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Abstract

Epilepsy, a common multifactorial neurological disease, affects about 69 million people worldwide constituting

nearly 1% of the world population. Despite decades of extensive research on understanding its underlying

mechanism and developing the pharmacological treatment, very little is known about the biological alterations

leading to epileptogenesis. Due to this gap, the currently available antiepileptic drug therapy is symptomatic in

nature and is ineffective in 30% of the cases. Mounting evidences revealed the pathophysiological role of

neuroinflammation in epilepsy which has shifted the focus of epilepsy researchers towards the development of

neuroinflammation-targeted therapeutics for epilepsy management. Markedly increased expression of key

inflammatory mediators in the brain and blood-brain barrier may affect neuronal function and excitability and thus

may increase seizure susceptibility in preclinical and clinical settings. Cyclooxygenase-2 (COX-2), an enzyme

synthesizing the proinflammatory mediators, prostaglandins, has widely been reported to be induced during

seizures and is considered to be a potential neurotherapeutic target for epilepsy management. However, the

efficacy of such therapy involving COX-2 inhibition depends on various factors viz., therapeutic dose, time of

administration, treatment duration, and selectivity of COX-2 inhibitors. This article reviews the preclinical and clinical

evidences supporting the role of COX-2 in seizure-associated neuroinflammation in epilepsy and the potential

clinical use of COX-2 inhibitors as a future strategy for epilepsy treatment.
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Background

Epilepsy, a common neurological disorder, is character-

ized by (1) at least two unprovoked seizures occurring >

24 h apart, (2) one unprovoked seizure and a probability

of further seizures similar to the general recurrence risk

(at least 60%) after two unprovoked seizures, occurring

over the next 10 years, or (3) diagnosis of an epilepsy

syndrome [1]. The underlying pathophysiology behind

the disease progression is still unknown, and therefore,

the only available remedy is to control the frequency of

seizures using the symptomatic treatment, antiepileptic

drugs (AEDs). However, nearly 30% of the patients do

not respond to the available AEDs [2], emphasizing the

need to develop better effective therapies which can tar-

get epileptogenesis.

Investigations to elucidate the mechanisms involved in

epileptogenesis provided strong evidences on the crucial

role of inflammation as the cause as well as consequence

of seizure and epilepsy development [3]. In this regard,

inflammatory molecules such as cytokines, chemokines,

and prostaglandins (PGs) are often observed to be re-

leased by the brain and brain capillary endothelial cells

affecting neuronal function and excitability in preclinical

and clinical set-ups [4]. Blocking the undesired inflam-

matory signaling using anti-inflammatory molecules may

provide novel strategies to treat epilepsy [5]. The inflam-

matory molecules might, therefore, serve as therapeutic

targets to develop better effective medications for epi-

lepsy management.
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Over the past two decades, cyclooxygenase-2 (COX-2),

being the central link to various inflammatory processes, has

received much attention due to its involvement in seizure

generation and epilepsy development. COX-2 has been re-

ported to be upregulated in different cells within the brain

following seizure induction leading to increased production

of proinflammatory mediators, PGs, which further aggra-

vates seizure severity [6]. Besides, in vivo evidences suggest

that COX-2 induction following seizure may upregulate the

multidrug efflux transporter P-glycoprotein (P-gp) at the

blood-brain barrier (BBB) causing reduced delivery of ad-

ministered AEDs to the brain target site, thus leading to

poor efficacy [7]. Such studies proposed that inhibition of

COX-2, genetic or pharmacological, might reduce seizure

severity and pharmacoresistance to AEDs and thus could be

exploited as a future strategy for epilepsy treatment.

In this article, we review the preclinical and clinical

evidences supporting the role of COX-2 in seizure-

associated neuroinflammation in epilepsy and its regu-

latory effect governing patient’s response to AEDs. This

review also addresses the potential therapeutic use of

COX-2 inhibitors as (1) anticonvulsants for epilepsy

management or (2) adjunctives to AED therapy to over-

come pharmacoresistance.

Inflammation in epilepsy

Neuroinflammation comprises activation of microglia,

astrocytes, brain capillary endothelial cells, and circulating

peripheral immune cells along with the production of in-

flammatory mediators, initiated in response to a variety of

stimulus such as traumatic brain injury, brain infection, and

autoimmunity. Evidences revealing the altered expression of

different cytokines, chemokines, and other immune-related

molecules in epilepsy indicated inflammation as a crucial

factor contributing in its pathogenesis. Increased glial cellu-

lar expression of a cytokine IL-1α was observed in patients

with drug-resistant temporal lobe epilepsy (DRTLE) with

complex partial seizures [8]. An equally potent inflammatory

cytokine IL1B was also found to be associated with epilepsy

when a polymorphism in that gene responsible for increas-

ing the production of IL-1β was detected in patients with

temporal lobe epilepsy (TLE) [9]. Besides, cerebrospinal fluid

(CSF) as well as serum samples from patients experiencing

seizures exhibited increased levels of different cytokines such

as IL-1β, IL-6, IL-1Ra, and IFNγ, substantiating the role of

such cytokines in seizure sustenance [10–13]. A recent

follow-up study compared central and peripheral levels of

IL-1β and IL-6 in sera of drug-resistant patients before sur-

gical treatment and 1 year after surgery when most patients

were either seizure-free or had reduced seizures [14]. The

respective levels were found to decrease in the absence of

seizures after surgical treatment indicating seizure-induced

inflammation. Gene expression profiling of surgically re-

moved hippocampal tissue from patients with TLE revealed

upregulation of several chemokines, CCL2, CCL3, and

CCL4 along with the chemokine receptor, CXCR4 [15]. The

chemokine ligand CX3CL1 was also observed to be upregu-

lated in the hippocampus and the adjacent cortex of epilep-

tic rats as well as in temporal neocortex of patients with

TLE [16]. CX3CL1 was further reported to be elevated in

the CSF and serum of the same patients compared to the

non-epileptic group. Expression of another C-X-C chemo-

kine motif ligand CXCL13 and its receptor CXCR5 were

also altered in brain tissues of patients with DRTLE [17].

These alterations were associated with changes in the mole-

cules regulating the cytokines. Severe neuronal loss and per-

sistent overexpression of NFκB-p65, a key regulator of acute

inflammatory reactions, was noticed in reactive astrocytes in

human medial TLE with hippocampal sclerosis (HS) [18].

The findings were strengthened by Das et al. who revealed

an upregulation of NF-κB-p65 along with COX-2 enzyme

and TGF-β in the hippocampal region as the key molecular

events associated with histopathological changes observed in

DRTLE [19]. Such clinical evidences and their similarities

with the findings of rodent studies promoted the use of

in vivo animal models to determine the putative mechanism

underlying the shared link between inflammation and

seizures.

Accumulating evidences in in vivo experimental models

suggested the role of inflammation as either the cause or the

consequence of epilepsy contributing to its pathophysiology

[3]. Findings from the studies performed in rodent epilepsy

models showed activation of hippocampal astrocytes and

glial cells along with the elevation of inflammatory media-

tors in the hippocampus. A transient time-dependent in-

crease in expression of important inflammatory cytokines

IL-1β, IL-6, and TNFα was observed in the hippocampus of

electrically induced limbic status epilepticus (SE) rat model

[20]. SE induction in mouse altered the expression of che-

mokine receptors, CCR3 and CCR2A, and their ligands in

the brain and thereby may weaken the neuroprotective

mechanisms [21]. Furthermore, microarray analysis of differ-

ent brain regions of rat model of TLE during epileptogenesis

indicated alterations in inflammatory molecules such as in-

terleukins in the acute, latent, and chronic phase of epilepsy

[22]. Besides the cytokines, induction of the proinflammatory

enzyme COX-2 was observed in hippocampal and neocor-

tical neurons upon hippocampal kindling in rats, suggesting

COX-2 induction to be a key signaling event in epileptogen-

esis [23]. A remarkable rise in the production of COX

enzyme products, i.e., PGs, was observed along with the in-

creased COX-2 expression, following seizure induction in

rodents [6, 24]. Such studies illustrate inflammation as a

consequence of seizure induction and epilepsy.

Systemic administration of lipopolysaccharide (LPS), an

inducer of inflammation, prior to SE induction increased

hippocampal vulnerability to seizure-induced neuronal in-

jury in immature rats, suggesting the involvement of
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inflammation in seizure etiology [25]. LPS administration in

immature rats also increased kindling progression indicating

LPS-induced inflammation to enhance epileptogenesis [26].

Administration of high doses of IL-1β, a pyrogenic proin-

flammatory cytokine, induced febrile seizures in only IL-1β

receptor-expressing mice whereas IL-1β receptor-deficient

mice were resistant to seizure generation [27]. Brain tran-

scriptome profiling in Wistar rats after epileptogenic treat-

ment revealed TGF-β signaling as a novel inflammatory

cascade involved in influencing the generation of epilepti-

form activity [28]. Endogenous nitric oxide (NO), another

proinflammatory mediator, increased seizure activity in mice

brain slices and reported as a key promoting factor for initi-

ation of seizure-like events [29]. Similarly, intrahippocam-

pal injection of HMGB1, a cytokine-like proinflammatory

molecule, increased seizure frequency in epileptic rats

[30]. However, the effect abrogated in case of TLR-4 mu-

tant mice, recognizing the involvement of HMGB1-TLR4

inflammatory axis in generating seizures. Furthermore, ex-

pression of different inflammatory mediators TLR4, ATF-

3, and IL-8 in the epileptic brain tissue of patients with

mesial TLE correlated with their seizure frequency, sup-

porting the etiologic role of inflammation in seizure gen-

eration [31]. Therefore, inflammation plays a reciprocal

role in epilepsy, i.e., an outcome of seizure activity as well

as a contributing factor in the disease development.

Inflammation: a potential therapeutic target

Current anticonvulsive therapy primarily consists of

AEDs which only control the frequency of seizures and

hence considered symptomatic. AEDs function by

exerting a number of concurrent mechanisms involving

both the excitatory and inhibitory synapses. Common

modes of action include targeting ion channels and

neuroreceptors embedded in the cell membrane to

regulate neuronal excitability. Most of the AEDs such

as phenytoin, carbamazepine, valproate, and topiramate

act as sodium channel blockers by stabilizing the inacti-

vated state of these channels, thus preventing the

neuronal depolarization and excitability [32]. On the

contrary, activation of potassium channels by retigabine

causes a generalized reduction in neuronal excitability

by driving the membrane potential to a hyperpolarized

state [33]. Gabapentin and pregabalin act on pre-

synaptic calcium channels and blocks calcium-mediated

release of neurotransmitter across the synapse, prevent-

ing the synaptic conduction [34]. Simultaneously, inhib-

ition of glutamate receptor by topiramate prevents the

effect of the excitatory neurotransmitter, glutamate,

while agonists of the inhibitory neurotransmitter, γ-

aminobutyric acid (GABA), such as benzodiazepines

activate GABA receptor preventing generation of neur-

onal action potential. Valproate and vigabatrin increase

GABA turnover by blocking its degradation [32, 33].

Levetiracetam works by binding to the synaptic vesicle

protein, SV2A, causing a reduction in the vesicular re-

lease of neurotransmitter, thus differing in its mechan-

ism from other AEDs [34].

Despite the availability of a wide spectrum of AEDs with di-

verse pharmacological targets, 30% of patients experience

multidrug resistance in epilepsy [35]. Various hypotheses have

been proposed to address the molecular mechanism behind

this drug resistance. Drug target hypothesis suggested that re-

sistance to AEDs is caused by genetic or acquired alterations

at their target sites (ion channels or neuroreceptors associated

with neuronal excitability) affecting the pharmacodynamics of

the drug [36]. Genetic polymorphisms in the target genes

such as SCN1A and GABRA1 have been observed to be asso-

ciated with AED dose requirements or AED resistance [37–

40]. Transporter hypothesis proposed that increased expres-

sion of ATP-binding cassette (ABC) efflux transporters at the

BBB interferes with the pharmacokinetics of the AEDs lead-

ing to their decreased concentration at the target site [41].

Brain endothelial cells and other brain cells of patients with

refractory epilepsy have been reported to have increased ex-

pression of ABC transporters compared to healthy individuals

[42–44]. A third recent hypothesis known as intrinsic severity

hypothesis correlated AED resistance with the severity of the

disease [45]. The higher the seizure frequency, the more diffi-

cult it is to treat with the available AEDs [46, 47]. Another re-

cent hypothesis called the methylation hypothesis proposed

that seizures can mediate epigenetic modifications that result

in persistent genomic methylation, histone density, and post-

translational modifications, as well as noncoding RNA-based

changes leading to pharmacoresistance in epilepsy [48].

In view of the above hypotheses, till date, nothing con-

clusive has been gained to address pharmacoresistance in

epilepsy, suggesting a gap in the current pharmacological

research which often overlooks inflammation as a primary

therapeutic target in managing epilepsy. Findings of stud-

ies examining whether the currently available AEDs pos-

sess anti-inflammatory action are quite debatable.

Levetiracetam displayed anti-inflammatory property by re-

ducing immunoreactivity of astrocytic and glial IL-1β sys-

tem in epileptic rat hippocampus; on the other hand,

valproate was unable to show such effects [49]. However,

whether the drug has primary anti-inflammatory proper-

ties or secondary to reduced seizure activity is still a ques-

tion. Pre-administration of vinpocetine and

carbamazepine before LPS also reduced the brain mRNA

levels of IL-1β and TNF-α in rats while valproate again

showed neutral behavior [50]. The same study also

showed complete prevention of seizure activity along with

decreased IL-1β and TNF-α mRNA levels in the groups

pre-administered with the two AEDs before the pro-con-

vulsive drug, 4-aminopyridine, suggesting that the anti-

inflammatory action of these drugs might be achieved pri-

mary to reduced epileptic activity. Further investigation
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on such evidences is required to better understand the

mechanism of anticonvulsive agents. Contrary to these

findings, Verotti et al. observed that both carbamazepine

and valproate induced inflammation by increasing inter-

leukin and chemokine levels in children with epilepsy on

1 year of monotherapy [51]. The conflicting findings on

the effect of these AEDs on inflammation hint towards

the need of a better efficacious anti-inflammatory treat-

ment to manage epilepsy.

Given the indispensable role of inflammation in epi-

lepsy pathogenesis, inflammatory molecules may be

considered as important therapeutic targets for epi-

lepsy management; however, evidence on the efficacy

of such therapy is limited. Vezzani et al. demonstrated

powerful anticonvulsant action of IL-1Ra, an endogen-

ous IL-1 receptor antagonist, by blocking the proin-

flammatory action of IL-1β in mice [52]. Another

study observed a delay in onset of seizure and decrease

in its duration when the administered caspase-1 in-

hibitor reduced IL-1β levels in SE rats [53]. The simi-

lar finding was observed in a more recent study, where

epigenetic impairment of IL-1β/TLR4 pathway re-

duced seizure frequency by approximately 50% while

the widely prescribed AED, carbamazepine, was inef-

fective, again representing the anti-inflammatory ther-

apy as a pivotal strategy to manage drug-resistant

epilepsy [54]. Selective PG EP2 receptor antagonist

also reduced SE-induced neuronal injury by prevent-

ing COX-2 upregulation in rats [55]. Supporting this,

administration of rofecoxib, a COX-2 inhibitor, poten-

tiates the anticonvulsant activity of subeffective dose

of tiagabine against pentylenetetrazol (PTZ)-induced

convulsions in mice [56]. Therefore, inhibition of such

inflammatory molecules may serve as an effective

treatment strategy for drug-resistant epilepsy.

Inflammation is a complex biological process involving

several proinflammatory as well as anti-inflammatory mech-

anisms. While application of a polypharmaceutical approach

may have unintended consequences through drug-drug in-

teractions [57], targeting an inflammatory cascade which in-

volves both pro- and anti-inflammatory molecules may be

exactly what would produce the desired effects by reducing

inflammation, provided the anti-inflammatory mechanisms

remain intact. Therefore, identification of such cascade in-

volving different inflammatory processes is essential to pro-

duce broad-spectrum efficacious treatment. Notably, most

of the published findings on crosstalk or signaling pathways

of inflammation converge at the common proinflammatory

gene, COX-2 (Fig. 1). COX-2 is rapidly induced after a pro-

inflammatory event with a subsequent release of PGs, potent

mediators of inflammatory responses. IL-1β released by acti-

vated microglia during inflammation of the central nervous

system (CNS) was shown to induce COX-2 and biosynthesis

of its proinflammatory product, PGE2, in mice astrocytes

[58] and in human neuroblastoma cells [59]. Increased levels

of HMGB1 found within inflamed synovium of rheumatoid

arthritis patients potentiate IL-1β to stimulate COX-2 and

prostanoid synthesis [60]. Similarly, the proinflammatory

cytokine, TNFα, also induces COX-2 expression and PGE2
release resulting in enhanced vascular permeability and cyto-

skeletal changes in brain capillary endothelial cells [61]. The

signaling pathways connecting such cytokines to COX-2 ex-

pression may involve regulatory kinases such as SPK, TK,

PKC, NF-κB, ERK, and MAPK [58, 62–64]. The chemokine,

CXCL1, induced COX-2 via ERK, thus mediating astroglial-

neuronal interaction to enhance sensitization towards

neuropathic pain [65]. More recently, activation of COX-2

and PG production by TGF-β1 via ALK5/SMAD and MEK/

ERK pathway in dental pulp cells have been demonstrated

to be an early event in tissue inflammation and regeneration

[66]. Besides the cytokines, TLR4 was also found to regulate

COX-2 in TLR4-positive human intestinal epithelial cells

which expressed higher COX-2 levels upon LPS exposure

compared to TLR4-negative cells [67]. Simultaneously,

in vivo induction of colitis showed increased COX-2 expres-

sion in wild-type mice compared to TLR4-deficient mice.

Besides, the anti-inflammatory cascades involving IL-10, IL-

4, and IL-1Ra have also been shown to regulate COX-2 in

different cells [68–70]. Moreover, administration of COX-2

inhibitors, ibuprofen and celecoxib, following traumatic

brain injury in rats showed no significant difference in brain

IL-10 indicating anti-inflammatory mechanisms to remain

intact in presence of COX-2 inhibitors [71]. COX-2, there-

fore, serves as a downstream molecule to several inflamma-

tory processes. In addition, change in the COX-2 activity

itself has also been reported to alter the pro-inflammatory

pathways. Treatment with a selective COX-2 inhibitor, SC-

58125, reduced synovial inflammation by reducing local and

systemic IL-6 levels, thus reversing paw edema in adjuvant-

induced arthritis rat model showing regulation of IL-6 by

COX-2-derived PGs [72]. Consistent with this, increased

PGE2 production and IL-6 levels in IL-1β-stimulated human

fibroblast-like synoviocytes from patients with disk displace-

ment were reversed on in vitro treatment with COX-2 in-

hibitors, celecoxib, and indomethacin [73]. Indomethacin

also reduced IL-1β and TNF-α expression in hippocampus

of pilocarpine-induced SE rat model [74] demonstrating a

regulatory effect of COX-2 on these inflammatory mole-

cules. COX-2, therefore, acts as a central signaling molecule

for various inflammatory processes and could be explored as

a potential therapeutic target for the management of numer-

ous diseases including epilepsy.

Cyclooxygenases (COX)

Prostaglandin-endoperoxide synthases (PTGS), also

known as COX, are enzymes which synthesize prosta-

noids involving PGs and thromboxane from their

substrate arachidonic acid (AA). Mammalian COX
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enzyme group consists of two widely studied and well-

understood oxygenases, COX-1 and COX-2, respon-

sible for the synthesis of the proinflammatory media-

tors, PGs. With the help of mutagenesis, X-ray

crystallography, and kinetic studies, their structure

and mechanism of action are well established [75].

The two isoforms COX-1 and COX-2 catalyzing the

synthesis of inflammatory molecules are almost similar

in weight with 60–65% sequence similarity; however,

they differ in their localization and expression. While

COX-1 is constitutively expressed in nearly all tissues,

COX-2 is an inducible enzyme primarily localized to

immune cells such as macrophages and leucocytes and

upregulated in pathological conditions [76]. Further,

COX-1 is believed to be responsible for homeostatic

PG production whereas COX-2 produces PGs which

are generally pathophysiological in nature [77]. Expos-

ure to endotoxins, cytokines, and mitogens induces

COX-2 in different cell types such as chondrocytes

and macrophages, suggesting the involvement of

COX-2 in inflammatory responses. In this regard, ad-

ministration of COX-2 inhibitory drugs is considered

as the treatment to suppress inflammation in various

acute and chronic conditions. The last two decades

have seen tremendous research on the role of COX-2

in various neuroinflammatory diseases including epi-

lepsy and its applicability as a neurotherapeutic target.

COX-2-mediated neuroinflammation in epilepsy

COX-2-mediated neuroinflammation is a subject of broad

and current interest in basic epilepsy research. Yamagata

et al., for the first time, demonstrated immediate induction

of COX-2 mRNA and protein in rat hippocampus and cere-

bral cortex following a maximal electroconvulsive seizure

[78]. They also demonstrated this seizure-mediated COX-2

induction to be regulated by N-methyl-D-aspartate (NMDA)

receptor-dependent synaptic activity. They further proposed

that COX-2 induction during seizure leads to the activation

Fig. 1 Regulatory pathways linking COX-2 with pro-inflammatory cascades in the brain: epilepsy induces neuroinflammation as well as peripheral

inflammation which further reciprocate by aggravating the disease. Several pro-inflammatory processes involving the cytokines, chemokines, toll-

like receptors, etc. often cause induction of the enzyme, COX-2, which increases the production of the lipid mediators, prostaglandins (PGs),

majorly PGE2. COX-2 induction in the brain capillary endothelial cells can cause blood-brain barrier (BBB) dysfunctioning leading to enhanced

efflux of the administered AEDs and therefore, may lower their delivery to brain resulting in reduced AED efficacy. Activation of microglia and

astrocytes may also result in COX-2 induction contributing to the build-up of PGE2 and other inflammatory mediators in themselves as well as

neurons, thereby causing neuroinflammation
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of PG signaling pathway, consequently triggering secondary

damage to the brain and amplifying disease severity. There-

after, several studies replicated the findings in other rat brain

tissues, striatum, brain stem and cerebellum, besides hippo-

campus and cerebral cortex in kainic acid (KA) as well as

electroconvulsive shock-induced seizures, suggesting delayed

neuronal damage of an interconnected neuronal network

during COX-2 activation [79–81]. COX-2 induction, in turn,

facilitated recurrence of hippocampal seizures in a mouse

model of kindling by synthesizing more PGE2 [6]. Production

of PGE2, the major product of COX-2, was observed to be

increased along with COX-2 induction following seizures,

stimulating neuronal loss in rodent models of epilepsy [82,

83]. Furthermore, combining PGE2 with subconvulsant dose

of PTZ caused seizures whereas administration of PGE2 anti-

bodies attenuated PTZ-induced seizures in rats, supporting a

key role of PGE2 production in triggering seizure and main-

taining its threshold [84]. PGE2 binds to G protein-coupled

receptors (GPCRs), namely EP1, EP2, EP3, and EP4, with

highest affinity for the EP1 receptor. Activation of EP recep-

tors results in increased calcium ion influx which in turn en-

hances glutamate release presynaptically [85, 86]. Genetic

ablation or pharmacological inhibition of EP1 receptor in

mice did not affect the seizure threshold but prevented the

likelihood of SE and aggravation of seizure severity, indicat-

ing the involvement of EP1 receptor in seizure exacerbation

[87, 88]. Unlike EP1, studies on the involvement of EP2 re-

ceptor in neuroprotection from seizures had shown quite de-

batable findings. EP2 antagonism using 3-aryl-acrylamide

derivatives attenuated SE-induced neuroinflammation and

neuronal injury in rodents [55, 89–91]. Conflictingly, few

other studies found systemic administration of EP2 agonists

to have significant anticonvulsant effect to PTZ- and

pilocarpine-induced seizures [92, 93]. This dual effect of EP2

modulation on neuronal activity depends on the latency to

seizure onset and thus shows neuroprotection within a

tightly regulated therapeutic window [94, 95]. Such studies

question if EP receptors can be considered as potential thera-

peutic targets in neurological diseases.

Following seizure insults, the developing rat brain

showed either no or minor change in COX-2 expression;

in contrast, a pronounced increase in COX-2 expression

in the adult rat brain was observed [96, 97]. This sug-

gests that COX-2 induction following seizure is age-

dependent and the mechanisms regulating its expression

and functions are immature in the developing brain [97].

Interestingly, electrically induced SE showed biphasic

upregulation of COX-2 in rat hippocampus, an immedi-

ate induction at 1 day after SE and induction during

spontaneous recurrent seizures (SRS) at the chronic

phase, 4–5 months after SE [98]. Moreover, systemic KA

administration demonstrated a similar biphasic increase

in PG production in the rat hippocampus consisting of

an initial burst in the first 30 min and a sustained late-

phase production due to COX-2 induction even with a

limited AA supply [24]. This suggests that amidst the

acute phase and the chronic phase, some recovery mech-

anisms are activated, which can prevent the exacerbation

of seizure-induced neuronal damage, but failed to pre-

vent epileptogenesis.

In respect of human subjects, so far, only four studies

have investigated COX-2 expression profile in the hippo-

campal tissue from patients with DRTLE [19, 98–100]

(Table 1). These studies revealed strong immunohisto-

chemical expression of COX-2 in neurons, astrocytes,

and microglial cells of hippocampal sclerotic tissue.

While Desjardins et al. suggested the implication of

COX-2 induction in the pathogenesis of HS in TLE

[101], Weidner et al. found no difference in COX-2 ex-

pression between TLE with HS and TLE without HS

groups implying COX-2 induction to be independent of

presence/absence of HS [100]. More recently, epilepsy

researchers began working on the relevance of genetic

aspects of COX-2 in people experiencing seizures by in-

vestigating associated genetic variants [101].

COX-2-mediated blood-brain barrier disruption

Regulating the trafficking of circulating molecules between

the blood and the brain, there exists a selectively perme-

able monolayer of brain capillary endothelial cells called

BBB. Disruption of this barrier is associated with neuro-

logical ailments where it can be a cause or appear as a

consequence of the disease [102]. Activation of NMDA re-

ceptor by the excitatory neurotransmitter, glutamate, dis-

rupted BBB function and permeability in human brain

capillary endothelial cells [103] whereas its inhibition by

the antagonist, MK-801, prevented BBB breakdown in iso-

lated rat brain capillary endothelial cells [104], suggesting

neuronal over-excitation to cause BBB disruption. Several

studies demonstrated BBB disruption to be related to seiz-

ure occurrence in humans and rodents [105–109]. It was

proposed that the resultant disruption leads to BBB leak-

age, further causing efflux of administered AEDs [110].

Since the brain as well as brain endothelial cells express

several well-characterized ABC efflux transporters such as

P-glycoprotein (P-gp), BCRP, MRP1, MRP4, and MRP5

[111], these are often associated with AED resistance at-

tributed to BBB leakage in epilepsy [7]. Of these trans-

porters, P-gp has been widely studied for causing

multidrug resistance in epilepsy due to its upregulation

during seizure. Several investigations revealed upregula-

tion of P-gp in the brain and BBB due to seizure activity

in rodent models [112–117] as well as in human patients

with refractory epilepsy [117–121]. Rats with drug-

resistant seizures were also shown to exhibit enhanced

brain P-gp expression compared to those with drug-

responsive seizures [122]. Consequently, the prescribed

AEDs gets effluxed out into the circulation by the
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upregulated P-gp, even before reaching the drug target,

thereby causing pharmacoresistance.

The underlying molecular mechanism behind the

regulation of seizure-induced P-gp is currently being

investigated in in vivo and in vitro model systems to

achieve the goal of decreasing pharmacoresistance and

establishing highly efficacious treatment for epilepsy.

P-gp had been observed to be upregulated by

glutamate-mediated NMDA receptor activation in

brain capillary endothelial cells [123–125]. This

glutamate-mediated P-gp upregulation was prevented

by exposure to selective COX-2 inhibitors such as cel-

ecoxib and NS-398 and non-selective inhibitor, indo-

methacin heptyl ester [124–126], suggesting the

involvement of COX-2 in regulating P-gp expression.

Brain capillary endothelial cells from pilocarpine-

induced SE rat model also showed high P-gp expres-

sion and activity which was blocked by treatment with

COX-2 inhibitors, indomethacin and celecoxib [124,

126], revealing the role of COX-2 in seizure-induced

P-gp upregulation. Similarly, administration of COX-2

inhibitors, SC-58236 and NS-398, both counteracted

the SE-associated increase in P-gp expression in the

parahippocampal cortex and the ventral hippocampus

in rats [127]. Besides, blocking the EP1 receptor by the

antagonist, SC-51089, in pilocarpine-induced SE rat

model prevented seizure-induced P-gp upregulation

[128]. These investigations indicated that activation of

COX-2/EP receptor signaling during seizure is some-

how causing upregulation of P-gp, thereby leading to

decreased drug delivery to the brain and enhanced re-

sistance to drugs. Direct inhibition of P-gp may im-

prove seizure control; however, its pan inhibition may

lead to deleterious effects [129]. Moreover, when a

known P-gp inhibitor, verapamil, was administered to

pediatric patients, children with drug-resistant epi-

lepsy receiving AED polytherapy showed no significant

difference in seizure control compared to those

receiving placebo along with AED polytherapy [130].

Likewise, inhibition of multiple EP receptors simultan-

eously may produce adverse effects. This signifies the

importance of targeting the upstream regulatory mol-

ecule, COX-2, for a potential future strategy for epi-

lepsy treatment.

COX-2 inhibitors: therapeutic strategies

Non-steroidal anti-inflammatory drugs (NSAIDs), the cur-

rently available COX inhibitory drugs, prevent the forma-

tion of PGs by competitively inhibiting the activity of COX

enzymes. NSAIDs are of two types: selective, which inhibit

only COX-2 (e.g., celecoxib and rofecoxib), and non-

selective, which inhibit both COX-1 and COX-2 (e.g., as-

pirin, ibuprofen, and indomethacin). These inhibitors work

by varying degrees of reversible (example, ibuprofen and

indomethacin) or irreversible (example, celecoxib, rofe-

coxib, and aspirin) competitive inhibition. NSAIDs help in

mitigating different manifestations of allergic reactions and

provide antipyretic, analgesic, and anti-platelet effects in

acute and chronic conditions; however, they also have sev-

eral undesirable effects. Due to the protective role of COX-

1 in the maintenance of the stomach lining by preventing it

from stomach acid, its inhibition sometimes causes gastric

problems. In response to this challenge, new generational

NSAIDs, specific to COX-2, were developed. However, the

selective COX-2 inhibitors, coxibs, can increase the risk of

adverse renal and cardiovascular events and thus require

improvisation for better efficacy without any complications.

Table 1 Clinical studies reporting COX-2 involvement in epilepsy

Reference Study type Tissue Cells Study subjects Reference

Desjardins et al. [99] Expression Hippocampus Astrocytes
and neurons

5 sclerotic and 2
non-sclerotic DRTLE

Induction of astrocytic COX-2 in
patients with HS suggesting its
implication in the pathogenesis
of HS in epilepsy

Holtman et al. [98] Expression Hippocampus Astrocytes
and neurons

6 sclerotic and 4
non-sclerotic DRTLE
and 5 controls

Higher astrocytic and neuronal
COX-2 in patients with HS compared
to non-HS and controls

Das et al. [19] Expression Hippocampus Astrocytes
and neurons

6 sclerotic DRTLE
and 3 sudden-death
controls

Increased COX-2 in patients suggesting
its crucial role in TLE pathogenesis

Hung et al. [101] Genetic Whole blood White blood
cells

35 children with febrile
seizures and 31 controls

A single SNP, rs689466, localized at
5′-1192 of the PTGS2 gene was
significantly association with
febrile seizures

Weidner et al. [100] Expression Hippocampus Microglia, astrocytes
and neurons

16 sclerotic and 17
non-sclerotic DRTLE

Higher microglial and neuronal
COX-2 expression than astrocytic
COX-2
No difference in COX-2 levels among
sclerotic and non-sclerotic samples

Rawat et al. Journal of Neuroinflammation          (2019) 16:197 Page 7 of 15



COX-2 inhibitors as anticonvulsants

To ascertain the anticonvulsive therapeutic potential of

COX-2 inhibition, several studies investigated the effect

of COX-2 inhibitors on seizure activity and development

in animal models of epilepsy (Table 2). The findings dif-

fer with different seizure and treatment conditions. Dhir

et al. 2006a examined the effect of selective COX-2 in-

hibitors, nimesulide and rofecoxib, administered 45min

prior to an epileptic challenge in different mice models

[138]. They found that the inhibitors prolonged the

mean onset time of convulsions and decreased the seiz-

ure duration and the percentage mortality rate against

bicuculline- and picrotoxin-induced seizures; however,

they did not affect maximal electroshock-induced sei-

zures, suggesting varied efficacy of COX-2 inhibitors in

different types of convulsive challenge. Another study by

the same group revealed the two selective COX-2 inhibi-

tors to be more efficacious than non-selective COX-2

inhibitors, aspirin and naproxen [140], in antagonizing

the effect of PTZ-induced seizures. The authors also

found that nimesulide provides a neuroprotective effect

by controlling the biochemical alterations caused by

PTZ-induced chemical kindling in mice [141]. Adminis-

tration of 2 mg/kg and 4mg/kg of rofecoxib increased

the seizure threshold; however, a lower dose of 1 mg/kg

of rofecoxib failed to do the same, indicating a dose-

dependent effect [145]. Pretreatment of selective COX-2

inhibitor, celecoxib, 60 min prior to seizure induction

also demonstrated anticonvulsant effects in the PTZ-

induced rat model [84]. Conversely, several studies sug-

gest that pretreatment of selective or non-selective

COX-2 inhibitors may have an inverse effect by acting as

proconvulsants [132–134, 139, 151], and a postictal

COX-2 inhibition would rather have a neuroprotective

effect [132, 142, 144, 149, 150]. After PTZ challenge to

male Wistar rats, the selective COX-2 inhibitor,

Table 2 Preclinical evidences supporting or opposing clinical application of COX-2 inhibitors for epilepsy treatment

Selectivity Drug Type of convulsive challenge Supporting evidences Opposing evidences

Selective Celecoxib Electrical stimulation [131] [87]

Flurothyl [96] –

Kainic acid [132] [133, 134]

Pentylenetetrazol [84] –

Pilocarpine [126, 135] –

Etoricoxib Genetic model [136] –

Pentylenetetrazol [137] –

Nimesulide Bicuculline [138] –

Electrical stimulation [6, 23] –

Kainic acid – [134, 139]

Pentylenetetrazol [140, 141] –

Picrotoxin [138] –

NS-398 Kainic acid [83] [133]

Pilocarpine [127, 142] –

Parecoxib Pilocarpine [143] –

Rofecoxib Kainic acid [144] –

Pentylenetetrazol [56, 140, 145] [146]

SC-58125 Kainic acid [82] –

SC-58236 Electrical stimulation – [98, 147]

Pilocarpine [127] –

Non-selective Aspirin Electrical stimulation [148] –

Kainic acid – [133]

Pilocarpine [149, 150] [151]

Ibuprofen Electrical stimulation [148] –

Indomethacin Electrical stimulation [148] –

Kainic acid – [133, 151]

Others (metamizole, paracetamol,
piroxicam, ketoprofen)

Electrical stimulation [148] –

Kainic acid – [134]
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etoricoxib, showed an anticonvulsant effect at a dose of

1 mg/kg which got reduced or reversed at 10 mg/kg of

dose displaying the neuroprotective effect within a nar-

row therapeutic dose window [137].

Celecoxib administration 1 day after pilocarpine-induced

SE reduced the likelihood of developing SRS and prevented

hippocampal neuronal damage in rats [135]. Early long-

term treatment of another coxib drug, etoricoxib, also dis-

played antiepileptogenic effect by reducing the development

of absence seizures in the genetic WAG/Rij rat model of

absence epilepsy [136]. However, several reports contradict

these findings. Administration of rofecoxib 5 days prior to

epileptic challenge showed no effect on PTZ-kindling de-

velopment [146]. A 3-day treatment with the selective

COX-2 inhibitor, SC-58326, starting 1 day before electric-

ally induced SE increased rat mortality in models of TLE

[147] while a 7-day treatment starting 4 h after SE induc-

tion effectively reduced PGE2 production but did not pre-

vent seizure development or neuronal damage [98].

Similarly, an 18-day administration of the selective COX-2

inhibitor, parecoxib, following pilocarpine-induced SE pre-

vented the subsequent increase in PGE2 and reduced seiz-

ure severity in the rat hippocampus and piriform cortex;

however, it could not prevent the development, frequency,

and duration of seizures [143]. These studies demonstrate

an anticonvulsive but not antiepileptogenic effect of COX-2

inhibitors. It is proposed that COX-2 inhibitors display this

anticonvulsive activity by reducing the production of PGE2

causing decreased activation of EP receptors which, in turn,

lowers calcium ion influx and release of the excitatory

neurotransmitter, glutamate, thus blocking the seizures

[152] (Fig. 2a). Simultaneously, COX-2 inhibitors suppress

the production of pro-inflammatory cytokines reducing in-

flammation [72–74].

In vivo studies reporting the effect of COX-2 inhibi-

tors on seizure activity revealed that various factors de-

termine the anticonvulsant action of these drugs viz.,

dosage, time of administration, treatment duration, type

of convulsive challenge, and selectivity of COX-2 inhibi-

tors. Based on these factors, COX-2 inhibitors, alike EP

receptors, can produce dichotomous effects, neuropro-

tective or neurotoxic [153], suggesting the need to

optimize their therapeutic dose, time, treatment dur-

ation, and other pharmacokinetic and pharmacodynamic

properties. However, instead of targeting multiple EP re-

ceptors, targeting the upstream COX-2 enzyme would

produce a broad-spectrum effect and therefore remains

the key therapeutic target for epilepsy treatment.

COX-2 inhibitors as adjunctive to AED therapy

As discussed earlier, COX-2 may regulate the expression

of the multidrug transporter, P-gp, which is found to be

overexpressed in drug-resistant epilepsy. COX-2 upregu-

lation following seizure produces higher levels of PGE2,

which when bound to the EP1 receptor, activates a sig-

naling cascade involving the transcription factor, NF-κB,

Fig. 2 Clinical use of COX-2 inhibitors in epilepsy treatment. a Anticonvulsant, COX-2 inhibitors reduce the production of PGE2 causing decreased

activation of EP receptors which, in turn, lowers calcium ion influx and release of glutamate, thus blocking the seizures. They also reduce

neuroinflammation by decreasing the production of cytokines in the brain cells. b Adjunctive to AED therapy, COX-2 inhibitors reduce activation

of EP1 receptor by decreasing the production of PGE2 which, in turn, follows an unknown cascade of biological events leading to

downregulation of the efflux transporter, P-glycoprotein, at the blood-brain barrier. This ultimately results in reduced efflux of the administered

AED/s, further enhancing their brain uptake and hence efficacy
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leading to increased expression of P-gp [7]. Overexpres-

sion of P-gp at the BBB may result in enhanced the ef-

flux of the prescribed AED/s even before reaching the

target site in the brain, causing pharmacoresistance.

Blocking seizure-mediated P-gp overexpression in the

brain capillary endothelial cells, therefore, may facilitate

better drug delivery to the brain and improve drug effi-

cacy provided the prescribed AED is a substrate of P-gp.

Several studies have investigated different AEDs as po-

tential substrates of P-gp. Phenytoin, phenobarbital,

lamotrigine, and levetiracetam have widely been ob-

served to be weak but potential substrates of P-gp while

carbamazepine, felbamate, and ethosuximide had no

substrate interaction with the transporter [154]. Other

drugs have shown either contradictory findings or re-

main insufficiently investigated in this regard.

Overexpression of P-gp at the BBB decreased brain

uptake of phenytoin at specific limbic brain regions of

chronic epileptic rats [155]. Its direct inhibition using

three different P-gp inhibitors resulted in increased

phenytoin concentration in brain extracellular fluid

(ECF) in rats [156]. Treatment with selective P-gp in-

hibitor, tariquidar, improved seizure control in chronic

epileptic rats due to increased phenytoin delivery to the

brain [155, 157]. Despite these beneficial findings of dir-

ect P-gp inhibition, its pan inhibition may lead to dele-

terious effect [129], thus an alternative indirect approach

is required for its suppression. Since COX-2 serves as a

transcriptional regulator of P-gp, inhibiting COX-2 may

assist in achieving enhanced efficacy of prescribed AEDs

(Fig. 2b). In vitro data revealed prevention of glutamate-

induced P-gp upregulation by selective and non-selective

COX-2 inhibitors in rodent and human brain capillary

endothelial cells [124–126]. COX-2 inhibitors also

blocked SE-induced P-gp upregulation in the brain capil-

laries of epileptic rats, revealing the role of COX-2 in-

hibitors in preventing seizure-induced P-gp upregulation

[124, 126]. Furthermore, brain uptake of phenytoin was

significantly enhanced by sub-chronic COX-2 inhibition

via suppressing P-gp expression in chronic epileptic rats,

suggesting that COX-2 inhibitors may help in increasing

drug delivery to the target sites in the brain [127]. To re-

late this effect of COX-2 inhibitors with the drug effi-

cacy, Schlichtiger et al. investigated the outcome of

celecoxib treatment in phenobarbital-treated responder

and non-responder epileptic rats [131]. A 6-day treat-

ment with celecoxib significantly reduced P-gp expres-

sion as well as frequency of SRS in both the responders

and non-responders suggesting the potential role of

COX-2 inhibition in increasing AED efficacy via down-

regulating P-gp. Rofecoxib also potentiated the anticon-

vulsant activity of the AED, tiagabine, against PTZ-

induced seizures in mice [56]. Non-selective NSAIDs

such aspirin, ibuprofen, indomethacin, metamizole,

paracetamol, and piroxicam also enhanced the anticon-

vulsive activity of valproate while the anticonvulsive ac-

tivity of phenytoin was increased only by ibuprofen and

piroxicam against maximal electroshock-induced sei-

zures in mice [148]. Therefore, besides their anticonvul-

sive effect, COX-2 inhibitors also show a great promise

towards being an adjunctive therapy for improving the

efficacy of administered AEDs.

Human clinical studies

Despite decades of extensive research on the benefi-

cial role of COX-2 inhibition in controlling seizure

and drug-resistance in epilepsy, the selective COX-2

inhibitors have, so far, not been clinically tested in

patients with epilepsy due to their severe adverse ef-

fects. However, a recent report by Lim et al. [158] in-

vestigated the effect of celecoxib on the neuronal

excitability and electrophysiological properties of the

brain of healthy volunteers. Though the authors

found no effect of celecoxib on the neuronal excit-

ability of the healthy volunteers, the study is limited

due to the absence of inflammation in the healthy

subjects to observe the effect of the anti-inflammatory

drug, celecoxib. In regard to the non-selective COX-2

inhibitors, aspirin, having relatively fewer side effects,

has been investigated independently or in adjunction

to AED therapy for controlling seizures in epilepsy

and related syndromes (Table 3) to substantiate the

findings of preclinical studies reporting efficient seiz-

ure reduction upon administration of COX-2 inhibi-

tors (Table 2). Most of these studies were performed

on patients with the rare neurological disorder,

Sturge-Weber syndrome, limiting the current know-

ledge on the applicability of these drugs for other

seizure disorders or epilepsy. Long-term continuous

use of aspirin in patients with Sturge-Weber syn-

drome resulted in seizure freedom for at least 1 year

in five of six patients [160]. An internet-based survey

involving patients with Sturge-Weber syndrome re-

ceiving aspirin reported seizure reduction in 21 of 34

patients [161], suggesting the use of low-dose aspirin

to be safe and beneficial. The findings were further

validated by Lance et al. who observed seizure control

in 91% of the patients with the syndrome receiving

low-dose aspirin with minimal side effects [162].

Patients with focal epilepsy receiving aspirin also

showed significantly fewer seizures compared to age-,

sex- and disease-matched controls not receiving

aspirin [163]. They found an inverse correlation be-

tween aspirin doses and seizure frequency. However,

a randomized, double-blind, placebo-controlled trial

failed to demonstrate a preventive effect of another

non-selective NSAID, ibuprofen, on the number of fe-

brile seizure recurrences in 230 children at increased
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risk [159] (Table 3). Therefore, studies revealing the

anticonvulsive effect of aspirin require replication in a

large-sample, randomized, controlled trial to substan-

tiate the effect and applicability of COX-2 inhibitors

as a therapeutic approach in epilepsy management.

Conclusion

Increasing evidences on the role of inflammation in epilepsy

pathogenesis are encouraging researchers to gather informa-

tion on the clinical use of neuroinflammation-targeted ther-

apeutics and to develop their better, improved, efficacious

analogues. COX-2, a proinflammatory enzyme interconnect-

ing various inflammatory processes, is widely being investi-

gated as a therapeutic target in epilepsy. Several preclinical

and clinical studies demonstrated COX-2 induction during

a seizure event and in epilepsy. Pharmacological inhibition

of COX-2 enzyme using selective and non-selective COX-2

inhibitors not only resulted in reduced seizure recurrence

and disease severity but also increased the efficacy of admin-

istered AEDs, suggesting their two probable modes of ac-

tion, (1) anticonvulsive and (2) adjunctive to AED therapy.

However, the efficacy of COX-2 inhibitors depends on vari-

ous factors such as viz., therapeutic dose, time of administra-

tion, treatment duration, and their selectivity and is often

accompanied by mild or severe adverse effects, thus prompt-

ing further investigations on improvising the efficacy and

optimizing their use without any complications. In addition,

future studies should also focus on investigating the anticon-

vulsive effect of COX-2 inhibitors in large-sample, random-

ized, controlled trials to substantiate the clinical application

of COX-2 inhibitors as a future therapeutic strategy for epi-

lepsy management.
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