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Abstract
Familial isolated pituitary adenoma (FIPA) occurs in families and is unrelated to multiple endocrine
neoplasia type 1 and Carney complex. Mutations in AIP account only for 15–25% of FIPA families.
CDKN1B mutations cause MEN4 in which affected patients can suffer from pituitary adenomas.
With this study, we wanted to assess whether mutations in CDKN1B occur among a large cohort of
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AIP mutation-negative FIPA kindreds. Eighty-eight AIP mutation-negative FIPA families were
studied and 124 affected subjects underwent sequencing of CDKN1B. Functional analysis of
putative CDKN1B mutations was performed using in silico and in vitro approaches. Germline
CDKN1B analysis revealed two nucleotide changes: c.286AOC (p.K96Q) and c.356TOC
(p.I119T). In vitro, the K96Q change decreased p27 affinity for Grb2 but did not segregate with
pituitary adenoma in the FIPA kindred. The I119T substitution occurred in a female patient with
acromegaly. p27I119T shows an abnormal migration pattern by SDS–PAGE. Three variants
(p.S56T, p.T142T, and c.605C36COT) are likely nonpathogenic because In vitro effects were not
seen. In conclusion, two patients had germline sequence changes in CDKN1B, which led to
functional alterations in the encoded p27 proteins in vitro. Such rare CDKN1B variants may
contribute to the development of pituitary adenomas, but their low incidence and lack of clear
segregation with affected patients makeCDKN1Bsequencing unlikely to be of use in routine genetic
investigation of FIPA kindreds. However, further characterization of the role of CDKN1B in pituitary
tumorigenesis in these and other cases could help clarify the clinicopathological profile of MEN4.
Endocrine-Related Cancer (2012) 19 233–241
Introduction

Among primary central nervous system tumors,

pituitary tumors are the second most frequent by site

(14.3%) and the third most frequent (13.1%) general

group by histology (CBTRUS 2011). Cross-sectional

studies reveal that clinically relevant pituitary adeno-

mas are quite prevalent, occurring in approximately

one in 1064–1288 of the general population (Daly et al.

2006b, Fernandez et al. 2010). Although usually

histologically benign, these tumors have a significant

burden in terms of disease effects (hormonal excess/

deficiency and mass effects) and treatment (neurosur-

gery, biological medical therapy, and radiotherapy). In

the case of genetic syndromes with a known pituitary

adenoma predisposition, such as multiple endocrine

neoplasia type 1 (MEN1) and Carney complex (CNC),

mutation screening and clinical surveillance can aid

early diagnosis. Familial isolated pituitary adenoma

(FIPA) is a clinical syndrome unrelated to MEN1 and

CNC (Daly et al. 2006a). Aryl hydrocarbon receptor

interacting protein (AIP) gene mutations were shown

by Vierimaa et al. (2006) to be associated with a low-

penetrance familial form of pituitary tumors. However,

AIP mutations explain only 15–25% of FIPA cases

(Daly et al. 2007) and 12% of macroadenomas in

young adults (Tichomirowa et al. 2011), the remaining

cases have no currently identified genetic cause.

Among other syndromic conditions associated with

pituitary adenomas is MEN4, which was originally

described in a rat model that spontaneously developed a

MEN1-like condition of neuroendocrine tumors (Fritz

et al. 2002, Pellegata et al. 2006). In humans, as in rats,

this is caused by mutation in the cyclin-dependent

kinase inhibitor 1B (CDKN1B) gene that encodes p27

(IFI27), a cyclin-dependent kinase (CDK) inhibitor.

Mutations in this and other CDKs can be associated
234
with very rare cases of multiple endocrine tumorigen-

esis (Georgitsi et al. 2007a, Agarwal et al. 2009,

Molatore et al. 2010). Interest in the role of CDKN1B

mutations in other endocrine-related cancer has risen,

with a recent study showing that 2/86 sporadic

parathyroid adenoma patients had germline CDKN1B

mutations, which, in turn, affected p27 protein levels or

stability (Costa-Guda et al. 2011). Apart from endocrine

neoplasia, CDKN1B mutations may also play a role in

primary ovarian failure (Ojeda et al. 2011).

To date, large studies have not examined whether

CDKN1B genetic variants play a role in the patho-

genesis of FIPA kindreds that are negative for AIP

mutations. We therefore performed a genetic sequen-

cing and in vitro characterization study of CDKN1B

gene variants in a large group of 88 well-characterized

FIPA families with normal AIP sequences.
Materials and methods

Subjects

The study was performed in 88 FIPA families from

France, Belgium, Italy, Brazil, Spain, Argentina,

Germany, and Bulgaria. FIPA kindreds were defined

as families with two or more related persons having

pituitary adenomas without clinical or genetic evi-

dence of MEN1 or CNC. AIP mutations were excluded

from all FIPA kindreds by sequencing and multiplex

ligation-dependent probe amplification.

The FIPA cohort consisted of 1 four-member,

3 three-member, 39 two-member homogeneous, and

45 two-member heterogeneous FIPA families. The

four-member family presented with one corticotropi-

noma, one prolactinoma, and two somatotropinomas

and the three-member family presented with two

somatotropinomas and one nonfunctioning pituitary
www.endocrinology-journals.org
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adenoma. The 39 two-member homogeneous families

had prolactinomas (nZ23), somatotropinomas

(nZ12), corticotropinoma (nZ2), gonadotropinoma

(nZ1), and nonfunctioning pituitary adenoma (nZ1)

in the affected members. From the total of 181 FIPA

patients, 124 were available for genetic testing.

The study was conducted in accordance with the

guidelines of the Declaration of Helsinki, approved by

Ethics Committee of the University of Liège, and all

subjects provided informed written consent in their

own language for the genetic screening.
CDKN1B genetic analysis and genotyping

Genomic DNA was isolated from blood samples from

at least one affected member of each FIPA family. The

structure of CDKN1B was based on Ensembl

sequences ENSG00000111276. The primers used for

the analysis (two sets of primers were used to amplify

exon 1) were Ex1.1F, GTCTGTGTCTTTTGGCTC-

CG; Ex1.1R, GGTCTGTAGTAGAACTCGGG;

Ex1.2F, GACTTGGAGAAGCACTGCAG; Ex1.2R,

CAAAGCTAAATCAGAATACGC; Ex2F, GGATC-

CAGGATTGTGGGTG; and Ex2R, CCCAGCCTTC-

CCCATTGC. Each 25 ml PCR reaction contained

140 ng genomic DNA, 1.25 ml of each primer,

1.5 mM MgCl2, 10 mM Tris–HCL buffer (pH 8.3),

200 mM dNTPs, and 1.25 U FastStart Taq polymerase

(Roche). PCR conditions were 95 8C for 10 min,

followed by 35 cycles of 30 s at 95 8C, 45 s at 65 8C,

30 s at 72 8C, finishing with 7 min at 72 8C. PCR

products were sequenced using ABI3130XL and

BigDye Terminator v3.1 technology (Applied Biosys-

tems, Foster City, CA, USA).

A group of control samples from normal individuals

(nZ476) were studied to assess CDKN1B allelic

frequencies compared with FIPA patients. These

samples were derived from 326 Italian, 100 Belgian,

and 50 French subjects. To explore the status of a

variant discovered in a Brazilian family, further

genotyping for this specific change was performed in

100 healthy subjects from Brazil.
Reagents

Cell culture materials were purchased from Life

Technologies (Karlsruhe, Germany), Nunc (Wies-

baden, Germany), and Sigma. Inhibitors for protein

kinases A/G/C, staurosporine, H8, and H89 were

purchased from Biaffin (Kassel, Germany). The protein

synthesis inhibitor cycloheximide (CHX) and the

proteasome inhibitor MG132 were purchased from

Sigma.
www.endocrinology-journals.org
Expression vectors, cell lines, and transfections

The p27K96Q and p27I119T mutations were introduced

by site-directed mutagenesis (Quikchange II Site-

Directed Mutagenesis Kit; Stratagene, Waldbronn,

Germany) in the wild-type human CDKN1B cDNA

cloned in a pYFP and pHA backbone as described

previously (Pellegata et al. 2006). MCF7 and HeLa

cells (LGC Standards, Wesel, Germany) were main-

tained in RPMI 1640 and DMEM medium, respect-

ively, supplemented with 10% FCS, 20 mM L-

glutamine, 100 units/ml penicillin G sodium, and

100 mg/ml streptomycin sulfate. GH3 cells (ATCC)

were grown in F12 medium supplemented with 15%

horse serum, 2.5% FCS, 20 mM L-glutamine, 100

units/ml penicillin G sodium, and 100 mg/ml strepto-

mycin. Transient transfection was performed as

described previously (Pellegata et al. 2006).
Drug treatments and pull-down assays

HeLa cells transfected with HA-p27-wt or HA-p27I119T

were treated with 2 nM staurosporine, 2 mM H8, and

2 mM H89 for 24 h. To determine p27 half-life, GH3 cells

that transfected the YFP-p27-wt, YFP-p27K96Q, or

YFP-p27I119T were treated with 25 mg/ml CHX for the

indicated times or with 20 mM of the proteasome

inhibitor MG132 for 5 h. Cell lysates were prepared,

separated, and blotted using standard procedures as

described previously (Pellegata et al. 2006). Primary

antibodies used were anti-p27 monoclonal antibody (BD

Biosciences, Heidelberg, Germany), antiphospho p27

(Thr187; Santa Cruz Biotech, Santa Cruz, CA, USA), and

a-tubulin (Sigma).

HeLa cells transfected with YFP-p27-wt or YFP-

p27K96Q for 24 h were lysed in ice-cold buffer (5 mM

EDTA and 1% Triton-X100). Total protein (500 mg)

was pulled down with 5 mg Grb2-GST recombinant

protein already bound to 2.5 ml glutathione agarose

beads (Upstate, Charlottesville, VA, USA). After

extensive washing, immunoprecipitates were resus-

pended in 25 ml Laemmli buffer. Immunoblotting was

performed using the anti-p27 and subsequently the

anti-Grb2 antibodies (Santa Cruz Biotech).
Immunofluorescence

Immunofluorescence was performed on MCF7 cells

transfected with p27-wt, p27K96Q, or p27I119T on a

coverslip; 24 h later, transfected cells were fixed in

2% paraformaldehyde in PBS for 30 min at room

temperature. Cell nuclei were stained with 1 mg/ml

Hoechst for 5 min at room temperature and mounted

on glass slides. Images were generated using a Zeiss
235
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Axiovert 200 epifluorescence microscope including an

Apotome unit (Zeiss, Jena, Germany) using the YFP

and the DAPI channel and processing was carried out

using Zeiss computer software (AIM 3.2).

In silico analysis

To predict splice signals, the following programs were

used: SpliceView (http://bioinfo.itb.cnr.it/oriel/splice-

view.html and http://www.fruitfly.org/seq_tools/

splice.html). The web-based ESEfinder 3.0 program

(available at: http://rulai.cshl.edu/cgi-bin/tools/ESE3/

esefinder.cgi) searches for sequences that act as

binding sites for four members of the serine/arginine-

rich family of splicing enhancer proteins. Input

sequences were screened for consensus-binding

sequences for the SR proteins SF2/ASF (SRSF1),

SC35 (SRSF2), SRP40 (SRSF5), and SRP55 (SRSF6),

developed using the SELEX (systematic evolution of

ligands by exponential enrichment) procedure.

Increased threshold values of 2.5 for SF2/ASF (from

1.956) and 3.0 for SC35 (from 2.383), SRP40 (from

2.670), and SRP55 (from 2.676) were used in order to

minimize false-positive results.
Results

CDKN1B sequencing

Genetic sequencing in the CDKN1B gene revealed two

heterozygous allelic variants, one that did not occur in the

control population, i.e. c.286AOC (p.K96Q), and one

that occurred at a very low frequency, c.356COT

(p.I119T; 1/476, 0.2% of healthy controls). Two other

variants were detected in the matching control popu-

lations: p.S56T (c.167GOC) and p.T142T (c.426GOA).

The c.167GOC (S56T) base substitution was found in
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both brothers of a Brazilian two-member heterogeneous

FIPA family with a somatotropinoma and a nonfunction-

ing pituitary adenoma and appeared among 100 Brazilian

controls: 198 chromosomes were G and two were C

(genotype: 196 G/G and two G/C). An intronic change,

c.605C36COT, was seen in one FIPA family member

(male with a giant prolactinoma) and did not occur in

the control subjects; however, in silico modeling

indicated that this variant had no strong effect on splicing

and was deemed to probably represent a nonpathological

change. The previously reported T142T (c.426GOA)

variant was found in three unrelated prolactinoma

patients (one male and two females) across three different

FIPA families. The findings from the genotyping of the

control cohort (nZ476 healthy individuals) were as

follows: c.286AOC (p.K96Q), all 952 chromosomes

were A; c.605C36COT, all 952 chromosomes were C;

c.356TOC (p.I119T), 950 chromosomes were T and one

chromosome was C (genotype: 950 T/T and one T/C);

c.426GOA (p.T142T), 945 chromosomes were G and

seven chromosomes were A (genotype: 945 G/G

and seven G/A).

The I119T change was found in one member of a two-

person homogeneous FIPA family with somatotropino-

mas. The other affected member could not be genetically

tested (Supplementary Figure 1, see section on supple-

mentary data given at the end of this article). The K96Q

variant was found in a homogeneous FIPA family

presenting with prolactinomas, but the variation did not

segregate with prolactinoma-affected patients. The

patient with the K96Q change had hyperprolactinemia

due to a suspected prolactinoma that was treated

chronically with cabergoline when referred, who also

developed breast cancer at the age of 41. The unaffected

sister of this patient was also a carrier of this variant.
DAPI

P

YFP Merge

P

P

eLa cells were transfected with YFP-p27 constructs containing
rn blotting. Expression and size of p27 were compared in wt and

) and were determined using fluorescent microscopy. All fusion
us.
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In vitro analysis of mutant p27 proteins

The subcellular localization, stability, and function of

the K96Q and I119T mutant proteins were studied

in vitro. To determine the effect of the p27 changes on

protein localization and stability, the following YFP-

tagged proteins were generated: p27-wt, p27K96Q, and

p27I119T. Transient transfections performed in MCF7

cells revealed that the mutant proteins are expressed at

similar levels (Fig. 1A). Both wild-type and mutant

p27 proteins localize to the nucleus (Fig. 1B). We

noted that the p27I119T protein migrates slower than

p27-wt by SDS–PAGE (Fig. 1A).

As previously reported MEN4-associated CDKN1B

mutations often affect the stability of the encoded p27

protein, we analyzed the turnover of p27K96Q and

p27I119T in exponentially growing, p27-negative GH3

cells. We blocked de novo protein synthesis with CHX,

and at various time points thereafter, we analyzed the

amount of p27-wt, p27K96Q, and p27I119T. We

observed a time-dependent reduction of p27-wt and

p27K96Q following CHX treatment, while p27I119T

levels did not decrease throughout the experiment

(Fig. 2). These results show that the p27I119T protein is

more stable in vitro than p27-wt. Although the

intracellular amount of p27 is mainly regulated by

ubiquitin-mediated proteasomal degradation, inhibit-

ing the proteasome has been shown to stabilize p27

(Pagano et al. 1995). Proteasome inhibition of

transfected GH3 cells by MG-132 partially recovered

p27-wt but not p27K96Q or p27I119T proteins (Fig. 2),

indicating that the mutant p27 proteins are resistant to

proteasome degradation.

The K96Q missense change is situated in the

proline-rich domain (amino acids 90–96) of p27. This

domain mediates the binding of p27 to the adaptor

protein GRB2, an interaction that eventually leads to

p27 degradation. In a pull-down assay using anti-Grb2

antibody, p27K96Q displayed reduced Grb2 binding

compared to p27-wt (Fig. 3), and this may be
www.endocrinology-journals.org
responsible for the observed proteasome resistance of

this mutant p27 protein.

As already mentioned, p27I119T migrates more slowly

than p27-wt by SDS–PAGE (Fig. 1A). To exclude that

this abnormal migration pattern could be an artifact of

the cloning, we subcloned both p27-wt and p27I119T

cDNA into a different vector (having an HA tag) and

checked the expression of the proteins upon transfection

in GH3 and HeLa cells. Western blotting analysis

showed that HA-tagged p27I119T also migrated more

slowly than HA-tagged p27-wt (Fig. 4A).

B lymphocytes from the variant-positive patient

grown in culture were available and were analyzed for

p27 expression. We observed the presence of two

bands by western blotting, one corresponding to the

wild-type allele and one to the I119T mutant protein

migrating gradually in the gel (Fig. 4B). Thus, p27I119T

is expressed in vivo in the patient’s blood.

p27 is a target of phosphorylation at various

residues, and these posttranslational modifications

regulate its function, stability, and intracellular local-

ization (reviewed in Vervoorts & Lüscher (2008)).
237
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Theoretically, increased phosphorylation could explain

the migration shift of p27I119T. To test this possibility,

we transfected HeLa cells with p27-wt or p27I119T and

then treated them with inhibitors of protein kinases A,

C, and G (staurosporine, H8, and H89). We then

checked for alterations in the SDS–PAGE migration

behavior of both proteins, but we did not observe any

differences in the presence or absence of the inhibitors

(Fig. 4C).

To confirm whether the atypical migration of

p27I119T in SDS–PAGE gels is linked specifically to

the isoleucine 119 residue, we substituted I119 with

three different amino acids (Fig. 4D) and analyzed their

migration behavior. We introduced the amino acid Ala

(A) that cannot be phosphorylated at position 119 by

mutagenesis. Upon transfection in HeLa cells, p27I119A

showed the same migration pattern as p27I119

(Fig. 4E). We then substituted I 119 with two
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phosphomimetic amino acids (aspartic acid, D;

glutamic acid, E) to generate two mutant proteins,

p27I119D and p27I119E. Surprisingly, these two proteins

showed an even slower migration by SDS–PAGE

compared with p27I119T (Fig. 4E). Thus, genetic

changes that substitute the residue at position 119

of p27 affect the migration pattern of the protein.
Discussion

FIPA is a syndrome of pituitary adenomas occurring

in a familial setting in the absence of MEN1 and CNC

(Daly et al. 2006a). Since the discovery by Vierimaa

et al. (2006) that AIP is an inherited cause of pituitary

adenomas in 2006, extensive studies have demonstrated

its involvement in the pathophysiology of 15–25%

of FIPA kindreds (Georgitsi et al. 2007b, Daly et al.

2010, Igreja et al. 2010, Tichomirowa et al. 2011).
www.endocrinology-journals.org
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In an effort to study other potential genetic causes of

FIPA, we examined CDKN1B sequences in 124

individuals from 88 FIPA AIP mutation-negative

kindreds, as previous studies had concentrated largely

on MEN1-negative MEN1 cohorts (Igreja et al. 2009).

We found two new germline CDKN1B changes in

patients with pituitary adenomas from AIP mutation-

negative FIPA kindreds. Although these sequence

changes were identified in a familial setting and they

altered p27 function or structure in vitro, the K96Q

variant did not segregate with pituitary adenomas in

one kindred. In the case of I119T variant that affected

CDKN1B molecular weight/migration, one of the two

family members affected with a pituitary adenoma was

not available for genetic testing, so it cannot be fully

ruled in or out as a cause of the clinical phenotype.

Based on these findings, CDKN1B changes alone are

not a frequent or likely cause of the FIPA tumor

phenotype but could represent a contributing factor.

Nevertheless, the CDKN1B sequence variants

described here add to growing evidence of a role for

p27-related dysfunction in the development of a subset

of many endocrine tumors within and outside of the

setting of MEN4.

The involvement of p27 in pituitary tumorigenesis

has been demonstrated in animal studies. Indeed, p27-

null mice develop pituitary intermediate lobe adeno-

mas (Fero et al. 1996, Kiyokawa et al. 1996,

Nakayama et al. 1996), and heterozygous p27C/K

mice display pituitary hyperplasia (Fero et al. 1998).

While human pituitary adenomas only rarely showed

somatic CDKN1B mutations, downregulation of p27 is

observed frequently in these tumors, especially in

corticotropinomas (Kawamata et al. 1995, Ikeda et al.

1997, Jin et al. 1997, Takeuchi et al. 1998). Interest

was renewed by the discovery that germline CDKN1B

mutations in both the rat MENX and the human MEN4

syndromes are associated with development of pitu-

itary adenomas (Fritz et al. 2002, Pellegata et al. 2006).

Among the eight MEN4 patients identified to date,

three (37.5%) had pituitary adenomas (a somatotropi-

noma, Cushing disease, and a nonfunctioning ade-

noma), so it appears to be a distinctive disease feature

among these patients, although not as pronounced as

primary hyperparathyroidism (7/8 patients, 87.5%).

The K96Q mutation is situated in the proline-rich

domain (amino acids 90–96) of p27, which mediates

the binding to the adaptor molecule Grb2, which in turn

recruits and leads to activation of Ras (Marinoni &

Pellegata 2011). The interaction between p27 and Grb2

promotes p27 degradation in the cytoplasm (Pagano

et al. 1995, Vervoorts & Lüscher 2008). Indeed,

p27K96Q displayed less Grb2 binding during a pull-
www.endocrinology-journals.org
down assay compared with p27-wt. These findings

echo the altered Grb2 interaction reported by Agarwal

et al. (2009) in a patient with a missense mutation at

the previous amino acid residue (P95S) that led to

parathyroid tumors and a metastatic gastrinoma.

The I119T variant affects a residue located in the

so-called ‘scatter domain’ of p27 (amino acids 118–

158), which is responsible for actin cytoskeletal

rearrangement and cell migration, processes involved

in metastatic spread of human tumors (McAllister et al.

2003). This change causes a shift in the migration of

the p27 protein in SDS–PAGE gels. The unique

migration pattern of p27I119T, indicative of posttransla-

tional modifications, was not affected by multiple

kinase inhibitors, suggesting that it is not due to

phosphorylation at this newly created threonine

residue. As glycosylation occurs at serine, threonine,

or aspartic acid residues, the migration shift associated

with the 119T residue could be caused by glycosylation

of the protein (Dennis et al. 1999), thereby conferring

greater stability. In agreement with this finding,

p27I119T is more stable than the p27-wt in vitro.

The I119T sequence change was previously

described as a somatic genetic mutation in a patient

with myeloproliferative disorder (presence of the

change in the patient’s germline was not studied;

Pappa et al. 2005); also the W76X nonsense CDKN1B

mutation found in a MEN4 patient had been previously

identified as a somatic change in hematological

malignancies (Morosétti et al. 1995). Moreover, the

c.356T/C (I119T) change has been reported in a study

of hereditary prostate cancer (Chang et al. 2004), but

the association of the C variant allele with the

predisposition to the disease could not be demon-

strated. The observations that this variant allele is

expressed and translated into protein in our mutation

carrier, in addition to the association of the I119T

change with other tumor types and its potential effect in

the function of p27, make a plausible case that it may

play a role in tumor predisposition.

In conclusion, this study is the first extensive study

of CDKN1B germline variants in a set of 88 FIPA

families that do not have AIP mutations. According to

our data, mutations of CDKN1B are not a cause of

FIPA. However, CDKN1B germline variants associ-

ated with in vitro molecular phenotypes were seen in

nearly 2% of cases studied. Altered p27 function may

infrequently play a role in general pituitary disease

outside of MEN4, although screening for CDKN1B

mutations systematically appears unjustified in the

setting of the O75% of FIPA kindreds not caused by

AIP mutations (Jaffrain-Rea et al. 2011).
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