no incentive to deviate
from bidding r to any r +k� < b′

2 +�, where k > 0 is an inte-
ger. This is because the payoffs of the periods following the
deviation will be strictly lower than the payoff that bidder
1 can achieve when she bids r .

7. In Strategy II, bidder 2 has no incentive to bid
b1 − k�, with any integer k > 1. This is because the bid-
jamming strategy (k = 1) can impose the highest cost for her
competitor.

So 4R11R25 constitutes a perfect equilibrium. The exis-
tence of the equilibrium could be derived from applying the
fixed-point theorem as in the first-price case. �
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