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Abstract

Cyclooxygenase-2 (COX-2), an inducible prostaglandin synthase, is normally expressed in parts of
the kidney and brain. Aberrant COX-2 expression was first reported in colorectal carcinomas and
adenomas, and has now been detected in various human cancers, including those of the breast.
Strikingly, COX-2 overexpression in murine mammary gland is sufficient to cause tumour formation.
To date, the role of COX-2 in tumorigenesis has been most intensively studied in the colon. Thus,
the relationship between COX-2 and neoplasia can best be illustrated with reference to intestinal
tumorigenesis. Here we consider the potential utility of selective COX-2 inhibitors for the prevention
and treatment of breast cancer. Data for cancers of the colon and breast are compared where
possible. In addition, the mechanisms by which COX-2 is upregulated in cancers and contributes to
tumorigenesis are discussed. Importantly, several recent studies of mammary tumorigenesis in
animal models have found selective COX-2 inhibitors to be effective in the prevention and treatment
of breast cancer. Clinical trials will be needed to determine whether COX-2 inhibition represents a
useful approach to preventing or treating human breast cancer.
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Introduction

Cyclooxygenase-2 (COX-2) is emerging as an increasingly
promising pharmacological target for the prevention and
treatment of many human cancers. COX-1 and COX-2 are
prostaglandin (PG) synthases which catalyse sequential
synthesis of prostaglandin G2 (PGG2) and PGH2 from
arachidonic acid by virtue of intrinsic cyclooxygenase and
peroxidase activities (Fig. 1). PGH2 is then converted by
specific isomerases to other eicosanoids, including PGs,
thromboxane (Tx) and prostacyclin. Cyclooxygenase-derived
prostanoids contribute to many normal physiological
processes including haemostasis, platelet aggregation, kidney
and gastric function, reproduction, pain and fever. Despite
the similar enzymatic activities of COX-1 and COX-2, the
COX-1 and COX-2 genes have distinct properties, and
differing expression patterns (Table 1). WhileCOX-1 is
constitutively expressed,COX-2 is upregulated in response
to growth factors, tumour promoters and cytokines (reviewed
by Herschman 1996). Additionally,COX-2 is responsive to
several oncogenes, including v-src, v-Ha-ras, HER-2/neu
andWntgenes (Xie & Herschman 1995, Subbaramaiahet al.
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1996, Shenget al. 1998b, Howe et al. 1999, Vadlamudiet
al. 1999, Haertel-Wiesmannet al.2000). Thus, increased PG
synthesis is detected in inflamed and neoplastic tissues.
Analysis of COX-2-deficient mice suggests that COX-2 is
normally important for post-natal renal development and
multiple female reproductive processes including ovulation,
fertilisation, implantation and decidualisation (Dinchuket al.
1995, Morhamet al.1995, Limet al.1997, 1999a). Aberrant
COX-2 expression has been detected in multiple human
cancers, as shown in Table 2. Together, a weight of
epidemiological, pharmacological, genetic and expression
data combine to suggest an important role for COX-2 in
tumorigenesis, particularly in colorectal cancer. There is
recent evidence that COX-2 may also represent a novel target
for the prevention and treatment of breast cancer.

Cyclooxygenase activity is inhibited by nonsteroidal
anti-inflammatory drugs (NSAIDs) such as aspirin and
sulindac, which are most commonly administered for the
relief of pain and inflammation. However, adverse side
effects including peptic ulcer disease are associated with the
use of such compounds, which are nonselective inhibitors of
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Figure 1 Biosynthesis of prostaglandins. Arachidonic acid, released from membrane phospholipids by phospholipase A2 action
(reaction 1), is metabolised by cyclooxygenases to PGH2 in two steps. PGG2 is generated by cyclooxygenase activity (reaction
2), then converted to PGH2 by the peroxidase activity (reaction 3); both enzyme activities are intrinsic to COX-1 and COX-2.
PGH2 can be converted to several eicosanoids by specific isomerases. Additionally, MDA (malondialdehyde) can be produced
enzymatically or by degradation of PGH2. TxA2, thromboxane A2.

Table 1 Properties of COX-1 and COX-2.

COX-1 COX-2

Expression Constitutive Inducible
Size of gene 22 kb 8.3 kb
mRNA transcript 2.7 kb 4.5 kb, with multiple

Shaw-Kamen sequences
Size of protein 72 kDa 72/74 kDa doublet
Localisation Endoplasmic Endoplasmic reticulum,

reticulum, nuclear envelope
nuclear
envelope

Expression Most tissues, Regions of brain and
pattern including kidney, activated

stomach, macrophages,
kidney, colon synoviocytes during
and platelets inflammation, malignant

epithelial cells.
Expression stimulated by
cytokines, growth
factors, oncogenes and
tumour promoters
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COX-1 and COX-2. In fact, prior to the development of
selective COX-2 inhibitors, there were an estimated 100 000
hospitalisations and 16 500 deaths per year in the United
States related to NSAID use (Singh 1998). Toxicity
associated with the use of nonselective NSAIDs was the
major stimulus to develop selective COX-2 inhibitors.
Endoscopically controlled studies show that selective COX-2
inhibitors are far less ulcerogenic than classical NSAIDs
(Langmanet al. 1999, Simonet al. 1999). Since selective
COX-2 inhibitors appear sufficiently safe to allow large scale
administration on a chronic basis to healthy individuals, they
represent potentially useful agents for cancer chemo-
prevention.

COX-2 and cancer: epidemiology and
expression

Colon cancer

One of the first clues that cyclooxygenase inhibition might
be an effective approach to preventing cancer came from
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Table 2 COX-2 overexpression in human tumours.

Organ site References

Breast cancer Parrett et al. (1997), Hwang et al.
(1998), Masferrer et al. (2000),
Subbaramaiah et al. (1999b),
Soslow et al. (2000)

Cervical dysplasia and
cancer Kulkarni et al. (2001)
Prostate carcinoma Gupta et al. (2000), Yoshimura et

al. (2000)
Bladder transitional cell
carcinoma Mohammed et al. (1999)
Hepatocellular
carcinoma Koga et al. (1999)
Pancreatic cancer Molina et al. (1999), Okami et al.

(1999), Tucker et al. (1999)
Skin cancer Buckman et al. (1998)
Lung cancer Hida et al. (1998), Wolff et al.

(1998) Ochiai et al. (1999)
Head and neck cancer Chan et al. (1999)
Colorectal adenomas Eberhart et al. (1994), Kargman et
and carcinomas al. (1995), Sano et al. (1995),

Kutchera et al. (1996)
Gastric cancer Ristimaki et al. (1997)
Barrett’s oesophagus Wilson et al. (1998)
and oesophageal cancer

epidemiological studies. Several studies reported an inverse
correlation between colon cancer incidence and regular use
of NSAIDs including aspirin (Thunet al. 1991, Greenberg
et al.1993, Loganet al.1993, Suhet al. 1993, Reeveset al.
1996). Since NSAIDs are known to function, at least in part,
by inhibiting cyclooxygenase enzyme activity, these
observations suggested that aberrant PG biosynthesis might
contribute to colorectal neoplasia. This led to an analysis of
COX expression in colorectal neoplasms. Levels ofCOX-1
were not increased in colorectal carcinomas relative to
adjacent normal mucosa (Eberhartet al. 1994, Kargmanet
al. 1995, Sanoet al. 1995). In contrast, strikingCOX-2
upregulation was observed in colon carcinomas compared
with the virtually undetectable expression in normal mucosa
(Eberhartet al.1994, Kargmanet al.1995, Sanoet al.1995,
Kutcheraet al. 1996). Eberhartet al. (1994) also detected
COX-2 expression in 9 of 20 adenomas examined. In
carcinomas, COX-2 protein localised predominantly to the
epithelial component, but could also be detected in
tumour-associated fibroblasts, vascular endothelial cells, and
inflammatory mononuclear cells (Sanoet al. 1995, Kutchera
et al. 1996). COX-2 expression has also been detected in
intestinal adenomas from rodent models of intestinal
tumorigenesis (Boolbolet al. 1996, DuBoiset al. 1996a,
Williams et al. 1996, Singhet al. 1997).

Together, these epidemiological and expression studies
suggested a role for COX-2 in colorectal tumorigenesis. This
idea is supported by the results of clinical trials. Treatment
with the NSAID sulindac or with celecoxib, a selective
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COX-2 inhibitor, causes a decrease in the size and number
of polyps in familial adenomatous polyposis patients
(Giardiello et al. 1993, Steinbachet al. 2000). Thus,
overexpression ofCOX-2appears to contribute to colorectal
cancer and cyclooxygenase inhibitors are likely to be useful
chemopreventive agents.

Breast cancer

In contrast to colon cancer, the role of COX-2 in breast
cancer is less clear. Epidemiological studies conducted to
investigate the relationship between NSAID use and breast
cancer incidence have reported conflicting findings. Several
studies have failed to find a significant relationship between
aspirin use and breast cancer risk (Paganini-Hillet al. 1989,
Thunet al.1991, Eganet al.1996). However, other analyses
have revealed an association between NSAID consumption
and decreased breast cancer incidence. Friedman & Ury
(1980) found significantly reduced breast cancer incidence in
4867 women who used indomethacin, compared with
age-matched controls. Harris and colleagues (1996)
compared NSAID use in 511 women with newly diagnosed
breast cancer with 1534 population control subjects, and
found that the relative risk of breast cancer was reduced to
66% in women using NSAIDs at least 3 times per week for
at least one year. Two additional studies also found that
NSAIDs protected against breast cancer (Schreinemachers &
Everson 1994, Sharpeet al. 2000). The basis for the lack of
consistency among different studies is unclear. One potential
explanation is that some NSAIDs may have restricted
bioavailability in breast tissue. Thus, conflicting data
obtained in separate studies may reflect the usage of different
NSAIDs in the populations examined. Another potential
complication is that significantCOX-2 overexpression may
be limited to a subset of human breast cancers, which could
certainly confound epidemiological analyses. Approximately
85% of human colorectal adenocarcinomas overexpress
COX-2 (Eberhartet al. 1994, Kargmanet al. 1995, Sanoet
al. 1995, Kutcheraet al. 1996). This could account for the
strong correlation between regular NSAID use and reduced
cancer incidence (Thunet al. 1991, Greenberget al. 1993,
Loganet al. 1993, Suhet al. 1993, Reeveset al. 1996). In
contrast, as discussed below,COX-2 is not abundantly
overexpressed in the majority of human breast cancers
(Hwanget al. 1998, Subbaramaiahet al. 1999b). With this
in mind, it is predictable that the results of epidemiological
studies would be less clear-cut for breast than colon cancer
even if NSAIDs were active against COX-2-positive breast
cancers.

EnhancedCOX expression in breast cancer was first
suggested by reports of elevated PG levels in breast tumours
(Tanet al.1974, Bennettet al.1977, Rollandet al.1980). PG
productionwas increased in human breast cancers, particularly
in those from patients with metastatic disease (Bennettet al.
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1977, Rollandet al. 1980). PG production andCOX-2
expression have also been detected in breast cancer-derived
cell lines (Schrey & Patel 1995, Liu & Rose 1996, Gilhooly &
Rose 1999). Interestingly, there appears to be a correlation
between invasiveness/metastatic potential and PG production/
COX-2 expression in both cell lines and tumour specimens
(Bennettet al.1977, Rollandet al.1980, Liu & Rose 1996).
However, there are conflicting data regarding the frequency of
COX-2 expression in breast cancers. Parrettet al. (1997)
detectedCOX-2expression in 13/13 human breast tumours by
reverse transcriptase-coupled polymerase chain reaction
(RT-PCR), compared with no detectable expression in normal
human breast tissue, and observed a correlation between
COX-2 expression and increasing tumour cell density.
Immunohistochemistry revealed COX-2 protein in the
epithelial cells of the tumours, with no expression in the
stromal compartment. In contrast, Hwang and colleagues
(1998) analysed 44 tumour samples by Western blotting but
only detected COX-2 protein in 2 of the 44 samples. These
apparently discrepant observations can be reconciled by
consideration of the following. First, the failure to detect
COX-2 by Western blotting or RNAse protection (Hwanget
al. 1998) may reflect the relative insensitivity of these
techniques compared with RT-PCR. The second important
caveat is thatCOX-2 expression may be predominantly
associated with certain subsets of human breast cancers
(Gilhooly & Rose 1999, Subbaramaiahet al.1999b). We have
examinedCOX-2 expression in 29 microdissected human
breast cancers using a coupled immunoprecipitation/Western
blotting assay, which confers increased sensitivity relative to
direct Western blotting of lysates. High levels of COX-2
protein were detected in 14 of 15HER-2/neu-overexpressing
breast cancers. In contrast, COX-2 was detected in only 4 of
14 HER-2/neu-negative breast cancers, and was expressed at
significantly lower levels than in the HER-2/neu-positive
samples (Subbaramaiahet al.1999b). Immunohistochemistry
localised COX-2 protein to epithelial cells and the vasculature.
Thus, it seems likely that significant overexpression ofCOX-2
may be largely confined to those breast cancers in which
HER-2/neu is overexpressed, or in which the signalling
pathways normally activated byHER-2/neu are activated by an
alternative event such asrasmutation (Gilhooly &Rose 1999).
SinceHER-2/neuoverexpression is limited to 20–30% of
human breast cancers, conflicting epidemiological data may
reflect differing proportions of HER-2/neu-positive cancers in
the various studies. Based on these recent findings, it would be
of considerable interest to compare the efficacy of NSAIDs in
preventing HER-2/neu-positive and -negative breast cancers.

COX-2 is expressed in intestinal and
mammary tumours in rodents

Rodent models of intestinal tumorigenesis can be divided
into carcinogen-induced tumour models, and those in which
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tumour formation is induced by introduction of germline
mutations into tumour suppressor genes such asApc. In
humans, germline mutation of theAPC gene is responsible
for familial adenomatous polyposis (FAP), in which
individuals develop numerous adenomatous colorectal
polyps, which predispose to colorectal carcinomas. In
addition,APC is mutated in approximately 85% of sporadic
colorectal carcinomas. Several mice strains have been
developed which harbour mutations in oneApc allele,
including the Min mouse (Moseret al. 1990), Apc∆716

(Oshimaet al. 1995), Apc1638N (Foddeet al. 1994), and
Apc∆474 (Sasaiet al. 2000). These mice consistently develop
intestinal adenomas, although these are more prevalent in the
small intestine than in the colon. Analysis of adenomatous
polyps from Min mice revealed increasedCOX-2expression
relative to normal mucosa (Williamset al. 1996). Elevated
expression ofCOX-2was also detected in colonic mucosa
and tumours from rats treated with azoxymethane (AOM)
(DuBois et al. 1996a, Singh et al. 1997). ThusCOX-2 is
commonly overexpressed in both human colorectal cancers
and animal models of colorectal cancer. The cellular
localisation of COX-2 in both human and rodent tumours
continues to be investigated.

Rodent models have also been used to examineCOX-2
expression in mammary tumours. In the rat,COX-1 is
ubiquitously expressed in virgin, pregnant, lactating, and
post-lactational mammary glands, butCOX-2 is only
detectable in the mammary glands of lactating animals
(Badawi et al. 1999). Treatment of ovariectomised animals
with oestradiol and progesterone causes induction ofCOX-2
and PG synthesis (Badawi & Archer 1998, Badawiet al.
1999), suggesting thatCOX-2 transcription is susceptible to
hormonal regulation. COX-2 protein has been detected in rat
mammary tumours induced by various carcinogens,
including N-nitrosomethyl urea (NMU), dimethyl-
benz[a]anthracene (DMBA) and 2-amino-1-methyl-6-
phenylimidazol[4,5-b]pyridine (PhIP) (Robertsonet al.1998,
Hamid et al. 1999, Nakatsugiet al. 2000). Based on
immunohistochemical analyses, COX-2 protein was
observed in the epithelial cells within the mammary tumours
(Robertsonet al. 1998, Nakatsugiet al. 2000). Interestingly,
dietary administration of n-6 polyunsaturated fatty acids
(PUFAs) in the form of safflower oil stimulatedCOX-2
expression in rat mammary glands, suggesting a potential
mechanism by which n-6-PUFAs may contribute to
mammary tumorigenesis (Badawiet al. 1998).

In addition to these rat studies, COX-2 protein levels
have also been examined in mammary tissues from
transgenic mice strains that develop mammary tumours due
to mammary-targeted oncogene expression. Significant
amounts of COX-2 protein were detected in mammary
tumours from mice overexpressingneu (K Subbaramaiah
and A J Dannenberg, unpublished observations), consistent
with our findings in HER-2/neu-overexpressing human

Downloaded from Bioscientifica.com at 08/22/2022 09:30:39PM
via free access



Endocrine-Related Cancer (2001) 8 97–114

breast cancers (Subbaramaiahet al. 1999b). We have also
found increased COX-2 protein in mammary tumours from
Wnt-1 transgenic mice, relative to the levels in normal
mammary gland (Fig. 2; Howeet al. 2001). Consistent
with this, COX-2 is transcriptionally upregulated in mouse
mammary epithelial cell lines engineered to expressWnt-1
(Howe et al. 1999), and expression is also increased in
response to transformation by other oncogenes
(Subbaramaiahet al. 1996).

Mechanisms of COX-2 upregulation

There is evidence thatCOX-2 is upregulated in both
neoplastic and stromal cells within tumours. Hence,
multiple mechanisms are likely to account for
overexpression ofCOX-2 in these different cell types. It
is relevant, therefore, to evaluate the effects of different
stimuli in various cell types.COX-2expression is normally
regulated at both transcriptional and post-transcriptional
levels, and can also be regulated by the rate of protein
synthesis and/or degradation. The humanCOX-2 promoter
contains multiple transcription factor binding sites,
including a cAMP response element (CRE), and potential
binding sites for Myb, nuclear factor interleukin-6
(NF-IL6), nuclear factor κB (NF-κB), and Ets factors
(Genbank Accession Number 505116). Of these, the sites
proximal to the transcription start site (Fig. 3) have been
shown to be differentially responsive to various stimuli.
Induction of COX-2 by v-src, serum, platelet-derived
growth factor (PDGF) and ceramide requires activation of
both Ras/Raf-1/ERK and Ras/MEKK1/JNK signal
transduction pathways and is predominantly mediated via
the CRE (Xie & Herschman 1995, 1996, Subbaramaiahet

Figure 2 COX-2 protein is increased in Wnt-1-expressing mammary tumours. COX-2 protein was analysed in lysates
prepared from mammary tumours from three Wnt-1 transgenic female mice (lanes 4–6) and from mammary glands (MG)
isolated from three strain-matched wildtype female mice (lanes 1–3). Lysates were prepared from 10 mg of each tissue
sample. COX-2 protein was immunoprecipitated, and immunoprecipitates were analysed for COX-2 by Western blotting. The
arrow indicates the position of a COX-2 standard. Little COX-2 protein was detectable in the wildtype mammary glands (lanes
1–3). In contrast, appreciable COX-2 protein was observed in all three tumour samples (lanes 4–6). Adapted and reproduced
with permission from Howe et al. (2001).
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al. 1998a). In contrast, the NF-IL6 and NF-κB sites are
required for induction ofCOX-2 in response to tumour
necrosis factor (TNF) in osteoblasts (Yamamotoet al.
1995). The NF-IL6 and CRE sites have been identified as
being critical for the induction ofCOX-2 in response to
other stimuli, including lipopolysaccharide (LPS) and
immunoglobulin E receptor aggregation (Inoueet al. 1995,
Reddy et al. 2000b, Wadleigh et al. 2000). Other studies
have implicated the NF-κB site as being important for
LPS- and benzo[a]pyrene-mediated induction ofCOX-2
(Hwang et al. 1997, Yanet al. 2000). The expression of
COX-2 can also be increased by stabilisation of theCOX-2
transcript (Ristimakiet al. 1994, Shenget al. 1998b). The
3′ untranslated region ofCOX-2 mRNA contains a 116
nucleotide AU-rich sequence element (ARE) which can
negatively regulate transcript stability and modulate
translation (Dixonet al. 2000).

During tumorigenesis, increased expression ofCOX-2 is
likely to be a consequence of multiple effects. For example,
transcriptional activation is likely to occur in response to
growth factors and oncogenes. Moreover, since wildtype p53
decreases COX-2 transcription, loss-of-function p53
mutations may contribute to COX-2 upregulation
(Subbaramaiahet al. 1999a). Dixon et al. (2000) speculated
that ARE-binding proteins which normally negatively
regulate transcript stability may be defective in tumour cells.
This, too, could result in increased levels of COX-2. The
relative importance of these different factors is likely to vary
in different tissues. In mouse skin carcinogenesis, promoter
activation by upstream stimulatory factor (USF) and
CCAAT/enhancer binding proteins (C/EBPs) appears to be
important (Kim & Fischer 1998). By contrast, bile acids,
which have been implicated in the promotion of
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Figure 3 Human COX-2 promoter schematic. The transcription start site is indicated by an arrow, the TATA box at −31/−25 is
shown as a white rectangle, and three transcription factor binding sites lying between −327/+59 of the human COX-2 promoter
are depicted as black ovals.

gastrointestinal tumours, stimulate AP-1 activity and increase
COX-2 transcription and transcript stability (Zhanget al.
1998, Zhanget al. 2000b).

In colorectal cancer cells, constitutiveCOX-2
expression is likely to result from a combination of
transcriptional, post-transcriptional and translational effects
(Hsi et al. 1999, Shaoet al. 2000). Mutation of NF-IL6
and CRE elements has been shown to diminishCOX-2
promoter activity in two colorectal cancer cell lines (Shao
et al. 2000), implicating these sites in transcriptional
upregulation. Interestingly, we have recently detected a
requirement for the NF-IL6 site for stimulation of the
COX-2 promoter by Ets factors of the PEA3 subfamily
(Howe et al. 2001). PEA3 factors stimulate humanCOX-2
promoter activity up to 20-fold when overexpressed in 293
human embryonic kidney cells. Since PEA3 factors are
highly expressed in colorectal cancer cell lines, intestinal
tumours, andWnt-1-expressing mammary cell lines and
tumours (Crawfordet al. 2001, Howe et al. 2001), we
speculate that PEA3 factors may contribute toCOX-2
induction during both intestinal and mammary
tumorigenesis. Increased expression of c-myb may also
contribute, since c-myb is upregulated in colon tumours
and breast cancers (Guerinet al. 1990, Ramsayet al.
1992) and c-myb overexpression causes modest induction
of COX-2 promoter activity (Ramsayet al. 2000).

COX-2 expression can also be affected by dietary fat.
Chemically induced mammary carcinogenesis is promoted
by dietary n-6-PUFAs, which enhance tissue levels of
arachidonic acid, and inhibited by n-3-PUFAs (reviewed by
Rose & Connolly 1999). In experimental models,COX-2
expression in mammary tissue and tumours is decreased in
animals fed an n-3-PUFA-rich diet (i.e. menhaden oil)
relative to those fed a diet high in n-6-PUFAs (i.e. corn or
safflower oil) (Badawiet al. 1998, Hamidet al. 1999).
Similarly, dietary fish oil decreased the expression ofCOX-2
and the incidence of colorectal tumours in AOM-treated rats
(Singhet al.1997). This may help to explain epidemiological
observations of decreased breast and colon cancer risk in
populations with diets rich in fish oils (Rose & Connolly
1999).
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Evidence from rodent models that COX-2
contributes to cancer

Genetic evidence for a role for COX-2 in
tumour formation

Definitive evidence linking cyclooxygenases to
tumorigenesis was first provided by studies using mice with
targeted disruptions of theCOX-1or COX-2genes. Oshima
et al. (1996) pioneered these experiments by generating
Apc∆716, COX-2-null mice. Intestinal adenoma incidence was
reduced by 86% inCOX-2 knockout mice, and by 66% in
COX-2 heterozygotes, relative toCOX-2 wildtype mice
carrying theApcmutation (Oshimaet al.1996). Tumour size
was also significantly reduced inCOX-2-deficient mice.
COX-2 deficiency also protects against chemically induced
papilloma formation in mouse skin (Tianoet al. 1997), and
COX-2-null embryonic stem cells have a dramatically
reduced ability to form teratomas when injected into
syngeneic mice (Zhanget al. 2000a). Interestingly,
disruption of either COX-1 or COX-2 caused similar
reductions in tumour multiplicity in the Min mouse (Chulada
et al. 2000), suggesting that both enzymes can impact on
tumorigenesis. The results of similar studies to determine the
effects ofCOX-2 deficiency on the incidence of mammary
cancer are eagerly awaited. However, results from the
converse experiment designed to address the consequence of
COX-2overexpression in mammary gland have recently been
reported (Liuet al. 2001). Liu and colleagues overexpressed
human COX-2 from the mouse mammary tumor virus
(MMTV) promoter, and demonstrated thatCOX-2
overexpression was sufficient to cause breast tumour
formation in more than 85% of multiparous mice. Virgin
females did not develop tumours, but exhibited precocious
lobuloalveolar differentiation and enhanced expression of the
milk protein β-casein. MMTV-driven COX-2 expression
increased during pregnancy, suggesting a basis for the failure
of virgin animals to develop tumours. Interestingly, mammary
gland involution was delayed inCOX-2transgenic mice, with
a decrease in the apoptotic index of mammary
epithelial cells, andCOX-2-induced tumor tissue expressed
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reduced levels of the proapoptotic proteins Bax and Bcl-xL.
Together, these observations suggest thatCOX-2expression
may contribute to tumorigenesis via a reduction in apoptosis,
a result previously suggested byin vitro studies, as discussed
below.

Pharmacological studies in rodent models of
intestinal tumorigenesis

In addition to genetic evidence implicating cyclooxygenases
in intestinal tumorigenesis, there are complementary
pharmacological data. Many animal-based studies have been
performed to investigate the utility of cyclooxygenase
inhibitors for prevention or treatment of intestinal tumours.
The prevention studies have predominantly examined either
AOM-induced lesions in rat colon (aberrant crypt foci or
carcinomas) or intestinal adenomas inApc-deficient mice. A
consistent finding has been that tumour incidence and
multiplicity are reduced by both nonselective NSAIDs
(Reddyet al. 1993, Raoet al. 1995, Boolbolet al. 1996,
Jacobyet al. 1996, 2000a), and selective COX-2 inhibitors
(Table 3). In addition, those tumours that do develop in
drug-treated animals tend to be reduced in size relative to
those in control animals (Nakatsugiet al. 1997, Fukutakeet
al. 1998, Jacobyet al. 2000a,b, Reddyet al. 2000a). It is
notable that selective COX-2 inhibitors appear to be at least
as effective in preventing tumours as nonselective NSAIDs.
This result has important clinical implications, given the
enhanced safety profile of selective COX-2 inhibitors versus
traditional NSAIDs.

In addition to these prevention studies, cyclooxygenase
inhibitors are also being evaluated as therapeutic agents
for pre-existing tumours. Reduction in growth of colon
cancer xenografts has been achieved by treatment with
meloxicam, SC-58125 and celecoxib (Shenget al. 1997,
Goldmanet al. 1998, Williamset al. 2000b). Celecoxib also
decreased tumour multiplicity in Min mice by 52%, when
administered after adenomas had been established (Jacobyet
al. 2000b).

Table 3 Chemoprevention of intestinal tumorigenesis in rodents using selective COX-2 inhibitors.

Reference Animal Model Tumour type Drug Effect on tumour
multiplicity

Oshima et al. (1996) Mouse Apc∆716 Adenoma MF tricyclic 62% inhibition
Nakatsugi et al. (1997) Mouse Apc Min Adenoma Nimesulide 48% inhibition
Kawamori et al. (1998) Rat AOM Colon carcinoma Celecoxib 97% inhibition
Fukutake et al. (1998) Mouse AOM Colon carcinoma Nimesulide 81% inhibition
Reddy et al. (2000a) Rat AOM Colon carcinoma Celecoxib 84% inhibition
Sasai et al. (2000) Mouse Apc∆474 Adenoma JTE-522 32% inhibition
Jacoby et al. (2000b) Mouse Apc Min Adenoma Celecoxib 71% inhibition

Several of these studies tested a range of drug concentrations. The effect on tumour multiplicity (number of tumours per
animal) reported in this table was that achieved at the highest drug dose tested. In addition to inhibition of tumour multiplicity,
these agents also caused reduced tumour incidence (proportion of animals with tumours). Note that individual studies
examined different endpoints – carcinomas or adenomas.
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Pharmacological studies in rat breast cancer
models

Carcinogen-induced rat mammary tumours have been used as
a model system to test various NSAIDs and, more recently,
selective COX-2 inhibitors for their chemopreventive
potential (Table 4). In general, indomethacin was found to
reduce the incidence and multiplicity of DMBA-induced
tumours (Carteret al. 1983, 1989, McCormicket al. 1985,
Noguchiet al.1991). Because the incidence of breast cancer
may be affected by dietary fat, some of these studies have
compared NSAID effects in cohorts of animals fed low-
versus high-fat diets. Carteret al. (1983) found that
indomethacin reduced tumour incidence in DMBA-treated
animals fed 18% corn oil to the level observed in
DMBA-treated animals fed 5% corn oil, but did not see an
effect on incidence in the low-fat cohort. In contrast, two
other studies found that the inhibitory effect of indomethacin
was not confined to rats fed high-fat diets (McCormicket al.
1985, Noguchiet al. 1991). Interestingly, McCormicket al.
(1985) found that indomethacin treatment from 2 weeks
before to 1 week after DMBA administration primarily
targeted benign tumours. However, when treatment with
indomethacin was initiated 1 week after DMBA and
continued until the end of the trial, the multiplicity of
malignant tumours was also significantly reduced.
Conflicting data were obtained by Abou-el-Elaet al. (1989)
who found no inhibition of mammary tumorigenesis by
indomethacin. The basis for these discrepant observations is
unclear. Two additional NSAIDs, flurbiprofen and aspirin,
are also capable of reducing carcinogen-induced mammary
tumorigenesis (McCormick & Moon 1983, Suzuiet al.1997,
Mori et al. 1999), although piroxicam was not found to be
effective in one study (Kitagawa & Noguchi 1994).

Two recent studies evaluated the effects of selective
COX-2 inhibitors on mammary tumorigenesis. As shown in
Fig. 4A, treatment with celecoxib significantly delayed
tumour onset in DMBA-treated rats, and was more effective
than ibuprofen (Harriset al. 2000). Dietary administration
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Table 4 Chemoprevention of mammary tumorigenesis in rats using cyclooxygenase inhibitors

Reference Tumour induction Drug Effects

Carter et al. (1983) DMBA/18% corn oil Indomethacin 54% inhibition of tumour multiplicity; reduction in
tumour incidence

McCormick & Moon NMU Flurbiprofen Reduction in tumour incidence and multiplicity at
(1983) low NMU dose
McCormick et al. (1985) DMBA Indomethacin Reduction in benign or malignant tumours

according to period of drug administration
Abou-el-Ela et al. (1989) DMBA Indomethacin No inhibition
Carter et al. (1989) DMBA/20% fat Indomethacin Inhibition of tumorigenesis in animals fed 4 or

12% linoleate
Noguchi et al. (1991) DMBA/20% corn oil Indomethacin 61% inhibition of tumour multiplicity; reduction in

tumour incidence
Kitagawa & Noguchi DMBA/20% soybean oil Piroxicam No inhibition
(1994)
Suzui et al. (1997) PhIP/high corn oil Aspirin 44% inhibition of tumour multiplicity
Mori et al. (1999) PhIP/high fat Aspirin Inhibited tumour multiplicity
Harris et al. (2000) DMBA Celecoxib 86% inhibition of tumour multiplicity; 68%

reduction in tumour incidence
Nakatsugi et al. (2000) PhIP/24% corn oil Nimesulide 54% inhibition of tumour multiplicity; 28%

reduction in tumour incidence

of celecoxib reduced incidence, multiplicity and volume of
malignant breast tumours by 68%, 86% and 81% respectively
relative to the control group. The chemopreventive properties
of another COX-2 inhibitor, nimesulide, was tested in rats in
which the environmental carcinogen PhIP, together with a
24% corn oil diet, was used to induceCOX-2expression and
mammary tumours (Nakatsugiet al.2000). A small reduction
in tumour incidence was achieved by administration of 400
parts per million nimesulide (Table 5). In addition, both size
and multiplicity of tumours were significantly reduced in the
nimesulide-treated animals. Together, these studies represent
the first direct evidence that selective COX-2 inhibitors can
protect against experimental breast cancer.

Two additional studies suggest that cyclooxygenase
inhibition may be a useful strategy for treating breast cancer.
Robertsonet al. (1998) measured tumour size in rats that
were maintained for 100 days post DMBA treatment then fed
a control or an ibuprofen-containing diet for an additional 5
weeks prior to necropsy. Tumours from the control animals
increased in volume by approximately 180%. In contrast,
those from the ibuprofen-treated cohort decreased in volume
by almost 40%. More recently, a similar study was conducted
in which the effects of the selective COX-2 inhibitor
celecoxib were investigated (Alshafieet al. 2000). In this
study, rats were maintained for 4 months post DMBA
treatment to induce tumours. Subsequently, the rats were
given a control or a celecoxib-containing diet for an
additional 6 weeks. The mean tumour volume increased by
518% in control animals, but decreased by 32% in the group
fed celecoxib (Fig. 4B). In addition, the total tumour number
continued to increase in the control animals, but was reduced
in the celecoxib cohort. This report of regression of
mammary tumoursin vivo by a selective COX-2 inhibitor is

104 www.endocrinology.org

consistent with earlier studies showing that various NSAIDs
reduced the growth of mammary tumour xenografts (Fulton
1984, Karmali & Marsh 1986). Together, these observations
suggest that COX-2 inhibition may represent a strategy not
only for prevention but also for treatment of human breast
cancer.

The ability of COX-2 inhibitors to significantly reduce
tumour multiplicity strongly suggests that COX-2 contributes
to tumorigenesis. However, COX-independent effects of
NSAIDs have also been described (see below), raising the
possibility that the observed inhibition may not necessarily
be ascribed solely to effects on COX-2. Nevertheless, taken
together the pharmacological and genetic studies provide
overwhelming support for a role for COX-2 in tumorigenesis.
Definitive evidence has now been provided by the recent
demonstration thatCOX-2 overexpression is sufficient to
induce mammary tumor formation in transgenic mice (Liuet
al. 2001).

How does COX-2 contribute to cancer?

Prostaglandins stimulate proliferation and
mediate immune suppression

Since COX-2 is a PG synthase, the most obvious
consequence ofCOX-2 overexpression is increased PG
production, and indeed high PG levels have been detected
in many cancers. Enhanced PG synthesis may contribute to
carcinogenesis in several ways, including direct stimulation
of cell growth. PGE2α and PGF2α can both stimulate
mitogenesis in Balb/c 3T3 fibroblasts in synergy with
epidermal growth factor (EGF) (Nolanet al. 1988), and
PGF2α is also mitogenic for Swiss 3T3 cells and osteoblasts
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Figure 4 Celecoxib is effective for breast cancer prevention and treatment. (A) Rats were assigned to a control diet, or a diet
containing 1500 ppm ibuprofen or 1500 ppm celecoxib 7 days prior to a single intragastric dose of DMBA, and tumour
incidence was measured for 16 weeks. This figure is reproduced with permission from Harris et al. (2000). (B) Rats were
maintained for four months after a single intragastric dose of DMBA to allow palpable tumour development, then assigned to a
control diet or a diet containing 1500 ppm celecoxib, and tumour size was monitored for 6 weeks. This figure is reproduced
with permission from Alshafie et al. (2000).
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Table 5 Effects of nimesulide on the incidence, multiplicity
and volume of mammary carcinomas induced by PhIP in
Sprague-Dawley rats. Results are means ± S.E.

Control diet 400 ppm
nimesulide

Tumour incidence (% rats 30/42 (71%) 19/37 (51%)
with cancers)
Multiplicity (no. of cancers/ 2.6 ± 0.5 1.2 ± 0.2*
rat)
Cancer volume/rat (cm3) 4.1 ± 1.3 1.1 ± 0.4*
Effective no. of rats 42 37

*Significantly different from the control diet group by Welch’s t
test (P >0.05).
This table is reproduced with permission from Nakatsugi et al.
(2000).

(Goin et al.1993, Quarleset al.1993). Both PGE1 and PGE2
stimulate proliferation of mammary epithelial cells in the
presence of EGF (Bandyopadhyayet al. 1987). Thus,
inappropriate stimulation of cellular proliferation by PGs
may contribute to tumorigenesis. However, PGs do not act
as mitogens for all cell types, and in fact depress proliferation
of some cells, particularly those of the immune system
(Marnett 1992).

Antiproliferative effects may contribute to the immune
suppression associated with PGs. PGE2 inhibits T and B cell
proliferation and cytokine synthesis, and diminishes the
cytotoxic activity of natural killer cells. PGE2 also inhibits
the production of TNFα while inducing interleukin-10
production, which itself has immunosuppressive effects
(Huanget al.1996). PGs may also inhibit antigen processing
by dendritic cells (Stolinaet al. 2000). Thus, PG-mediated
immune suppression may contribute to tumorigenesis, since
this may allow tumours to avoid immune surveillance that
might otherwise limit their growth.

In breast tissue, PGs may also stimulate proliferation
indirectly by increasing oestrogen biosynthesis (Harriset al.
1999). The aromatase geneCYP19, which is responsible for
oestrogen synthesis, has three promoters, I.4, I.3 and II, from
which distinct transcripts are generated. In adipose tissue,
aromatase is normally expressed from promoter I.4.
However, in adipose tissue adjacent to breast tumours,
CYP19 tends to be expressed from promoter II. Recently,
PGE2 has been demonstrated to increase aromatase activity
(Zhao et al. 1996, Purohitet al. 1999) and causeCYP19
promoter switching to promoter II in adipose stromal cells
(Zhao et al. 1996). These data suggest that PG
overproduction can induce aromatase, leading to increased
oestrogen synthesis. Consistent with this, a positive
correlation has been observed betweenCYP19 and COX
expression in human breast cancer specimens (Brueggemeier
et al. 1999). Thus it is possible that PG-mediated oestrogen
overproduction may be an important organ site-specific
consequence ofCOX-2upregulation in breast cancer.
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Cyclooxygenase-mediated production of
mutagens

Thus far, the potential contributions of PG overproduction to
tumorigenesis, including increased cellular proliferation and
diminished immune surveillance, have been discussed.
However, COX-2 overexpression may also have
PG-independent consequences. In particular,COX-2
overexpression may result in increased production of
mutagens. Malondialdehyde (MDA) can be produced by
isomerisation of PGH2 both enzymatically and
non-enzymatically (Fig. 1). Therefore, MDA production may
be elevated due to increased availability of the precursor
molecule PGH2. MDA forms adducts with deoxynucleosides
and induces frame-shifts and base-pair substitutions, and thus
has potent mutagenic activity (Marnett 1992). Additional
carcinogens can be formed by oxidation of aromatic amines,
heterocyclic amines, and dihydrodiol derivatives of
polycyclic hydrocarbons (Wieseet al. 2001). This oxidation
step is catalysed by the peroxidase activity of
cyclooxygenase, which requires a reductant to convert PGG2

to PGH2. Thus,COX-2 overexpression may lead to DNA
damage, thereby contributing to carcinogenesis. Consistent
with this hypothesis, the selective COX-2 inhibitor
nimesulide decreases formation of the mutagen
8-oxo-7,8-dihydro-2′-deoxyguanosine in the colonic mucosa
(Tardieuet al. 2000).

Effects on angiogenesis

Recently, it has become apparent that cyclooxygenases are
involved in angiogenesis (reviewed by Gately 2000). This is
a crucial facet of tumorigenesis since neovascularisation is
required for tumours to grow beyond 2–3 mm in size.
Experiments in the 1980s showed that xenograft
vascularisation was significantly reduced by the NSAIDs
indomethacin, diclofenac and aspirin (Peterson 1983). More
recently, COX-2 has been specifically implicated.In vitro,
selective COX-2 inhibitors decrease endothelial tubule
formation (Tsujii et al. 1998, Joneset al. 1999), while, in
vivo, selective COX-2 inhibitors reduce angiogenesis in
several models (Majimaet al. 1997, Danielet al. 1999,
Sawaokaet al. 1999, Yamadaet al. 1999, Masferreret al.
2000). A representative illustration of celecoxib-mediated
inhibition of corneal angiogenesis is shown in Fig. 5.

In an interesting corollary, Lewis lung carcinoma
xenografts showed marked attenuation of growth when
implanted in COX-2-null mice, but grew normally in
COX-1-deficient mice (Williamset al. 2000a). The tumours
from COX-2 knockout mice exhibited 30% decreased
vascular density, implicating host COX-2 in tumour
neovascularisation. It seems likely that COX-2 in epithelial
cells, endothelial cells and fibroblasts may all contribute to
the angiogenic process, although there are some
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Figure 5 Celecoxib inhibits corneal angiogenesis induced by bFGF. The contribution of COX-2 to angiogenesis was evaluated
in an in vivo rat corneal model. Implanted bFGF induced neovascularisation (neov.; left panel) accompanied by corneal
thickening. Celecoxib caused a substantial reduction in the number and length of sprouting capillaries (right panel). This figure
is reproduced with permission from Masferrer et al. (2000).

discrepancies between observations madein vivoandin vitro
(Majima et al. 1997, Tsujiiet al. 1998, Danielet al. 1999,
Masferrer et al. 2000, Williams et al. 2000a). COX-2
apparently contributes to the production of pro-angiogenic
factors, including vascular endothelial growth factor
(VEGF), basic fibroblast growth factor (bFGF), transforming
growth factor-1, PDGF, and endothelin-1. NS-398 treatment
of a COX-2-overexpressing colorectal cancer cell line
diminishes secretion of these factors (Tsujiiet al.1998), and
COX-2 (–/–) fibroblasts have a 94% reduction in the ability
to produce VEGF relative to wild-type fibroblasts (Williams
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et al. 2000a). However, the molecular mechanisms
underlying COX-2-mediated production of pro-angiogenic
factors remain to be defined.

COX-1 can also contribute to angiogenesis. Nonselective
NSAIDs decrease the vascularisation of xenografts
comprised of cells not expressingCOX-2 (Sawaokaet al.
1999). Moreover, NSAIDs inhibit endothelial tubule
formation even when cells do not expressCOX-2 (Tsujii et
al. 1998, Joneset al. 1999). Thus both COX-1 and COX-2
are likely to contribute to tumour vascularisation. The
possibility that COX-2 inhibitors diminish tumorigenesis

Downloaded from Bioscientifica.com at 08/22/2022 09:30:39PM
via free access



Howe et al.: COX-2 and breast cancer

partly by preventing angiogenesis further enhances their
attractiveness as potential anti-cancer agents.

Effects of COX-2 overexpression on cell
invasiveness and apoptosis

The potential consequences ofCOX-2 overexpression have
been addressedin vitro by generation of cell lines
overexpressingCOX-2. In particular, rat intestinal epithelial
cells stably overexpressingCOX-2 show several altered
characteristics, including increased adhesion to extracellular
matrix, resistance to butyrate-induced apoptosis and a
delayed transit through the G1 phase of the cell cycle
(Tsujii & DuBois 1995, DuBoiset al. 1996b). Additionally,
stableCOX-2 expression in Caco-2 cells or in the breast
cancer cell line Hs578T increases expression or activity of
enzymes capable of digesting the basement membrane,
presumably contributing to the observed increase in ability to
invade through a layer of Matrigel (Tsujiiet al. 1997,
Takahashiet al. 1999). All of these characteristics may
contribute to tumorigenicity, although the molecular
mechanism(s) by which COX-2 causes these effects is
unknown.

Much interest has centred on the ability of COX-2 to
suppress apoptosis. Diminished apoptosis is thought to
favour carcinogenesis by permitting survival of cells that
have acquired mutations, and thus is viewed as one of the
central mechanisms of tumorigenesis. Conversely, many
NSAIDs enhance apoptotic cell death, although this is
unlikely to be solely due to inhibition of cyclooxygenase
activity (see below). Several hypotheses have been advanced
to account for suppression of apoptosis in response toCOX-2
overexpression. The ability of PGE2 to inhibit apoptosis
caused by a selective COX-2 inhibitor, and concomitantly to
induce Bcl-2, suggests that PG-mediated upregulation of
Bcl-2 may suppress apoptosis (Shenget al. 1998a).
Alternatively, since arachidonic acid stimulates apoptosis,
enhancedCOX-2 expression could inhibit apoptosis by
increasing the conversion of arachidonic acid to PG (Chanet
al. 1998, Caoet al. 2000). Kinzler and colleagues propose
that arachidonic acid stimulates the conversion of
sphingomyelin to ceramide, which then causes apoptosis
(Chan et al. 1998). They further suggest that the
apoptosis-promoting effect of NSAIDs such as sulindac is due
to NSAID-induced accumulation of arachidonic acid. In
contrast, although Prescott and co-workers also consider
arachidonate to be a key determinant of apoptosis, they do not
observe increased levels of ceramide in response to exogenous
administration of arachidonic acid (Caoet al.2000).

Clearly, the suppression of apoptosis associated with
COX-2 overexpression could be an important factor in
tumorigenesis, although the precise mechanistic basis
remains uncertain. Interestingly, an apoptosis-related protein
was found in a two-hybrid screen designed to identify
proteins that interact with cyclooxygenases (Ballifet al.
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1996). Nucleobindin associates with DNA from apoptotic
cells, and can itself promote apoptosis. The interaction of
COX-1 and COX-2 with nucleobindin may contribute to
COX-mediated suppression of apoptosis, potentially via
sequestration of nucleobindin, but further studies are required
to fully understand the significance of the interaction.

As mentioned above, multiple NSAIDs, including
selective COX-2 inhibitors, induce apoptosis in a variety of
cells (Lu et al. 1995, Haraet al. 1997, Shenget al. 1998a,
Ding et al. 2000, Hidaet al. 2000, Li et al. 2000). The
simplest interpretation of this phenomenon is that, since
COX-2 overexpression suppresses apoptosis, inhibition of
COX-2 activity is sufficient to induce apoptosis. However,
NSAID-induced apoptosis has also been demonstrated in cell
lines that do not expressCOX-2, including COX-2-null
mouse embryo fibroblasts (Hanifet al. 1996, Elderet al.
1997, Zhanget al.1999). Additionally, non-cyclooxygenase-
inhibiting sulindac metabolites such as sulindac sulphone
retain the ability to induce apoptosis (Piazzaet al.1997, Lim
et al. 1999b). Thus, NSAIDs most likely stimulate apoptosis
via both COX-dependent and -independent mechanisms
(Rigas & Shiff 2000), including inhibition of the protein
kinase Akt (Hsuet al. 2000) and suppression of NF-κB
activation (Kopp & Ghosh 1994, Grilliet al.1996, Yinet al.
1998, Yamamotoet al. 1999).

Clinical prospects for COX-2 inhibitors
and breast cancer

The weight of evidence implicating COX-2 in colorectal
cancer has stimulated clinical trials to investigate the efficacy
of selective COX-2 inhibitors in individuals at risk for
colorectal cancer. Treatment with celecoxib has been shown to
reduce the size and number of polyps in FAP patients
(Steinbachet al. 2000), and is currently being evaluated for
efficacy in preventing sporadic colorectal adenomas.
Undoubtedly the potential use of selective COX-2 inhibitors
for the treatment of colorectal cancer will also be investigated.

Here we have reviewed evidence that aberrantCOX-2
expression is also associated with breast cancer, both in
rodent models and in the human disease. Selective COX-2
inhibitors have proved effective in preventing experimental
breast cancer (Harriset al. 2000, Nakatsugiet al. 2000).
Whether COX-2 inhibitors will also be useful for preventing
breast cancer in high-risk individuals needs to be
investigated. In addition, selective COX-2 inhibitors may
have a role in the treatment of breast cancer (Alshafieet al.
2000). SinceCOX-2 is overexpressed in HER-2/neu-positive
breast cancers (Subbaramaiahet al.1999b), selective COX-2
inhibitors should be evaluated as therapy in this patient
population. Because COX-2-derived PGs may enhance
aromatase activity, a therapeutic regimen combining a
selective COX-2 inhibitor with an aromatase inhibitor should
be considered. There is also recent evidence that

Downloaded from Bioscientifica.com at 08/22/2022 09:30:39PM
via free access



Endocrine-Related Cancer (2001) 8 97–114

microtubule-interfering agents, including taxol, stimulate
COX-2 transcription (Subbaramaiahet al. 2000). This could
decrease the efficacy of this class of drugs. Thus,
coadministration of a selective COX-2 inhibitor with drugs
such as taxol might enhance their anti-cancer activity.
Finally, a number of natural substances have been identified
that inhibit the transcriptional activation ofCOX-2. Examples
include retinoids, triterpenoids, antioxidants and resorcins
(Mestreet al.1997a,b, Chineryet al.1998, Subbaramaiahet
al. 1998b, Suhet al.1998, Mutohet al.2000). Some of these
compounds also inhibit experimental breast cancer. Hence, it
is possible that studies of COX-2 will provide insights that
will prove useful in developing dietary recommendations to
decrease cancer risk.
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