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Cyclopentenone prostaglandins (cyPGs) are biologically active lipid mediators, including
PGA2, PGA1, PGJ2, and its metabolites. cyPGs are essential regulators of inflammation,
cell proliferation, apoptosis, angiogenesis, cell migration, and stem cell activity.
cyPGs biologically act on multiple cellular targets, including transcription factors
and signal transduction pathways. cyPGs regulate the inflammatory response by
interfering with NF-κB, AP-1, MAPK, and JAK/STAT signaling pathways via both a
group of nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-
γ) dependent and PPAR-γ independent mechanisms. cyPGs promote the resolution
of chronic inflammation associated with cancers and pathogen (bacterial, viral, and
parasitic) infection. cyPGs exhibit potent effects on viral infections by repressing
viral protein synthesis, altering viral protein glycosylation, inhibiting virus transmission,
and reducing virus-induced inflammation. We summarize their anti-proliferative,
pro-apoptotic, cytoprotective, antioxidant, anti-angiogenic, anti-inflammatory, pro-
resolution, and anti-metastatic potential. These properties render them unique
therapeutic value, especially in resolving inflammation and could be used in adjunct
with other existing therapies. We also discuss other α, β -unsaturated carbonyl lipids
and cyPGs like isoprostanes (IsoPs) compounds.

Keywords: prostaglandins, PPAR-γ, viral (or virus), inflammation, antiviral

Abbreviations: AD, Alzheimer’s disease; AP-1, activating protein-1; ALS, amyotrophic lateral sclerosis; AGMK, African
green monkey kidney; COX, cyclooxygenase; CCR, chemokine receptors; CTL, cytotoxic T lymphocytes; CREB, cyclic
AMP-responsive element-binding; cyPGs, cyclopentenone PGs; COPD, chronic obstructive pulmonary disease; DCs,
dendritic cells; DGLA, dihomo g-linolenic acid; EAE, experimental allergic encephalomyelitis; EBV, Epstein–Barr virus;
ERK, extracellular signal-regulated kinases; EMT, epithelial to mesenchymal transition; FRK, c-Fos-regulating kinases;
GMCSF, granulocyte-macrophage colony-stimulating factor; GR, glutathione reductase; GPx, glutathione peroxidase 1;
GCS, c-glutamylcysteine synthetase; HCMV, human cytomegalovirus; HDACs, histone deacetylases; HO-1, heme oxygenase-
1; HSV, herpes simplex virus; Hep-2, human epithelial type 2; HSP70, heat shock protein70; HTLV-1, human T-cell
leukemia virus type-I; hTERT, human telomerase reverse transcriptase; ICAM-1, intercellular adhesion molecule 1;
IBD, inflammatory bowel disease; IsoPs, isoprostanes; IKK, IκB kinase; JAK, Janus kinase; Keap1, Kelch-like ECH-
associated protein 1; KSHV, Kaposi’s sarcoma herpesvirus; LBD, ligand-binding domain; mTOR, mammalian target of
rapamycin; MMP-9, matrix metalloproteinase; Nrf2, NF-E2-related nuclear factor erythroid-2; NSCLC, non-small cell lung
carcinoma; NE, nanoemulsion; NGS, next-generation sequencing; NLS, nuclear localization sequence; NSAIDs, non-steroidal
anti-inflammatory drugs; NQO1, NAD(P)H dehydrogenase quinone 1; PAI-1, plasminogen activator inhibitor-1; PD-1,
programmed cell death protein-1; PDL-1, programmed cell death ligand-1; PG, prostaglandin; PUFA, polyunsaturated
fatty acid; 15-PGDH, 15−hydroxyprostaglandin dehydrogenase; PLA2, phospholipase A2; PPAR-γ, peroxisome proliferator-
activated receptor-gamma; ROS, reactive oxygen species; RTT, Rett syndrome; SOCS, suppressor of cytokine signaling; SLN,
solid lipid nanoparticles; SOD, superoxide dismutase; SLOS, Smith–Lemli–Opitz syndrome; TAR, transactivation response
element; TGF-β, transforming growth factor-β; TGZ, troglitazone; TXA2, thromboxane A2; uPA, urokinase plasminogen
activator; VEGF, vascular endothelial growth factor; VSV, vesicular stomatitis virus; VZV, varicella zoster virus.
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INTRODUCTION

Prostaglandins (PGs) are a group of lipids or oxygenated
derivatives of arachidonic acid (AA) that sustain homeostatic
functions and mediate the inflammatory response (Aoki and
Narumiya, 2012). There are two types of PGs: conventional
or classic PGs and cyclopentenone PGs (cyPGs). Examples
of traditional PGs are PGD2, PGE2, prostacyclin (PGI2),
PGF2α, and thromboxane A2 (TXA2), while the members
of cyPGs include PGA1, PGA2, PGJ2, and metabolites of
PGJ2, such as 15-Deoxy-1-12,14-Prostaglandin J2 (15d-
PGJ2) and 112-PGJ2. As the name implies, cyPGs contain
a cyclopentenone ring structure with a highly reactive α, β-
unsaturated carbonyl group, which can alter many proteins
and their functional properties covalent attachments with
thiol groups of the proteins (Straus and Glass, 2001). cyPGs
are potent bioactive molecules and have a wide range of
functions (Burstein, 2020). cyPGs can repress inflammatory
responses, inhibit cell growth, angiogenesis, and increase
apoptosis. cyPGs can interfere with virus infections and cancer
development, indicating their potential to serve as therapeutic
agents. This review discusses cyPGs biosynthesis, mechanism
of action, functions, and their effects on virus infection
and cancer development. Despite the existing knowledge,
the resolving, antiviral, anti-inflammatory, and anticancer
potential of cyPGs have been minimally explored and warrant
further attention.

BIOSYNTHESIS OF CYCLOPENTENONE
PROSTAGLANDINS (PGA1, PGA2, AND
PGJ2 AND ITS METABOLITES)

AA is liberated from membrane phospholipids by the enzyme
phospholipase A2 (PLA2) (Vane and Botting, 1990). Myosin,
an actin-binding protein, is phosphorylated when there is
an increase in intracellular calcium levels, causing PLA2 to
translocate from the cytoplasm to the intracellular membrane
to access the phospholipids. Arachidonate is metabolized
to PGG2 by cyclooxygenase (COX) 1 and 2 (COX-1 and
COX-2), which are contained in the endoplasmic reticulum
(ER) and nuclear membranes (Vane and Botting, 1990;
Hanna and Hafez, 2018) (Figure 1). PGG2 is converted
into PGH2 by hydroxyperoxidase. Unstable PGH2 diffuses
from the ER lumen to the cytoplasm through the ER
membrane. Due to its unstable nature, PGH2 is enzymatically
converted into different PGs, including PGI2, PGF2, and TXA2,
through the action of specific PG synthases (Figure 1). When
PGH2 is acted upon by PGD2 synthase, PGD2 is created.
PGD2 is unstable and spontaneously undergoes non-enzymatic
dehydration to yield either 15d-PGD2 or PGJ2 (Figure 1).
Further dehydration and a 13, 14 double bond rearrangement
of PGJ2 yield 15-Deoxy-1-12,14-prostaglandin J2 (15d-PGJ2)
in an albumin-independent manner, while PGJ2 dependent
on serum albumin results in 112-PGJ2 (Figueiredo-Pereira
et al., 2014). PGs of the J series are synthesized in vivo
as 112-PGJ2 is a natural component of human body fluids.

Its synthesis is inhibited by treatment with COX inhibitors
(Hirata et al., 1988). When PGH2 is acted upon by PGE2
synthase, PGE2 is formed. Dehydration of PGE2 leads to
PGA2 (Hamberg and Samuelsson, 1966; Nugteren et al., 1966)
(Figure 1). 15d-PGJ2 could function in both an autocrine
and paracrine manner and can be produced intracellularly
and extracellularly via non-enzymatic conversion of PGD2
(Shibata et al., 2002).

The formation of the cyclopentenone PGA1 has a different
genesis pathway compared to the other members of its family
(PGA2 and PGJ2). The formation of PGA1 begins with linoleic
acid (LA). In the human diet, linoleic acid is the most consumed
polyunsaturated fatty acid (PUFA) (Whelan and Fritsche, 2013).
Linoleic acid, an essential omega 6 (n = 6) fatty acid, is converted
to γ-linoleic acid (GLA; GLA, 18:3-6) through the membrane-
bound enzyme 6-desaturase (1-6-desaturase). GLA is then
metabolized to dihomo γ-linolenic acid (DGLA, 20:3-6) by a 16
elongase. From this point, DGLA can be converted into AA by
the enzyme 5-Desaturase, or PGE1 by the enzyme COX. PGE1
undergoes dehydration to become PGA1 (Kapoor and Huang,
2006; Kapoor et al., 2007).

15d-PGJ2 acts via G-protein-coupled seven-transmembrane
PGD2 receptors (D prostanoid; DP1 and DP2) and through
interaction with intracellular targets (Kato et al., 1986; Kim
et al., 1993; Negishi and Katoh, 2002). DP2 (chemoattractant
receptor-homologous molecule or GPR44 or CD294) is expressed
on Th2 cells, eosinophils, activated mast cells, and basophils
(Negishi and Katoh, 2002; Nagata et al., 2017). PGE1/PGA1 is
native/endogenous ligands of orphan nuclear receptor-related 1
protein (Nurr1; NR4A2) and activates its transcriptional function
(Negishi and Katoh, 2002; Pearen and Muscat, 2010; Kurakula
et al., 2014).

CYCLOPENTENONE PROSTAGLANDINS
AND INFLAMMATION

Cyclopentenone Prostaglandins in
Various Diseases
15d-PGJ2 is an immune regulator to modulate human
autoimmune diseases as multiple sclerosis (MS), experimental
allergic encephalomyelitis (EAE), polymyositis, Bechet’s diseases,
rheumatoid arthritis (RA), atopic dermatitis, systemic lupus
erythematosus (SLE) (Li and Pauza, 2009), and age-related
neurodegenerative diseases, including Alzheimer’s (AD) and
Parkinson’s disease (PD) (Koharudin et al., 2011). γ1T cells
have been studied in context with autoimmune diseases in
humans. γ1T cells possess the cytotoxic activity and produce
IFN-γ, tumor necrosis factor-alpha; TNF-α, and chemokines
involved in recruiting monocytes and macrophages. The
induction of cytokines and secretion of interleukin-17 (IL-
17) contributes to inflammatory processes and promotes
autoimmunity. 15d-PGJ2, along with rosiglitazone (Avandia),
suppressed γ1T cell proliferation in response and downregulated
cytokine production (Li and Pauza, 2009). 15d-PGJ2 also
plays an essential regulatory role in osteosarcoma, bone
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FIGURE 1 | Biosynthesis of cyclopentenone prostaglandins. When the cell is activated by stressful stimuli, such as mechanical trauma, interferon, interleukin, or
growth factors, the enzyme phospholipase A2 moves from the cytoplasm to intracellular membranes to liberate arachidonic acid (AA) from the nuclear envelope or
endoplasmic reticulum. AA is converted by cyclooxygenase-1 (COX-1) or cyclooxygenase-2 (COX-2) to prostaglandin G2 (PGG2), followed by hydroperoxidation of
PGG2 to PGH2. PGH2 is converted to other PGH2 metabolites such as PGD2, PGE2, PGF2, PGI2, and thromboxane A2 (TXA2) by their respective synthases. Of the
metabolites, PGD2 is dehydrated to form J2 PGs. PGJ2 may be located in exosomes, transport systems, or nuclear receptors to execute its function. PGE2 is
dehydrated to form PGA2. PGA1 is a metabolite of linoleic acid, which is obtained through diet.

metastases, and bone metabolism (Kitz et al., 2011; Kim et al.,
2015).

Cyclopentenone Prostaglandins Elicit
Anti-inflammatory Responses via
Regulating Transcription Factors Crucial
for Inflammatory Response
15d-PGJ2 directly inhibits multiple steps in the NF-κB signaling
pathway and NF-κB-dependent gene expression (Straus et al.,
2000). NF-κB represents a family of structurally related inducible
transcription factors (NF-κB1; p50, NF-κB2; p52, RelA; p65,
RelB, and c-Rel) located in the cytoplasm, which activates
genes responsible for inflammation and innate and adaptive
immunity (Senftleben et al., 2001). The NF-κB proteins are
typically sequestered in the cytoplasm by a family of inhibitory
proteins, including IκB family members, which sterically block
the nuclear localization sequence (NLS) of NF-κB (Senftleben
et al., 2001; Sun, 2017). The IκB kinase (IKK) complex is
crucial for the activation of NF-κB, as it can degrade the NF-κB
inhibitor IκB through phosphorylation, subsequently freeing NF-
κB (Senftleben et al., 2001). NF-κB is involved in the pathogenesis
of inflammatory diseases, including RA, inflammatory bowel
disease (IBD), MS, atherosclerosis, SLE, type 1 diabetes, chronic
obstructive pulmonary disease (COPD), and asthma (Pai and
Thomas, 2008). NF-κB activation induces proinflammatory

cytokines (IL-1β, IL-1, IL-2, IL-6, IL-8, and TNF-α) (Lawrence,
2009; Wang et al., 2014) and regulates inflammasome function
(Guo et al., 2015) in both innate and adaptive immune cells.
PGA1, another cyPG, is also a potent inhibitor of NF-κB
activation in human cells by inhibiting phosphorylation and
preventing degradation of the NF-κB inhibitor IκB-α (Rossi
et al., 1997). The α, β-unsaturated carbonyl group in the cyPGs,
when reactive, can undergo a Michael reaction with the cysteine
nucleophile at position 179 on the IKKβ subunit of the IKK
complex. This cysteine is located in the activation loop of
the enzyme, and the alkylation of the cysteine inhibits the
phosphorylation of the activation loop. Therefore, cyPGs inhibit
IKK complex activity by directly modifying the IKKβ subunit
(Rossi et al., 2000). By doing so, the degradation IκB is inhibited,
and NF-κB is unable to enter the nucleus.

15d-PGJ2 inhibits transcription factor activity of activating
protein-1 (AP-1) (Perez-Sala et al., 2003). AP-1 is composed of
dimeric complexes, which included members of four families
of DNA-binding proteins such as Jun, Fos, ATF/cyclic AMP-
responsive element-binding (CREB), and musculoaponeurotic
fibrosarcoma (Maf) (Milde-Langosch, 2005; Hernandez et al.,
2008). 15d-PGJ2 covalently modifies c-Jun and directly inhibits
the DNA binding activity of AP-1 (Perez-Sala et al., 2003). AP-1
plays critical roles in inflammation, proliferation, innate immune
response and stimulates growth factors and proinflammatory
cytokines mediated by serine/threonine kinases as c-Jun
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NH2-terminal kinases (JNK), p38, extracellular signal-regulated
kinases (ERK), and c-Fos-regulating kinases (FRK) MAP kinase
pathways (Lin et al., 1995; Minden et al., 1995).

15d-PGJ2 non-specifically inhibits Signal transducer and
activator of transcription (STAT) (Ji et al., 2005) and Janus
kinase (JAK)-STAT signaling pathway in lymphocytes (Kim et al.,
2005). STAT1 can be activated upon tyrosine phosphorylation
by JAK1 tyrosine kinase (Mowen and David, 2000). Upon
activation, STAT/STAT interactions occur immediately, and
dimerized STATs can then enter the nucleus and regulate the
transcription of inflammatory genes of cytokine and interferon
signaling (Seif et al., 2017).

Anti-inflammatory, Anti-tumorigenic,
Anti-angiogenic, Anti-metastatic,
Anti-fibrotic, Resolving, and Antioxidant
Modes of Action of Cyclopentenone
Prostaglandins
cyPGs, such as 15d-PGJ2, PGJ2, PGA1, and PGA2, can activate
peroxisome proliferator-activated receptor-gamma (PPAR-γ),
and many of their biological functions are either PPAR-γ
dependent or independent (Mukherjee et al., 1994; Ricote
et al., 1998b; Yagami et al., 2018). PPAR-γ is one of the
members (PPAR-α, PPAR-δ, and PPAR-γ) of the nuclear receptor
superfamily and is a ligand-dependent transcription factor. The
ligand 15d-PGJ2 activates PPAR-γ, and PPAR-γ then forms a
heterodimer with retinoid X receptor (RXR) in the cytoplasm.
Complex enters the nucleus (Scher and Pillinger, 2005; Li et al.,
2019). This complex binds to specific PPAR response element
(PPRE) regions in the DNA to activate different target genes
(Forman et al., 1996).

Anti-inflammatory Actions
Peroxisome proliferator-activated receptor-gamma inhibits TNF-
α, IL-6, inducible NO synthase (iNOS), gelatinase B, and COX-2
by acting as an antagonist to AP-1 and NF-κB (Welch et al., 2003).
This inhibition mode was observed in activated macrophages
expressing high levels of PPAR-γ (Ricote et al., 1998a,b; Straus
et al., 2000). In general, when IFN-γ stimulated peritoneal
macrophages were treated with 15d-PGJ2, instead of observing
activated macrophages, morphological features classic of resting
cells were seen (Ricote et al., 1998a,b). 15d-PGJ2 treatment
inhibited the induction of iNOS transcription by inhibiting the
binding of AP-1 and NF-κB on iNOS promoter (Ricote et al.,
1998a,b). Usually, iNOS is upregulated in activated macrophages
accompanied by the overproduction of nitric oxide (NO), which
causes inflammation (Sharma and Staels, 2007). Excess NO
also induces s-nitrosylation of Sirt1, an inhibitor of p65 NF-
κB, which inactivates Sirt1 and enhances pro-inflammatory
response (Nakazawa et al., 2017). 15d-PGJ2 treatment inhibits
matrix metalloproteinase (MMP-9) or also called Gelatinase B in
activated macrophages (Ricote et al., 1998a,b) at the transcription
level. Inhibition by 15d-PGJ2 is mediated at the level of AP-
1 binding as MMP-9 transcriptional activation is dependent
on AP-1 (Saarialho-Kere et al., 1993). 15d-PGJ2 and TZDs
reduced dendritic cells (DCs) stimulation with toll-like receptor

(TLR) ligands via the MAP kinase and NF-κB pathways (Appel
et al., 2005). In RAW264.7 cells, monocyte/macrophage-like cell
lineage stimulated with LPS, a similar outcome to that of Jurkat
cells was observed when treated with cyPGs (Straus et al., 2000).
A different result was observed in HeLa cells, strengthening the
fact that cyPGs’ effect is cell type specific. Instead of inhibiting
IKK complex activity, cyPGs impede the binding of NF-κB to
DNA since p50 and p65 have cysteine residues at C62 and
C38, respectively. Alkylation of these cysteines via the Michael
reaction results in the inhibition of the binding of NF-κB to DNA
(Straus et al., 2000).

In human astrocytes treated with 15d-PGJ2, NF-κB was
inhibited from binding to the COX-2 promoter on DNA (Janabi,
2002). In glial cells, 15d-PGJ2 induces the transcription of
suppressor of cytokine signaling 1 and 3 (SOCS1 and SOCS3)
can inhibit JAK, eventually inhibiting the transcription of
inflammatory genes (Park E. J. et al., 2003; Park S. H. et al.,
2003). 15d-PGJ2 inhibited the JAK/STAT1 mediated interferon
regulatory factor-1 (IRF-1) expression, thereby decreasing
the IFN-γ-induced costimulatory molecule B7-H1 expression
needed by tumors to evade the host immune response (Seo et al.,
2014). 15d-PGJ2 inhibits lethal anthrax toxin (LT) activation
of the NLRP1 and nigericin-mediated activation of the NLRP3
inflammasome and associated IL-1β release (Maier et al., 2015).
15d-PGJ2 mitigates the macrophage hyperinflammatory response
(Monroy et al., 2007).

PGD2 and the J2-series PGJ2 and 112-PGJ2 are critical
components of the inflammatory response within adipose tissue
during obesity thus producing inflammation-related adipokines
implicated in insulin sensitivity (Peeraully et al., 2006). 15d-
PGJ2 is the most potent inducer of fat cell (adipocyte)
differentiation in vitro (Forman et al., 1995; Bell-Parikh et al.,
2003). PGD2, PGJ2, and 112-PGJ2 treatment strongly down-
regulates the production of leptin, a hormone secreted by
adipocytes (Peeraully et al., 2006).

Anti-tumorigenic Actions
15d-PGJ2 exerts antitumor activity by regulating the
Myc/Mad/max transcription factors to promote cell apoptosis,
tubulin binding activity, inhibiting the expression of human
telomerase reverse transcriptase (hTERT), enhancing TRAIL-
induced apoptosis by downregulating AKT phosphorylation,
reactive oxygen species (ROS)-dependent cell death pathway,
ROS-dependent AKT activation, inhibition of COX-2, STAT-
3, cell cycle (G2/M or G1) blockade, inhibition of vascular
endothelial factor (VEGF), growth and expansion of tumor
stem cells in gastric cancer (Inoue et al., 2000; Sato et al.,
2000; Takashima et al., 2001; Yuan et al., 2005; Chearwae
and Bright, 2008; Dionne et al., 2010; Li et al., 2017), oral
squamous cell carcinoma (Nikitakis et al., 2002), leukemia
(Han et al., 2007), lymphoma (Inoue et al., 2000; Sato et al.,
2000; Takashima et al., 2001; Yuan et al., 2005; Chearwae and
Bright, 2008; Dionne et al., 2010; Li et al., 2017), oesophageal
cancer (Takashima et al., 2001), endometrial cancer (Li and
Narahara, 2013), breast cancer (Cocca et al., 2009), osteosarcoma
(Yen et al., 2014), and brain tumors (Inoue et al., 2000;
Sato et al., 2000; Takashima et al., 2001; Yuan et al., 2005;
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TABLE 1 | Biological effects of cyclopentenone prostaglandins.

Anti-inflammatory Specific function Site of action References

15d-PGJ2 Inhibition of iNOS promoter containing binding sites for AP-1
and NF-κB

Macrophages Ricote et al., 1998a,b

15d-PGJ2 Gelatinase B or MMP-9 Macrophages Ricote et al., 1998a,b

15d-PGJ2 and TZDs MAPK and NF-κB signaling Dendritic cells (DCs) Appel et al., 2005

15d-PGJ2, other cyPGs Inhibition of NF-κB binding to DNA RAW264.7 cells,
monocyte/macrophage-like cell lineage

Straus et al., 2000

15d-PGJ2 Inhibition of NF-κB binding to the COX-2 promoter STAT-1 and
c-Jun expression

Human astrocytes, microglia Janabi, 2002

15d-PGJ2 Transcription of SOCS1 and SOCS3 Brain inflammation Park E. J. et al., 2003;
Park S. H. et al., 2003

15d-PGJ2 Inhibition of the JAK/STAT1 mediated IRF-1 expression
decreasing cytokine production

B16F10 melanoma cells Seo et al., 2014

15d-PGJ2 Inhibition of caspase-1 activation by NLRP1 and NLRP3
inflammasomes prevents the autoproteolytic activation of
caspase-1 and the maturation of IL-1β

NLRP3-dependent peritonitis model Maier et al., 2015

15d-PGJ2 Mitigates the macrophage hyperinflammatory response and
inflammatory cytokines

Macrophages Monroy et al., 2007

PGD2, PGJ2, and 112-PGJ2 Down-regulate the production of leptin 3T3-L1 adipocytes Peeraully et al., 2006

15d-PGJ2 Inhibition of NF-κB signaling and at PI3K/Akt pathway Primary astrocytes Giri et al., 2004

PGA1, PGJ2, PGD and
15d-PGJ2

Direct inhibition, and modification of the IKKβ subunit, improve
the utility of COX2 inhibitors.

Jurkat cells (immortalized line of human
T lymphocyte cells)

Rossi et al., 2000

Anti-tumorigenic

15d-PGJ2 Myc/Mad/max transcription factors Gastric cancer, Oral Squamous cell
carcinoma, Leukemia, Lymphoma,
Oesophageal cancer, Endometrial
cancer, Breast cancer, and Brain
tumors

Inoue et al., 2000; Sato
et al., 2000; Takashima
et al., 2001; Nikitakis
et al., 2002; Yuan et al.,
2005; Han et al., 2007;
Chearwae and Bright,
2008; Cocca et al.,
2009; Dionne et al.,
2010; Li and Narahara,
2013; Li et al., 2017

15d-PGJ2 Enhancing TRAIL-induced apoptosis by downregulating AKT
expression and phosphorylation

Leukemia Han et al., 2007

15d-PGJ2 ROS-dependent AKT activation, cell cycle inhibition Osteosarcoma Yen et al., 2014

15d-PGJ2 A tubulin-binding agent that destabilizes microtubules and
induces mitotic arrest

Breast cancer Cocca et al., 2009

15d-PGJ2 Cell cycle blockade Oesophageal cancer Takashima et al., 2001

15d-PGJ2 and TZDs Tumor cell growth, migration, and invasion Hepatocellular carcinoma (HCC) Hsu and Chi, 2014

15d-PGJ2 and its derivatives
(J11-C1)

Expression of genes associated with cell cycle arrest,
apoptosis, and autophagy, decreased expression of the
anti-apoptotic Bcl-2

Ovarian cancer SKOV3 cells Tae et al., 2018

15d-PGJ2 Inhibition of STAT-3 Oral Squamous cell carcinoma Nikitakis et al., 2002

15d-PGJ2 Apoptosis rate, Apoptosis-promoting protein, and reduced
apoptosis-inhibiting protein expression

Hepatitis B virus (HBV) × protein
(HBx)-positive HL7702-HBx and
HL7702 liver cells

Chen et al., 2014

Anti-angiogenic
Anti-metastatic

15d-PGJ2 Pioglitazone Inhibiting VEGF Renal cell carcinoma (RCC) Yuan et al., 2005

15d-PGJ2 Inhibiting angiopoietin-1 (Ang-1) Gastric cancer Fu et al., 2006

15d-PGJ2 Reduced VEGF receptor 1 (Flt-1) and 2 (Flk/KDR), urokinase
plasminogen activator (uPA), and increased plasminogen
activator inhibitor-1 (PAI-1) mRNA

Human umbilical vein endothelial cells
(HUVEC)

Xin et al., 1999;
Funovics et al., 2006

15d-PGJ2 (PPAR-γ
dependent), BRL49653,
Ciglitizone

Block angiogenesis Rat cornea Xin et al., 1999

(Continued)
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TABLE 1 | Continued

Anti-inflammatory Specific function Site of action References

15d-PGJ2 HO-1-dependent
mechanism

NF-κB and AP-1 mediated MMP-9 expression and invasion MCF-7 breast cancer cells Jang et al., 2020

15d-PGJ2 Disassembled focal adhesions, downregulation of FAK signaling Renal cell carcinoma (RCC) metastasis Yamamoto et al., 2020

Antioxidant

15d-PGJ2 Nrf2-Keap1 signaling pathway Atherosclerosis Itoh et al., 2004;
Levonen et al., 2004;
Mochizuki et al., 2005

15d-PGJ2 HO-1, SOD, catalase, NAD(P)H dehydrogenase quinone 1
(NQO1), c-glutamylcysteine synthetase (GCS), glutathione
reductase (GR), glutathione peroxidase 1 (GPx)

Pleurisy, atherosclerosis Diers et al., 2010; Itoh
et al., 2004; Kansanen
et al., 2009; Magesh
et al., 2012

15d-PGJ2 15-PGDH gene expression, protein level, and its activity, AP-1
and HO-1

Human colon cancer cell line HCT-116 Park and Na, 2019a,b;
Tauber and Parker,
2019

15d-PGJ2 eIF2α phosphorylation, Activation of Integrated stress response
(ISR)

Neurodegenerative diseases Park and Na, 2019a,b;
Tauber and Parker,
2019

Resolving inflammation

15d-PGJ2 Cytoprotective, Shifting PG production from PGE2 to PGD2 and
15d-PGJ2

Dextran sodium sulfate-induced colitis
in the rat and TNF-α-induced activation
of PG production and PG synthase
expression in cultured human
peripheral blood monocytes (hPBMC)

Niro et al., 2010

15d-PGJ2 DP1 receptor activation checkpoint controller of
cytokine/chemokine synthesis as well as leukocyte influx and
efflux

Self-resolving peritonitis Rajakariar et al., 2007

15d-PGJ2 PPAR-γ and CD36 expression Enhance hematoma resolution Flores et al., 2016

15d-PGJ2 Inhibition of pro-inflammatory cytokines, such as IL-5, IL-13,
IL-17, TNF-α Inhibition of NF-κB phosphorylation

Peribronchial accumulation of
eosinophils and neutrophils,
subepithelial fibrosis, and also mucus
exacerbation

Coutinho et al., 2017

Prostanylation and protein
modification

PGE1 and PGA1 Interact with the ligand-binding domain (LBD) of orphan nuclear
receptor Nurr1, neuroprotective, enhanced expression of Nurr1
target genes in midbrain dopaminergic (mDA) neurons and
improved motor deficits

Mouse models of Parkinson’s disease Rajan et al., 2020

15d-PGJ2 and PGA1 IKKα and β, NF-κB P65 and P50 subunits cysteine modification
at various positions

Inhibition of NF-κB pathway Castrillo et al., 2000;
Rossi et al., 2000;
Cernuda-Morollon
et al., 2001

15d-PGJ2 and PGA1 H-Ras modification at various cysteines Activation of H-Ras Oliva et al., 2003

15d-PGJ2 c-Jun and c-Fos modification at various cysteines Inhibition Perez-Sala et al., 2003

PGA1 Thioredoxin, thioredoxin reductase, and Keap1 Inhibition Levonen et al., 2001,
2004; Shibata et al.,
2003a; Itoh et al., 2004

15d-PGJ2 Proteasome Inhibition Shibata et al., 2003b

Chearwae and Bright, 2008; Dionne et al., 2010; Li et al., 2017)
(Table 1). Transforming growth factor-β (TGF-β) induces cell
growth, cell migration, and epithelial to mesenchymal transition
(EMT) and promotes HCC progression (Giannelli et al., 2014).
Interestingly, TZDs and 15d-PGJ2 display antitumor effects on
HCC (Hsu and Chi, 2014). PPAR-γ activation inhibits TGF-β
expression via dephosphorylation of zinc finger transcription
factor-9 (Zf9) (Lee et al., 2006). Zf9 is crucial for TGFβ1 gene
regulation, and a phosphorylated form of Zf9 transactivates the
TGFβ1 promoter (Kim et al., 1998).

15d-PGJ2 and its derivatives exert antitumor activity by
selectively modulating the expression of genes associated with
cell cycle arrest, apoptosis, and autophagy (Inoue et al., 2000;
Sato et al., 2000; Takashima et al., 2001; Yuan et al., 2005;
Chearwae and Bright, 2008; Dionne et al., 2010; Li et al.,
2017). Notably, J11-C1 is a novel candidate of class III
histone deacetylases (HDACs) called Sirtuin SIRT1 inhibitor with
anticancer activity. SIRTs are involved in biological functions,
including aging, energy mobilization, and stress responses. SIRTs
regulate cancer cell apoptosis and are potential targets for
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novel anticancer drugs that regulate the levels of deacetylated
histone proteins, p53, and several transcriptional factors (Table 1)
(Tae et al., 2018). 15d-PGJ2 treatment significantly induced
apoptosis rate, apoptosis-promoting protein expression, and
reduced apoptosis-inhibiting protein expression in the hepatitis B
virus (HBV)× protein (HBx)-positive HL7702-HBx and HL7702
liver cells (Chen et al., 2014).

Anti-angiogenic/Anti-metastatic Actions
15d-PGJ2 exerts anti-angiogenic activity by inhibiting VEGF
and angiopoietin-1 (Ang-1) in renal cancer (Yuan et al., 2005)
and gastric cancer (Fu et al., 2006), respectively. Treatment of
human umbilical vein endothelial cells (HUVEC) with 15d-
PGJ2 reduced mRNA levels of VEGF receptors 1 (Flt-1) and
2 (Flk/KDR) and urokinase plasminogen activator (uPA) and
increased plasminogen activator inhibitor-1 (PAI-1) mRNA
(Funovics et al., 2006). Administration of 15d-PGJ2 could inhibit
VEGF-induced angiogenesis in the rat cornea in a PPAR-γ
dependent manner (Xin et al., 1999) (Table 1). Rosiglitazone
(Avandia) and troglitazone (TGZ) inhibit cell migration via the
upregulation of E-cadherin expression in HepG2 cells (Lee et al.,
2009). 15d-PGJ2 inhibits NF-κB and AP-1-mediated MMP-9
expression and invasion of MCF-7 breast cancer cells employing
a heme oxygenase-1 (HO-1)-dependent mechanism (Jang et al.,
2020). Treatment with a low concentration of 15d-PGJ2
disassembled focal adhesions, reduced focal adhesion kinase
(FAK) phosphorylation, and caused extensive filamentous actin
reorganization (Yamamoto et al., 2020). PPAR-γ did not mediate
the inhibitory effect of 15d-PGJ2 on the migration of Caki-2 cells
and did not affect RCC metastasis (Yamamoto et al., 2020).

Antioxidant and Resolving Actions
Inflammation is accompanied by the production of ROS,
and 15d-PGJ2 has antioxidant properties (Itoh et al., 2004;
Levonen et al., 2004; Mochizuki et al., 2005) (Table 1).
15d-PGJ2 and structurally related isoprostanoids alkylate
Kelch-like ECH-associated protein 1 (Keap1) to induce the
NF-E2-related nuclear factor erythroid-2 (Nrf2-) dependent
antioxidant bioactivity (Levonen et al., 2004; Kansanen et al.,
2009; Diers et al., 2010; Mills et al., 2018). 15d-PGJ2 activates
Nrf2-Keap1 signaling and induces gene transcription of
antioxidant enzymes including HO-1, superoxide dismutase
(SOD), catalase, NAD(P)H dehydrogenase quinone 1 (NQO1),
c-glutamylcysteine synthetase (GCS), glutathione reductase
(GR), and glutathione peroxidase 1 (GPx) (Itoh et al., 2004;
Kansanen et al., 2009; Diers et al., 2010; Magesh et al., 2012).
15d-PGJ2 upregulates 15−hydroxyprostaglandin dehydrogenase
(15-PGDH) gene expression, protein level, and its activity in
human colon cancer cell line HCT-116 through AP-1 activation
(Park and Na, 2019a,b). 15d-PGJ2 treatment-induces eIF2α

phosphorylation and activation of the integrated stress response
(ISR), also leading to bulk translation repression and preferential
translation of stress response mRNAs (Tauber and Parker, 2019).
15d-PGJ2 is pro-resolving signaling and a neuroprotective (Rajan
et al., 2020) molecule (Table 1) (Rajakariar et al., 2007; Niro et al.,
2010; Flores et al., 2016; Coutinho et al., 2017).

Pro-metastatic Properties of the
Cyclopenenone Prostaglandins
cyPGs also exhibit pro-metastatic properties such as 15d-PGJ2
significantly enhanced the rate of formation, the size, and
the vascularization of papillomas in a murine carcinogenesis
model (Millan et al., 2006). 15d-PGJ2 and PGJ2 induced the
proliferation of COX-2 depleted colorectal cancer (HCA-7) cells
at a nanomolar concentration (Chinery et al., 1999). However,
the precise mechanisms responsible for tumor proliferative
effects of 15d-PGJ2 remain incompletely clarified. VEGF is well
known as a master regulator of angiogenic switch (Bussolati and
Mason, 2006). Interestingly, VEGF upregulates HO-1 in vascular
endothelial cells, while HO-1 may also regulate the synthesis
and activity of VEGF, thus constituting a positive feedback loop
(Bussolati and Mason, 2006). 15d-PGJ2 could stimulate VEGF
expression in endothelial cells, human androgen-independent
PC3 prostate cancer cells, and the 5,637 urinary bladder
carcinoma cell line (Yamakawa et al., 2000; Haslmayer et al.,
2002). The upregulation of VEGF by 15d-PGJ2 was accompanied
by activation of PPAR-γ (Jozkowicz et al., 2002). However, the
VEGF promoter does not harbor PPRE (Inoue et al., 2001;
Jozkowicz et al., 2004). Interestingly, VEGF upregulation by 15d-
PGJ2 could be mimicked by the induction of HO-1 expression
(Jozkowicz et al., 2004). 15d-PGJ2 induced HO-1 expression in
MCF-7 human breast cancer cells (Kim et al., 2004).

Nrf2, a transcription factor is responsible for maintenance of
cellular redox balance (Loboda et al., 2016). HO-1 is a prototypic
Nrf2 target gene, and the aberrant hyperactivation of Nrf2/HO-
1 axis contributes to tumor progression, aggressiveness,
chemoresistance, and poor prognosis (Zimta et al., 2019).
15d-PGJ2 induces VEGF expression and angiogenesis in human
breast cancer cells through upregulation of HO-1 (Kim et al.,
2006; Kweider et al., 2011).

ROLE OF CYCLOPENTENONE
PROSTAGLANDINS DURING VIRAL
INFECTIONS

Cyclopentenone Prostaglandins as
Inhibitor of Viral Replication
cyPGs are potent inhibitors of viral replication (Table 2) and are
effective against a wide range of viruses. These include negative-
strand RNA viruses such as influenza A (Pica et al., 1993, 2000;
Conti et al., 2001), Sendai virus (Amici and Santoro, 1991;
Amici et al., 2001), and vesicular stomatitis virus (VSV) (Santoro
et al., 1987; Pica et al., 1993); positive-strand RNA viruses such
as Sindbis virus (Mastromarino et al., 1993), Poliovirus (Conti
et al., 1996), and Human immunodeficiency virus-1 (Rozera
et al., 1996) and DNA viruses such as herpes simplex virus
(HSV) type 1 and 2 (Yamamoto et al., 1987; Amici et al.,
2001). The ability of cyPGs to suppress virus production is very
dramatic. In the African green monkey kidney (AGMK) cell line,
replication of the Sendai virus is almost completely inhibited
by 4 mg/ml of PGA1 (Santoro et al., 1987) and by 4 mg/ml of
PGJ2 (Santoro et al., 1987) without being toxic to uninfected
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TABLE 2 | Effects of cyclopentenone prostaglandins in viral infections.

Anti-viral Activity Virus CyPGs Mechanism References

Inhibition of virus replication
by altering viral gene/protein
expression
(transcription/translation
level alteration)

Influenza A 112-PGJ2 Decrease synthesis of hemagglutinin (HA), nucleoprotein
(NP), and membrane protein M1; induction of 70 kDa host
HSP70

Pica et al., 1993

PGA1 Delayed synthesis of HA, membrane protein M1, structural
protein M2, and non-structural protein NS2; induction of
70 kDa host HSP70

Conti et al., 2001

Vesicular Stomatitis
Virus (VSV)

112-PGJ2, PGA1 Inhibit VSV RNA polymerase Bader and Ankel, 1990;
Pica et al., 1993;
Parker, 1995

Herpes Simplex Virus
Type 1 (HSV-1)

PGA1 Suppress NF-κB activation by inhibiting IKK complex
(independent of the PPAR-γ pathway)

Amici et al., 2001

Herpes Simplex Virus
Type 2 (HSV-2)

17-PGA1, 112-PGJ2 Inhibited the primary transcription of HSV-2 Yamamoto et al., 1987

Human
Immunodeficiency
Virus-1 (HIV-1)

PGJ2 Suppress NF-κB activation by inhibiting IKK complex
(independent of the PPAR-γ pathway)

Rozera et al., 1996;
Boisvert et al., 2008

15d-PGJ2 Covalently modify HIV-1 transactivating protein, Tat to
inhibit virus transcriptional elongation

Kalantari et al., 2009

Inhibition of virus replication
by altering viral glycoprotein
glycosylation
(post-translational level
alteration)

Vesicular Stomatitis
Virus (VSV)

112-PGJ2 Inhibit glycosylation of virus glycoprotein G Pica et al., 1993

Sendai Virus PGA1, 112-PGJ2 Inhibit glycosylation of virus glycoproteins
hemagglutinin-neuraminidase (HN) and fusion protein (F)

Santoro et al., 1987;
Amici et al., 2001

Inhibition of virus cell-to-cell
transmission

Human T-cell Leukemia
Virus Type I (HTLV-1)

PGA1, PGJ2 Inhibit host cell proliferation by inducing cell arrest at the
G1/S interface

D’Onofrio et al., 1992;
Lacal et al., 1994a,b

Inhibition of virus-induced
inflammation

Influenza 15d-PGJ2 Decrease virus-induced release of proinflammatory
cytokines (IL-6, TNF-α) and chemokines (CCL2, CCL3,
CCL4, and CXCL10) via PPAR-γ pathway

Cloutier et al., 2012

Respiratory Syncytial
Virus (RSV)

15d-PGJ2 Decrease virus-induced release of cytokines (TNF-α,
GMCSF, IL-1α, IL-6), and the chemokines (CXCL8 (IL-8)
and CCL5) via PPAR-γ pathway. Reduce immune cells
adhesion by inhibiting virus-induced up-regulation of
intercellular adhesion molecule-1 (ICAM1). Reduce activity
of inflammatory pathway, NF-κB.

Arnold et al., 2007

Human
Immunodeficiency
Virus-1 (HIV-1)

15d-PGJ2 Suppress NF-κB activation by inhibiting IKK complex Boisvert et al., 2008

Zika virus (ZIKV) 15d-PGJ2 Control brain inflammation by downregulating microglial
activation and by inducing apoptosis of activated microglia

Bernardo and
Minghetti, 2006

AGMK cells. Treatment of 6 mg/ml of 112-PGJ2 in Madin–
Darby canine kidney cells (MDCK) infected with influenza A
H1N1 (PR8) virus drastically suppressed the viral production
by 95%. Simultaneously, a higher dose of 112-PGJ2 produced
an undetectable virus yield (Pica et al., 1993). PGA1 treatment
also strongly inhibits the viral production of Ulster 73 (H7N1
influenza A) in LLC-monkey kidney epithelial cells (LLC-MK2),
African green monkey kidney-37RC cells (AGMK-37RC), and
MDCK cells (Conti et al., 2001), suggesting that cyPGs are
effective against various subtypes of influenza A virus in multiple
host cells. Similarly, in vivo studies have shown that PGA1
and 16, 16-dimethyl-PGA2 (dmPGA2), a long-acting synthetic
analog of PGA, in mice infected with a lethal dose of PR8 virus
significantly decreases the virus titers in the lung and increases

the survival rate (Santoro et al., 1987; Pica et al., 1993). In
another study, the antiviral activity of the synthetic dmPGA1 in
HSV-1 and human immunodeficiency virus (HIV)- infected cells
was investigated (Hughes-Fulford et al., 1992). dmPGA1 affected
HIV-1 replication in acutely infected T cells and chronically
infected macrophages as assessed by a quantitative decrease in
HIV-1 antigen p24 concentration (Hughes-Fulford et al., 1992).
This study highlighted the unusual broad-spectrum antiviral
activity of dmPGA1 against HSV and HIV-1 and its therapeutic
potential for in vivo use (Hughes-Fulford et al., 1992).

Depending on the virus, cyPGs utilize various mechanisms
and act on different viral cycle events to interfere with virus
production. In HIV-1 infection and avian influenza, A virus
infection, cyPGs prevent very early virus infection phases such
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as viral adsorption and penetration into target cells (Rozera
et al., 1996; Carta et al., 2014). Even though antiviral action
mechanisms differ between various viruses and host cell systems,
the inhibition of virus replication by cyPGs is often associated
with (1) alteration in viral protein synthesis and (2) alteration
in viral glycoprotein glycosylation (Table 2). PGA1 treatment
inhibited replication of Mayaro virus (MAYV) (an arbovirus
endemic to certain humid forests of tropical South America) by
95% at 24 h post-infection in human epithelial type 2 (Hep-
2) cells (Caldas et al., 2018). PGA1 treatment inhibited viral
structural protein synthesis by 15%, possibly via heat shock
protein70 (HSP70) induction (Caldas et al., 2018).

Cyclopentenone Prostaglandins Alter
Viral Protein Synthesis
Inhibition of individual virus replication by cyPGs is marked by
dysregulation of viral protein synthesis (Table 2). In influenza,
A PR8 virus (a mouse-adapted H1N1 influenza virus causing
severe infection in mice)-infected cells, treatment of 112-PGJ2
substantially decreased the synthesis of PR8 proteins such as
hemagglutinin (HA), nucleoprotein (NP), and membrane protein
M1 (Pica et al., 1993). PGA1 could cause a significant delay in the
synthesis of late viral polypeptides: HA, membrane protein M1,
structural protein M2, and non-structural protein NS2 (Conti
et al., 2001). Furthermore, both studies showed that inhibition
or delay of viral protein synthesis is accompanied by induction
of a 70 kDa host polypeptide identified as HSP70 by immunoblot
analysis (Pica et al., 1993; Conti et al., 2001). Because viral protein
synthesis is repressed as long as HSP70 is present in the host cell,
HSP70 seems to play an essential role in cyPGs antiviral activity.

In VSV infection, 112-PGJ2 can affect two distinct stages (an
early stage and a late-stage) of the virus replication cycle in
epithelial monkey cell lines (Pica et al., 1993). The inhibition
of the virus at the initial stage is associated with altered viral
protein synthesis. When the cells are treated with 8 mg/ml of
112-PGJ2 soon after virus infection, there is a dramatic decrease
in VSV protein synthesis. Similar to the effect on influenza A
virus replication, inhibition of VSV protein synthesis by 112-
PGJ2 is also associated with the induction of a 74 kDa polypeptide
belonging to the group of heat shock protein HSP70 (Pica
et al., 1993). In another study, PGA1 treatment decreased VSV
proteins’ production and the amount of respective viral mRNA
(Bader and Ankel, 1990). This study found that PGA1 exerts
its antiviral activity at the VSV genes’ primary transcription
level, which leads to a reduction in viral mRNA synthesis,
viral protein synthesis, and, ultimately, viral replication. To
further investigate the antiviral activity of cyPGs, another study
performed an RNA polymerase assay and reported that cyPGs
potently inhibit VSV RNA polymerase (Parker, 1995). This
inhibition correlates with the decrease in VSV replication in
infected cells, indicating that cyPGs antiviral activity is due to
VSV RNA polymerase inhibition.

In addition to VSV, cyPGs also exert a transcriptional block
in the replication of herpes simplex virus type 1 (HSV-1)
(Amici et al., 2001), HSV-2 (Yamamoto et al., 1987), and HIV-
1 (Rozera et al., 1996). In HSV-1 infected human laryngeal

carcinoma cells and neuroblastoma cells and HIV-1 infected
colonic epithelial cells (caco-2 cells), cyPGs inhibit viral gene
expression by suppressing NF-κB activation, independent of the
PPAR-γ pathway (Amici et al., 2001; Boisvert et al., 2008). NF-κB
is essential for many processes, including viral gene expression
and, consequently, replication of viruses that contain NF-κB
binding sites in their genomes. In its inactivated cytosolic form,
NF-κB is bound to inhibitory IκB proteins such as IκBα. Stimuli
like bacterial and viral infections increase the activity of the IKK
complex, which phosphorylates IκBα, leading to ubiquitination
and degradation of IκBα by proteasomes. Once NF-κB is free
from IκBα, it translocates into the cell nucleus, activating
the transcription of many genes, including the viral genes of
HSV-1 and HIV-1 (Amici et al., 2001; Boisvert et al., 2008).
Amici et al. (2001) showed that PGA1 significantly decreases
the NF-κB induction in HSV-1 infected cells by inhibiting
the IKK complex.

Similarly, another study reported that the administration of
PGJ2 reduces IKK activity in HIV-1 infected cells (Boisvert
et al., 2008). In both cases, suppression of IKK activity by
cyPGs prevents IκBα degradation and NF-κB translocation to
the nucleus. As a result, viral gene transcription and protein
synthesis were repressed, leading to a significant reduction
in virus production. In addition to interfering with NF-κB
induction, cyPGs also target another pathway independent of NF-
κB to inhibit HIV-1 replication. Kalantari et al. (2009) reported
that 15d-PGJ2 represses HIV-1 transcription by inhibiting HIV-
1 transactivating protein, Tat. While the host transcriptional
factor NF-κB binds to the 5′ long terminal repeat (LTR) of
HIV-1 to initiate transcription, viral Tat protein is recruited
to an RNA stem-loop structure called transactivation response
element (TAR) and is necessary for transcriptional elongation.
Tat then recruits transcription elongation factor p-TEFb, which
transactivates HIV LTR and allows the RNA polymerase II
to continue the transcription with high processivity. 15d-PGJ2
interferes with Tat-dependent transcriptional elongation by
covalently modifying the thiol groups of Tat’s cysteine residues
(Kalantari et al., 2009). The resulting altered Tat protein is
unable to transactivate HIV LTR in U937 human macrophages,
inhibiting the transcription and replication of the virus.

Cyclopentenone Prostaglandins Alter
Viral Glycoprotein Glycosylation
cyPGs can also inhibit viral replication at the post-translational
level by altering the glycosylation of viral glycoproteins. This is
seen in the VSV and Sendai virus (Table 2). As mentioned earlier,
112-PGJ2 inhibits the VSV replication in the epithelial monkey
cell line at two stages of the virus replication cycle. The inhibition
at the early stage is due to a block in viral protein synthesis.
Administration of 112-PGJ2 at a later stage (6–8 h post-infection)
also leads to a decrease in virus production even though viral
protein synthesis should have been completed by that time (Pica
et al., 1993). 112-PGJ2 treatment started at a later stage does
not affect viral protein synthesis, but it drastically decreases the
glucosamine incorporation into the virus glycoprotein G without
altering most cellular proteins.
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Similarly, PGA1 treatment in AGMK cells infected with
the Sendai virus results in inhibition of glycosylation of viral
glycoproteins hemagglutinin-neuraminidase (HN) and fusion
protein (F), as indicated by the decrease in glucosamine
incorporation (Santoro et al., 1987). The synthesis of non-
glycosylated viral polypeptides of RNA transcriptase complex,
including proteins P, NP, and matrix protein (M), are not
affected by PGA1 treatment. Likewise, 112-PGJ2 also markedly
reduces the incorporation of glucosamine into HN and F viral
glycoproteins without inhibiting the synthesis of cellular or viral
proteins (Amici et al., 2001). The altered HN glycoprotein cannot
insert into the cell membrane, which leads to an inhibition of
virus maturation and production.

The Effect of Cyclopentenone
Prostaglandins on Viral Transmission
cyPGs can interfere with virus transmission via their
antiproliferative activity. When PGA1 and PGJ2 are given
to human T-cell leukemia virus type-I (HTLV-1) producing MT-
2 cell line, they inhibit the growth of the cells in a dose-dependent
manner (D’Onofrio et al., 1992). These cyPGs cause the cells
to be arrested at the G1/S interface without detectable cellular
toxicity. Another study showed that PGA1 and PGJ2 inhibit
the proliferation of myeloid cells (K562 pluripotent stem cells,
HL60 promyelocytic cells, and U937 monoblastoid cells) during
early infection of HTLV-1, also in a dose-dependent manner
(Lacal et al., 1994a,b). Furthermore, out of the three myeloid cell
lines used in the study, the effect of growth inhibition is highest
in U937 monoblastoid cells, followed by HL60 promyelocytic
cells, and then K562 pluripotent stem cells. This suggests
that cyPGs have a more significant antiproliferative effect on
differentiated cells.

The primary mode of infection of HTLV-1 is cell-to-
cell transmission (Yoshida and Seiki, 1987). Furthermore, for
retrovirus-like HTLV-1, integration of proviral DNA occurs after
the initiation of cellular DNA synthesis in dividing cells (Varmus
et al., 1979). Thus, alterations in cell proliferation and cell cycle
can affect the permissiveness of recipient cells to HTLV-1. Indeed,
in U937 monoblastoid cells co-cultured with virus-donor cells,
PGA1 and PGJ2 treatments reduce the transmission of HTLV-
1 (Lacal et al., 1994a,b). However, in less differentiated K562
pluripotent stem cells and HL60 promyelocytic cells, infection of
recipient cells increased after cyPGs treatment antiproliferative
activity is observed in these cells. This suggests that the effect of
cyPGs on virus transmission is affected by cell differentiation.

The Effect of Cyclopentenone
Prostaglandins on Viral Infection Induced
Inflammation
Viral infections such as influenza virus, HIV-1, and respiratory
syncytial virus (RSV) are characterized by excessive inflammation
with the upregulation of proinflammatory cytokines and
chemokines. The amount of these proinflammatory molecules
correlates with the severity of illness (Griffin et al., 1994;
Wesselingh et al., 1994; Hornsleth et al., 2001; Welliver et al.,
2002). Given the anti-inflammatory effects of cyPGs, studies

have been done to explore the possibility of utilizing cyPGs
as a therapeutic agent for viral infections. In mice infected
with lethal influenza infection, administration of 15d-PGJ2
1 day after infection resulted in reduced influenza morbidity
and mortality, accompanied by substantially decreased gene
expression of proinflammatory cytokines (IL-6 and TNF-
α) and chemokines (CCL2, CCL3, CCL4, and CXCL10)
via activation of PPAR-γ pathway (Cloutier et al., 2012).
Similarly, 15d-PGJ2 and other PPAR-γ agonists (ciglitazone
and TGZ) can inhibit the RSV-induced release of cytokines
TNF-α, GMCSF, IL-1α, IL-6, and the chemokines CXCL8
(IL-8) and CCL5 (Arnold et al., 2007). Moreover, RSV
infection of the human airway epithelial cells causes an
increase in expression of intercellular adhesion molecule-1
(ICAM1) on the cell surface, which enhances the adhesion
of recruited immune effector cells, contributing to an intense
inflammatory response and increased cytotoxicity (Wang et al.,
2000; Arnold et al., 2007). Treatment of 15d-PGJ2 and
other PPAR-γ agonists results in inhibition of the up-
regulation of ICAM1, with the reduced cellular amount
of ICAM1 mRNA (Arnold et al., 2007). This leads to a
significant reduction in the adhesion of immune cells to
RSV-infected cells. Also, the 15d-PGJ2 treatment in RSV-
infected cells is associated with reduced activity of NF-κB, a
transcription factor essential for inflammatory responses. In
HIV-infected intestinal epithelial cells, 15d-PGJ2 also reduces
the nuclear translocation of NF-κB and represses HIV-1
transcription by decreasing the activity of IKK (Boisvert
et al., 2008). Overall, cyPGs can reduce the exaggerated
inflammatory response associated with viral infections and
great therapeutic value. PGD2/DP1 axis and 15d-PGJ2 signaling
contributes to the regulation of the CNS-specific response
to pathogens such as neurotropic coronavirus (CoV) (Vijay
et al., 2017) and acute encephalitis (Rosenberger et al., 2004),
chronic demyelinating encephalomyelitis causing neurotropic
virus called “MHV” (mouse hepatitis virus strain JHM)
(Zheng et al., 2020).

Zika virus (ZIKV), one of the most medically relevant viral
infections, affects the developing brain during pregnancy, and its
connection with congenital malformations/microcephaly is well
documented (de Oliveira et al., 2019). Neuroinflammation is one
of the critical factors contributing to ZIKV-related microcephaly,
inflammatory processes mediated by glial cells (Wen et al., 2017;
Huan et al., 2018). PGD2, PGE1, PGE2, and PGI2 have been
correlated with neuroinflammation, protecting the CNS, and
physiological responses to minimize further damage to neural
tissue. Their anti-inflammatory reaction has been demonstrated
in neuronal injuries (Shi et al., 2010) and neuroprotection during
acute brain injury (Liang et al., 2005; An et al., 2014) 15d-PGJ2
activates PPAR-γ by downregulating microglial activation despite
the proinflammatory environment because of the neural damage
(Bernardo and Minghetti, 2006).

15d-PGJ2 has demonstrated beneficial effects in the severe
diseases arising from bacterial infections of Staphylococcus
aureus (Phulwani et al., 2006), Salmonella enterica Typhimurium
(Buckner et al., 2013), leading to brain abscess, typhoid fever,
gastroenteritis, and protozoan hemoflagellate Trypanosoma
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brucei infection-causing sleeping sickness in humans
(Figarella et al., 2006).

OTHER ALPHA, BETA-UNSATURATED
CARBONYL LIPIDS AND
CYCLOPENTENONE ISOPROSTANES

There is another category of highly reactive electrophilic
molecules, which react and modify both proteins and DNA
resulting in toxicity, protein dysfunction (Sayre et al., 2006) or
tissue damage and disease progression (Lee and Park, 2013).
These are α, β-unsaturated aldehydes such as acrolein (ACR), 4-
hydroxy-2-non-enal (4-HNE), and crotonaldehyde (CRA) are the
most reactive and toxic α, β-unsaturated aldehydes (Lee and Park,
2013).These induce toxicity because of depletion of cellular GSH
and inactivation of antioxidant enzymes (GPx and thioredoxin;
TRx) subsequently leading to ROS production, reactive nitrogen
species (RNS), and free radicals (Stocker and Keaney, 2004;
Lee and Park, 2013). Lipid peroxidation (LPO)-derived α, β-
unsaturated aldehydes play an important pathophysiological role
in vascular diseases by inducing the production of various
atherogenic factors, inflammatory mediators, activation of NF-κB
signaling pathway, redox signaling mediators leading to cellular
and tissue injury (Lee and Park, 2013).

Isoprostanes (IsoPs) are PG-like compounds that are
produced in vivo independently of COX enzymes, primarily
by ROS-mediated or free radical-induced peroxidation of
arachidonic acid (Stamatakis and Perez-Sala, 2006). IsoPs along
with cyPGs are reactive electrophilic eicosanoids that can form
covalent adducts with thiol-containing molecules, cysteine
residues in proteins through Michael addition (Stamatakis and
Perez-Sala, 2006). Oxidation of DHA in the central nervous
system, results in the formation of IsoP-like compounds, termed
neuroprostanes and are uniquely valuable to understanding the
clinical pharmacology of antioxidants (Montuschi et al., 2007).
Cyclopentenone IsoPs are formed abundantly in brain tissue
under conditions of oxidative stress (glutathione depletion, ROS
generation, activation of redox-sensitive signaling pathways) and
may contribute to neuronal death causing neurodegeneration
and should be addressed when designing neuroprotective
therapies (Musiek et al., 2006, 2007; Porta et al., 2013). IsoPs are
measured in the plasma, urine, or cerebral spinal fluid (CSF) and
their increase has been observed in obese adults (Morrow, 2005;
Basu, 2008), ischemia-reperfusion (Sakamoto et al., 2002; Rossi
et al., 2004), Alzheimer’s disease (AD) (Montine et al., 1998,
1999a; Pratico et al., 1998, 2000), Huntington’s disease (Montine
et al., 1999b), Parkinson’s disease (Fessel et al., 2003; Seet et al.,
2010), and amyotrophic lateral sclerosis (ALS) (D’Amico et al.,
2013). Few studies have investigated the associations between
levels of F2-IsoPs and risk of breast cancer (Rossner et al., 2006),
hepatocellular carcinoma (Wu et al., 2008), prostate cancer
(Barocas et al., 2011; Brys et al., 2013) gastric cancer (Asombang
et al., 2013). IsoPs are increased in patients with genetic disorders
such as autism-spectrum disorders (Ming et al., 2005; Gorrindo
et al., 2013), Smith–Lemli–Opitz Syndrome (SLOS) (Korade
et al., 2013), sickle cell anemia (Akohoue et al., 2007), cystic

fibrosis (Collins et al., 1999; Ciabattoni et al., 2000; Montuschi
et al., 2000), Rett syndrome (RTT) (De Felice et al., 2009, 2011;
Signorini et al., 2011; Durand et al., 2013), and in various inborn
errors of metabolism (Mc Guire et al., 2009).

SUMMARY AND FUTURE DIRECTIONS

There is significant evidence that cyPGs (PGA1, PGA2, and
PGJ2), and metabolites of PGJ2 (15d-PGJ2 and 112- PGJ2) can
induce anti-inflammatory and antiviral effects through covalent
modification reactions with their α, β-unsaturated carbonyl
group. cyPGs can exert anti-inflammatory and antiviral effects
in various ways depending on the host cell and pathogen type.
Cell type is not the only influencer on the anti-inflammatory
effects of cyPGs. The concentration of cyPGs and the length/time
of exposure to cyPGs have varying anti-inflammatory and
antiviral effects. Based on these factors, cyPGs can show biphasic
targeting of inflammation (Garzon et al., 2011). At high doses,
15d-PGJ2 has a dual action of stimulating anti-inflammation
and anti-proliferation. Still, it can be toxic and induce both
inflammation and cell proliferation at lower doses, and the
biphasic pharmacodynamics has to be controlled carefully
(Abbasi et al., 2016). Dose-related efficacy and safety of oral
DP2 receptor antagonists fevipiprant (QAW039), timapriprant
(OC000459), and BI 671800 have been tested in patients with
allergic asthma and COPD, and PGD2 has shown anticancer
effects in NSCLC (non-small cell lung carcinoma), kidney and
lung fibrosis, and gastric cancer (Bateman Guerreros et al., 2017;
Jandl and Heinemann, 2017; Pearson et al., 2017; Sandham
et al., 2017a,b; Murillo et al., 2018; Brightling et al., 2020).
Further research on outcomes based on specific concentrations
is warranted. PPAR-γ antagonist (GW9662) and PPAR-γ ligands
are new therapeutic targets in sepsis, hemorrhagic shock, and
inflammation (Kaplan et al., 2005, 2010; Zingarelli and Cook,
2005; Chima et al., 2011). Synthetic PPAR-γ ligands rosiglitazone
(Avandia) and pioglitazone have exhibited anti-inflammatory
and antiviral effects in an EcoHIV mouse model that could
decrease neurodegeneration. These drugs prove promising in
treating HIV-1 associated neurocognitive disorders (Omeragic
et al., 2020). This knowledge could significantly impact how
viruses and inflammation can be treated.

The outcome of the 15d-PGJ2 treatment depends upon
its exogenously administered dose as it stimulates anti-
inflammation and anti-proliferation at high doses while
can have toxic effects at a lower dose (Abbasi et al., 2016).
Many strategies have been developed to deal with the
biphasic pharmacodynamics of 15d-PGJ2 and one of them
is using a nanoemulsion (NE) composed of triolein/distearoyl
phosphatidylcholine/Tween 80 at a high encapsulation ratio
(>83%) allowing slow-release kinetics (Abbasi et al., 2016). NE
retained a high proportion of 15d-PGJ2 and directly delivered
it to the cytosol, where proapoptotic targets are located, and
could bypass cell membrane-associated targets involved in cell
proliferation (Abbasi et al., 2016). NE could deliver 15d-PGJ2
to its desired site of action, excluding undesired sites, on a
subcellular level (Abbasi et al., 2016) and could be used as
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one of the strategies for treatment. Since the use of solid
lipid nanoparticles (SLN) can improve therapeutic properties by
increasing drug efficiency and availability, 15d-PGJ2-SLN was
developed and tested for its immunomodulatory potential. The
15d-PGJ2-SLN formulation showed good colloidal parameters,
encapsulation efficiency (96%), and stability (up to 120 days)
with low hemolytic effects as compared to unloaded SLN in
in vivo experiments. The 15d-PGJ2-SLN formulation using
low concentrations reduced neutrophil migration in three
inflammation models tested. 15d-PGJ2-SLN increased IL-10
levels and reduced IL-1β as well as IL-17 in peritoneal
fluid thus highlighting the perspectives of a potent anti-
inflammatory system (de Melo et al., 2016). cyPGs have a wide
spectrum of intracellular targets ranging from nuclear factors
to mitochondria. Introduction of cyclopentenone moiety into
molecules (jasmonates and chalcones) boosts their anticancer
potential (Conti, 2006). Despite advancements made in the
pharmacodynamics of cyPGs, a significant effort is needed to
explore their unique therapeutic properties and tailor them
to be used as leading anti-inflammatory, anticancer, and
antiviral drugs.
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