Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes

Markku-Juhani O. Saarinen
mjos@reveresecurity.com

Revere Security
4500 Westgrove Drive, Suite 335
Addison, TX 75001, USA

FSE 2012
Washington D.C.
20 March 2012

Galois / Counter Mode

Let C be a concatenation of optional unencrypted authenticated data, CTR-encrypted ciphertext, and padding. This data is split into m 128-bit blocks C_{i} :

$$
C=C_{1}\left\|C_{2}\right\| \cdots \| C_{m}
$$

> The authentication code GHASH is based on operations in $\mathrm{GF}\left(2^{128}\right)$. Horner's rule is used in this field to evaluate polynomial Y. The authentication key is $H=E_{K}(0)$.

The final authentication tag is $T=Y_{m} \oplus E_{K}\left(I V \| 0^{31} 1\right)$, assuming a 96-bit IV.

Galois / Counter Mode

Let C be a concatenation of optional unencrypted authenticated data, CTR-encrypted ciphertext, and padding. This data is split into m 128-bit blocks C_{i} :

$$
C=C_{1}\left\|C_{2}\right\| \cdots \| C_{m}
$$

The authentication code GHASH is based on operations in $\mathrm{GF}\left(2^{128}\right)$. Horner's rule is used in this field to evaluate polynomial Y. The authentication key is $H=E_{K}(0)$.

$$
Y_{m}=\sum_{i=1}^{m} C_{i} \otimes H^{m-i+1}
$$

The final authentication tag is $T=Y_{m} \oplus E_{K}\left(I V \| 0^{31} 1\right)$, assuming a 96-bit IV.

Galois / Counter Mode

Let C be a concatenation of optional unencrypted authenticated data, CTR-encrypted ciphertext, and padding. This data is split into m 128-bit blocks C_{i} :

$$
C=C_{1}\left\|C_{2}\right\| \cdots \| C_{m}
$$

The authentication code GHASH is based on operations in $\mathrm{GF}\left(2^{128}\right)$. Horner's rule is used in this finite field to evaluate polynomial Y. The authentication key is $H=E_{K}(0)$.

$$
Y_{m}=\sum_{i=1}^{m} C_{i} \otimes H^{m-i+1}
$$

The final authentication tag is $T=Y_{m} \oplus E_{K}\left(I V \| 0^{31} 1\right)$, assuming a 96-bit IV.

Four rounds of AES-GCM.

Known Attacks

- Known to be trivially breakable with a repeated IV (Joux's 2004 "Forbidden Attack"). Therefore poorly suited for connectionless protocols.
- Ferguson (2005) showed that an n-bit tag provides only $n-k$ bits of authentication security when messages are 2^{k} blocks long.
- Hence GCM was already known to be significantly weaker than, say, HMAC-MD5 (which still has the expected 2^{-n} security in "unknown-start-value" mode) prior to its standardization in NIST SP 800-38D.
- Despite these shortcomings and apparently due to industry endorsement and its excellent hardware performance, AES-GCM was adopted as part of NSA's "Suite B" in 2007 and may still be used to secure classified data.

Known Attacks

- Known to be trivially breakable with a repeated IV (Joux's 2004 "Forbidden Attack"). Therefore poorly suited for connectionless protocols.
- Ferguson (2005) showed that an n-bit tag provides only $n-k$ bits of authentication security when messages are 2^{k} blocks long.
- Hence GCM was already known to be significantly weaker than, say, HMAC-MD5 (which still has the expected 2^{-n} security in "unknown-start-value" mode) prior to its standardization in NIST SP 800-38D.
- Despite these shortcomings and apparently due to industry endorsement and its excellent hardware performance, AES-GCM was adopted as part of NSA's "Suite B" in 2007 and may still be used to secure classified data.

Known Attacks

- Known to be trivially breakable with a repeated IV (Joux's 2004 "Forbidden Attack"). Therefore poorly suited for connectionless protocols.
- Ferguson (2005) showed that an n-bit tag provides only $n-k$ bits of authentication security when messages are 2^{k} blocks long.
- Hence GCM was already known to be significantly weaker than, say, HMAC-MD5 (which still has the expected 2^{-n} security in "unknown-start-value" mode) prior to its standardization in NIST SP 800-38D.
- Despite these shortcomings and apparently due to industry endorsement and its excellent hardware performance, AES-GCM was adopted as part of NSA's "Suite B" in 2007 and may still be used to secure classified data.

Known Attacks

- Known to be trivially breakable with a repeated IV (Joux's 2004 "Forbidden Attack"). Therefore poorly suited for connectionless protocols.
- Ferguson (2005) showed that an n-bit tag provides only $n-k$ bits of authentication security when messages are 2^{k} blocks long.
- Hence GCM was already known to be significantly weaker than, say, HMAC-MD5 (which still has the expected 2^{-n} security in "unknown-start-value" mode) prior to its standardization in NIST SP 800-38D.
- Despite these shortcomings and apparently due to industry endorsement and its excellent hardware performance, AES-GCM was adopted as part of NSA's "Suite B" in 2007 and may still be used to secure classified data.

Four rounds of AES-GCM.

Horner's iteration:

$$
\begin{aligned}
& Y_{1}=C_{1} \times H \\
& Y_{2}=\left(Y_{1}+C_{2}\right) \times H=C_{1} \times H^{2}+C_{2} \times H \\
& Y_{3}=\left(Y_{2}+C_{3}\right) \times H=C_{1} \times H^{3}+C_{2} \times H^{2}+C_{3} \times H \\
& Y_{4}=\left(Y_{3}+C_{4}\right) \times H=C_{1} \times H^{4}+C_{2} \times H^{3}+C_{3} \times H^{2}+C_{4} \times H .
\end{aligned}
$$

What if, say, $H=H^{4}$? Then we may just swap C_{1} and C_{4} and the Y_{4} value will remain unchanged:

$$
Y_{4}=C_{4} \times H^{4}+C_{2} \times H^{2}+C_{3} \times H^{2}+C_{1} \times H .
$$

A cycle will lead to a forgery attack.

Four rounds of AES-GCM.

Horner's iteration:

$$
\begin{aligned}
& Y_{1}=C_{1} \times H \\
& Y_{2}=\left(Y_{1}+C_{2}\right) \times H=C_{1} \times H^{2}+C_{2} \times H \\
& Y_{3}=\left(Y_{2}+C_{3}\right) \times H=C_{1} \times H^{3}+C_{2} \times H^{2}+C_{3} \times H \\
& Y_{4}=\left(Y_{3}+C_{4}\right) \times H=C_{1} \times H^{4}+C_{2} \times H^{3}+C_{3} \times H^{2}+C_{4} \times H .
\end{aligned}
$$

What if, say, $H=H^{4}$? Then we may just swap C_{1} and C_{4} and the Y_{4} value will remain unchanged:

$$
Y_{4}=C_{4} \times H^{4}+C_{2} \times H^{2}+C_{3} \times H^{2}+C_{1} \times H .
$$

A cycle will lead to a forgery attack.

Four rounds of AES-GCM.

Horner's iteration:

$$
\begin{aligned}
& Y_{1}=C_{1} \times H \\
& Y_{2}=\left(Y_{1}+C_{2}\right) \times H=C_{1} \times H^{2}+C_{2} \times H \\
& Y_{3}=\left(Y_{2}+C_{3}\right) \times H=C_{1} \times H^{3}+C_{2} \times H^{2}+C_{3} \times H \\
& Y_{4}=\left(Y_{3}+C_{4}\right) \times H=C_{1} \times H^{4}+C_{2} \times H^{3}+C_{3} \times H^{2}+C_{4} \times H .
\end{aligned}
$$

What if, say, $H=H^{4}$? Then we may just swap C_{1} and C_{4} and the Y_{4} value will remain unchanged:

$$
Y_{4}=C_{4} \times H^{4}+C_{2} \times H^{2}+C_{3} \times H^{2}+C_{1} \times H
$$

A cycle will lead to a forgery attack.

Four rounds of AES-GCM.

Horner's iteration:

$$
\begin{aligned}
& Y_{1}=C_{1} \times H \\
& Y_{2}=\left(Y_{1}+C_{2}\right) \times H=C_{1} \times H^{2}+C_{2} \times H \\
& Y_{3}=\left(Y_{2}+C_{3}\right) \times H=C_{1} \times H^{3}+C_{2} \times H^{2}+C_{3} \times H \\
& Y_{4}=\left(Y_{3}+C_{4}\right) \times H=C_{1} \times H^{4}+C_{2} \times H^{3}+C_{3} \times H^{2}+C_{4} \times H .
\end{aligned}
$$

What if, say, $H=H^{4}$? Then we may just swap C_{1} and C_{4} and the Y_{4} value will remain unchanged:

$$
Y_{4}=C_{4} \times H^{4}+C_{2} \times H^{2}+C_{3} \times H^{2}+C_{1} \times H
$$

A cycle will lead to a forgery attack.

Switching Full Blocks

Start With a $H^{1}=\operatorname{AES}_{k}(0)$ for some k.

Generate $H^{2}=H \times H$ from it

| $-H 01-$
 C4F17DD8
 C39908FF
 932A02B3
 4422C845 |
| :---: | :---: |$\xrightarrow{01}$| - H02-
 D42130FD
 3AAC5E19
 0C72CC9C
 C92192D |
| :---: | :---: |

.. and H^{3} from $H \times H^{2}$..

| $-H 01-$
 C4F17DD8
 C39908FF
 932A02B3
 4422C845 |
| :---: | :---: | :---: | :---: |

Wow! $H^{16}=h^{1}$ again.

Markku-Juhani O. Saarinen: "Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes", FSE 2012 - Washington D.C.

Hence $H^{0}=H^{15}$. It's the unique identity element with cycle length 1.

This subgroup is isomorphic to addition in \mathbb{Z}_{15}. $H^{\prime}=H^{14}$ will generate the same cycle backwards.

If we skip over 4 (add 5 mod 15), we will get back in 3 steps.

This can also be generated backwards with $H^{\prime}=H^{10}$ 。

Since $15=3 \times 5$, there's also an unique subgroup of size 5.

Elementary Number Theory \& Abstract Algebra 101

- The (full) multiplicative group of $G F\left(2^{128}\right)$ is isomorphic to the additive group $\mathbb{Z}_{2^{128}-1}$ (all elements except 0).
- There are subgroups of size n for any $n \mid 2^{128}-1$.
- $2^{128}-1=3 * 5 * 17 * 257 * 641 * 65537 * 274177 *$ $6700417 * 67280421310721$ - nine prime factors.
- Hence there are $2^{9}=512$ different-sized subgroups, almost log-uniformly distributed in the range.

Theorem.
Let n be a number satisfying $\operatorname{gcd}\left(2^{128}-1, n\right)=n$. Blindly swapping blocks C_{i} and C_{j}, where $i \equiv j(\bmod n)$ will result in a successful forgery with probability of at least $\frac{n+1}{2^{128}}$ if H is random.

Elementary Number Theory \& Abstract Algebra 101

- The (full) multiplicative group of $G F\left(2^{128}\right)$ is isomorphic to the additive group $\mathbb{Z}_{2^{128}-1}$ (all elements except 0).
- There are subgroups of size n for any $n \mid 2^{128}-1$.
- $2^{128}-1=3 * 5 * 17 * 257 * 641 * 65537 * 274177 *$ $6700417 * 67280421310721$ - nine prime factors.
- Hence there are $2^{9}=512$ different-sized subgroups, almost log-uniformly distributed in the range.

Theorem.
Let n be a number satisfying $\operatorname{gcd}\left(2^{128}-1, n\right)=n$. Blindly swapping blocks C_{i} and C_{j}, where $i \equiv j(\bmod n)$ will result in a successful forgery with probability of at least $\frac{n+1}{2^{128}}$ if H is random.

Elementary Number Theory \& Abstract Algebra 101

- The (full) multiplicative group of $G F\left(2^{128}\right)$ is isomorphic to the additive group $\mathbb{Z}_{2^{128}-1}$ (all elements except 0).
- There are subgroups of size n for any $n \mid 2^{128}-1$.
- $2^{128}-1=3 * 5 * 17 * 257 * 641 * 65537 * 274177 *$ $6700417 * 67280421310721$ - nine prime factors.
- Hence there are $2^{9}=512$ different-sized subgroups, almost log-uniformly distributed in the range.

Theorem.
Let n be a number satisfying $\operatorname{gcd}\left(2^{128}-1, n\right)=n$. Blindly swapping blocks C_{i} and C_{j}, where $i \equiv j(\bmod n)$ will result in a successful forgery with probability of at least $\frac{n+1}{2^{128}}$ if H is random.

Elementary Number Theory \& Abstract Algebra 101

- The (full) multiplicative group of $G F\left(2^{128}\right)$ is isomorphic to the additive group $\mathbb{Z}_{2^{128}-1}$ (all elements except 0).
- There are subgroups of size n for any $n \mid 2^{128}-1$.
- $2^{128}-1=3 * 5 * 17 * 257 * 641 * 65537 * 274177 *$ $6700417 * 67280421310721$ - nine prime factors.
- Hence there are $2^{9}=512$ different-sized subgroups, almost log-uniformly distributed in the range.

Theorem.
Let n be a number satisfying $\operatorname{gcd}\left(2^{128}-1, n\right)=n$. Blindly swapping blocks C_{i} and C_{j}, where $i \equiv j(\bmod n)$ will result in a successful forgery with probability of at least $\frac{n+1}{2^{128}}$ if H is random.

Elementary Number Theory \& Abstract Algebra 101

- The (full) multiplicative group of $G F\left(2^{128}\right)$ is isomorphic to the additive group $\mathbb{Z}_{2^{128}-1}$ (all elements except 0).
- There are subgroups of size n for any $n \mid 2^{128}-1$.
- $2^{128}-1=3 * 5 * 17 * 257 * 641 * 65537 * 274177 *$ $6700417 * 67280421310721$ - nine prime factors.
- Hence there are $2^{9}=512$ different-sized subgroups, almost log-uniformly distributed in the range.

Theorem.

Let n be a number satisfying $\operatorname{gcd}\left(2^{128}-1, n\right)=n$. Blindly swapping blocks C_{i} and C_{j}, where $i \equiv j(\bmod n)$ will result in a successful forgery with probability of at least $\frac{n+1}{2^{128}}$ if H is random.

Probability vs Length is Almost Log-Linear

Multiforgery Attack

- The H value depends solely on the AES key, which may be a fixed key or something from a key exchange algorithm.
- If a cycle of n is detected, any number of subsequent forgeries can be performed with probability $P=1$.
- The average complexity of an individual forgery can be made arbitrarily small (compare to multicollision attacks) if we assume an attack model FRK where the advisory can force rekeying until a successful forgery occurs.
- Note that FRK is a reasonably realistic model in real-world VPN protocols which disconnect and rekey immediately on a MAC mismatch. Under this model the security bound of the proof is broken (in the average case).

Multiforgery Attack

- The H value depends solely on the AES key, which may be a fixed key or something from a key exchange algorithm.
- If a cycle of n is detected, any number of subsequent forgeries can be performed with probability $P=1$.
- The average complexity of an individual forgery can be made arbitrarily small (compare to multicollision attacks) if we assume an attack model FRK where the advisory can force rekeying until a successful forgery occurs.
- Note that FRK is a reasonably realistic model in real-world VPN protocols which disconnect and rekey immediately on a MAC mismatch. Under this model the security bound of the proof is broken (in the average case).

Multiforgery Attack

- The H value depends solely on the AES key, which may be a fixed key or something from a key exchange algorithm.
- If a cycle of n is detected, any number of subsequent forgeries can be performed with probability $P=1$.
- The average complexity of an individual forgery can be made arbitrarily small (compare to multicollision attacks) if we assume an attack model FRK where the advisory can force rekeying until a successful forgery occurs.
- Note that FRK is a reasonably realistic model in real-world VPN protocols which disconnect and rekey immediately on a MAC mismatch. Under this model the security bound of the proof is broken (in the average case).

Multiforgery Attack

- The H value depends solely on the AES key, which may be a fixed key or something from a key exchange algorithm.
- If a cycle of n is detected, any number of subsequent forgeries can be performed with probability $P=1$.
- The average complexity of an individual forgery can be made arbitrarily small (compare to multicollision attacks) if we assume an attack model FRK where the advisory can force rekeying until a successful forgery occurs.
- Note that FRK is a reasonably realistic model in real-world VPN protocols which disconnect and rekey immediately on a MAC mismatch. Under this model the security bound of the proof is broken (in the average case).

Any Number of Targeted Bit Forgeries

Counter mode behaves like a stream cipher; flipping a ciphertext bit will result in the corresponding plaintext bit being flipped after decryption.

> If $\operatorname{ord}(H) \mid(i-j)$ the authentication tag will remain valid as long as the following equation holds (for some c):

$$
C_{i} \times H^{m-i+1}+C_{j} \times H^{m-j+1}=c
$$

Writing $H^{m-i+1}=H^{m-j+1}=H_{c}$, this can be simplified to

$$
C_{i}+C_{j}=c \times H_{c}^{-1}
$$

The tag will be valid if the XOR sum of ciphertext blocks on the left side remains constant. We may manipulate any number of specific target bits by appropriately compensating them.

Any Number of Targeted Bit Forgeries

Counter mode behaves like a stream cipher; flipping a ciphertext bit will result in the corresponding plaintext bit being flipped after decryption.

If $\operatorname{ord}(H) \mid(i-j)$ the authentication tag will remain valid as long as the following equation holds (for some c):

$$
C_{i} \times H^{m-i+1}+C_{j} \times H^{m-j+1}=c
$$

Writing $H^{m-i+1}=H^{m-j+1}=H_{c}$, this can be simplified to

$$
C_{i}+C_{j}=c \times H_{c}^{-1} .
$$

The tag will be valid if the XOR sum of ciphertext blocks on the left side remains constant. We may manipulate any number of specific target bits by appropriately compensating them.

Any Number of Targeted Bit Forgeries

Counter mode behaves like a stream cipher; flipping a ciphertext bit will result in the corresponding plaintext bit being flipped after decryption.

If $\operatorname{ord}(H) \mid(i-j)$ the authentication tag will remain valid as long as the following equation holds (for some c):

$$
C_{i} \times H^{m-i+1}+C_{j} \times H^{m-j+1}=c
$$

Writing $H^{m-i+1}=H^{m-j+1}=H_{c}$, this can be simplified to

$$
C_{i}+C_{j}=c \times H_{c}^{-1} .
$$

The tag will be valid if the XOR sum of ciphertext blocks on the left side remains constant. We may manipulate any number of specific target bits by appropriately compensating them.

Any Number of Targeted Bit Forgeries

Counter mode behaves like a stream cipher; flipping a ciphertext bit will result in the corresponding plaintext bit being flipped after decryption.
If $\operatorname{ord}(H) \mid(i-j)$ the authentication tag will remain valid as long as the following equation holds (for some c):

$$
C_{i} \times H^{m-i+1}+C_{j} \times H^{m-j+1}=c .
$$

Writing $H^{m-i+1}=H^{m-j+1}=H_{c}$, this can be simplified to

$$
C_{i}+C_{j}=c \times H_{c}^{-1} .
$$

The tag will be valid if the XOR sum of ciphertext blocks on the left side remains constant. We may manipulate any number of specific target bits by appropriately compensating them.

Secure Fields

- For polynomial authentication, use either:

1. $G F(p)$ prime fields with $(p-1) / 2$ also a prime. These are called Sophie Germain prime fields. If $H \notin\{0,1, p-1\}$ the cycle is $(p-1)$ or $(p-1) / 2$, depending on the quadratic residuosity (Legendre symbol) of H.
> or ..
> 2. $G F\left(2^{p}\right)$ binary fields with $2^{p}-1$ a prime. These may be called Mersenne binary fields. If $H \notin\{0,1\}$, the cycle is $2^{p}-1$.

- However, an n-bit MAC can and should have 2^{-n} security against forgery. Polynomial MACs do not have that.
- Remember: A good MAC should also be able to resist repeated-IV attacks. These polynomial MACs do not resist them.

Secure Fields

- For polynomial authentication, use either:

1. $G F(p)$ prime fields with $(p-1) / 2$ also a prime. These are called Sophie Germain prime fields. If $H \notin\{0,1, p-1\}$ the cycle is $(p-1)$ or $(p-1) / 2$, depending on the quadratic residuosity (Legendre symbol) of H.
.. or ..
2. $G F\left(2^{p}\right)$ binary fields with $2^{p}-1$ a prime. These may be called Mersenne binary fields. If $H \notin\{0,1\}$, the cycle is $2^{p}-1$.

- However, an n-bit MAC can and should have 2^{-n} security against forgery. Polynomial MACs do not have that.
- Remember: A good MAC should also be able to resist repeated-IV attacks. These polynomial MACs do not resist them.

Secure Fields

- For polynomial authentication, use either:

1. $G F(p)$ prime fields with $(p-1) / 2$ also a prime. These are called Sophie Germain prime fields. If $H \notin\{0,1, p-1\}$ the cycle is $(p-1)$ or $(p-1) / 2$, depending on the quadratic residuosity (Legendre symbol) of H.
.. or ..
2. $G F\left(2^{p}\right)$ binary fields with $2^{p}-1$ a prime. These may be called Mersenne binary fields. If $H \notin\{0,1\}$, the cycle is $2^{p}-1$.

- However, an n-bit MAC can and should have 2^{-n} security against forgery. Polynomial MACs do not have that.
- Remember: A good MAC should also be able to resist repeated-IV attacks. These polynomial MACs do not resist them.

Secure Fields

- For polynomial authentication, use either:

1. $G F(p)$ prime fields with $(p-1) / 2$ also a prime. These are called Sophie Germain prime fields. If $H \notin\{0,1, p-1\}$ the cycle is $(p-1)$ or $(p-1) / 2$, depending on the quadratic residuosity (Legendre symbol) of H.
.. or ..
2. $G F\left(2^{p}\right)$ binary fields with $2^{p}-1$ a prime. These may be called Mersenne binary fields. If $H \notin\{0,1\}$, the cycle is $2^{p}-1$.

- However, an n-bit MAC can and should have 2^{-n} security against forgery. Polynomial MACs do not have that.
- Remember: A good MAC should also be able to resist repeated-IV attacks. These polynomial MACs do not resist them.

Some Fields Are Much Better! $G F\left(2^{128}\right)$ vs $G F\left(2^{127}\right)$

Testing for AES-GCM Weak Keys

- Finding weak H values is easy, so a natural question arises on how to determine weak AES keys K that produce these weak H roots.
- To determine group order, we use a simple algorithm which is related to the Silver-Pohlig-Hellman algorithm for discrete logarithms [PoHe78].
- The algorithm can be made especially fast due to the linear nature of binary field squaring.
- Raising to "Fermat exponents" $2^{n}+1$ (as $2^{128}-1$ factors into Fermat numbers) involves repeated squarings and a single multiplication. The $X^{2^{n}}$ tables do not depend on the particular H value.

Testing for AES-GCM Weak Keys

- Finding weak H values is easy, so a natural question arises on how to determine weak AES keys K that produce these weak H roots.
- To determine group order, we use a simple algorithm which is related to the Silver-Pohlig-Hellman algorithm for discrete logarithms [PoHe78].
- The algorithm can be made especially fast due to the linear nature of binary field squaring.
- Raising to "Fermat exponents" $2^{n}+1$ (as $2^{128}-1$ factors into Fermat numbers) involves repeated squarings and a single multiplication. The $X^{2^{n}}$ tables do not depend on the particular H value.

Testing for AES-GCM Weak Keys

- Finding weak H values is easy, so a natural question arises on how to determine weak AES keys K that produce these weak H roots.
- To determine group order, we use a simple algorithm which is related to the Silver-Pohlig-Hellman algorithm for discrete logarithms [PoHe78].
- The algorithm can be made especially fast due to the linear nature of binary field squaring.
- Raising to "Fermat exponents" $2^{n}+1$ (as $2^{128}-1$ factors
into Fermat numbers) involves repeated squarings and a single multiplication. The $X^{2^{n}}$ tables do not depend on the particular H value.

Testing for AES-GCM Weak Keys

- Finding weak H values is easy, so a natural question arises on how to determine weak AES keys K that produce these weak H roots.
- To determine group order, we use a simple algorithm which is related to the Silver-Pohlig-Hellman algorithm for discrete logarithms [PoHe78].
- The algorithm can be made especially fast due to the linear nature of binary field squaring.
- Raising to "Fermat exponents" $2^{n}+1$ (as $2^{128}-1$ factors into Fermat numbers) involves repeated squarings and a single multiplication. The $X^{2^{n}}$ tables do not depend on the particular H value.

Experimental Results

Over couple of days I tested 2^{32} AES-128 keys on my laptop and found progressively smaller subgroups:

$$
\begin{array}{cc}
n \approx 2^{126.4} & K=00000000000000000000000000000002 \\
n \approx 2^{125.6} & K=00000000000000000000000000000003 \\
\quad \ldots & \\
n \approx 2^{96.52} & \\
n=00000000000000000000000024 \text { 3E 8B } 40 \\
n \approx 2^{96.00} & \\
n=0000000000000000000000003748 \mathrm{CF} \text { CE } \\
n \approx 2^{93.93} & K=0000000000000000000000004287 \text { 3C C8 } \\
n \approx 2^{93.41} & K=000000000000000000000000 \text { EC } 69 \text { 7A A8 }
\end{array}
$$

Here $n=\operatorname{ord}\left(\operatorname{AES}_{K}(0)\right)$. The groups size shrinks slightly faster than the keyspace is exhausted (as expected).

Concluding

- Since the authenticator H is derived as $H=A E S_{k}(0)$ and there are plenty of low-order roots of unity in $G F\left(2^{128}\right)$, there are large classes of weak AES-GCM keys.
- In a forced-rekeying attack model the average cost of a single forgery is less than what is indicated by the security proof (the cost can be made arbitrarily low, à la multicollision attacks on hash functions).
- Don't use GCM with something like SSH. However, there may be rational grounds for using it with extremely high-speed VPN (IPSec) links if the risks are understood (and parallelism is required).
- If you absolutely want to do polynomial message authentication, use a secure field rather than $G F\left(2^{128}\right)$.

Concluding

- Since the authenticator H is derived as $H=A E S_{k}(0)$ and there are plenty of low-order roots of unity in $G F\left(2^{128}\right)$, there are large classes of weak AES-GCM keys.
- In a forced-rekeying attack model the average cost of a single forgery is less than what is indicated by the security proof (the cost can be made arbitrarily low, à la multicollision attacks on hash functions).
- Don't use GCM with something like SSH. However, there
may be rational grounds for using it with extremely high-speed VPN (IPSec) links if the risks are understood (and parallelism is required).
- If you absolutely want to do polynomial message authentication, use a secure field rather than $G F\left(2^{128}\right)$.

Concluding

- Since the authenticator H is derived as $H=A E S_{k}(0)$ and there are plenty of low-order roots of unity in $G F\left(2^{128}\right)$, there are large classes of weak AES-GCM keys.
- In a forced-rekeying attack model the average cost of a single forgery is less than what is indicated by the security proof (the cost can be made arbitrarily low, à la multicollision attacks on hash functions).
- Don't use GCM with something like SSH. However, there may be rational grounds for using it with extremely high-speed VPN (IPSec) links if the risks are understood (and parallelism is required).
- If you absolutely want to do polynomial message
authentication, use a secure field rather than $G F\left(2^{128}\right)$.

Concluding - Thank You

- Since the authenticator H is derived as $H=A E S_{k}(0)$ and there are plenty of low-order roots of unity in $G F\left(2^{128}\right)$, there are large classes of weak AES-GCM keys.
- In a forced-rekeying attack model the average cost of a single forgery is less than what is indicated by the security proof (the cost can be made arbitrarily low, à la multicollision attacks on hash functions).
- Don't use GCM with something like SSH. However, there may be rational grounds for using it with extremely high-speed VPN (IPSec) links if the risks are understood (and parallelism is required).
- If you absolutely want to do polynomial message authentication, use a secure field rather than $G F\left(2^{128}\right)$.

