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  Abstract 
 
 
This note demonstrates that the Baxter-King (1999) filter, and in general any band-pass 
filter, does not isolate the cycle in an unobserved components model with a stochastic 
trend.  The first difference of the trend passes through the filter, and as a result, the 
spectral properties of the filtered series depend on the trend in the unfiltered series.  It is 
demonstrated that for post-war U.S. Real GDP, the spectral properties of the BK filtered 
series are primarily to due to the stochastic trend in output.  
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1. Introduction 

 In a recent paper, Baxter and King (1999) propose an approximate band-pass filter to 

extract the business cycle component from a time series with deterministic or stochastic 

trends.  This note analyzes the relationship between the output from the Baxter-King 

(BK) filter and the cycle in an unobserved components model, where the cycle is the 

stationary deviation from a stochastic trend.  I demonstrate that the BK filter, and more 

generally any band-pass filter, does not isolate the cycle when the trend component of the 

series to be filtered is integrated.  The first difference of the trend passes through the 

filter, and as a result, the spectral properties of the BK filtered series depend on the trend 

in the unfiltered series.  

 Other studies of filtering nonstationary processes include the work by Harvey and 

Jaeger (1993) and Cogley and Nason (1995) on the Hodrick-Prescott (1980/1997) filter.  

Osborn (1995) studies simple moving average (i.e. non band-pass) filtering of integrated 

processes, and Benati (2001) analyzes the properties of time series generated from 

macroeconomic models and passed through the BK filter. 

 This note is organized as follows.  Section 2 discusses alternative definitions of the 

business cycle.  I define the business cycle as stationary deviations from a stochastic 

trend.  In Section 3, I demonstrate that the spectrum of a BK filtered unobserved 

components model is comprised of three components:  one due to the stochastic trend, 

one due to the cycle, and a covariance term.  In addition, the BK filter assigns a higher 

weight to the trend component than it does the cyclical component in determining the  

spectral power of the filtered series.  Section 4 summarizes and offers concluding 

remarks. 

2. Defining the Business Cycle 

 Hodrick and Prescott (1997/1980), Baxter and King (1999), and others define the 

business cycle as the stationary component that remains after (the log of) output is passed 

through an ideal band-pass filter.  This definition relies on frequency components of the 

data, and in the case of the BK filter, the frequency band is 1.5 to 8 years per cycle. 

 An alternative definition of the business cycle relies on an unobserved components 

(UC) view of output.  In this case, (the log of) output is the sum of an unobserved trend 

and cycle: 
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  ttt cy += τ , 

where tτ  is the nonstationary trend and tc  is the stationary cycle around this trend.  The 

UC model has a rich history in econometrics, and has been analyzed by Harvey (1985), 

Watson (1986), Clark (1987), Harvey and Jaeger (1993), and Morley, Nelson, and Zivot 

(2002) among others.  See Cogley (2001) for additional discussion on alternative 

definitions of the business cycle. 

 In this note, I adopt the UC definition of the business cycle.  The purpose of this 

study is to ascertain whether or not the BK filter can isolate the cyclical component of an 

integrated series, where the cycle is defined as stationary deviations from trend.  In other 

words, how closely does the output from passing ty  through the BK filter resemble tc  

over a particular frequency band? 

3. Cyclical Properties of Baxter-King Filtered Time Series 

3.1 The Baxter-King Filter 

The BK filter is an approximation to an ideal band-pass filter.  This ideal filter has the  

following 2-sided infinite moving average representation: 
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where symmetry ( kk aa −= ) is imposed so that the filter does not induce a phase shift.  

The transfer function of a filter determines the extent to which periodic components of 

the filtered series are related to periodic components of the  underlying (unfiltered) series.  

The BK filter is designed to pass through the stationary component of output whose 

periodicity ranges from 1.5 to 8 years per cycle.  For stationary time series, the transfer 

function of this ideal filter takes the form:1 

  


 ≤≤

=
otherwise  0

3/16/ if   1
)(

πωπ
ωα .  

This ideal filter is not feasible since it requires an infinite amount of data.  Baxter and 

King employ the following truncated version of the ideal filter, which is the optimal 

approximation: 

                                        
1 At quarterly frequencies, the desired band is 6 to 32 quarters per cycle.  Since ω=2π/P , this translates into 
a frequency band of π/16 ≤ |ω| ≤ π/3.  
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This approximate band-pass filter, with corresponding transfer function )(ωα K , 

sacrifices 2K data points. 

 The BK filter is designed so that it renders trending series stationary.  This is 

achieved by constraining the frequency response of the filter to be zero at zero frequency.  

The BK filter may thus be factored as: 
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and the coefficients of )(1 LK −ψ are given by 
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Since the BK filter contains two differencing operators, it removes linear and quadratic 

time trends, and up to two unit roots. 

3.2 Properties of BK Filtered Series When the Trend is Integrated 

 Consider the following unobserved components model: 

  ttt cy += τ  

  ttt ητµτ ++= −1     

where tc  and tη  are both stationary processes.  It is instructive to factor the BK filter as 

follows: 

  )()1()( LbLLa KK −=  

where )()1()( 1
1 LLLb KK −

−−−= ψ .   

 Define tx  as the output from passing ty  through the BK filter: 

  tKt yLax )(≡  . 

For the above UC model, the BK filtered series is:  

  tKtKtKtKt cLaLbcLaLax )()()()( +=+= ητ .  
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The appearance of tK cLa )(  in the above expression demonstrates that the BK filter 

approximately passes the UC cycle through at business cycle frequencies.  However, the 

BK filter also allows the first difference of the trend, tη , to pass through.  In addition, the 

periodic components of tη  and tc  are passed through with different weights.  When the 

BK filter is applied to an integrated process, it differences the series, rendering it 

stationary, and then filters the resulting stationary series.  Transforming the series “uses 

up” one of the difference operators in )(LaK , and the asymmetric filter )(LbK  is then 

applied to the first difference of the trend.  Therefore, while the BK filter removes unit 

roots, it does not remove stochastic trends.  

 The spectrum of the BK filtered series is: 
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where )(LKβ  is the transfer function of )(LbK , )(ωηf  and )(ωcf  are the spectra of tη  

and tc  respectively, )(ωηcf  is the cross-spectrum between tη  and tc , and )(ω∆  is the 

transfer function of the difference operator.  The last term in the above expression can be 

further simplified as: 
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where )(ωηcco  and )(ωηcq  are the co-spectra and quadrature spectra between tη  and tc  

respectively. 

 The periodicity displayed by the BK filtered UC model thus arises from three 

sources: the first difference of the stochastic trend, the UC cycle, and their covariance.  

However, in most of the existing literature, such as Harvey (1985) and Clark (1987), the 

trend and cycle are assumed to be uncorrelated.  In this case, the term involving the cross-

spectrum vanishes. 

 The extent to which the periodic behavior present in tx  reflects tc  and tη  is 

determined by 
2

)(LKα  (the squared gain of )(LaK ) and 
2

)(ωβ K  (the squared gain of 

)(LbK ) respectively.  To quantify the influence of the stochastic trend and the UC cycle 

in determining the spectral power of a BK filtered unobserved components model, Figure 
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1 plots 
2

)(ωα K  (the solid line) and 
2

)(ωβ K  (the dashed line), for various values of K.  

In addition, the frequency band of 1.5 to 8 years per cycle is shaded.  

 We can clearly see the extent to which the behavior present in tx  depends on the 

underlying stochastic trend and the UC cycle.  For each value of K, the BK filter ascribes 

a higher frequency response to tη  than it does to tc .  Furthermore, the contribution of tη  

to the spectral power of tx  increases as more data is sacrificed.  Indeed, when 20 years of 

quarterly data are sacrificed (K=40), 
2

)(ωα K  is dwarfed by 
2

)(ωβ K .  Therefore, when 

the trend component of the underlying series is integrated, and uncorrelated with the UC 

cycle, the BK filter will overstate the importance of trans itory dynamics at business cycle 

frequencies.   

 We note that when the trend and cycle are correlated, it is possible for the BK filter to 

understate transitory variation at business cycle frequencies.  This will occur if 
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Whether or not this condition holds will depend on the properties of )(ωηf  and )(ωηcf , 

as well as 
2

)(LKα  and 
2

)(ωβ K .  

3.3 BK Filtered Post-War Quarterly U.S. Real GDP 

 As an illustration of the potential for the BK filter to overstate transitory dynamics in 

practice, we employ a parameterization taken from Morley, Nelson, and Zivot (2002). 

They estimate the following stochastic trend plus cycle model for post-war quarterly U.S. 

Real GDP, 1947.1-1998.2: 

  ttt cy += τ  

  ttt ηττ ++= −182.0  24.1=ησ  

  ttcLL ε=+− )71.034.11( 2  75.0=εσ  

with 84.0)( −== ηεσεη ttE .  This parameterization is particularly convenient since tc  

has 84% of its spectral power in the BK band.   
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 Figure 2 plots the three spectral components of tx , the BK filtered series, from this 

data generating process.  )()(
2

ωωα cK f  is represented by the solid line, )()(
2

ωωβ ηfK  

by the dashed line, and 







∆ )(

)(
Re)(2

2

ω

ω
ωα ηc

K

f
 by the solid and dashed line.  Again, the 

contribution of the first difference of the trend in determining the spectral power of the 

BK filtered series increases with K.  Also, since the trend and cycle are negatively 

correlated, the cross-spectral term is negative.  This demonstrates the potential to mitigate 

the presence of the term involving the stochastic trend.  Notice however, that in this case, 


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Re)(2

2

ω

ω
ωα ηc

K

f
 and )()(

2
ωωα cK f  nearly cancel each other, so that the spectral 

power of the BK filtered UC model is almost entirely determined by the first difference of 

the stochastic trend. 

4. Summary and Concluding Remarks 

 This note analyzes the relationship between the output of the Baxter-King filter and 

the cycle in an unobserved components model.  I demonstrate that the Baxter-King filter 

does not isolate the cycle, but rather passes the first difference of the trend through to the 

filtered series.  Furthermore, the weight that the BK filter assigns to the first difference of 

the trend in determining the spectral power of the BK filtered series is much higher than 

the weight it assigns to the UC cycle.  This illustrates the potential for the BK filter to 

overstate the importance of transitory dynamics at business cycle frequencies.  An 

empirical example using post-war quarterly U.S. Real GDP demonstrates the importance 

of this phenomenon in practice. 

 The analysis presented in this note is not specific to the Baxter-King filter, but indeed 

applies to all band-pass filters.  The simple act of differencing does not remove a 

stochastic trend, it merely renders it stationary.  Therefore, while band-pass filtering can 

render an integrated series stationary, the properties of the filtered series will depend on 

the trend in the unfiltered series. 
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Figure 1.  
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2)(LKα  is represented by the solid line, and 

2)(LKβ  by the dashed line. 
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Figure 2.  Spectral Components of BK Filtered U.S. Real GDP: 1947.1 – 1998.2 
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)()( 2 ωα cK fL  is represented by the solid line, )()( 2 ωβ ηfLK  by the dashed line, and 
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