
*For correspondence: liuwj@im.

ac.cn (WJL); sunlei362@im.ac.cn

(LS)

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 18

Received: 19 December 2016

Accepted: 07 June 2017

Published: 08 June 2017

Reviewing editor: Ronald N

Germain, National Institute of

Allergy and Infectious Diseases,

United States

Copyright Liu et al. This article

is distributed under the terms of

the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Cyclophilin A-regulated ubiquitination is
critical for RIG-I-mediated antiviral
immune responses
Wei Liu1,2†, Jing Li1†, Weinan Zheng1, Yingli Shang3, Zhendong Zhao1,2,
Shanshan Wang1,2, Yuhai Bi1, Shuang Zhang1, Chongfeng Xu4, Ziyuan Duan4,
Lianfeng Zhang5, Yue L Wang6, Zhengfan Jiang7, Wenjun Liu1,2*, Lei Sun1,2*

1CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of
Microbiology, Chinese Academy of Sciences, Beijing, China; 2University of Chinese
Academy of Sciences, Beijing, China; 3College of Veterinary Medicine, Shandong
Agricultural University, Tai’an, China; 4Institute of Genetics and Developmental
Biology, Chinese Academy of Sciences, Beijing, China; 5Key Laboratory of Human
Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal
Science, Chinese Academy of Medical Sciences and Comparative Medical Center,
Peking Union Medical College, Beijing, China; 6Department of Pathology, University
of Chicago, Chicago, United States; 7The Education Ministry Key Laboratory of Cell
Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing,
China

Abstract RIG-I is a key cytosolic pattern recognition receptor that interacts with MAVS to

induce type I interferons (IFNs) against RNA virus infection. In this study, we found that cyclophilin

A (CypA), a peptidyl-prolyl cis/trans isomerase, functioned as a critical positive regulator of RIG-I-

mediated antiviral immune responses. Deficiency of CypA impaired RIG-I-mediated type I IFN

production and promoted viral replication in human cells and mice. Upon Sendai virus infection,

CypA increased the interaction between RIG-I and its E3 ubiquitin ligase TRIM25, leading to

enhanced TRIM25-mediated K63-linked ubiquitination of RIG-I that facilitated recruitment of RIG-I

to MAVS. In addition, CypA and TRIM25 competitively interacted with MAVS, thereby inhibiting

TRIM25-induced K48-linked ubiquitination of MAVS. Taken together, our findings reveal an

essential role of CypA in boosting RIG-I-mediated antiviral immune responses by controlling the

ubiquitination of RIG-I and MAVS.

DOI: 10.7554/eLife.24425.001

Introduction
The innate immune system is the first line of defense against microbial pathogen invasion via the rec-

ognition of pathogen-associated molecular patterns (PAMPs) with the help of pattern recognition

receptors (PRRs) (Barbalat et al., 2011; Kawai and Akira, 2010). Among these PRRs, RIG-I like

receptors (RLRs) function as cytoplasmic RNA sensors that recognize viral RNA and activate a signal-

ing pathway, which is essential for the production of type I interferons (IFNs) (Kato et al., 2011).

RIG-I is required for type I IFN production in response to Sendai virus (SeV), Newcastle disease virus

(NDV), influenza A virus (IAV), vesicular stomatitis virus (VSV), and Japanese encephalitis virus (JEV)

(Goubau et al., 2013; Kato et al., 2006; Loo et al., 2008). Following ligand binding, ubiquitinated

RIG-I is recruited to the mitochondria-associated membrane where it binds to MAVS (also known as
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IPS-1, Cardif, and VISA) to initiate innate immune signaling (Hou et al., 2011; Kawai et al., 2005;

Meylan et al., 2005; Seth et al., 2005; Xu et al., 2005).

Cyclophilin A (CypA, encoded by PPIA) is a peptidyl-prolyl cis/trans isomerase (PPIase) that is

expressed ubiquitously in all type of cells. It is the major cellular target for the immunosuppressive

drug cyclosporin A (CsA) and is involved in protein folding, cell signaling, inflammation, and tumori-

genesis (Handschumacher et al., 1984; Lu et al., 2007). Moreover, CypA functions as an important

host factor that regulates the replication of a number of viruses, including human immunodeficiency

virus type I (HIV-1), hepatitis C virus (HCV), human papillomavirus (HPV), IAV, rotavirus (RV), enterovi-

rus-71 (EV71) virus, and infectious bursal disease virus (IBDV), which expands the role of CypA in

virus infection (Bienkowska-Haba et al., 2009; Chatterji et al., 2009; Towers et al., 2003;

He et al., 2012; Liu et al., 2012b, 2009; Qing et al., 2014; Wang et al., 2015; Xu et al., 2010). It

has been established that CypA interacts directly with viral protein to regulate virus replication. For

example, our previous studies showed that CypA-overexpressing transgenic mice exhibited resis-

tance to influenza A virus infection (Li et al., 2016). We further found that CypA interacted with influ-

enza A virus M1 protein and inhibited virus replication by accelerating ubiquitin-proteasome

degradation of the M1 protein (Liu et al., 2012b, 2009; Xu et al., 2010). Yet several lines of evi-

dence indicate that CypA can also regulate virus replication through modulating host immune

responses. For instance, CypA interacted with the newly synthesized HIV-1 CA domain and subse-

quently activated the transcription factor IRF3 to promote the production of type I IFNs in dendritic

cells (Manel et al., 2010). CypA inhibited RV replication by facilitating IFN-b production (He et al.,

2012). However, the molecular mechanism of how CypA regulates virus-mediated type I IFN produc-

tion is poorly understood.

The present study indicates that CypA promotes RIG-I mediated type I IFN production and inhib-

its viral replication both in vitro and in vivo. We further demonstrate that CypA facilitates IFN

responses through promoting K63-linked ubiquitination of RIG-I and inhibiting K48-linked ubiquitina-

tion of MAVS. Therefore, our studies identify a previously unknown mechanism that CypA promotes

RIG-I-mediated type I IFN production to suppress virus replication, which adds up a new facet of

CypA in host antiviral immunity.

Results

CypA inhibits virus replication by enhancing type I IFN production
Our previous studies have demonstrated that CypA inhibits IAV replication both in vitro and in vivo

(Li et al., 2016; Liu et al., 2012b, 2009). To further investigate the impact of CypA on the

eLife digest In mammals, an enzyme called Cyclophilin A (CypA) is found in almost all tissues

and plays important roles in many biological processes including the production of proteins and

inflammation. Recent work suggests that it also plays a role in fighting virus infections.

CypA can interact directly with a protein from viruses to inhibit the virus from multiplying. Several

lines of evidence indicate that CypA can also regulate virus replication by stimulating the production

of molecules called type I interferons, but it is not clear how this could work.

A receptor protein called RIG-I can detect the presence of a virus and interact with another

protein called MAVS to stimulate immune responses, leading to the production of type I interferons.

Liu, Li et al. used human cells and mice to investigate how CypA affects this process. The

experiments show that the levels of CypA in cells increase during virus infection. Cells that lack

CypA produce fewer type I interferon molecules, which gives the virus more of a chance to multiply.

Further experiments show that CypA alters the ubiquitin-mediated protein modification of RIG-I and

MAVS.

The findings of Liu, Li et al. identify a new way in which CypA boosts immune responses during

virus infections. A future challenge is to develop new drugs that regulate the protein modification of

RIG-I and MAVS, which may help to treat virus infections.

DOI: 10.7554/eLife.24425.002
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replication of other RIG-I-recognized RNA viruses, such as SeV and VSV, virus growth was monitored

in shRNA-based CypA-knockdown 293T cells (293T/CypA-) and wild-type (WT) 293T cells (293T/

CypA+). The hemagglutination (HA) titer of SeV and median tissue culture infective dose (TCID50) of

VSV in 293T/CypA- cells was strikingly increased compared with that in 293T/CypA+ cells

(Figure 1A,B), indicating that CypA plays an inhibitory role in the replication of SeV and VSV. To

confirm the role of CypA in antiviral responses in a CypA deficient system, we purchased CypA-defi-

cient (Ppia�/�) 129 mice from Jackson Laboratory and crossed them to WT 129 mice. WT, Ppia+/�

and Ppia�/� mice were identified by PCR (Figure 1—figure supplement 1A). The absence of Ppia in

CypA-deficient bone marrow-derived macrophages (BMDMs) was examined by semi-quantitative

PCR and Western blotting (Figure 1—figure supplement 1B and C). We further determined the

effect of CypA on SeV replication in BMDMs from WT and Ppia�/� mice. Consistent with the results

in 293T cells, we found that the mRNA expression level of SeV M gene was higher in Ppia�/�

BMDMs than that in WT BMDMs (Figure 1C). Collectively, these data suggested that CypA inhibited

the replication of RIG-I-recognized RNA viruses.

Considering RIG-I-recognized RNA viruses can trigger the RIG-I-mediated signaling pathway and

promote the production of type I IFN, which in turn inhibits virus replication, we examined the effect

of CypA on production of type I IFNs and interferon-stimulated genes (ISGs, such as Ifit1, Ifit2, and

Ccl5). We performed IFN-b promoter-driven luciferase assay in 293T cells (Figure 1D), and quantita-

tive PCR (Figure 1E,G) and ELISA assays (Figure 1F) in BMDMs in response to transfected Poly (I:C)

or infection of SeV, VSV or IAV with the NS1R38A/K41A mutant (IAV-mut, which induces high levels

of IFN-b, [Donelan et al., 2003]), respectively. Absence of CypA remarkably decreased RIG-I-medi-

ated production of type I IFNs and ISGs. We also obtained similar results with other cell types, such

as human primary monocytes (Figure 1H,I, Figure 1—figure supplement 2C,H,I), 293 T cells (Fig-

ure 1—figure supplement 2A,B) and U937 cells (Figure 1—figure supplement 2C–G) triggered by

SeV or VSV. Collectively, these findings suggested that CypA positively regulated expression of type

I IFNs and ISGs against RIG-I-recognized RNA virus infection. We further examined the effect of

CypA on RIG-I-independent signaling, such as encephalomyocarditis virus (EMCV)-triggered MDA5

pathway and herpes simplex virus type 1 (HSV-1)-triggered cGAS-STING pathway. CypA promoted

IFN-b and ISGs production and inhibited the replication of EMCV (Figure 1—figure supplement

3A,B), but had no impact on HSV-1-triggered cGAS-STING pathway (Figure 1—figure supplement

3C).

Altered host cell gene expression is a universal consequence of virus infection. When we investi-

gated the mRNA and protein levels of CypA in BMDMs, 293T cells, U937 cells and human mono-

cytes infected with SeV, VSV or IAV-mut, we found that CypA was highly inducible, whereas Poly (I:

C) transfection or IFN-b treatment made no difference to CypA expression, (Figure 1—figure sup-

plement 4A–D), suggesting that the induction of CypA can be triggered by viruses and CypA is

involved in cellular antiviral response. Taken together, upon virus infection, CypA expression was

upregulated, which inhibited the replication RIG-I-recognized RNA virus by enhancing production of

type I IFNs. In the following studies, we used SeV as a naturally occurring agent that strongly triggers

antiviral immunity via RIG-I-mediated signaling pathway.

CypA deficiency impairs antiviral responses in vivo
Having known that CypA promotes type I IFN production and inhibits the replication of RIG-I-recog-

nized RNA virus in vitro, we next sought to determine CypA-mediated antiviral responses in vivo. In

a mouse model of SeV infection, all five monitored SeV-infected Ppia�/� mice died at 9 d after infec-

tion, whereas three of five (60%) SeV-infected WT mice survived and remained healthy for the dura-

tion of the infection study (Figure 2A), indicating deficiency of CypA accelerated SeV infection-

induced death of mice. Anatomical analysis showed that the lung indices of SeV-infected mice were

increased at 7 d after infection. Notably, SeV-infected Ppia�/� mice exhibited much higher lung indi-

ces than that of WT mice (Figure 2B). Consistently, gross lesion of lung in Ppia�/� mice infected

with SeV was severer than that in WT mice (Figure 2C). We further performed histopathological

examination of lung, nasal turbinate, and trachea tissues at day 2, 5 and 7 post infection and found

that SeV-infected Ppia�/� mice displayed severe bronchopneumonia, interstitial pneumonia, conges-

tion in blood vessels, and dropout of the mucous epithelium, whereas SeV-infected WT mice only

displayed slight bronchopneumonia and congestion in blood vessels during the infection

(Figure 2D, Figure 2—figure supplement 1A,B). These data showed that tissue damage was
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Figure 1. CypA promotes production of type I IFNs against virus infection. (A) HA assays of SeV in 293T/CypA+ or 293T/CypA- cells infected with SeV

(MOI = 1) for the indicated time periods. (B) TCID50 assays of proliferation level of VSV in 293T/CypA+ or 293T/CypA- cells infected with VSV (MOI = 1)

for the indicated time periods. (C) Quantitative PCR analysis of SeV M mRNA in wild-type (WT) or CypA-deficient (Ppia�/�) BMDMs infected with SeV

for the indicated time periods. (D) Luciferase activity of lysates in 293T/CypA+ or 293T/CypA- cells transfected for 24 hr with IFN-b luciferase reporter

(IFN-b-Luc), together with Poly (I:C) (TpIC) or then treated with SeV, VSV, IAV-mut for 6 hr. (E) Quantitative PCR analysis of Ifnb1 and Ifna mRNA in WT

or Ppia�/� BMDMs infected with SeV, VSV or IAV-mut for 6 hr. (F) ELISA of IFN-b and IFN-a production in the supernatants of WT or Ppia�/� BMDMs

treated with SeV for 12 hr. (G) Quantitative PCR analysis of Ifit1, Ifit2, and Ccl5 mRNA in WT or Ppia�/� BMDMs treated with SeV for 6 hr. (H and I)

Quantitative PCR analysis of IFNB1, IFNA (H) IFIT1, IFIT2, or CCL5 (I) mRNA in human monocytes transfected with CypA siRNA or scrambled siRNA for

48 hr and then treated with SeV for 6 hr. Data are shown as mean ± SD (A: n = 5; B-I: n = 3). *p<0.05, **p<0.01, ***p<0.001 (unpaired, two-tailed

Student’s t-test). Data are from one representative of at least three independent experiments.

DOI: 10.7554/eLife.24425.003

The following source data and figure supplements are available for figure 1:

Source data 1. Quantification of viral replication and type I IFN production for Figure 1.

DOI: 10.7554/eLife.24425.004

Figure supplement 1. Identification of Ppia-deficient mice.

DOI: 10.7554/eLife.24425.005

Figure supplement 2. CypA promotes production of type I IFNs against virus infection in 293T, U937 cells and human monocytes.

DOI: 10.7554/eLife.24425.006

Figure 1 continued on next page
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aggravated in CypA deficient mice, correlating with a higher viral load in the lungs, as measured by

expression of NP and M genes of SeV (Figure 2E). Most importantly, we found deficiency of CypA

reduced expression of type I IFNs and downstream ISGs in lungs (Figure 2F–H) and spleens (Fig-

ure 2—figure supplement 1C,D), suggesting that CypA also promoted type I IFN production in

vivo. Collectively, CypA inhibited SeV replication in vivo through augmenting of expression of IFNs

and downstream ISGs.

CypA promotes activation of IRF3 and NF-kB signaling pathways
It is well established that expression of type I IFN genes is mainly regulated by two transcription fac-

tors IRF3 and NF-kB. To investigate the effect of CypA on SeV-induced activation of IRF3 and NF-k

B, interferon stimulated response element (ISRE) and NF-kB luciferase reporter constructs were co-

transfected with CypA or control vector in 293T/CypA- cells. We found that ISRE- and NF-kB-

responsive luciferase activity induced by SeV infection were dramatically lower in the absence of

CypA (Figure 3A,B), indicating that CypA was involved in both IRF3- and NF-kB-mediated type I

IFN expression. In line with this observation, the activated dimer form of IRF3 (Figure 3C) and phos-

phorylation of IRF3 and p65 (Figure 3D) were distinctly suppressed in SeV-infected 293T/CypA- cells

compared with those in SeV-infected 293T/CypA+ cells. Moreover, CypA deficiency also inhibited

phosphorylation of IRF3, p65, IKKa/b, and IkBa in cultured BMDMs, accompanied with lower

expression levels of RIG-I and MAVS (Figure 3E). These data indicate that CypA is vital for activation

of IRF3 and NF-kB signaling pathways.

CypA targets RIG-I and MAVS to regulate RIG-I signaling pathway
In an attempt to identify the target protein of CypA, we initially tested the effect of CypA on differ-

ent components of the RLR pathway in their activation of relevant promoters in a reporter assay.

293T/CypA- cells were transfected with expression vectors containing RIG-I-N (CARD domain of

RIG-I), MDA5-N (CARD domain of MDA5), MAVS, TBK1, or IRF3/5D (activated form of IRF3), CypA

or control vector, together with luciferase reporter constructs driven by promoters of genes encod-

ing IFN-b, or the transcription factor NF-kB or ISRE. We found that CypA promoted the activation of

the IFN-b promoter (Figure 4A), ISRE (Figure 4B) and NF-kB (Figure 4C) induced by overexpression

of RIG-I-N, MDA5-N, and MAVS, but not induced by TBK1 or IRF3/5D, suggesting that RIG-I,

MDA5, and MAVS were involved in CypA-regulated RLR pathway. Consistent with these findings,

CypA increased the dimerization of IRF3 induced by overexpression of RIG-I, MDA5 and MAVS

(Figure 4D). We next sought to determine whether CypA could interact with these key components.

Coimmunoprecipitation assay did show that CypA interacted with the transfected RIG-I, MDA5, or

MAVS in 293T cells (Figure 4E). We further observed the endogenous CypA-RIG-I interaction and

CypA-MAVS interaction in SeV-infected conditions (Figure 4F,G). Confocal microscopy experiments

indicated that CypA co-localized with the endogenous RIG-I and MAVS in 293T cells after infection

with SeV (Figure 4H), which are consistent with the results of Figure 4F,G, indicating that RIG-I and

MAVS were the target proteins of CypA to augment RIG-I-mediated type I IFN production.

CypA enhances TRIM25-mediated K63-linked ubiquitination of RIG-I to
facilitate recruitment of RIG-I to MAVS
Following ligand binding, RIG-I is ubiquitinated by the E3 ligase TRIM25. We have known that RIG-I

is the target of CypA, it is necessary to investigate whether CypA is involved in this process. There-

fore, we first investigated the effect of CypA on ubiquitination of RIG-I. In 293T/CypA- cells, trans-

fected CypA enhanced exogenous TRIM25-mediated K63-linked, but not K48-linked ubiquitination

of RIG-I (Figure 5A) and increased the interaction between TRIM25 and RIG-I (Figure 5C). Further-

more, we observed similar results of endogenous ubiquitination of RIG-I and endogenous interaction

Figure 1 continued

Figure supplement 3. Effect of CypA on RIG-I-independent signaling.

DOI: 10.7554/eLife.24425.007

Figure supplement 4. CypA is inducible against virus infection.

DOI: 10.7554/eLife.24425.008
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Figure 2. CypA positively regulates type I IFN production and antiviral responses in vivo. (A) Survival of WT and Ppia�/� mice (n = 5) infected with SeV

(2000 PFU/mouse) via nasal inoculation and monitored for 14 days. (B) Lung index (100� lung/body weight) of WT and Ppia�/� mice (n = 5) infected

with SeV for 2 and 7 days. (C) Gross lesion of lungs from WT and Ppia�/� mice inoculated with SeV for 7 days. (D) H & E stainings of lungs of WT and

Ppia�/� mice (n = 3) infected with SeV or mock-infected with PBS for 2, 5, and 7 days. Scale bars, 100 mm. (E) Quantitative PCR analysis of SeV NP or M

Figure 2 continued on next page
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between TRIM25 and RIG-I in BMDMs upon SeV infection (Figure 5B,D). It is well known that

TRIM25 interacts with RIG-I-N to deliver the Lys 63-linked ubiquitin to the CARDs of RIG-I

(Gack et al., 2007). We performed coimmunoprecipitation assays to explore the CypA-binding

Figure 2 continued

mRNA in WT or Ppia�/� mice treated with SeV for the indicated time points. (F) ELISA of IFN-b and IFN-a production in lung tissues of WT or Ppia�/�

mice treated with SeV for the indicated time points. (G and H) Quantitative PCR analysis of Ifnb1, Ifna (G), Ifit1, Ifit2, and Ccl5 (H) mRNA in lung tissues

of WT or Ppia�/� mice treated with SeV for the indicated time points. Data are shown as mean ± SD (B: n = 5; E-H: n = 3). *p<0.05 and **p<0.01

(unpaired, two-tailed Student’s t-test). Data are representative of two independent experiments.

DOI: 10.7554/eLife.24425.009

The following source data and figure supplement are available for figure 2:

Source data 1. Quantification of survival, lung index, viral replication and type I IFN production for Figure 2.

DOI: 10.7554/eLife.24425.010

Figure supplement 1. CypA positively regulates type I IFN production and the antiviral responses in vivo.

DOI: 10.7554/eLife.24425.011

Figure 3. CypA deficiency suppresses IRF3 and NF-kB activation. (A and B) Luciferase activity of lysates in 293T/CypA- cells transfected for 24 hr with

CypA or control vector, together with either ISRE-Luc (A) or NF-kB-Luc (B) and then treated with SeV for 6 hr. Results are presented relative to the

luciferase activity in control cells treated with luciferase reporter and empty vector. (C) Native PAGE and immunoblot analysis of IRF3 in dimer or

monomer form and phosphorylated IRF3 in 293T/CypA+ and 293T/CypA- cells infected with SeV for 6 hr. (D) Immunoblot analysis of the indicated

proteins in 293T/CypA+ and 293T/CypA- cells infected with SeV for the indicated time periods. (E) Immunoblot analysis of the indicated proteins in WT

and Ppia�/� BMDMs from infected with SeV for the indicated time points. Data are shown as mean ± SD (n = 3). *p<0.05 and **p<0.01 (unpaired, two-

tailed Student’s t-test). Data are representative of at least three independent experiments.

DOI: 10.7554/eLife.24425.012

The following source data is available for figure 3:

Source data 1. Quantification of luciferase activity for Figure 3.

DOI: 10.7554/eLife.24425.013
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Figure 4. CypA interacts with RIG-I and MAVS to activate RIG-I signaling pathway. (A–C) Luciferase activity of lysates in 293T/CypA- cells transfected for

24 hr with luciferase reporter constructs IFN-b-Luc (A), ISRE-Luc (B) or NF-kB-Luc (C), plus Flag-MAVS, Flag-RIG-I-N, Flag-MDA5-N, Flag-IRF3/5, or Myc-

TBK1, along with Myc-CypA or an empty vector. Results are presented relative to the luciferase activity in control cells treated with luciferase reporter

and empty vector. (D) Native PAGE and immunoblot analysis of IRF3 in dimer or monomer form and phosphorylated IRF3 in 293T/CypA- cells

Figure 4 continued on next page
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region of RIG-I. We found that the CypA interacted with RIG-I-C (C-terminal of RIG-I) (Figure 5E),

indicating that CypA and TRIM25 bind to different regions of RIG-I. It is possible that the binding of

CypA to RIG-I facilitates the interaction between TRIM25 and RIG-I-N. We next assessed the effect

of CypA on recruitment of RIG-I to mitochondria. The cytoplasmic fraction (Cyto), mitochondrial frac-

tion (Mito) and whole-cell lysate (WCL) from SeV-infected WT and Ppia�/� BMDMs were separated

for western blotting analysis. We observed that RIG-I induction was strongly decreased and much

less RIG-I was found in mitochondria of BMDMs when CypA was absent (Figure 5F). We also

detected the expression and location of endogenous RIG-I in 293T/CypA+ and 293T/CypA- cells

that were stained with Mito-Tracker and infected with SeV by using confocal microscopy. The results

confirmed that CypA promoted RIG-I induction and facilitated recruitment of RIG-I to mitochondria

upon SeV infection (Figure 5G), which are consistent with the results of Figure 5F. We then investi-

gated the effect of CypA on the interaction between RIG-I and MAVS. Coimmunoprecipitation

experiment indicated that CypA enhanced RIG-I-MAVS interaction (Figure 5H). More interestingly,

aside from the well-known cytoplasmic distribution (Galat and Metcalfe, 1995), CypA was also

detected in mitochondria and its expression level was upregulated both in mitochondria and cyto-

plasm against SeV infection (Figure 5F), a finding confirmed by an immunofluorescence assay in

293T/CypA+ cells (Figure 5I), suggesting that CypA plays important roles in response to virus infec-

tion both in mitochondria and cytoplasm. Taken together, upon SeV infection, CypA increased the

interaction between the E3 ubiquitin ligase TRIM25 and RIG-I and promoted K63-linked ubiquitina-

tion of RIG-I to facilitate recruitment of RIG-I to MAVS, leading to up-regulation of RIG-I signaling

pathway.

CypA contributes to the stability of MAVS
Notably, more MAVS was observed in WT BMDMs than in Ppia�/� BMDMs, when we assessed the

protein expression levels in WCL (Figure 3E). Thus, we sought to examine whether CypA affects the

stability of MAVS. 293T/CypA+ and 293T/CypA- cells were transfected with MAVS, RIG-I or MDA5

and treated with CHX for various times. The western blotting result showed that CypA inhibited the

degradation of exogenous MAVS, but had no effect on the stability of exogenous RIG-I and MDA5

(Figure 6A). Also, CypA enhanced the stability of endogenous MAVS without or with SeV infection

(Figure 6B,C). These data indicated that CypA plays key a role in stabilizing MAVS.

Proteasome- and lysosome-dependent pathways are principally responsible for intracellular pro-

tein degradation, so we investigated which pathway mediates the degradation of MAVS. In 293T/

CypA+ and 293T/CypA- cells, the proteasome inhibitor MG132 significantly inhibited the degrada-

tion of MAVS, whereas the lysosome inhibitor NH4Cl did not (Figure 6D), indicating that the degra-

dation of MAVS is controlled by ubiquitin-meditated proteolysis. We further investigated the effects

of CypA on MAVS ubiquitination. MAVS ubiquitination was inhibited in the presence of CypA

(Figure 6E). Consistently, in coimmunoprecipitation experiments, we also found that CypA signifi-

cantly decreased the ubiquitination of MAVS (Figure 6F). To further determine the MAVS domain

responsible for CypA-regulated MAVS degradation, we tested the degradation of various MAVS

truncation constructs as well as a construct of MAVS amino acids 360–540 with the substitutions

K371A and K420A (360–540 KK-AA, which completely withstood MAVS degradation) (You et al.,

2009). The absence of CypA accelerated the degradation of MAVS amino acids 360–540, while

Figure 4 continued

transfected for 24 hr with Flag-MAVS, Flag-RIG-I, Flag-MDA5, or Myc-TBK1, along with an empty vector or Myc-CypA. (E) Immunoblot analysis of

lysates of 293T/CypA+ cells transfected for 24 hr with Flag-MAVS, Flag-RIG-I, Flag-MDA5, or Flag-IRF3, along with Myc-CypA, followed by

immunoprecipitation with anti-Flag beads. (F and G) Immunoblot analysis of lysates in WT BMDMs infected with SeV for 6 hr, followed by

immunoprecipitation with control mouse IgG or anti-CypA antibodies. Lysates and immunoprecipitation extracts were probed with CypA and RIG-I (F)

or MAVS (G) antibodies. (H) Confocal microscopy of endogenous CypA and MAVS or RIG-I in 293T/CypA+ cells, treated with SeV for 6 hr. Scale bars,

10 mm. Data are shown as mean ± SD (n = 3). *p<0.05 and **p<0.01 (unpaired, two-tailed Student’s t-test). Data are representative of at least three

independent experiments.

DOI: 10.7554/eLife.24425.014

The following source data is available for figure 4:

Source data 1. Quantification of luciferase activity for Figure 4.

DOI: 10.7554/eLife.24425.015
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Figure 5. CypA enhances TRIM25-mediated K63-linked ubiquitination of RIG-I and facilitates recruitment of RIG-I to MAVS. (A) Immunoblot analysis of

lysates in 293T/CypA- cells transfected for 24 hr with Flag-RIG-I, along with HA-K63-Ub, HA-K48-Ub, Myc-TRIM25, or Myc-CypA, followed by

immunoprecipitation with anti-Flag beads. (B) Immunoblot analysis of lysates in WT and Ppia�/� BMDMs infected with SeV for 6 hr, followed by

immunoprecipitation with control mouse IgG or anti-RIG-I antibodies. Lysates and immunoprecipitation extracts were probed with K63-Ub, RIG-I and

CypA antibodies. (C) Immunoblot analysis of lysates in 293T/CypA- cells transfected with Flag-RIG-I, Myc-TRIM25, or Myc-CypA for 24 hr, and

immunoprecipitated with anti-Flag beads. (D) Immunoblot analysis of lysates in WT and Ppia�/� BMDMs infected with SeV for 6 hr, followed by

immunoprecipitation with control mouse IgG or anti-RIG-I antibodies. Lysates and immunoprecipitation extracts were probed with RIG-I, TRIM25, CypA

and antibodies. (E) Immunoblot analysis of lysates in 293T/CypA- cells transfected with Myc-CypA and Flag-RIG-I, Flag-RIG-I-C or Flag-RIG-I-N for 24 hr,

and immunoprecipitated with anti-Flag beads. (F) Immunoblot analysis of lysates in WT and Ppia�/� BMDMs after SeV infection or mock-infection for 6

hr, followed by mitochondrial-cytoplasm extraction. (G) Confocal microscopy of endogenous RIG-I in 293T/CypA+ and 293T/CypA- cells stained with

Mito-Tracker after SeV infection or mock infection for 6 hr. Scale bars, 10 mm. (H) Immunoblot analysis of lysates in 293T/CypA+ and 293T/CypA- cells

Figure 5 continued on next page
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substitutions K371A and K420A completely withstood the degradation (Figure 6G). Together, CypA

suppressed ubiquitin-mediated proteasome degradation of MAVS.

CypA stabilizes MAVS by inhibiting TRIM25-mediated K48-linked
ubiquitination of MAVS
E3 ubiquitin ligases TRIM25, Smurf1, Smurf2, AIP4, RNF5, and RNF125 have been shown to mediate

K48-ubiquitination and degradation of MAVS (Arimoto et al., 2007; Castanier et al., 2012;

Pan et al., 2014; Wang et al., 2012; You et al., 2009; Zhong et al., 2010), so it is important to

identify the specific ubiquitin ligase involved in CypA-regulated MAVS ubiquitination. We first inves-

tigated which E3 ligase affects CypA-regulated type I IFN production. The luciferase assay indicated

that CypA increased the expression of IFN-b in the presence of TRIM25 and Smurf1 but not with

AIP4, RNF125 and RNF5 (Figure 7A). We next evaluated whether CypA regulated TRIM25-

and Smurf1-mediated MAVS stability and ubiquitination. We found that the level of endogenous

MAVS protein was considerably increased in TRIM25 and CypA co-expressing cells compared with

cells only transfected with TRIM25, suggesting that CypA inhibits TRIM25-mediated MAVS degrada-

tion (Figure 7B). In accordance with the stability assay, the ubiquitination of MAVS was inhibited in

TRIM25 and CypA co-expressing cells compared with that transfected with TRIM25 (Figure 7C).

However, CypA almost had no effect on Smurf1-mediated MAVS stability and ubiquitination

(Figure 7B,C). Furthermore, we observed that CypA could enhance the TRIM25-mediated K48-

linked, but not K63-linked ubiquitination of both exogenous and endogenous MAVS (Figure 7D,E).

We further determined the possible mechanism by which CypA inhibits TRIM25 mediated-MAVS

ubiquitination. We speculated that CypA might compete with TRIM25 to interact with MAVS. To

test this hypothesis, we performed coimmunoprecipitation experiments to analyze the interaction

between TRIM25 and MAVS in the presence or absence of CypA, as well as the interaction between

CypA and MAVS in the presence or absence of TRIM25. CypA-MAVS interaction was reduced in the

presence of TRIM25, and TRIM25-MAVS interaction also reduced in the presence of CypA

(Figure 7F). We next explored whether CypA and TRIM25 interacted with the same region of

MAVS. Just as we speculated, CypA (Figure 7G) and TRIM25 (Figure 7H) both bind to MAVS amino

acids 360–540. Thus, our results indicated that CypA and the E3 ligase TRIM25 competitively inter-

acted with MAVS, thereby inhibiting ubiquitin-mediated proteasome degradation of MAVS.

It has been reported that TRIM25 targets MAVS at K7 and K10 for ubiquitination and AIP4 medi-

ates MAVS ubiquitination at K371 and K420 (Castanier et al., 2012; You et al., 2009). Here we

found that MAVS amino acids 360–540, which contains K371 and K420, is the common binding

region for CypA and MAVS. Therefore, we investigated whether K371 and K420 were the ubiquitina-

tion sites for TRIM25-mediated MAVS ubiquitination. Both the MAVS mutation KK-AA (with the sub-

stitutions K371A and K420A) and KK-RR (with the substitutions K7R and K10R) distinctly reduced

MAVS ubiquitination (Figure 7I), suggesting that K371 and K420, as well as K7 and K10, are the

ubiquitination sites for TRIM25-mediated MAVS ubiquitination. Collectively, CypA and TRIM25 com-

petitively interacted with MAVS, which inhibited TRIM25-mediated MAVS ubiquitination at K371 and

K420.

CypA has been shown to interact with p65 and inhibit the ubiquitin-proteasome degradation of

p65, thereby promoting innate immune responses (Sun et al., 2014). Our data showed that CypA

targeted the upstream RIG-I and MAVS to upregulate RIG-I-mediated signaling pathway. To explore

the relevance and contribution of the proposed CypA mechanisms at the level of RIG-I and MAVS,

we tested the effect of CypA on IFN-b induction in RIG-I-knockout cells (293T/RIG-I�/�) transfected

with Flag-RIG-I or Flag-MAVS, along with CypA siRNA or control siRNA. CypA increased IFN-b

expression and IRF3/p65 phosphorylation with the treatment of overexpressed RIG-I and MAVS

respectively (Figure 7J). Then we further blocked the downstream p65 using NF-kB inhibitor (BAY-

11–7082). We found that CypA still had impact on IFN-b expression and IRF3 phosphorylation when

Figure 5 continued

transfected with Flag-RIG-I and Myc-MAVS for 24 hr, and immunoprecipitated with anti-Flag beads. (I) Confocal microscopy of endogenous CypA in

293T/CypA+ cells stained with Mito-Tracker after SeV infection or mock-infection for 6 hr. Scale bars, 10 mm. Data are representative of at least three

independent experiments.

DOI: 10.7554/eLife.24425.016
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Figure 6. CypA suppresses ubiquitin-mediated proteasome degradation of MAVS. (A) Immunoblot analysis of lysates in 293T/CypA+ and 293T/CypA-

cells transfected with Flag-RIG-I, Flag-MDA5 or Flag-MAVS for 24 hr and then treated with 100 mg/ml CHX for the indicated durations (top). The relative

expression levels of RIG-I, MDA5 and MAVS were quantified (below). (B) Immunoblot analysis of lysates in 293T/CypA- cells transfected with Myc-CypA

or control vector for 24 hr and then treated with 100 mg/ml CHX for the indicated time points (top). The relative expression levels MAVS were quantified

(below). (C) Immunoblot analysis of lysates in 293T/CypA+ and 293T/CypA- cells incubated with SeV for the indicated times (top). The relative

expression levels of MAVS were quantified (below). (D) Immunoblot analysis of lysates in 293T/CypA+ and 293T/CypA- cells treated for 6 hr with 100

mg/ml CHX, along with 10 mM NH4Cl, 10 mM MG132, or DMSO. (E) Immunoblot analysis of lysates in 293T/CypA- cells transfected for 24 hr with HA-Ub,

along with Flag-CypA or control vector and then treated with 10 mM MG132 for 6 hr. (F) Immunoblot analysis of lysates in 293T/CypA- cells transfected

for 24 hr with HA-Ub, along with Myc-CypA or control vector and then immunoprecipitated with anti-MAVS antibody. (G) Immunoblot analysis of lysates

in 293T/CypA- cells transfected for 24 hr with HA-tagged deletion constructs of MAVS (amino acids remaining, above lanes) and point substitution

constructs containing amino acids 360–540 (KK-AA, K371A plus K420A), along with Myc-CypA or control vector. Data are representative of at least three

independent experiments.

DOI: 10.7554/eLife.24425.017
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Figure 7. CypA inhibits TRIM25-mediated K48-linked ubiquitination of MAVS. (A) Luciferase activity of lysates in 293T/CypA- cells transfected for 24 hr

with IFN-b-Luc and Flag-TRIM25, Flag-Smurf1, Flag-AIP4, Flag-RNF125, or Flag-RNF5, along with CypA or an empty vector and then treated with SeV

for 6 hr. Results are presented relative to the luciferase activity in control cells transfected with luciferase reporter and empty vector. (B) Immunoblot

analysis of lysates in 293T/CypA- cells transfected with various combinations of plasmids for 24 hr. (C) Immunoblot analysis of lysates in 293T/CypA-

Figure 7 continued on next page
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293T/RIG-I�/� were transfected with Flag-RIG-I and treated with BAY-11–7082, or when 293T/RIG-

I�/� were transfected with Flag-MAVS and treated with BAY-11–7082 (Figure 7J). Collectively, these

data indicate that CypA is able to promote type I IFN production at the level of RIG-I and MAVS,

which is independent of the downstream p65. Accordingly, CypA could inhibit SeV replication by

regulating RIG-I- and MAVS-directed type I IFN production (Figure 7K).

Discussion
CypA functions as either the primary intracellular target of the immunosuppressive drug CsA

(Handschumacher et al., 1984; Liu et al., 1991), or as a key modulator of some biological processes

(Lu et al., 2007). However, the roles of CypA in host antiviral immune responses are not well under-

stood. It had been reported that CypA was highly induced in human gastric carcinoma cell line upon

H9N2 influenza virus infection by using proteomics analysis (Liu et al., 2008). We also found that

CypA was inducible in BMDMs, 293T cells, U937 cells and human monocytes infected by SeV, VSV

or IAV-mut, indicating that CypA participates in cellular antiviral response. In the present study, we

identified CypA as an important host factor that promotes RIG-I-mediated type I IFN production.

Deficiency of CypA greatly decreases type I IFN production, which facilitates virus replication. Fur-

thermore, CypA increased the interaction between E3 ubiquitin ligase TRIM25 and RIG-I, promoting

K63-linked ubiquitination of RIG-I that facilitated recruitment of RIG-I to MAVS. Finally, CypA and

TRIM25 interacted with MAVS in a competitive manner, inhibiting TRIM25-mediated K48-linked

ubiquitination of MAVS at K371 and K420. Our findings demonstrated that CypA inhibited virus rep-

lication via enhancing antiviral immune responses, uncovering a different way for CypA to regulate

virus infection.

The ubiquitin system has been certified to play an essential role in precisely controlling RIG-I-

mediated signal transduction (Heaton et al., 2016; Maelfait and Beyaert, 2012). Upon RNA virus

infection, viral RNA bind to RIG-I followed by the binding of TRIM25 to deliver the K63 ubiquitin

chains to RIG-I (Gack et al., 2007; Jiang et al., 2012; Kowalinski et al., 2011; Peisley et al., 2014;

Sanchez et al., 2016), then the CARD domains of RIG-I are exposed to interact with the CARD

domains of MAVS. In the present study, we found that CypA increased the interaction between

RIG-I and TRIM25, which facilitated K63-linked ubiquitination of RIG-I and recruitment of RIG-I from

the cytosol to mitochondrion-associated MAVS, suggesting a positive role of CypA in the production

of type I IFN. It has also been reported that another RIG-I binding protein, 14-3-3e, is essential for

the stable interaction of RIG-I with TRIM25, which facilitates RIG-I ubiquitination and initiation of

innate immunity against hepatitis C virus and other pathogenic RNA viruses. (Liu et al., 2012a).

Figure 7 continued

cells transfected with various combinations of plasmids for 24 hr, followed by immunoprecipitation with anti-MAVS antibody. (D) Immunoblot analysis of

lysates in 293T/CypA- cells transfected with various combinations of plasmids for 24 hr, followed by immunoprecipitation with anti-Flag beads. (E)

Immunoblot analysis of lysates in WT and Ppia�/� BMDMs infected with SeV for 6 hr, followed by immunoprecipitation with control mouse IgG or anti-

MAVS antibodies. Lysates and immunoprecipitation extracts were probed with K48-Ub, MAVS and CypA antibodies. (F) Immunoblot analysis of lysates

in 293T/CypA- cells transfected with various combinations of plasmids, followed by immunoprecipitation with anti-Flag beads. (G and H) Immunoblot

analysis of lysates in 293T/CypA+ cells transfected for 24 hr with Flag-CypA (G) or Flag-TRIM25 (H), along with HA-tagged deletion constructs of MAVS,

followed by immunoprecipitation with anti-Flag beads. (I) Immunoblot analysis of lysates in 293T/CypA+ cells transfected with HA-Ub, plus Myc-MAVS,

Myc-MAVS KK-AA (K371A plus K420A), or the double point substitution construct Myc-MAVS KK-RR (K7R plus K10R), along with Flag-TRIM25 or an

empty vector, followed by immunoprecipitation with anti-Myc beads. (J) Quantitative PCR analysis of IFNB1 mRNA in 293T/RIG-I�/� cells pretreated for

1 hr with BAY 11–7082 (5 mM) or DMSO, and then transfected for 48 hr with Flag-RIG-I, Flag-MAVS or an empty vector, along with scrambled siRNA or

CypA siRNA (top). The phosphorylated IRF3 and p65 were detected by immunoblot (below). (K) Quantitative PCR analysis of SeV M mRNA in 293T/RIG-

I�/� cells pretreated for 1 hr with BAY 11–7082 (5 mM) or DMSO, then transfected for 48 hr with Flag-RIG-I, Flag-MAVS or an empty vector, along with

scrambled siRNA or CypA siRNA, and then infected with SeV for 6 hr. Results are presented relative to mRNA level of SeV M in control cells transfected

with empty vector and infected with SeV. Data are shown as mean ± SD (n = 3). *p<0.05 and **p<0.01 (unpaired, two-tailed Student’s t-test). Data are

representative of at least three independent experiments.

DOI: 10.7554/eLife.24425.018

The following source data is available for figure 7:

Source data 1. Quantification of luciferase activity, IFN-b production and SeV replication for Figure 7.

DOI: 10.7554/eLife.24425.019
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Therefore, just like 14-3-3e, CypA could be defined as a key mitochondrial targeting chaperone pro-

tein that is required for innate antiviral responses.

It has been established that MAVS undergoes K48-linked ubiquitination during virus infection,

which mediates MAVS degradation (Liu et al., 2013; Paz et al., 2009). A number of studies have

showed that some host proteins, including PCBP2, IRTKS and Ndfip1, promoted E3 ligase AIP4- or

Smurf-mediated MAVS ubiquitination for degradation, leading to suppressed type I IFN production

(Wang et al., 2012; Xia et al., 2015; You et al., 2009). Here we found that CypA inhibited TRIM25-

mediated K48-linked ubiquitination of MAVS to slow down the degradation of MAVS, thereby facili-

tating RIG-I-mediated type I IFN production. All these data indicated that inhibition of MAVS degra-

dation facilitated RIG-I-mediated type I IFN production. However, a previous study suggested that

the proteasomal degradation of MAVS was required to release the signaling complex into the cyto-

sol for phosphorylation of IRF3 and subsequent production of IFN-b (Castanier et al., 2012). In that

study, MG132 was used as an inhibitor of MAVS degradation to test the effect of MAVS stability on

IFN production, while MG132 is not the specific inhibitor of MAVS degradation. This is a tempting

and interesting hypothesis, which remains to be further studied (Jacobs and Coyne, 2013).

Besides CypA-regulated ubiquitination of RIG-I and MAVS, we have reported that CypA acceler-

ates ubiquitin-proteasome degradation of the M1 protein of influenza virus and then restricts virus

replication(Liu et al., 2012b). Additionally, CypA and another PPIase, Pin1, both enhance the stabil-

ity of P65 by blocking the ubiquitin-proteasome degradation, and SOCS-1 is the ubiquitin ligase for

P65 (Ryo et al., 2003; Sun et al., 2014). These results support the hypothesis that PPIases have

some common function in regulating ubiquitination of proteins. Together, we reveal a ubiquitina-

tion-based mechanism by which CypA controls RIG-I-mediated antiviral immune responses.

CypA is widely distributed in almost all tissues. Multiple lines of evidence have revealed that

CypA interacts with a large number of proteins and plays various biological roles through different

mechanisms. We found that CypA-MAVS interaction was reduced in the presence of TRIM25, and

TRIM25-MAVS interaction also appeared to be reduced in the presence of CypA. In addition, both

CypA and TRIM25 interacted with a similar stretch of MAVS (aa 360–450) and within this region

K371 and K420 were the ubiquitination target sites for TRIM25 as well as the sites that CypA tar-

geted to stabilize MAVS. All these results suggest that CypA competes with TRIM25 for MAVS bind-

ing to inhibit TRIM25-mediated K48-linked ubiquitination of MAVS. But on the other hand, we found

that CypA promoted the interaction between TRIM25 and RIG-I, which is a quite different mecha-

nism from that at the level of MAVS. As is well known, TRIM25 interacts with RIG-I-N to deliver the

Lys 63-linked ubiquitin to the CARDs of RIG-I (Gack et al., 2007). We observed that CypA interacted

with RIG-I-C, indicating that CypA and TRIM25 bind to different regions of RIG-I. We speculated

that the conformation of RIG-I-N might be changed as soon as CypA interacted with RIG-I-C, then

the binding site of TRIM25 was exposed, which facilitated the interaction between TRIM25 and RIG-

I-N. A detailed structural study is an interesting future direction.

In conclusion, our data demonstrated that CypA regulates RIG-I signaling in two ways. On one

hand, CypA promotes K63-linked ubiquitination of RIG-I and recruits more RIG-I to MAVS. On the

other hand, CypA stabilizes MAVS by suppressing its ubiquitin-mediated proteasome degradation.

Hence, our data further expand the biological functions of CypA in RIG-I-mediated antiviral innate

immunity and provide a potential novel target for manipulating viral infection.

Materials and methods

Cell lines and antibodies
ShRNA-based knockdown of CypA in human embryonic kidney 293T cells (CRL-3216, ATCC) has

been described (Liu et al., 2012b). CRISPR/Cas9-based knockout of RIG-I in 293T cells has been

described (Jiang et al., 2016). The cell lines were authenticated by immunoblotting with multiple

markers and tested for mycoplasma contamination using the MycoAlert Mycoplasma Detection Kit

(Lonza, Switzerland). The 293T cells were maintained in Dulbecco’s modified Eagle’s medium

(GIBCO) supplemented with 10% heat-inactivated fetal bovine serum (FBS, GIBCO). U937cells (CRL-

1593.2, ATCC) were maintained in 1640 medium (GIBCO) with FBS. BMDMs from 129 mice were

maintained in 1640 medium (GIBCO) with FBS and maintained in macrophage-colony stimulating

factor (M-CSF, 20 ng/ml) for 5–7 d. Peripheral blood was obtained from healthy donors under clinical
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protocols. Human peripheral blood mononuclear cells (PBMCs) were isolated using Hypaque-Ficoll

density gradients by standard techniques. Monocytes were also isolated by elutriation of leukophe-

resis product and repurifcation using the autoMACS system if needed. Resulting cell preparations

were analyzed by staining with CD14 antibodies and analyzed on a BD LSR II system. Monocyte

preparations were �95% CD14+. For immunoblot analysis, the following antibodies were used: rab-

bit polyclonal antibodies to human CypA were generated as previously described,

(1:2000, [Liu et al., 2009]), anti-c-Myc (1:2000, C3956, Sigma, RRID:AB_439680), anti-FLAG M2

(1:2000, F3165, Sigma, RRID:AB_259529), anti-b-actin (1:1000, sc-1616-R, Santa Cruz, RRID:AB_

630836), anti-GAPDH (1:1000, sc-25778, Santa Cruz, RRID:AB_10167668), anti-MAVS (1:1000, sc-

68881 and sc-166583, Santa Cruz, RRID:AB_1565328 and AB_2012300), anti-IRF3 (1:1000, sc-9082,

Santa Cruz, RRID:AB_2264929), anti-mouse IgG (1:1000, sc-137075, Santa Cruz, RRID:AB_2285870),

anti-p-IRF3 (Ser396) (1:1000, 4947, CST, RRID:AB_823547), anti-p65 (1:1000, 8242, CST, RRID:AB_

10859369), anti-p-p65 (Ser536) (1:1000, 3033, CST, RRID:AB_331284), anti-IKKa/b (1:1000, 2682 and

2370, CST, RRID:AB_331626 and AB_2122154), anti-p-IKKa/b (Ser176/180) (1:1000, 2697, CST,

RRID:AB_2079382), anti-IkBa (1:1000, 4814, CST, RRID:AB_390781), anti-p-IkBa (Ser32) (1:1000,

2859, CST, RRID:AB_561111), anti-RIG-I (1:1000, 3743, CST, RRID:AB_2269233), and anti-MDA5

(1:1000, 5321, CST, RRID:AB_10694490), anti-VDAC (1:1000, ab14734, Abcam, RRID:AB_443084),

anti-TRIM25 (1:1000, 12573–1-AP, Proteintech, RRID:AB_2209732), anti-Ubiquitin Antibody, Lys48-

Specific (1:1000, 05–1307, Millipore, RRID:AB_1587578), anti-Ubiquitin Antibody, Lys63-Specific

(1:1000, 05–1308, Millipore, RRID:AB_1587580). For immunofluorescence analysis, the following anti-

bodies were used: CypA (1:100, [Liu et al., 2009]), anti-MAVS (1:50, 3993, CST, RRID:AB_823565),

and anti-RIG-I (1:50, MABF297, Millipore, RRID:AB_2650546).

Plasmids
The IFN-b promoter luciferase reporter plasmid (IFN-b-Luc) and NF-kB promoter luciferase reporter

plasmid (NF-kB-Luc) were provided by C. Zheng (Su Zhou University, China). The ISRE-promoter

luciferase reporter plasmid (ISRE-Luc), TBK1 and MAVS expression plasmids were provided by R. Lin

(McGill University, Canada). The RIG-I-N expression plasmid was provided by T. Fujita (Tokyo Metro-

politan Institute of Medical Science, Japan). RIG-I-C was synthesized by GENEWIZ and then cloned

into pcDNA3.0-Flag vector. The MDA5-N expression plasmid was provided by S. Goodbourn (Uni-

versity of London, United Kingdom). The IRF3/5D expression plasmid was provided by Y. Lin

(National Defense Medical Center, Taiwan). HA-tagged deletion constructs of MAVS or point substi-

tution constructs containing amino acids 360–540 KKAA (K371A plus K420A) and AIP4, expression

plasmids were provided by Z, Jiang (Peking University, China). MAVS KKAA (K371A plus K420A),

MAVS KKRR (K7R plus K10R) were synthesized by GENEWIZ and cloned into pCMV-myc vector

respectively. The HA-Ub, HA-K48-Ub, HA-K63-Ub, TRIM25, Smurf1, RNF125 and RNF5 expression

plasmids were provided by X. Ye (Chinese Academy of Sciences, China).

CypA-deficient mice
CypA-deficient (Ppia�/�) 129 mice were purchased from Jackson Laboratory and crossed to WT 129

mice. For analysis of the genotype of each mouse, genomic DNA was isolated from tail tissue and

was identified by PCR using the primers Ppia-oIMR3772, 50-GCAGTTGTGATTGATCCAGGTCCG-3’;

Ppia-oIMR3773, 5’CACCCTGGAGCACCACTGCCCACC-3’; and Ppia-oIMR3774, 5’-CCTGATCGA-

CAAGACCGGCTTCC-3’. The animal research was approved by the Research Ethics Committee of

Chinese Academy of Sciences (Permit Number: PZIMCAS2013001), and complied with the Beijing

Laboratory Animal Welfare and Ethical Guidelines of the Beijing Administration Committee of Labo-

ratory Animals.

SeV infection
For virus infection of cells, the culture medium was removed from the plates, and the cells were

washed twice with PBS. Serum-free culture medium containing SeV (MOI = 1) was added for 2 hr,

and then the old medium was replaced with 2% FBS culture medium. For virus infection in 8-week-

old WT and Ppia�/� mice, SeV (2000 PFU/mouse) was intranasally injected into the mice. The day of

virus inoculation was defined as day 0. Mice were killed at 2, 5, or 7 d after infection, and the lung

indices (100� lung/body weight) were measured. Lung tissues were then fixed, sectioned at 5 mm
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and stained with hematoxylin and eosin. For cytokines and SeV replication analyses, mice were killed

at 6, 12, and 24 hr after infection. Lung tissues were homogenized using a QIAGEN Tissue Lyser II

machine (30 cycles/s, 4 min) in 1 ml of cold PBS under sterile conditions. Total RNA was extracted

from homogenized lung tissue using TRIzol (Invitrogen) to detect the mRNA level of cytokines and

viral genes. Then, the remaining homogenates were centrifuged and the supernatants were used to

detect the protein levels of IFN-b and IFN-a via ELISA (PBL Assay Science).

Hemagglutination (HA) assay
SeV virus was harvested from the supernatants of infected cells every day. A standardized concentra-

tion of chicken red blood cells (0.5% RBC) was used. A serial twofold dilution of supernatant was

prepared in U-bottomed 96-well microtiter plates with PBS, 50 ml 0.5% RBC was added to each well,

and the U-bottomed plates were incubated for 30 min at room temperature. Then, the lattice form-

ing parts were counted, and the titer was calculated.

VSV titration
MDBK cells were seeded in 96-well plates 24 hr before VSV virus infection. VSV virus supernatants

were serially diluted with DMEM and added to each well with eight replicates of each dilution. 24 hr

after infection, the 50% TCID50 was calculated by the Reed-Muench method.

Luciferase assay
293T cells were seeded into 24-well plates. The following day, cells were transfected with 200 ng

luciferase plasmid and 100 ng b-Gal plasmid, along with 200 ng to 400 ng plasmids required for dif-

ferent experiments. Twenty-four hours later, cells were lysed in lysis buffer. After centrifugation, the

supernatants were stored at �80˚C. The luciferase assays were performed with a luciferase assay kit

(Promega, Madison, WI).

RNA extraction, cDNA synthesis, and Quantitative PCR analysis
Total RNA was extracted from cells with TRIzol (Invitrogen) according to the manufacturer’s instruc-

tions. Samples were digested with DNase I and subjected to reverse transcription-PCR (RT-PCR).

RNA was reverse-transcribed using an oligo (dT) primer. A mock reaction was performed with no

reverse transcriptase added. The analysis of the relative gene expression levels was performed using

Corbett 6200 and PCR primers: hIFN-b (IFNB1) forward, 50-AACTGCAACCTTTCGAAGCC-30; hIFN-b

(IFNB1) reverse, 50-TGTCGCCTACTACCTGTTGTGC-30; mIFN-b (Ifnb1) forward, 50-GGAGATGACG-

GAGAAGATGC-30; mIFN-b (Ifnb1) reverse, 50-CCCAGTGCTGGAGAAATTGT-30; mIFN-a (Ifna) for-

ward, 50-GGCTTGACACTCCTGGTACAAATGAG-30; mIFN-a (Ifna) reverse, 50-CAGCACA

TTGGCAGAGGAAGACAG-30; hISG54 (IFIT2) forward, 50-TCATTTTGCATCCCATAGGAGGTT-30;

hISG54 (IFIT2) reverse, 50-GACTTTGGTCCCCCAGCTTT-30; mISG54 (Ifit2) forward, 50-ATGAA-

GACGGTGCTGAATACTAGTGA-30; mISG54 (Ifit2) reverse, 50-TGAGGGCTTTCTTTTTCC-30; hISG56

(IFIT1) forward, 50-TTCGGAGAAAGGCATTAGA-30; hISG56 (IFIT1) reverse, 50-TCCAGGGCTTCA

TTCATAT-30; mISG56 (Ifit1) forward, 50-CAGAAGCAC ACATTGAAGAAGC-30; mISG56 (Ifit1) reverse,

50-TGTAAGTAGCCAGAGGAAGGTG-30; hRantes (CCL5) forward, 50-TGCCTGTTTCTGCTTGCTC

TTGTC-30; hRantes (CCL5) reverse, 50-TGTGGTAGAATCTGGGCCCTTCAA-30; mRantes (Ccl5) for-

ward, 50-ACTCCCTGCTGCTTTGCCTAC-30; mRantes (Ccl5) reverse, 50-ACTTGCTGGTGTAGAAA

TACT-30; hCypA (PPIA) forward, 50- CAACCCCACCGTGTTCTTC-30; hCypA (PPIA) reverse, 50- AC

TTGCCACCAGTGCCATTA-30; mCypA (Ppia) forward, 50-TTTGCAGACGCCACTGTC-30; mCypA

(Ppia) reverse, 50-CAGTGCTCAGAGCTCGAAAG-30; SeV NP forward, 50- caagagcccactcttccaggg-30;

SeV NP reverse, 50-CTGAACGCCTCTAACCTGTTG-30; SeV M forward, 50-GTGATTTGGGCGGCATC

T-30; and SeV M reverse, 50-GATGGCCGGTTGGAACAC-30. GAPDH served as an internal control

using PCR primers, GAPDH forward 5’-TTGTCTCCTGCGACTTCAACAG-3’ and GAPDH reverse 5’-

GGTCTGGGATGGAAATTGTGAG-3’.

ELISA-based IFN determination
Supernatants from cultured cells or sera were collected at the indicated times. Cytokines were ana-

lyzed by ELISA kits (Thermo) according to the manufacturer’s instructions.
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Coimmunoprecipitation, immunoblot analysis and native PAGE
Cells were lysed in lysis buffer containing 0.5% NP40, 150 mM NaCl, 20 mM HEPES (pH 7.4), 10%

glycerol, 1 mM EDTA, and protease inhibitor cocktail. After centrifugation, the supernatants were

incubated with anti-FLAG, anti-Myc beads (Sigma), or Protein A/G PLUS-Agarose beads (Santa Cruz)

for 4 hr at 4˚C. After five washes in washing buffer (0.5% NP40, 300 mM NaCl, 20 mM HEPES (pH

7.4), 10% glycerol, and 1 mM EDTA), the immunoprecipitates were analyzed by immunoblot analysis.

Native PAGE was performed with an 8% acrylamide gel without SDS. The gel was pre-run for 30 min

at 40 mA on ice with 25 mM Tris-HCl (pH 8.4) and 192 mM glycine with or without 0.5% deoxycho-

late in the cathode chamber and anode chamber, respectively. Samples in the native sample buffer

(50 mM Tris-HCl, pH 6.8, and 15% glycerol) were applied on the gel and underwent electrophoresis

for 60 min at 35 mA on ice followed by immunoblot analysis.

RNA interfering
Duplexes of CypA siRNA and negative controls were synthesized by Genepharma (Shanghai, China).

SiRNA oligonucleotides are as follows: CypA sense, 50-GCUCGCAGUAUCCUAGAAUTT-30; CypA

antisense, 50-AUUCUAGGAUACUGCGAGCTT-30; negative control sense, 50-UUCUCCGAACGUG

UCACGUTT-30; negative control antisense, 50-acgugacacguucggagaaTT-30. Transfection of siRNA

into cells was performed according to manufacturer’s instructions. U937 cells and human monocytes

were transfected with siRNA using Lipofectamine 2000 (Invitrogen).

Indirect immunofluorescence
Cells were washed with PBS three times, fixed in 4% paraformaldehyde for 30 min at room tempera-

ture, permeabilized with 0.5% Triton X-100 in PBS (PBST) for 20 min, and stained with appropriate

antibodies. Cell nuclei were stained with 5 mg/ml DAPI (Sigma). Following staining, cover slips were

analyzed using a Leica SP8 confocal microscope.

Subcellular fractionation
Cells (5 � 107) infected with SeV or left uninfected were washed with PBS and lysed by douncing 35

times in 1.5 ml homogenization buffer (ApplyGen). The homogenates were then centrifuged at 800

g for 5 min twice. The supernatants were centrifuged at 12,000 g for 10 min to precipitate mitochon-

dria. The supernatants from this step (cytoplasm fraction) were also collected. The precipitate frac-

tion was washed with 0.2 ml homogenization buffer, centrifuged at 12,000 g for 10 min and

collected as the mitochondria fraction.

CHX, MG132, and NH4CI treatment
Cells were treated with 100 mg/ml CHX for various periods of time at 24 hr after transfection. Then,

cells were lysed and analyzed by immunoblotting. MG132 (10 mM) and NH4Cl (10 mM) were used at

the same time as CHX, and cells were harvested 6 hr after treatment.
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