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Cycling Endurance of NOR Flash EEPROM Cells
Under CHISEL Programming Operation—Impact of
Technological Parameters and Scaling

Deleep R. Nair, Student Member, IEEE, S. Shukuri, and S. Mahapatra, Member, IEEE

Abstract—The impact of technological parameter (channel
doping, source/drain junction depth) variation and channel length
scaling on the reliability of NOR Flash EEPROM cells under
channel initiated secondary electron (CHISEL) programming
is studied. The best technology for CHISEL operation has been
identified by using a number of performance metrics (cycling
endurance of program/erase time, program/disturb margin)
and scaling studies were done on this technology. It is explicitly
shown that from a reliability perspective, bitcell optimization
for CHISEL operation is quite different from that for channel
hot electron (CHE) operation. Properly optimized bitcells show
reliable CHISEL programming for floating gate length down to
0.2 pm.

Index Terms—Band-to-band tunneling, channel hot electron
(CHE), channel initiated secondary electron (CHISEL), device
scaling, drain disturb, Flash EEPROMs, hot carriers.

1. INTRODUCTION

HANNEL INITIATED secondary electron (CHISEL) in-

jection is an excellent programming mechanism for NOR
Flash EEPROMs [1]-[5]. It relies on impact ionization feed-
back, is activated by the application of a negative substrate bias
(Vp) and provides high-energy electrons that get injected into
the floating-gate (FG) over a spatially broad area in the channel
[1]-[9], as schematically shown in Fig. 1. Compared to channel
hot electron (CHE) injection [10], CHISEL injection provides
lower voltage and lower power operation for equivalent pro-
gramming time (7'p) and faster Tp under equivalent program-
ming power. CHISEL injection also offers self-convergent pro-
gramming leading to excellent threshold voltage (V) control
and a unique recovery procedure for over-erased cells [1]-[5],
[9], [11], [12] not available under conventional CHE program-
ming [13].

From the reliability perspective, CHISEL programming has
shown good programmed and erased V7 endurance up to 10°
program/erase (P/E) cycles [14], [15]. P/E cycling and data
retention (after cycling) results obtained from large 32-Mbit
arrays showed tight Vi control and over 10 years of charge
retention [14]. It has been clearly demonstrated that CHISEL
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Fig. 1. CHISEL injection mechanism (schematic). Channel electrons, heated
by lateral electric field create primary electron-hole pairs by impact ionization
(M1). Primary holes flow to the substrate and in the presence of high transverse
electric field (due to negative substrate bias) create secondary electron-hole pairs
by impact ionization (M2). The secondary electrons move toward the interface
and those having energy greater than 3.1 eV get injected into the FG.

programming is free from anomalous bit failure through in-
creased disturbs, window closure, or charge loss.

From the cell scaling perspective, a few earlier reports
indicated degradation in CHISEL programming efficiency for
deeply scaled cells [16], [17]. However, it has been recently
demonstrated, albeit on pre-cycled cells, that it is possible
to maintain excellent CHISEL programming efficiency for
cells having FG length (Lrg) down to 0.2 ym with proper
adjustment of technological parameters [18]. However, to the
best of our knowledge, the impact of technological parameters
and cell scaling on cycling endurance has not been reported so
far for CHISEL programming operation.

This scope of paper is two fold. First, the best cell design
for reliable CHISEL operation is identified from a number of
technology parameter options (variation in channel doping and
junction depth and option of halo doping). Cycling induced
degradation in Tp, erase time (Tg), P/E Vr (Vrp and Vrg)
and program/disturb (P/D) margin were used as metrics for
cell selection. It is shown that halo doping is not a good option
since those cells suffer from severe degradation of Tz and P/D
margin after cycling. On the other hand, nonhalo cells with
shallow junction depth suffer from degradation in P/D margin.
The best tradeoff between Tp and P/D margin was obtained
for nonhalo cells with higher channel doping but somewhat
deeper junction. It is also explicitly shown that the best cell
design for reliable CHISEL operation is quite different from
that under CHE operation. Second, the impact of Lpg scaling
on the cycling endurance of the above reliability metrics was
studied for the optimized cell. For the present choice of techno-
logical parameters, reliable CHISEL programming operation is
achieved for cells having Lrg down to 0.2 pym.
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TABLE 1
DEVICES USED IN THIS STUDY. Vi (Vog FOR Ip/Vp = 5 pA /0.8 V) AND
Vep (Vp FOR Ip = 1 pA, Vog = 0) MEASURED ON IDENTICAL
FG-CG SHORTED FETS

Device | Channel | Junction Halo | Natural Junction
Implant | Depth V1 (V) Vb (V)

LL Low Low No 2.11 7.2

HH High High No 221 7.3

HL High Low No 2.37 7.0

Halo Very low | Very high | Yes 243 6.6

II. EXPERIMENTAL

The devices used in this work were fabricated using a state-of-
the-art 0.18-pm triple well process featuring advanced modules
such as shallow trench isolation and self-aligned source/drain
(S/D) contacts leading to cell area of about 0.45 zm?. Measure-
ments were performed on isolated, fully scaled bitcells having
finished Lrg of 0.32 through 0.2 pum, width (W) of 0.3-um,
tunnel oxide (7ox ), and oxide—nitride—oxide interpoly dielec-
tric thickness of 12 and 20 nm, respectively, and gate coupling of
about 0.55. Four different types of cells (LL, HH, HL, and Halo)
were fabricated to study the impact of changes in technolog-
ical parameters on CHISEL program and disturb performance,
before and after P/E cycling. Their doping schemes, junction
depth, natural V7, and junction breakdown voltage (Vpp) are
mentioned in Table L.

This paper focuses on CHISEL programming, which was per-
formed using Vg = —2 V (source grounded). For compar-
ison, CHE programming was performed for select cases using
VB = 0 V. The cells were erased using uniform channel erase
with source, drain and substrate grounded. Vi was defined as the
control gate bias (Vo) required to obtain 5-pA drain current
(Ip) at 0.8-V drain bias (Vp). Programmed and erased levels
are defined as Vrp = 5.4 V and Vg = 1.9 V, respectively.
Drain disturb [19] measurements were performed at identical
Vp and Vp as programming, but with zero Vg to simulate an
unselected WL. Drain disturb is studied for both the charge gain
(erased cell) and charge loss (programmed cell) modes. Disturb
time Tp is defined as time for a V7 change of 0.1 V during dis-
turb transients. P/E cycling was done under fixed T'p and T as
the initial cell.

III. RESULTS AND DISCUSSION

A. Comparison Between Halo and Nonhalo Cells

Fig. 2 shows the schematic representation of the halo and non-
halo cells used in the study. Nonhalo cells have lower channel
doping, a shallower S/D junction and no halo implant. Halo cells
have lower channel doping, a deeper S/D junction anda heavy
halo implant. Fig. 3 shows CHISEL program and erase tran-
sients for halo and nonhalo (LL) Lpg = 0.26 um cells before
and after 100 K P/E cycles under identical bias. Initial Tp and
T are slightly lower for the halo cell. It can be clearly seen that
the degradation of programming transients (and 7'p) after cy-
cling is comparable (and negligible) for both technologies. Note
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Halo

Fig. 2. Schematic representation of the two type of Flash cells used in the
study. Nonhalo cells have moderate to high channel doping, shallower S/D
junction and no halo implant. Halo cells have lower channel doping, deeper
S/D junction and heavy halo implant.
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Fig. 3. P/E transients measured under equivalent bias on nonhalo (LL) and
halo cells before and after 100 K P/E cycles.

that such negligible cycling induced degradation of program-
ming transients is a standard feature of CHISEL programming
operation [14], [15]. However, the halo device shows higher
degradation in erase time compared to the nonhalo device.

Fig. 4 shows the P/E cycling induced degradation of pro-
grammed and erased Vp for halo and nonhalo (LL) Lpg =
0.26 pm cells under identical bias as in Fig. 3. Identical bias
condition was chosen for comparison, as there exists different
combination of Vg and Vp to get the same T'p [18]. Vrp degra-
dation is always insignificant for both the cells while the halo
cell shows higher Vg degradation, consistent with Tp and T
degradation shown in Fig. 3. It is well known that the electron
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Fig. 4. Cycling endurance of program and erase V7 measured under
equivalent bias (as in Fig. 3) on nonhalo (LL) and halo cells.

energy distribution (EED) high-energy tail under CHISEL op-
eration is always populated due to secondary impact ionization
[1]-[9]. Hence, electrons that constitute the gate current ()
during programming can easily overcome the increased injec-
tion barrier caused by cycling induced negative bulk and interfa-
cial charges and results in negligible T’p degradation [14], [15].
It is also well known that CHISEL injection takes place over
a broader area (toward the channel) and the resultant broader
area of defect generation affects electron-ejection during erase
and degrades Tr (compared to CHE operation) [15]. Higher
T’r degradation for halo cells indicates higher (or wider) defect
generation in the channel for such cells during cycling under
CHISEL programming operation.

Figs. 5 and 6, respectively, show program and erase time be-
fore and after 100 K P/E cycles as a function of FG length
for halo and nonhalo (LL) cells. Program and erase were done
at fixed biases for all Lrg values. The halo cells shows much
better T'p scaling and comparable Tp degradation after cycling
compared to the nonhalo cells. The faster programming clearly
indicates higher hot electron generation for halo cells under
identical bias (expected because of higher doping around the
junction). The halo cells also show better initial Tr. However,
they suffer from severe Tr degradation after cycling (specially
at smaller Lyg) compared to the nonhalo cells. This is expected
since a wider defect generation area is likely to degrade a signifi-
cant part of the channel for smaller Lrg halo cells and therefore
cause higher degradation in T'r after cycling.

Fig. 7 shows the drain disturb time before and after 100 K
P/E cycles as a function of FG length for halo and nonhalo
(LL) cells, under both charge gain and loss disturb modes. It has
been previously identified that unlike CHE operation, CHISEL
operation shows both charge gain and loss disturb that origi-
nates from band-to-band tunneling (BTBT) [19]. BTBT gener-
ated electrons (holes) get heated by the junction field and get
attracted toward the FG by positive FG charge in erased state
(by negative FG charge during erase state) and cause charge
gain (charge loss) disturb. Note that increased disturb implies
lower T'p and vice-versa. It can be clearly seen that charge gain
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Fig. 6. Erase time ( TE) as a function of FG length (Lra) measured under
equivalent bias on nonhalo (LL) and halo cells before and after 100 K P/E cycles.

disturb increases but charge loss disturb decreases after P/E cy-
cling. Such opposite cycling induced degradation of charge gain
and loss disturb under CHISEL operation has already been ob-
served and explained [20], [21]. The cycling induced degrada-
tion in T'p is higher for halo cells compared to the nonhalo cells,
which is consistent with higher defect generation for the former
device. The drastic increase in charge gain disturb after cycling
specially at smaller Lyg for halo cells (resulting in a P/D margin
of ~ 10* at Lpg = 0.21 ym) is a very severe concern.

The above results show that halo cells, despite showing quite
promising T'p scaling, fare badly after cycling due to severe
degradation in T and P/D margin. This forces us to abort the
halo cells and find out the best among the nonhalo technologies,
which is done in the next section.

B. Optimization of Nonhalo Cells

All the nonhalo technologies (LL, HH and HL, L = low, H
= high, the letters correspond to channel doping and junction
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Fig. 7. Disturb time (Tp) as a function of FG length (Lrq ) measured under
equivalent bias on nonhalo (LL) and halo cells before and after 100 K P/E cycles.
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Fig. 8. Impact of technology parameters on cycling endurance of program time
and programmed and erased Vi for nonhalo cells under CHISEL operation.

depth, respectively) were compared under identical program
and erase biases.

Fig. 8 shows the programming time before and after 100 K
P/E cycles and corresponding degradation in programmed and
erased Vp (AVrp and AVyg) for different nonhalo technolo-
gies under CHISEL operation. Note that initial 7’p reduces from
LL to HL cells because of increasing transverse field under
identical programming bias [18]. However, the cycling induced
degradation in Tp, Vrp and Vg (and Tk, not shown) are in-
sensitive to changes in technological parameters. Similar Tp
and Vpp degradation does not necessarily suggest identical cy-
cling induced degradation across different technologies. This is
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Fig. 9. Impact of technology parameters on the cycling endurance of disturb
time and program/disturb margin for nonhalo cells under CHISEL operation.

because the high-energy secondary electrons can easily over-
come any moderate differences in injection barrier (caused by
moderate differences in cycling induced degradation) across dif-
ferent technologies. However, similar Vrg degradation (note
that erase is by Fowler—Nordheim electron ejection) suggests
similar cycling induced degradation during CHISEL operation
across various technologies.

Fig. 9 shows the disturb time and P/D margin before and
after 100 K P/E cycles for different nonhalo technologies under
CHISEL operation. The device HL did not show detectable
charge loss after P/E cycling within the measurement timescale.
Charge loss disturb is always less compared to the charge gain
disturb for all technologies. Furthermore, charge gain disturb
increases while charge loss disturb decreases after P/E cycling.
The P/D margin is therefore an important concern only for
the charge gain mode. It can be seen from the figure that both
LL and HH cells show comparable P/D margin while that for
HL cells are lower both before and after 100 K cycles. Since
CHISEL drain disturb originates from BTBT, HL cells with
highest transverse field results in lowest 7p (which also showed
fastest T'p during programming). However, T'p degradation is
similar after P/E cycling for all technologies. This is expected
since cycling induced degradation has been found to be similar
across different technologies.

By comparing the degradation in 7» and P/D margin after cy-
cling under CHISEL operation, the best technology is identified
to be HH. This technology is chosen for studying CHISEL Ly
scaling in the next section.

Note that CHISEL mechanism is substantially different from
the conventional CHE process. It is therefore expected that the
best-optimized technology for CHISEL operation need not be
the same for CHE operation and vice-versa. Fig. 10 shows the
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programming time before and after 100 K P/E cycles and cor-
responding degradation in programmed and erased Vp for all
nonhalo and halo technologies under CHE operation. The pro-
gramming was done at identical Vg and Vp. It is important to
note that unlike CHISEL operation there is a wide variation in
degradation across different technologies under CHE operation.
Halo cells show fastest initial 7p and lowest Tp and Vp degra-
dation but highest Vrg degradation after cycling. On the other
extreme, nonhalo LL cells show worst initial T» and highest
Tp and Vpp degradation but lowest Vg degradation after cy-
cling. The degradation of HH and HL cells fall between these
two extremes.

Fig. 11 shows the impact of technology parameters on charge
gain drain disturb and P/D margin before and after 100 K P/E
cycles under CHE operation. Note that CHE shows charge loss
disturb at much higher Vp values than used in this work [19].
Contrary to CHISEL operation, cells with lower junction depth
show lower initial and degraded T'p and correspondingly higher
P/D margin. Unlike CHISEL operation, the HL technology fares
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best (among the available choices explored in the present work)
in terms of Tp and P/D margin degradation under CHE opera-
tion. This clearly shows that the Flash memory cell optimization
should be treated differently for CHE and CHISEL operation.

C. Effect of Scaling

In the previous section, it has been identified that HH nonhalo
technology shows the most reliable CHISEL operation. In this
section the scaling performance of this technology is explored.
The program and erase biases were held fixed as Lyq is varied,
which yields faster T'p at smaller Lrg. Comparison under iden-
tical T'p (by suitably adjusting Vo and Vp) is beyond the scope
of the present paper. Furthermore, studying the scalability of the
best optimized CHE cell is also beyond the scope of the present
paper.

Fig. 12 shows the programming time before and after P/E cy-
cles as a function of FG length under CHISEL operation. For
comparison, the cycling induced 7’p degradation under CHE op-
eration is also shown. Note that Tp degradation after 100 K cy-
cles increases as Ly is reduced. This is expected since at con-
stant Vp smaller Lyg cells are expected to degrade by a large
amount, despite lower Tp during cycling. However, the degra-
dation under CHISEL operation is much smaller than that under
CHE operation. It has been shown before [22] that CHISEL op-
eration results in a highly populated EED high-energy tail even
at shorter Lrg. These highly energetic CHISEL electrons can
easily overcome the increased energy barrier caused by trapping
of electrons during cycling. This is reflected in lower degrada-
tion of T’p as shown.

Fig. 13 shows charge gain and loss drain disturb and corre-
sponding P/D margin as a function of FG length before/after P/E
cycling under CHISEL operation. Charge loss disturb decreases
at smaller Lrg (increase in drain coupling makes FG voltage
less negative and reduces BTBT). As mentioned before, charge
loss disturb also decreases after cycling. The corresponding P/D
margin is improved and therefore is not an issue during CHISEL
cell scaling. Charge gain disturb is less sensitive to Lrg before
cycling under CHISEL operation [19]. However, it increases
and hence P/D margin reduces after cycling as Lgg is scaled.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on December 30, 2008 at 06:19 from IEEE Xplore. Restrictions apply.



NAIR et al.: CYCLING ENDURANCE OF NOorR FLASH EEPROM CELLS UNDER CHISEL PROGRAMMING OPERATION

3
310
105 E ;
i ]
10 . 1o
10°F ]
102F 310°
]
° 3 10° (-g'?
@ 10°F [Open] Virgin 5
e [Filled] After 100K Cycles] 2
=1 -1 L | L | 4 =
s 10 4 ]810 z
2 10k VosNVo/Vp=8/37-2V 17 2
A : 1400 &
r 310" <
L E =
: J1° %
1T
10°F ]
s 410’
I {10°
2 | L 1 X | 7 5
1 1
% 020 025 030 °
Lrg(um)
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program/disturb margin for nonhalo HH cells under CHISEL operation.

This is due to higher cycling induced degradation (since Vp
is kept constant) at lower Lpg. Therefore charge gain disturb
poses some concern for Lrg scaling during CHISEL operation.

For the present HH technology optimized for Lypg =
0.26 pum, a Lpg = 0.2 pm cell shows Tp = 2.6 us and P/D
margin greater than 5 x 10* after 100 K P/E cycles under
CHISEL operation at Vp = 3.7 V.

IV. CONCLUSION

To summarize, we have studied the impact of variation
in technological parameters (channel doping, S/D junction
depth) and channel length scaling on the reliability of NOR
Flash EEPROM cells under CHISEL programming operation.
Cycling induced degradation of P/E time and program/disturb
margin were used as performance metric. It has been shown
that halo doped cells, despite showing excellent initial perfor-
mance are not reliable after cycling. Nonhalo cells with high
channel doping and somewhat high S/D junction depth has
been found to be most suitable for reliable CHISEL operation.
It has been also shown that bitcell optimization for reliable
CHISEL operation is quite different from that for CHE opera-
tion. Under present condition, the best-optimized nonhalo cells
show reliable CHISEL programming for FG length down to
0.2 pm. These results prove that CHISEL programming can be
reliably used in deeply scaled NOR Flash EEPROM cells.
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