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Abstract

Prostaglandins (PGs) are synthesized through the action of the rate-limiting enzyme cyclooxygenase (COX) and further specific enzymes.

The development of Cox-deficient mice in the 1990s gave insights into the reproductive roles of PGs. Female Cox-knockout mice were

subfertile or infertile. Interestingly, fertility was not affected in male mice deficient in Cox, suggesting that PGs may not be critical for the

functioning of the testis. However, this conclusion has recently been challenged by observations of important roles for PGs in both

physiological and pathological processes in the testis. The two key somatic cell types in the testis, Leydig and Sertoli cells, express the

inducible isoenzyme COX2 and produce PGs. Testicular COX2 expression in these somatic cells is regulated by hormonal input (FSH,

prolactin (PRL), and testosterone) as well as by IL1b. PGs modulate steroidogenesis in Leydig cells and glucose uptake in Sertoli cells.

Hence, the COX2/PG system in Leydig and Sertoli cells acts as a local modulator of testicular activity, and consequently may regulate

spermatogenic efficiency. In addition to its expression in Leydig and Sertoli cells, COX2 has been detected in the seminiferous tubule

wall, and in testicular macrophages and mast cells of infertile patients. These observations highlight the possible relevance of PGs in

testicular inflammation associated with idiopathic infertility. Collectively, these data indicate that the COX2/PG system plays crucial

roles not only in testicular physiology (i.e., development, steroidogenesis, and spermatogenesis), but more importantly in the

pathogenesis or maintenance of infertility status in the male gonad. Further studies of these actions could lead to new therapeutic

approaches to idiopathic male infertility.

Free German abstract: A German translation of this abstract is freely available at http://www.reproduction-online.org/content/149/4/

R169/suppl/DC1.

Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/149/4/
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Introduction

Prostaglandins (PGs) are bioactive lipid substances
derived from arachidonic acid. Arachidonic acid is
generated from phospholipid hydrolysis catalyzed by
combined phospholipase A2 (PLA2) and cyclooxygenase
(COX) or lipoxygenase activities. Arachidonic acid can
also be generated from diacylglycerol (DAG) by the
action of a DAG lipase (Harnett & Goodrigde 2005).

PGs, which are found in most tissues and organs, are
produced by almost all nucleated cells. They were
discovered in the 1930s and named prostaglandins
because they were originally thought to be prostatic
products (Goldblatt 1933, Von Euler 1935).

PGs are involved in a diversity of physiological and
pathological systems such as regulation of inflammatory
and immune responses, cell growth, intraocular
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pressure, calcium movement, contraction and relaxation
of vascular smooth muscle cells, aggregation and
disaggregation of platelets, glomerular filtration rate in
the kidney, sensitivity of spinal neurons to pain, body
temperature in response to fever, and parturition
(Narumiya 2007).

The biosynthetic pathway of PGs is initiated when
COX catalyzes two sequential reactions, cyclooxygena-
tion of arachidonic acid to PGG and a subsequent
peroxidation in which PGG is reduced to PGH. The
resulting PGH is converted to other bioactive PG isomers
by the action of synthases and ketoreductases, reactions
of dehydration, and non-enzymatic isomerization
(Fig. 1; Simmons et al. 2004, Frungieri et al. 2006). The
majority of the biologically active PGs belong to series 2,
characterized by the presence of two double bonds in
DOI: 10.1530/REP-14-0392
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Figure 1 Schematic representation of the prostaglandin (PG) biosynthetic
pathway. The process is initiated by the action of the cyclooxygenase (COX)
enzyme, which catalyzes both the conversion of arachidonic acid into
PGG2, and the subsequent reduction of PGG2 to PGH2. Afterward, PGH2 is
the common precursor for the synthesis of the remaining major PGs.
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the hydrocarbon structure (Simmons et al. 2004,
Frungieri et al. 2006).

COX, the rate-limiting enzyme of PG biosynthesis, is
also known as prostaglandin H synthase (PGHS) or
prostaglandin endoperoxide synthase (PTGS). COX is
present in two distinct isoforms, types 1 and 2, encoded
by separate genes (Smith & Langenbach 2001, Simmons
et al. 2004). COX1, commonly known as the constitutive
isoform, is found in most cell types, while COX2, the
inducible form, appears to be expressed only during
early stages of cell differentiation or replication, in
response to varying stimuli such as cytokines and
mitogenic factors. COX2 expression has been described
in physiological and pathological processes including
inflammation, angiogenesis, bone absorption, gastric
ulceration, kidney diseases, brain disorders, and female
genital tract disorders (Katori & Majima 2000). Further-
more, COX2 is overexpressed in many types of cancer,
including breast, colon, lung, and prostate cancers
(Harris 2009).

Depending on the biological process, COX iso-
enzymes can act individually, in concert, or in cases
where one isoenzyme is lacking, in a compensatory
manner (Smith & Langenbach 2001). Recently, new
variants of COX have been discovered, such as COX3
and PCOX1, splice variants that affect the coding region
of COX1, as well as a number of alternatively
polyadenylated transcripts of COX and single nucleotide
polymorphisms (SNPs; Simmons et al. 2004). COX
variants and mutants are likely to yield altered or
expanded biological function.

DP, EP, FP, IP, and TP are serpentine plasma
membrane-localized prostanoid receptors that bind
PGD, PGE, PGF, PGI, and thromboxane respectively. In
addition, several prostanoids, of which 15-deoxy-D12,14-
PGJ2 (15d-PGJ2) is the most potent, may activate the
Reproduction (2015) 149 R169–R180
peroxisome proliferator-activated receptor gamma
(PPARg) members of the steroid/thyroid family of nuclear
hormone receptors, which act as transcription factors
and may thus directly influence gene transcription
(Simmons et al. 2004, Narumiya 2007).
COX and PGs in the human testis

In the 1990s, the development of Cox1- and Cox2-
deficient mice yielded insights into the reproductive
roles of PGs. While female Cox2 knockout mice are
infertile, those deficient in Cox1 have difficulties with
parturition but produce litters with normal weight. In
contrast, fertility is not affected in male mice deficient in
Cox1 or Cox2 (Langenbach et al. 1999). These early
reports suggested that PGs may not be critical to
testicular function. However, this view has recently
been challenged by novel observations. It has been
reported that paracetamol and some nonsteroidal anti-
inflammatory drugs (NSAIDs) such as aspirin and
indomethacin induce endocrine disturbances in the
human fetal testis capable of interfering with testicular
descent (Mazaud-Guittot et al. 2013). Furthermore,
PGD2 influences male germ cell differentiation in
the fetal mouse testis (Moniot et al. 2014), and it has
been proposed that the hematopoietic PGD2 synthase
participates in the SOX9 nuclear translocation necessary
for the process of Sertoli cell differentiation (Rossitto
et al. 2015).

PG receptors have been described in Leydig cells
(i.e., EP1, DP, FP, TP, and PPARg receptors; Walch et al.
2003, Frungieri et al. 2006, Schell et al. 2007,
Kowalewski et al. 2009, Pandey et al. 2009), Sertoli
cells (e.g., EP1, EP2, EP3, EP4, DP, IP, FP, and PPARg
receptors; Ishikawa & Morris 2006, Winnal et al. 2007,
Kristensen et al. 2011, Matzkin et al. 2012a), and the
seminiferous tubule wall (PPARg receptors; Frungieri
et al. 2002a). DP prostanoid receptors have also been
detected in germ cells of the fetal mouse testis (Moniot
et al. 2014), whereas functional PPARg and PGE rece-
ptors have been found in sperm (Schaefer et al. 1998,
Santoro et al. 2013).

PGs, mainly those from the PGE and 19-hydroxy-PGE
series, are present in human seminal plasma. Several
reports have claimed that there is a correlation between
PG levels in semen and otherwise unexplained male
infertility (Kelly 1978). The lipocalin and hematopoietic
PGD2 synthases are also detected in seminal plasma and
their concentrations are lower in oligozoospermic men
than in normozoospermic men (Tokugawa et al. 1998).
PGs in human seminal plasma are mostly secreted from
the seminal vesicles. Nevertheless, testicular secretions
also contribute up to 5% of the composition of the semen
(Thibodeau & Patton 2012).

Data from our group revealed that COX is not
detectable by immunohistochemistry in normal adult
human testes without morphological abnormalities.
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Figure 3 Using laser capture microdissection, androgen receptor (AR)-
immunoreactive peritubular (A) and Sertoli (B) cells (arrows) were
isolated from a testicular biopsy of a patient suffering from germ cell
arrest, and then subjected to RT-PCR studies. (A) Each panel depicts the
same specimen before laser microdissection (left), after u.v. laser
delimitation of AR-immunoreactive peritubular cells (arrows; middle),
and after IR laser microdissection (right) of target cells. A polyclonal
rabbit anti-AR serum (Santa Cruz Biotechnology, Inc., 1:200) was used.
Bar, 50 mm. (B) Each panel depicts the same specimen before laser
microdissection (left), after u.v. laser delimitation of AR-immunoreac-
tive Sertoli cells (arrows; middle), and after IR laser microdissection
(right) of target cells. A polyclonal rabbit anti-AR serum (Santa Cruz
Biotechnology, Inc., 1:200) was used. Bar, 50 mm. (C) COX2 mRNA
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However, the inducible isoenzyme COX2 is expressed
by several cell types in testicular biopsies of men with
impaired spermatogenesis and infertility (Frungieri et al.
2002a, Welter et al. 2011). They include Leydig cells,
Sertoli cells, and cells of the tubular wall that present
an altered morphology (Figs 2 and 3; Schell et al.
2008, Matzkin et al. 2010). COX2 was also found in
testicular immune cells, namely mast cells and macro-
phages (Matzkin et al. 2010, Welter et al. 2011, Rossi
et al. 2014).

Similarly, Hase et al. (2003) did not detect COX
expression in the normal human testis, but described
induction of COX1 and COX2 in testicular cancer.
Additionally, lipocalin and hematopoietic PGD2

synthases are expressed in testes from patients with
impaired spermatogenesis (Schell et al. 2007).

These data suggest that, in pathological situations, the
human testis is capable of synthesizing PGs. In this
regard, we have recently described the presence of
the PG metabolite, 15d-PGJ2, in biopsies of patients
suffering from idiopathic infertility (Kampfer et al. 2012).

Overall, the wide distribution of PG receptors and
synthesizing enzymes in the testis emphasizes the
plethora of functions and potential key roles exerted
by these bioactive lipid substances on testicular
development, steroidogenesis, sperm maturation, and
male fertility.

Physiological studies cannot be performed using human
testicular biopsies. In the search for an appropriate model,
our laboratory turned to the Syrian hamster. It was chosen
as the experimental model because the exposure of male
adult animals to !12.5 h of light/day for 3–4 months
3β-HSD

3β-HSD

COX2

COX2

Figure 2 Immunohistochemical images of consecutive testicular
sections of a patient with hypospermatogenesis immunostained for
3b-hydroxysteroid dehydrogenase (3b-HSD) and cyclooxygenase 2
(COX2). Most, but not all, 3b-HSD-immunoreactive Leydig cells found
in the human testis are also positively stained for COX2. A polyclonal
rabbit anti-COX2 serum (Oxford Biomedical Research, Oxford, UK,
1:200) and a polyclonal rabbit anti-3b-HSD serum (kindly provided by
Prof. Dr J I Mason, University of Edinburgh Centre of Reproductive
Biology, Scotland, 1:2000) were used. Bar: 100 mm.

expression was detected in human peritubular and Sertoli cells by
RT-PCR assays performed with oligonucleotide primers from Matzkin
et al. (2010). PCR products were separated on 2% agarose gels and
visualized with ethidium bromide. The identity of the cDNA products
was confirmed by sequencing, using a fluorescence-based dideoxy
sequencing reaction and an automated sequence analysis on an ABI
373A DNA sequencer.

www.reproduction-online.org
results in a severe testicular regression with morphological
features resembling those observed in biopsies of patients
suffering from hypospermatogenesis and germ cell arrest.
For instance, seminiferous tubules in photoperiodically
regressed hamster testes contain mostly Sertoli cells,
spermatogonia, and a few primary spermatocytes (Fig. 4;
Sinha Hikim et al. 1988, Rossi et al. 2014).
COX and PGs in Leydig cells

We initiated the investigation of COX expression in
Syrian hamster testes, and although COX1-immuno-
reactive cells were not detected, immunoperoxidase
staining revealed the presence of COX2 in the cytoplasm
of interstitial cells, showing the characteristic punctate
chromatin pattern of Leydig cells in peripubertal,
pubertal, and adult hamster testes. Surprisingly, testicular
Reproduction (2015) 149 R169–R180
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Figure 4 Testicular morphology in Bouin’s fluid-fixed and hematoxylin-
stained cross-sections of a patient suffering from hypospermatogenesis
(A) and a reproductively regressed adult hamster (B). Sertoli cells
(black arrows), spermatogonia (white arrows), spermatocytes
(black arrowheads), and prematurely detached spermatocytes
(white arrowheads) are shown. Bar, 50 mm.
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expression of COX2 was barely detectable when adult
hamsters were exposed to light-deprivation conditions
(Frungieri et al. 2006). Thus, although testes from
regressed hamsters are histologically similar to biopsies
of infertile patients, they are deficient in COX2
expression, a typical feature of Leydig cells in the
pathological human testis. This discrepancy may imply
that PGs play distinctly different roles in testes of different
species (Frungieri et al. 2006). Thus, COX2 and PGs may
have a biological relevance in the pathogenesis or
maintenance of infertility states in men. Conversely,
considering that COX2 levels are much more abundant
in Leydig cells of reproductively active hamsters than in
testes of photoperiodically regressed animals, we
propose that PGs could act as physiological mediators
involved in the modulation of steroidogenic cell function
in seasonal breeders.

In contrast to our observations in testes of reproduc-
tively active hamsters, we failed to detect COX2 by
immunohistochemistry in testes from other species (i.e.,
rhesus monkeys, pigs, BALBc mice, Wistar rats, and
Sprague–Dawley rats; Frungieri et al. 2006). However,
Parillo et al. (2011) have recently described COX
immunoreactivity in Leydig cells of the alpaca Lama
Reproduction (2015) 149 R169–R180
pacos. Furthermore, some authors (Wang et al. 2005,
Balaji et al. 2007, Winnal et al. 2007) have reported
COX2 expression in mouse and rat Leydig cells using
more sensitive assays such as western blot, quantitative
PCR, and enzyme activity assays. These data allow us to
speculate about the existence of species-specific levels
of COX2 expression in Leydig cells, which may be
explained by the evolutionary divergence in testicular
coding sequences (Oduru et al. 2003) and/or the
existence of a marked variation between different
species in the regulation of the hypothalamic–pituitary–
testicular axis by hormones and local factors
(Lincoln 2000).

Revisiting the issue of COX2 expression in hamster
Leydig cells, this isoenzyme is detected mainly in
reproductively active pubertal and adult hamsters with
increased circulating concentrations of luteinizing
hormone (LH), prolactin (PRL), and androgens (Frungieri
et al. 2006, Matzkin et al. 2009, 2012b). On the other
hand, in adult hamsters exposed to a short-day
photoperiod and also in prepubertal hamsters, testicular
COX2 is barely detected, coinciding with low serum
concentrations of LH, PRL, and androgens (Frungieri
et al. 2006, Matzkin et al. 2009, 2012b). These results
suggest that some hormones (LH, PRL, and/or androgens)
could be involved in the regulation of testicular COX2
expression and PG production.

The unique expression of PGD synthase in adult
Leydig cells had already been described (O’Shaughnessy
et al. 2002, Schell et al. 2007). However, to our
knowledge, the potential role of COX2 as a marker of
mature active Leydig cells during cell development has
not previously been suggested.

In vitro experiments performed in Leydig cells purified
from reproductively active adult hamsters incubated in
the presence or absence of LH/human chorionic
gonadotropin (hCG) and testosterone, and with or
without the addition of bicalutamide (a pure non-
steroidal antiandrogen) to the incubation medium,
showed an up-regulation of COX2 expression and
PGF2a production. This LH action is not derived from a
direct mechanism but rather from its stimulatory role in
testosterone synthesis (Matzkin et al. 2009). In fact,
testosterone effects in hamster Leydig cells are exerted
via androgen receptors (ARs; Matzkin et al. 2009). The
classical mechanism of testosterone action involves
binding of this steroid to the cytoplasmic AR, transloca-
tion of the newly formed complex into the nucleus, its
binding to specific DNA regulatory elements, and,
finally, gene transcription regulation. In addition to this
classical pathway, there is growing evidence indicating
that androgens can trigger cellular processes through
rapid, non-genomic mechanisms (Foradori et al. 2008).
In this context, the stimulatory effect of testosterone on
COX2/PGF2a in hamster Leydig cells takes place via a
non-classical mechanism that involves phosphorylation
of ERK1/2 (Matzkin et al. 2009).
www.reproduction-online.org
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Figure 5 Summary view of COX2 expression/PG synthesis regulation,
and the modulatory effect of some PGs on steroidogenesis in hamster
Leydig cells. Based on experimental results, PRL induces COX2
expression as well as PGD2 and PGF2a production in Leydig cells
through activation of p38–MAPK and JAK2/STAT5. In addition,
testosterone via androgen receptors (ARs) and a non-classical
mechanism that involves phosphorylation of ERK1/2 also increases
COX2 expression and PGs production. While PGD2 through DP
receptors stimulates testosterone production under basal conditions,
PGF2a via FP receptors inhibits STAR and HSD17B1 expression and
consequently testosterone production in the presence of LH/hCG,
thus setting a brake on testicular steroidogenesis.
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On the other hand, PRL also mediates up-regulation of
COX2 expression and stimulation of PGD2 and PGF2a

production in hamster Leydig cells through activation
of p38–MAPK and JAK2 (Matzkin et al. 2012b). Post-
translational modifications of the PRL molecule includ-
ing glycosylation, tyrosine sulfation, phosphorylation,
and deamination may well represent a key mechanism
for creating diversity in the biological actions of this
hormone (Sinha 1992). In particular, pituitaries from
reproductively active hamsters contain PRL charge
analogs with pI of 5.16, 4.61, and 4.34. The exposure
of adult hamsters to a short-day photoperiod of 6 h light/
day results in a decline in PRL pituitary levels and in
the presence of less acidic PRL charge analogs with a
pI of 5.44. Interestingly, the more acidic PRL charge
analogs present in the pituitaries of reproductively active
hamsters strongly induce COX2 expression in hamster
Leydig cells. By contrast, the less acidic analogs detected
in the pituitaries of regressed animals have no effect
(Matzkin et al. 2012b). The stimulatory effect of more
acidic PRL charge analogs on COX2 expression in
hamster Leydig cells takes place through a mechanism
that involves the pro-inflammatory cytokine IL1b
(Matzkin et al. 2012b). It has been shown that IL1b
induces COX2 expression and PGD2 and PGF2a

production in mouse TM3 Leydig cells (Matzkin et al.
2010). The expression of the IL1R1 functional receptor of
IL1b in Leydig cells has been described not only in
rodents (hamsters and mice) but also in humans (Matzkin
et al. 2010, 2012b).

The prostanoid receptors DP and FP have been
described in both hamster and human Leydig cells
(Frungieri et al. 2006, Schell et al. 2007). While PGD2

has a stimulatory effect on basal testosterone production
in hamster Leydig cells (Schell et al. 2007), PGF2a exerts
an inhibitory effect on the expression of the StAR protein
and the 17b-hydroxysteroid dehydrogenase (17b-HSD or
HSD17B1) enzyme, as well as on the synthesis of
testosterone induced by hCG/LH (Frungieri et al. 2006).

It is therefore tempting to assume that, at least in
hamster Leydig cells, there exists a regulatory loop in
which testosterone induces COX2 expression and PGF2a

production. In turn, PGF2a inhibits STAR and HSD17B1
expression and, consequently, testosterone production,
thereby setting a brake on testicular steroidogenesis
(Fig. 5; Frungieri et al. 2006, Matzkin et al. 2009).

In agreement with our findings in hamsters, it has been
reported that PGF2a reduced hCG-stimulated testoster-
one secretion in rat Leydig cells (Romanelli et al. 1995).
Additionally, other authors (Saksena et al. 1973,
Didolkar et al. 1981, Sawada et al. 1994) have shown
that PGF2a decreases plasma testosterone levels in male
rats. On the contrary, injection of PGF2a to male rhesus
monkeys is followed by an abrupt rise in serum
testosterone (Kimball et al. 1979).

Syntin et al. (2001) and Wang et al. (2005) have
described that the COX2/PG system represents a
www.reproduction-online.org
potential key factor in the age-related reduction in
testosterone production, as up-regulation of COX2
expression in Brown Norway rats during aging is
accompanied by decreased testicular production of
testosterone. In this context, COX2 inhibition enhances
steroidogenesis and Star gene expression in MA-10
mouse Leydig cells, whereas its overexpression leads to
the opposite (Wang et al. 2003). Furthermore, pro-
duction of testosterone by decapsulated mouse testes is
significantly inhibited by adding some PGs (PGA1,
PGA2, and PGE1) to the incubation medium (Bartke
et al. 1976). On the other hand, COX2 seems to be
involved in aromatase post-translational activation and
increased cell proliferation in the rat Leydig tumor cell
line R2C (Sirianni et al. 2009).

From the aforementioned data, it is clear that Leydig
cells express the inducible isoenzyme COX2 and produce
Reproduction (2015) 149 R169–R180
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PGs with age-, photoperiod-, and species-specific
differences. In addition to its regulation by PRL and
IL1b, COX2 expression is also regulated by testosterone
through a non-genomic mechanism. The existence of
a COX2/PG system in Leydig cells serves as a local
modulator of steroid hormone production.
COX and PGs in Sertoli cells

Spermatogenesis is dependent upon adequate Sertoli
cell function (Griswold 1998). The expression of COX,
production of PGE2, PGF2a, and PGI2, as well as the
existence of the prostanoid receptors (i.e., EP1, EP2, EP3,
EP4, IP, and FP) has been reported in Sertoli cells of
immature and juvenile rodents (Ishikawa & Morris 2006,
Winnal et al. 2007, Kristensen et al. 2011).

Studies are usually limited to Sertoli cells isolated from
immature rodents to avoid germ cell contamination
during the purification procedure. Consequently, data
obtained from adult Sertoli cells are scarce. As only Sertoli
cells, spermatogonia, and a few primary spermatocytes
are observed in testes of photoperiodically regressed
adult Syrian hamsters (Fig. 4; Bartke 1985, Sinha Hikim
et al. 1988, Rossi et al. 2014), this species becomes a
useful and available experimental model for isolation of
Sertoli cells from adult animals.

Follicle-stimulating hormone (FSH) and testosterone
are the two major hormones that act in the testis to
regulate spermatogenesis. Sertoli cells transduce signals
from FSH and testosterone into the synthesis of factors that
are required for spermatogenesis. These actions take
place through FSH receptors and ARs located in Sertoli
cells (Walker & Cheng 2005, Matzkin et al. 2009, 2012a).

In recent studies carried out on Sertoli cells purified
from testes of adult hamsters exposed to a short-day
photoperiod, we have demonstrated that FSH exerts a
stimulatory effect on COX2 expression, as well as on
15d-PGJ2 and PGF2a production through a mechanism
that involves ERK1/2 phosphorylation (Matzkin et al.
2012a). Supporting our results, Jannini et al. (1994) have
shown FSH-stimulated eicosanoid generation dependent
upon the activation of the COX pathway in immature rat
Sertoli cells. Moreover, both stimulatory and inhibitory
actions of FSH on ERK1/2 phosphorylation were
described in rodent Sertoli cells (Crepieux et al. 2001,
Meroni et al. 2004).

Testosterone also induces COX2 expression and
increases 15d-PGJ2 production in adult hamster Sertoli
cells via ARs most probably located on the cell surface
(Matzkin et al. 2012a). The existence of testosterone-
binding sites in the plasma membrane has been
previously reported for Sertoli cells (Fix et al. 2004).
Using the plasma membrane-impermeable testosterone–
BSA, we observed that both COX2 expression and 15d-
PGJ2 production are enhanced in adult hamster Sertoli
cells, via a non-classical androgen action associated
with the activation of the ERK1/2 signaling pathway
Reproduction (2015) 149 R169–R180
(Matzkin et al. 2012a). Supporting these data, members
of the MAPK pathway have been shown to form
complexes with ARs on molecular scaffolds anchored
to the plasma membrane (Pedram et al. 2007). Moreover,
using an immunofluorescence technique, Cheng et al.
(2007) have found that upon testosterone stimulation
of rat Sertoli cells, a population of ARs is localized, in
a transient manner, in the plasma membrane.

Among Sertoli cell functions that may be important to
germ cell development is the provision of adequate
levels of energy substrates such as lactate. In this context,
the transport of glucose through the plasma membrane is
the rate-limiting step in glucose metabolism and,
consequently, in lactate production (Riera et al. 2001,
2009). Glucose enters the cell by carrier proteins called
glucose transporters (known as GLUTs or SLC2A). Thus
far, expression of SLC2A1, SLC2A3, and SLC2A8
transporters has been demonstrated in Sertoli cells
(Carosa et al. 2005, Galardo et al. 2008). In adult
hamster Sertoli cells, FSH and testosterone induce the
uptake of [2,6-3H]-2-deoxy-D-glucose, a non-metaboliz-
able glucose analog. In accordance with these data,
an increased FSH-mediated glucose uptake has been
described in immature rat Sertoli cells (Riera et al. 2001).

The nuclear PPARg receptor is present in hamster
Sertoli cells (Matzkin et al. 2012a), suggesting a potential
autocrine action of its natural ligand 15d-PGJ2. In fact,
15d-PGJ2 inhibits glucose uptake in adult hamster
Sertoli cells via the nuclear PPARg receptor (Matzkin
et al. 2012a). The participation of arachidonic acid,
precursor in PG biosynthesis, in the regulation of
Sertoli cell function has recently been addressed (Meroni
et al. 2004).

These results therefore have led to the suggestion that
testosterone and FSH induce glucose uptake, COX2
expression, and 15d-PGJ2 production in Sertoli cells.
Subsequently, 15d-PGJ2 acts via the nuclear PPARg
receptor to impair glucose entry. Therefore, the
COX2/15d-PGJ2/PPARg system may serve as a local
autocrine modulator of Sertoli cell activity and, conse-
quently, spermatogenic efficiency (Fig. 6).

Harmful actions of COX/PGs have also been described
in Sertoli cells. Elevated testicular temperature in
cryptorchidism decreases the expression of the cystic
fibrosis transmembrane conductance regulator (CFTR),
resulting in overexpression of COX2 and excessive PGE2

production in rodent Sertoli cells, which in turn lead to
further damage of inter-Sertoli cell tight junctions and
defective spermatogenesis (Chen et al. 2012). In contrast,
toxic xenobiotics such as nonylphenol, commonly used
as a detergent, up-regulate COX2 in TM4 immature
mouse Sertoli cells (Liu et al. 2014).

In summary, Sertoli cells express COX2 and produce
PGs in response to FSH and a non-classical mechanism
triggered by testosterone. PGs serve as local autocrine
modulators of Sertoli cell function, and thus indirectly
regulate sperm maturation.
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Figure 6 Summary view of COX2 expression/PGs production regulation,
and the signaling pathway involved in the PG modulation of glucose
uptake in Sertoli cells. Based on experimental results, testosterone exerts
a stimulatory effect on COX2 expression and 15d-PGJ2 production in
Sertoli cells through a non-classical mechanism that involves the
presence of androgen receptors (ARs) and ERK1/2 activation. FSH also
stimulated COX2/PGs via ERK1/2 phosphorylation. FSH and testosterone
stimulate glucose uptake in Sertoli cells. Nevertheless, these hormones
also exert an indirect negative regulation on glucose uptake, which
involves the COX2/15d-PGJ2/PPARg system.
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COX and PGs in the seminiferous tubule wall

Depending on the species, the seminiferous tubule wall
can be either a simple structure or a rather complex one.
For instance, in rodents, the tubular wall is composed of
a single cell layer and a tiny extracellular matrix.
However, in the human testis, the seminiferous tubule
wall is composed of the following components: an
internal acellular basal membrane adjacent to the
germinal epithelium containing collagen fibers, laminin,
glycoproteins, and hyaluronic acid; a middle cellular
zone made of spindle-shaped and contractile cells
(called myoid cells or myofibroblasts); and an external
cellular zone consisting of collagen-producing fibro-
blasts (Pop et al. 2011, Mayerhofer 2013). Disturbances
in testicular function and decreased or no spermatogenic
activity are associated with a thickening of the
www.reproduction-online.org
seminiferous tubule wall, which becomes fibrotically
remodeled. Fibroblasts, together with smooth muscle
cells, mediate tissue fibrosis and collagen deposition
(Mayerhofer 2013). This frequent change is observed
irrespective of the causes of male infertility and is
regarded as a hallmark of male infertility (Frungieri et al.
2002a, Weinbauer et al. 2010). Different human cellular
models have been used to study tubular fibrosis, the
involvement of the local COX/PG system and its
regulation. For instance, we used human fetal foreskin
fibroblast cells (HFFF2), which show increased COX2
protein levels, PG (PGF2a and 15d-PGJ2) production,
and cell proliferation in the presence of the serine
protease tryptase (Frungieri et al. 2002a). Tryptase is a
mast cell product known to cause proliferation of
fibroblasts and fibrosis (Frungieri et al. 2002a). The effect
of tryptase was tested in HFFF2 because increased
numbers of tryptase-immunoreactive mast cells are
detected in the seminiferous tubule wall in the testes of
infertile men (Meineke et al. 2000). Furthermore, the
amount of testicular tryptase-immunoreactive mast cells
correlates with the fibrotic thickening of the tubular wall
in patients with impaired spermatogenesis or Sertoli-
cell-only (SCO) syndrome (Meineke et al. 2000). When
the COX2 antagonist meloxicam was added to the
incubation media, the proliferative action of the mast
cell product tryptase on HFFF2 was blocked, implying
that PGs derived from COX2 activity are crucially
involved in this action. On the other hand, the nuclear
PPARg receptor is expressed in the seminiferous tubule
wall of infertile patients as well as in HFFF2 cells, and its
natural ligand 15d-PGJ2 directly increases fibroblast
proliferation (Frungieri et al. 2002a). Thus, there is a
signaling pathway linked to fibroblast proliferation that
involves the mast cell product tryptase, its receptor
PAR2, induction of COX2, synthesis of 15d-PGJ2, and its
action through PPARg. The initial events of the tryptase/
PAR2 signaling pathway leading to COX2 induction and
fibroblast proliferation involve up-regulation of the
immediate-early genes C-JUN and C-FOS, and phos-
phorylation of ERK1/2 (Frungieri et al. 2005).

It is important to bear in mind that PAR2 receptors are
expressed in interstitial cells, while PPARg receptors are
found in the peritubular cells of the human testis.
Furthermore, mast cells containing tryptase accumulate
in testes showing abnormal spermatogenesis, and COX2
is mostly detected in biopsies of patients with idiopathic
infertility (Frungieri et al. 2002a). Thus, the fact that all
components involved in the tryptase/COX2/15d-PGJ2/
PPARg-induced proliferation of HFFF2 cells are also
present in the testes of infertile patients showing fibrotic
thickening in the wall of the seminiferous tubules implies
that COX2 and some PGs could be of relevance for
human diseases linked to fibrotic disorders.

To further investigate the wall of the seminiferous
tubules in health and disease, a new and more reliable
experimental model has recently been developed.
Reproduction (2015) 149 R169–R180
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Human testicular peritubular cells were isolated from
very small testicular tissue samples from adult patients
with obstructive azoospermia but normal spermato-
genesis (HTPCs), as well as from biopsies of men with
non-obstructive azoospermia, impaired spermato-
genesis, and testicular fibrosis (HTPCFs) (Albrecht et al.
2006, Schell et al. 2008, 2010, Spinnler et al. 2010,
Mayerhofer 2013).

Tumor necrosis factor alpha (TNFa), a cytokine with
pleiotropic actions, which is known to be released from
human testicular macrophages (Frungieri et al. 2002b),
induces inflammatory markers in HTPCs such as COX2
and PGD2 (Schell et al. 2008). Previously, a PGD2

system had been identified in the human testis (Schell
et al. 2007). This system includes the expression of PGD2

synthases and the existence of the prostanoid receptor
DP in the testes of men suffering from spermatogenic
damage and infertility (Schell et al. 2007).

On the other hand, 15d-PGJ2, via the generation
of reactive oxygen species (ROS), strongly influences
cultured HTPCs and HTPCFs (Kampfer et al. 2012).
Upon 15d-PGJ2 treatment, cells become hypertrophic
and show a diminished expression of smooth muscle
cell markers (e.g., smooth muscle actin, MYH11, and
calponin) as well as a reduced ability to contract.
Interestingly, upon removal of 15d-PGJ2, cells spon-
taneously revert to the normal phenotype, an indication
of a high intrinsic degree of cellular plasticity (Schell
et al. 2010, Welter et al. 2013, Mayerhofer 2013).
HTPCFs express higher levels of the H2O2-metabolizing
enzyme catalase than HTPCs, circumstantial evidence
for increased ROS levels in the tubular wall of infertility
patients (Kampfer et al. 2012). Thus, it is possible to
speculate that up-regulation of COX2/15d-PGJ2 and
generation of ROS are interconnected events, forcing
smooth muscle-like peritubular cells to adapt and
change their phenotype, and finally, to lose contractility
(Mayerhofer 2013). As contractility of the tubular wall is
crucial for sperm transport and fertility, COX2/15d-PGJ2
could be, to date, an overlooked factor that contributes
to male infertility.

Hence, results obtained from cellular studies and
parallel examinations of human testicular biopsies
provide insights into the roles played by PGs in tubular
fibrosis and contractility. Consequently, PGs may be
crucial factors for the active transportation of immotile
sperm that takes place in the seminiferous tubules.
Furthermore, these bioactive lipid substances might be
key players in the paracrine interactions taking place
between peritubular cells and other testicular somatic
cells such as Leydig and Sertoli cells.
COX and PGs in testicular immune cells

The testis is one of a small number of so-called
immunologically privileged tissues of the body. In fact,
the production, differentiation, and presence of germ
Reproduction (2015) 149 R169–R180
cells represent inimitable challenges to the immune
system, because these cells appear long after the
maturation of the immune system and formation of
systemic self-tolerance (Fijak & Meinhardt 2006). The
blood–testis barrier represents an essential element for
local immunosuppression. However, the existence of the
blood–testis barrier does not mean that the lymphatic
drainage of the testis is deficient or that immune cells are
unable to access germ cells (Hedger 2002). Actually,
immune cells are observed in the capsule, interstitium,
and seminiferous tubules of the testis. In particular, large
numbers of macrophages are found in the testis.
Significant amounts of testicular mast cells, dendritic
cells, as well as effector, regulatory, and natural killer
T lymphocytes have also been reported (Itoh et al. 1995,
Tompkins et al. 1998, Meineke et al. 2000, Frungieri
et al. 2002b, Hedger 2002, Jacobo et al. 2009).

Testicular immunoregulation depends on a delicate
equilibrium between immunoprivilege and inflam-
mation in which immune cells play a dual role. Under
physiological conditions, antigen-specific autoimmune
responses are prevented by systemic and local tolerance
mechanisms involving the actions of dendritic cells and
regulatory T lymphocytes, as well as immunosuppressor
cytokines mainly secreted by resident macrophages.
Breakdown of immune homeostasis in the testis leads to
inflammation (Pérez et al. 2013). It is known that male
genital tract inflammations are relevant co-factors in
infertility. Human testicular macrophages from infertile
patients secrete pro-inflammatory cytokines such as IL1b
and TNFa (Frungieri et al. 2002b). The numbers of
macrophages and mast cells are markedly increased in
testes of patients, indicating impaired spermatogenesis
(Meineke et al. 2000, Frungieri et al. 2002b). Further-
more, the distribution pattern and morphology of these
immune cells are altered in pathological states. For
instance, there is a significant shift in the location of
macrophages and mast cells from the interstitium to the
tubular compartment in the testes of infertile men
(Meineke et al. 2000, Frungieri et al. 2002b). In samples
with normal spermatogenesis, these immune cells are
round and located mainly in the interstitial spaces close
to Leydig cells. In pathological conditions, mast cells
and macrophages are heterogeneous, with not only
rounded but also elongated shapes and signs of
degranulation (Meineke et al. 2000, Frungieri et al.
2002b). In contrast to men, it has been described that
mast cells are located almost exclusively in the capsule
adjacent to testicular blood vessels in the testes of
rodents, including hamsters (Frungieri et al. 1999, Rossi
et al. 2014).

COX2 is expressed in both testicular mast cells and
macrophages of patients suffering from hypospermatogen-
esis, germ cell arrest, mixed atrophy, or SCO syndrome
(Matzkin et al. 2010, Welter et al. 2011, Rossi et al. 2014).
Interestingly, few mast cells that do not express COX2
are observed in testes with normal spermatogenesis
www.reproduction-online.org
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(Welter et al. 2011). Human testicular macrophages
secrete IL1b, and a positive correlation between IL1b
levels and COX2 expression has been described in the
testes of infertile patients (Matzkin et al. 2010).

Thus, mast cells and macrophages increased the
population number and secretion of pro-inflammatory
cytokines, as well as the acquisition of the capability to
produce PG inflammatory mediators seem to play a
decisive role in the autoimmune basis of testicular
inflammation associated with subfertility and infertility.
Concluding remarks and future perspectives

In contraposition to initial data showing that fertility is
not affected in Cox-deficient male mice (Langenbach
et al. 1999), and therefore that PGs might not be
significant to testicular function, research carried out in
recent years describes a plethora of PG functions in the
male gonad.

A COX2/PG system has been described in the two key
somatic cell types of the testis: Leydig and Sertoli cells.
Furthermore, studies have provided new insights into
how several hormones and cytokines (i.e., FSH, PRL,
testosterone, and IL1b) modulate COX2 expression and
PG production in Leydig and Sertoli cells. Studies
performed mainly in rodents indicate that some PGs
(i.e., PGD2 and PGF2a) modulate androgen production in
Leydig cells, while 15d-PGJ2 regulates glucose transport
in Sertoli cells and, consequently, spermatogenic
efficiency. Recently, an additional physiological role of
COX2 as a protector of germ cells against spermatogenic
disturbance has been reported in an experimental
cryptorchidism mouse model (Kubota et al. 2011).

Most importantly, besides their action on testicular
physiology, PGs seem to be associated with pathogenesis
or maintenance of infertility states in men.

For instance, 15d-PGJ2 was associated with the fibrosis
and loss of contractility often observed in the wall of the
seminiferous tubules in patients suffering from idiopathic
infertility. Furthermore, the existence of a COX2/PG
system in testicular immune cells (mast cells and
macrophages), showing a significant increase in their
population number in some pathologies, strongly
suggests the importance of PGs in the development of
local inflammation that might further compromise
testicular function in patients with hypospermatogenesis,
germ cell arrest, or SCO syndrome.

Currently, the majority of infertile men present
disorders either untreatable or treatable with drugs of
questionable effectiveness. In this context, drugs targe-
ting COX, PGs, and prostanoid receptors are being
developed or used in clinical practice for a variety of
conditions. For example, there are widely marketed
and relatively safe drugs such as celecoxib, valdecoxib,
and rofecoxib, developed for specific COX2 inhibition,
that possess all of the analgesic, antipyretic, and
www.reproduction-online.org
anti-inflammatory activities of the older nonselective
NSAIDs (Simmons et al. 2004).

Therefore, the study of COX and PG actions appears to
be a promising field of research with a potential impact
on male fertility. Further advances in the knowledge of
the role played by COX, PGs, and their receptors in the
human testis, as well as future investigations concerning
the impact of drugs targeting COX/PGs at the testicular
level, could lead to new therapeutic approaches in
idiopathic male infertility. In this context, non-selective
inhibitors of COX usually used as mild analgesics, such
as indomethacin, paracetamol, and aspirin, have been
shown to display endocrine-disrupting properties in the
adult human testis in vitro (Albert et al. 2013). Never-
theless, the beneficial or disadvantageous effects of
specific COX2 inhibitors in the infertile human testis
have not, to date, been fully explored.
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Técnica (ANPCyT), Ministerio de Ciencia, Tecnologı́a e
Innovación Productiva (MINCYT), Facultad de Medicina–
Universidad de Buenos Aires, Fundación Antorchas, and
Fundación Alberto J. Roemmers of Argentina, and Deutscher
Akademischer Austausch Dienst (DAAD) and Deutsche
Forschungsgemeinschaft (DFG) of Germany, especially
MA1080/21-1 and MA1080/25-1.
Acknowledgements

The authors are grateful to our colleagues, Drs V Ambao,
S Campo, M H Carino, S B Cigorraga, B Gonzalez, C R Gonzalez,
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