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Abstract Modulation classification is an intermediate step between signal detection and
demodulation, and plays a key role in various civilian and military applications. In this cor-
respondence, higher-order cyclic cumulants (CCs) are explored to discriminate linear digital
modulations in flat fading channels. Single- and multi-antenna CC-based classifiers are inves-
tigated. These benefit from the robustness of the CC-based features to unknown phase and
timing offset. Furthermore, the latter provides significant performance improvement due to
spatial diversity used to combat the fading effect. Classifier performances are investigated
under a variety of channel conditions. In addition, analytical closed-form expressions for
the cyclic cumulant polyspectra of linearly digitally modulated signals affected by fading,
carrier frequency and timing offsets, and additive Gaussian noise are derived, along with a
condition for the oversampling factor to avoid aliasing in the cycle and spectral frequency
domains.
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Abbreviations

ASK Amplitude shift keying
AWGN Additive white Gaussian noise
BPSK Binary phase shift keying
CC Cyclic cumulant
CF Cycle frequency
CCP Cyclic cumulant polyspectrum
FB Feature based
FIR Finite impulse response
LB Likelihood based
MC Modulation classification
OFDM Orthogonal frequency division multiplexing
PSK Phase shift keying
QAM Quadrature amplitude modulation
QPSK Quadrature PSK
SNR Signal-to-noise ratio

1 Introduction

Automatic modulation classification (MC) is a problem of current and future significance
for both commercial and military communication systems. In an adaptive communication
system, the modulation format can be changed according to the channel state to achieve high
efficiency communication. Usually supplementary information about the modulation format
is transmitted. However, blind techniques can be used instead in a flexible intelligent receiver,
such as software-defined radio, to increase the transmission efficiency. Furthermore, MC rep-
resents a critical component of new cognitive radio systems that improve spectral efficiency
by adapting their transmission according to their spectral environment [1,2]. In military com-
munication systems, advanced techniques are required for real-time signal interception and
processing, which are vital for tactical decision making. A major task of such systems is
the automatic recognition of the modulation format of an incoming signal [3]. The design
of a modulation classifier essentially involves two steps: signal preprocessing and proper
selection of the classification algorithm. Preprocessing tasks may include noise reduction,
estimation of carrier frequency, symbol period, signal power, etc. Depending on the classi-
fication algorithm chosen in the second step, different preprocessing tasks are required. For
the second step, two general classes of MC algorithms can be crystallized, which rely on
likelihood based (LB) techniques [4–7], or feature-based (FB) methods [8–18]. In the LB
approach, MC is treated as a multiple composite hypothesis testing problem, and compu-
tation of the likelihood function of the received signal is required. The complexity of the
optimal LB solution has resulted in suboptimal classifiers [5–7]. In the FB approach, on the
other hand, several discriminant features are selected and a decision is made based on their
observed values. Usually, these features are selected in an ad-hoc way.

In this correspondence we use higher-order cyclic cumulants (CCs) of the baseband inter-
cepted signal as powerful features for linear digital MC, due to their attractive properties.
CCs inherit the useful property of cumulants, which is the mathematical convenience of cal-
culating the higher-order cumulants of the sum of independent processes, which is difficult
to do for the moments [19–21]. Furthermore, they take advantage of the intrinsic cyclosta-
tionarity of communication signals, which makes them robust to interference and stationary
noise [20,21].
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Relevant MC papers based on cumulants and CCs of the received signal are briefly
reviewed in the sequel. Swami and Sadler [8] proposed a hierarchical classifier using fea-
tures based on the fourth-order cumulants of the baseband sequence, to identify amplitude
shift keying (ASK), phase shift keying (PSK) and quadrature amplitude modulation (QAM)
signals. In the work of Marchand et al. [9], a feature based on fourth- and second-order CCs
was used for quadrature PSK (QPSK), 16-QAM and 64-QAM signal classification. Spooner
[10,11] employed CC-based features, with order up to six, for the classification of PSK,
QAM, and minimum shift keying signals. Features based on fourth-, sixth-, and eighth-order
CCs were proposed in [12] to classify rectangular QAM signals. First- and second-order
CC-based features were used in [13] and [14] to identify the modulation format of frequency
shift keying signals and discriminate orthogonal frequency division multiplexing (OFDM),
single carrier linear digital modulations, and cyclically prefixed single carrier linear digital
modulations, respectively. Second-order cyclostationarity was also exploited for the identifi-
cation of OFDM, code division multiple access, and global system for mobile communication
signals [15]. Additive white Gaussian noise (AWGN) channel has been mainly considered
in these papers [8–14]. However, in a practical wireless communication scenario, systems
are subject to fading as well. In this correspondence we tackle the problem of classifying a
large pool of single carrier linearly digitally modulated signals in a flat fading channel, by
using eighth-order CC-based features and exploiting spatial diversity to mitigate the impact
of fading. Analytical closed-form expressions for the cyclic cumulant polyspectra (CCPs) of
linearly digitally modulated signals affected by fading, carrier frequency and timing offsets,
and additive Gaussian noise are derived, along with a necessary and sufficient condition for
the oversampling factor to avoid aliasing in the cycle and spectral frequency domains.

The correspondence is organized as follows. In Sect. 2 we characterize the signals of
interest. Single- and multiple-antenna CC-based classifiers are developed in Sects. 3 and 4,
respectively. Simulation results are presented in Sect. 5, and conclusions are drawn in Sect. 6.
Definitions of cumulants and CCs, and their sample estimators are introduced in Appendix
“1”. Derivations of the analytical closed-form expressions for the higher-order CCs and
cycle frequencies (CFs), and CCPs are presented in Appendices “2” and “4”, respectively.
Examples of CCs and CFs are given for illustration in Appendix “3”. Finally, Appendix “5”
provides the derivation of the condition for the oversampling factor to avoid aliasing in the
cycle and spectral frequency domains. Note that results presented in this paper have been
partially presented by authors in [16] and [17].

2 Signal Model and its Cyclic Characteristics

If a linearly digitally modulated signal is transmitted through a flat block-fading channel with
AWGN, the output of the receive filter is a baseband waveform given by

y(i)(t) = αe jϕe j2π� f t
∑

k

s(i)
k p(t − kT − εT ) + w(t), (1)

where α is the channel amplitude, ϕ is the channel phase (which includes the carrier phase
offset), � f is the carrier frequency offset, T is the symbol period, 0 ≤ ε < 1 represents the
timing offset, w(t) is the zero-mean complex baseband Gaussian noise, p(t) is the combined
impulse response of transmit and receive filters in cascade, and s(i)

k represents the symbol
transmitted within the k-th period, coming from the i-th modulation format, i = 1, . . . , Nmod.
For each i , the data symbols {s(i)

k } are assumed to be zero-mean independent and identically
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distributed random variables, taken from Mi constellation points. For alphabets of linear
digital modulations, see for example, [22] Chap. 4. Without loss of generality, unit variance
constellations are considered in the sequel, i.e., E[|s(i)

k |2] = M−1
i

∑Mi
m=1 |s(i)

m |2 = 1, i =
1, . . . , Nmod, where E[.] is the mathematical expectation. By oversampling the signal y(i)(t)
at a rate fs = ρ/T , with ρ as a positive integer representing the oversampling factor, the
discrete-time data y(i)(m) = y(i)(t)|t=mT/ρ is obtained.

The nth-order/q-conjugate CC of y(i)(t), at CF γ̃ and delay vector τ̃ , and the set of CFs
are given, respectively as (see Appendix “2”)

c̃(i)
y (γ̃ ; τ̃ )n,q = αncs(i),n,q T −1e− j2πβ̃εT e j (n−2q)ϕe

j2π� f
n−1∑
u=1

(−)u τ̃u

×
∫ ∞

−∞
p(∗)n (t)

n−1∏

u=1

p(∗)u (t + τ̃u) e− j2π t β̃dt, q = 0, . . . , n, (2)

κ̃n,q = {
γ̃ : γ̃ = β̃ + (n − 2q)� f, β̃ = k/T, k integer, c̃(i)

y

(
γ̃ ; τ̃

)
n,q �= 0

}
, (3)

where τ̃ = [τ̃1, . . . , τ̃n−1]†, with † as the transpose, cs(i),n,q is the nth-order/q-conjugate
cumulant of the i-th constellation, (∗)u represents a possible conjugation of the u-th term
so that the total number of conjugations is q, u = 1, . . . , n, and (−)u is the minus sign
coming from the conjugation (∗)u, u = 1, . . . , n − 1. As w(t) is a stationary, zero-mean
Gaussian process, its cumulants are time independent, and non-zero only for the second
order. Since higher-order (n ≥ 3) CCs of y(i)(t) are of our interest, the noise contribution
does not appear in (2). It should be noted that (2) holds only for a certain delay range (see
Appendix “2” for details) and CFs given in (3); otherwise, the CC is zero. As one can easily
notice from (2), the timing offset ε, channel phase ϕ, and carrier frequency offset � f yield a
rotation of the CC. Moreover, the CC is directly proportional to the nth power of the signal
amplitude, nth-order/q-conjugate cumulant of the signal constellation, inverse of the symbol
period, and functional �(n, q, τ̃ , β̃, p(t)) = ∫ ∞

−∞ p(∗)n (t)
∏n−1

u=1 p(∗)u (t + τ̃u) e− j2π t β̃dt .
This functional depends on the order n, number of conjugations q , delay-vector τ̃ , frequency
β̃, and pulse shape p(t). It can be easily shown that for the commonly-used raised cosine
pulse shape, the maximum of |�(n, q, τ̃ , β̃, p(t))| is achieved at zero delay vector, τ̃ = 0n ,
for any n, q , and β̃ (overlapping of the pulse shape factors occurs over their entire support),
and this maximum decreases with β̃, for any n and q .

The nth-order/q-conjugate CCP of y(i)(t), at CF γ̃ and spectral frequency vector f̃, can
be shown to be given by (see Appendix “4”)

C̃ (i)
y (γ̃ ; f̃)n,q = αncs(i),n,q T −1e− j2πβ̃εT e j (n−2q)ϕ P(∗)n ((−)n(β̃ −

n−1∑

u=1

(−)u((−)u f̃u − � f )))

×
n−1∏

u=1

P(∗)u ((−)u f̃u − � f ), β̃ = k/T, k integer, q = 0, . . . , n, (4)

where f̃ = [ f̃1, . . . , f̃n−1]† and P( f̃ ) is the Fourier transform of p(t).
Equations (2)–(4) are valid for any pulse shape. For the raised cosine pulse shape, we

derive the actual set κ̃n,q of CFs, which is shown to be essentially limited by the signal
bandwidth, and a condition for the oversampling factor to avoid aliasing in the cycle and
spectral frequency domains (see Appendix “5”). By using (4) and the fact that P( f̃ ) is band-
limited to Bp = (1 + r)/(2T ), with r as the roll-off factor, 0 ≤ r ≤ 1 (for definition
see, e.g., [22] Chap. 9), the following results are obtained: The set of values for β̃ in κ̃n,q , n
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even, is given by {β̃}n = {0, . . . ,±(n/2 − 1)/T } for r = 0, and includes {0, . . . ,±n/(2T )}
for any 0 < r ≤ 1. Additional values for β̃ can exist for certain ranges of r . If 2m/n <

r ≤ (2m + 2)/n, m = 1, . . . , n/2 − 1, the set of additional values for β̃ is {±(n +
2)/(2T ), . . . ,±(n + 2m)/(2T )}. With {β̃}n as previously mentioned, the set κ̃n,q of CFs is
given by (3) if cs(i),n,q �= 0. Otherwise, this is an empty set. Note that cs(i),n,q = 0 for n odd
and q = 0, . . . , n [16], which means that the nth-order CCs are zero and, therefore, there is
no cycle frequency; For n even and cs(i),n,q �= 0, the necessary and sufficient condition for
the oversampling factor ρ to eliminate aliasing is ρ ≥ n − 1 if r = 0, and ρ ≥ n + 2m + 1
if 2m/n < r ≤ (2m + 2)/n, m = 0, . . . , n/2 − 1.

When no aliasing occurs, the nth-order/q-conjugate CCs and CCPs of the discrete-time
signal y(i)(m), and corresponding set of CFs, are respectively given by [23]

c(i)
y (γ ; τ )n,q = c̃(i)

y

(
γ fs; τ f −1

s

)
n,q , (5)

C (i)
y (γ ; f)n,q = f n−1

s C̃ (i)
y (γ fs; f fs)n,q , (6)

κn,q = {γ ∈ [0; 1) : γ = γ̃ T/ρ, c(i)
y (γ ; τ )n,q �= 0}, (7)

where τ = τ̃ρ/T and f = f̃T/ρ, with their components given by τu = τ̃uρ/T and fu =
f̃u T/ρ, fu ∈ [0, 1), respectively. Based on (2) and (5), the explicit expression for the nth-
order/q-conjugate CCs of the sampled signal y(i)(m), at CF γ and delay vector τ , can be
easily written as

c(i)
y (γ ; τ )n,q = αncs(i),n,qρ−1e− j2πkεe j (n−2q)ϕe

j2π� f Tρ−1
n−1∑
u=1

(−)uτu

×
∑

m

p(∗)n (m)

n−1∏

u=1

p(∗)u (m + τu)e− j2πβm, (8)

where γ = β + (n − 2q)� f Tρ−1, β = β̃Tρ−1 = kρ−1, k integer, p(m) = p(t)|t=mT/ρ ,
and p(m + τu) = p (t + τ̃u) |t=mT/ρ,τ̃u=τu T/ρ, u = 1, . . . , n − 1. As previously discussed,
for the raised cosine pulse shape, the k values actually belong to a finite set that depends on
the signal bandwidth (through the roll-off factor) and order n.

3 Single-Antenna Cyclic Cumulant-Based Classifier in Fading Channel

It is clear from (8) that the timing offset ε, channel phase ϕ, and carrier frequency offset � f
rotate the CC of the signal. Therefore, we take the absolute value of (8)

|c(i)
y (γ ; τ )n,q | = αn |cs(i),n,q |ρ−1|

∑

m

p(∗)n (m)

n−1∏

u=1

p(∗)u (m + τu)e− j2πβm |. (9)

As one can easily notice, the magnitude of the nth-order/q-conjugate CCs is directly propor-
tional to the magnitude of the nth-order/q-conjugate cumulant, |cs(i),n,q |. The theoretical val-
ues of cs(i),n,q , for n = 2, 4, 6, 8, q = 0, . . . , n/2, and 4-ASK, 8-ASK, binary PSK (BPSK),
QPSK, 8-PSK, 16-PSK, 16-QAM, 32-QAM, and 64-QAM signals, are given in Table 1.
These values are computed using the moment to cumulant formula, in which the moments
are calculated for noise-free constellations with unit variance and equiprobable symbols (see
Appendix “1”). Note that due to the symmetry of the signal constellations, the nth-order
moments and cumulants for odd n are zero, whereas for n even we have cs(i),n,q = cs(i),n,n−q .
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One can notice from Table 1 that for M-PSK signals, cs(i),M,0 is the lowest-order cumulant
which can be used to distinguish between M-PSK and M ′-PSK (M ′ > M), e.g., the low-
est-order statistic to discriminate between 8-PSK and 16-PSK is of order eight. For M-QAM
signals cs(i),n,q = 0 if n = 4m(m integer) and q odd, or n �= 4m and q even. As expected,
for real-valued constellations (4-ASK, 8-ASK and BPSK in Table 1), the nth-order cumulant
cs(i),n,q does not depend on the number of conjugations q . Based on the above, we select the
magnitudes of the eighth-order CCs with q even to identify ASK, PSK, and QAM signals.1

The delay vectors and CFs at which we calculate these CC magnitudes have to be chosen to
completely define the discriminating signal features. Spooner introduced an ideal classifier,
with features based on the CCs of all orders n, computed at all delay vectors and CFs; however,
due to the impossibility of implementation, an order-, delay- and CF-reduced classifier needs
to be developed [11]. Here we consider the zero-delay vector for simplicity of estimation
(see Appendix “1” for the sample estimate of the nth order/q-conjugate CCs), and frequency
β = 1/ρ. A CC-based feature vector is formed to be used for modulation recognition, as

F(i) =[|c(i)
y (γ0; 08)8,0||c(i)

y (γ2; 08)8,2||c(i)
y (γ4; 08)8,4||c(i)

y (γ6; 08)8,6||c(i)
y (γ8; 08)8,8|]†,

i = 1, . . . , Nmod, (10)

where the CFs γq , q = 0, 2, 4, 6, 8, are given by (3) and (7), with β = 1/ρ, n = 8, and
corresponding q . The features can be calculated according to (9), by using the values of the
cumulants of the modulations of interest given in Table 1 and estimates of the signal amplitude
and pulse shape. An estimate of the feature vector is obtained based on N observed symbols,
F̂N , by replacing ensemble averages by sample average. For simplicity, the Euclidian norm
is used as a distance metric, and the decision criterion is

Choose the modulation format ī if ī = arg min
1≤i≤Nmod

||F̂N − F(i)||2. (11)

4 Multi-Antenna Cyclic Cumulant-Based Classifier in Fading Channels

In this section, a multi-antenna modulation classifier, which employs eighth-order CC-based
features, is proposed. The multi-antenna classifier takes advantage of spatial diversity by
combining several independent copies of the signal to combat fading. To combine the sig-
nals received by multiple antennas, before the modulation recognition, a selection combiner
[24,25] is chosen, as it does not need channel estimates. An L branch receive antenna array is
considered, with fading amplitudes and phases among the L diversity channels independent.
Furthermore, the L noise processes are assumed independent zero-mean complex Gaussians,
with identical autocorrelation functions. The L sampled signals, y(i)

� (m), � = 1, 2, . . . , L ,
are applied to a selection combiner, where the branch yielding the highest instantaneous
signal-to-noise ratio (SNR) is selected. The discrete-time signal at the output of the diversity
combiner is therefore given by

1 In addition to the signals given in Table 1, these features can be used to identify other modulations, e.g.,
128-QAM, 256-QAM, V29, etc. If M-PSK modulations with M > 16 are included in the pool, the proposed
eighth-order CC-based features can be used to decide whether the modulation of the incoming signal is either
M-PSK, M ≥ 16, or one of the 4-ASK, 8-ASK, BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, and 64-QAM
signals.
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y(i)
SC (m) = y(i)

�′ (m), �′ = arg max
1≤�≤L

η�, (12)

where η� is the received instantaneous SNR of the �-th branch [24]. Apparently, the nth-
order/q-conjugate CCs of the sampled signal at the output of the selection combiner are
given by (8), with � replaced by �′, defined in (12). With the proposed multi-antenna classi-
fier, MC is performed as described in Sect. 3 for the single-antenna classifier, by processing
the signal at the output of the selection combiner.

5 Simulation Results and Discussion

5.1 Simulation Setup

With Nmod = 9, the pool of modulation consists of 4-ASK, 8-ASK, BPSK, QPSK, 8-PSK,
16-PSK, 16-QAM, 32-QAM, and 64-QAM. Normalized modulations are simulated, i.e.,
E[|s(i)

k |2] = 1, i = 1, . . . , Nmod. The transmit and receive filters are square-root raised
cosine pulses with r = 0.35 roll-off factor, simulated as finite-impulse response (FIR) filters
with (16ρ + 1) taps. Hence, the length of each FIR impulse response is (16ρ + 1)T/ρ =
16T + T/ρ sec. The oversampling factor ρ is chosen to be 11, to eliminate aliasing in
both cycle and spectral frequency domains (see the results in Appendix “3” for n = 8 and
r = 0.35). In all simulations we set T = 1, ε = 0.7, and � f = 0. For each branch, the
noise sequence at the output of the receive filter was generated by passing a zero-mean
white Gaussian sequence with autocorrelation σ 2

wδ(τd) through the square-root raised cosine
receive filter, where σ 2

w is the noise power and δ(.) is the Dirac delta function. Furthermore,
the channel coefficients are generated as identical distributed complex Gaussians, such that
the fading power equals one. The average (per-branch) SNR, calculated at the output of the
receive filter, is used in simulations. The number of processed symbols, N , is equal to 4,000,
unless otherwise mentioned. Perfect estimates of the amplitude, frequency offset, and pulse
shape are assumed.

In classifying Nmod equiprobable modulations, the average probability of correct classi-
fication, Pcc = N−1

mod

∑Nmod
i=1 P(i |i)

c , is used to quantify the classification performance, with

the probability of correct classification for modulation i, P(i |i)
c , i = 1, . . . , Nmod, estimated

based on 300 Monte Carlo trials.

5.2 Single- and Multi-Antenna CC-Based Classifiers in Rayleigh Fading

In Fig. 1 the average probability of correct classification, Pcc, for L = 1, 2, and 4 is plotted
versus the average SNR per branch. One can easily notice that by adding only the second
antenna, we obtain a large performance improvement when compared with the single-antenna
classifier.

5.3 Effect of the Number of Antennas

In Fig. 2 the effect of L on the number of symbols required to achieve a certain Pcc is shown.
Results are obtained for 15 dB average SNR per branch. As one can easily notice from Fig. 2,
a smaller number of symbols is needed to attain a specific performance when using the diver-
sity combiner. For example, Pcc = 0.9 is obtained with 1,900 and 2,300 symbols, when
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Fig. 1 Performance versus SNR
in Rayleigh fading, for different
number of branches and
N = 4,000 symbols
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Fig. 2 Performance versus the
number of symbols N in
Rayleigh fading, for different
number of branches and
SNR = 15 dB
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using four and two antennas, respectively, whereas with a single antenna, 4,000 symbols are
required for the same performance.

5.4 Effect of the Spatial Correlation Among the Branches

So far we have assumed negligible correlation among branches. To examine the impact of
correlation on the performance, we consider two correlated Rayleigh fading branches, with
the correlation defined by ς12 = E

[
µ1µ

∗
2

]
, where µ1 = α1e jϕ1 and µ2 = α2e jϕ2 are zero-

mean dependent complex Gaussian variables. For the two correlated branches, simulated
such that 0 ≤ ς12 ≤ 1, the performance shown in Fig. 3 is better at higher average SNRs per
branch, degrades at very high correlations, and appears to be robust to correlations as large
as 0.8.
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Fig. 3 Performance of a two
branch classifier in Rayleigh
fading versus the correlation
among branches, for N = 4,000
symbols and different SNRs
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Fig. 4 Performance versus the
Rice factor in Rice fading, for
different number of branches,
N = 4,000 symbols, and
SNR = 10 dB
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5.5 Effect of the K Factor in Rice Fading

Performance of the multi-antenna CC classifier in Rice fading is shown in Fig. 4, versus
the Rice K factor,2 at 10 dB average SNR per branch. Notice the significant performance
enhancement, obtained by adding only one extra antenna, i.e., L = 2 compared with L = 1,
at low values of K . As expected, the classifier performance improves with K , from K = 0
(Rayleigh fading) to K = ∞ (no fading). Also note that with L > 1, the classifier perfor-
mance is robust to the variations of the K factor.

2 For the definition of the Rice K factor see, for example, [25] Chap. 1.
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Fig. 5 Performance comparison
of different single-antenna
classifiers, for N = 4,000
symbols
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5.6 Performance Comparison of the Proposed Single-Antenna CC-Based Classifier
with LB and Other FB Classifiers

Performance of the proposed single-antenna CC-based classifier is compared against that of
classifiers introduced in [4,8], and [11], when recognizing BPSK, QPSK, 8-PSK, 16-PSK,
16-QAM, and 64-QAM modulations in Rayleigh fading (Nmod = 6). Unless otherwise men-
tioned, parameters are set up as per Sect. 5.1. Note that classifiers in [4,8], and [11] are
single-antenna, as well. Furthermore, a raised cosine pulse shape is considered with these
classifiers and the SNR is defined at the output of receive-filter to ensure a fair comparison.
An LB classifier is proposed in [4], whereas FB classifiers in [8] and [11]. The LB classifier in
[4] assumes known parameters. The classifier in [8] employs the magnitude of the normalized
fourth-order/ zero-conjugate cumulant as discriminating feature, with normalization to the
second power of the second-order/ one-conjugate cumulant of the signal component, and is
robust to phase. The classifier in [11] uses a feature vector whose components are the magni-
tudes of the nth-order/ q-conjugate CCs raised to the power of 1/n, n = 2, 4, 6, q = 0, . . . , n,

and is robust to phase and timing offset. It is noteworthy that by using statistics with order
lower than eight, the FB classifiers in [8] and [11] cannot distinguish between 8-PSK and
16-PSK. Results obtained with the aforementioned classifiers are presented in Fig. 5, and
show that the proposed CC-based classifier outperforms classifiers in [4,8], and [11]. More-
over, the classifiers in [4] and [8] fail under the investigated scenario, as they are not robust
to phase and timing offset, and timing offset, respectively. Results achieved with the LB
classifier when assuming known parameters is also presented, as representing the maximum
performance (ideal scenario). As one can easily notice, the proposed classifier provides a
reasonable performance under the investigated non-ideal scenario at higher SNRs, e.g., a Pcc

above 0.8 is attained for SNRs above 10 dB.

6 Conclusion

In this correspondence we have introduced single- and multi-antenna higher-order cyclic
cumulant-based classifiers for linear digital modulations in flat fading channels. The proposed
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single-antenna classifier has the advantage of robustness to unknown phase and timing offset,
being applicable to a large pool of modulations. Furthermore, the multi-antenna classifier mit-
igates the impact of fading by employing selection combining as a spatial diversity scheme.
This is also shown to be robust to a possible correlation among the antennas, as well as the
variations of the Rice K factor, which represents different levels of fading. A fair comparison
with other classifiers proposed in the literature is performed, proving the effectiveness of the
proposed classifier. In addition, analytical closed-form expressions for the higher-order cyclic
cumulant polyspectra have been derived for linearly digitally modulated signals affected by
fading channel, frequency and timing offsets, and additive Gaussian noise. For a raised cosine
pulse shape, a necessary and sufficient condition for the oversampling factor is obtained to
avoid aliasing in the cycle and spectral frequency domains.

Acknowledgment Octavia A. Dobre would like to thank Dr. C. M. Spooner for the useful discussions on
signal cyclostationarity.

Appendix 1: Cumulants, Cyclic Cumulants, and Sample Estimates

For a complex-valued continuous-time nth-order cyclostationary process, y(i)(t), the
nth-order/ q-conjugate time-varying cumulant, c̃(i)

y (t; τ̃ )n,q , is an (almost) periodic func-
tion of time, and can be expressed as an exponential Fourier series [20,21],3

c̃y(t, τ̃ )n,q =
∑

γ̃∈κ̃n,q

c̃y(γ̃ ; τ̃ )n,qe j2πγ̃ t , (13)

where the coefficient represents the nth-order/q-conjugate CC of y(i)(t) at cycle frequency
γ̃ and delay vector τ̃ , given by

c̃(i)
y (γ̃ ; τ̃ )n,q = lim

I→∞ I −1
∫ I/2

−I/2
c̃(i)

y (t; τ̃ )n,qe− j2πγ̃ dt.

The nth-order/ q-conjugate time-varying cumulant is expressed in terms of the nth- and
lower-orders moments, through the moment to cumulant formula, as [20,21]3

c̃(i)
y (t; τ̃ )n,q = Cum[y(i)(∗)1

(t + τ̃1) . . . y(i)(∗)n−1
(t + τ̃n−1)y(i)(∗)n

(t)]

=
∑

{℘1,...,℘Z }
(−1)Z−1(Z − 1)!

Z∏

z=1

m̃(i)
y (t; τ̃ z)nz ,qz , (14)

where (∗)u, u = 1, . . . , n, represents a possible conjugation, so that the total number of
conjugations is q, {℘1, . . . , ℘Z } is a partition of ℘ = {1, 2, . . . , n}, with ℘z’s, z = 1, . . . , Z ,
as non-empty disjoint subsets of ℘, so that their reunion is ℘, Z is the number of the sub-
sets in a partition (1 ≤ Z ≤ n), τ̃z is a delay vector whose components are elements of
{τ̃ 1, . . . , τ̄n−1, τ̃n = 0}, with indices specified by ℘z , and nz is the number of elements
in the subset ℘z , from which qz correspond to conjugate terms. Note that

∑Z
z=1 nz = n

and
∑Z

z=1 qz = q . Furthermore, m̃(i)
y (t; τ̃ z)nz ,qz

is the nz th-order/qz conjugate time-varying

moment of y(i)(t), defined as

m̃(i)
y (t; τ̃ z)nz ,qz = E[y(i)(∗)1,z

(t + τ̃1,z)y(i)(∗)1,z
(t + τ̃1,z) . . . y(i)(∗)n,z

(t + τ̃n,z)], (15)

3 In [20,21] the definitions of time-domain parameters of higher-order cyclostationary are given for real
processes. As complex processes are encountered in MC, here we extend the definitions to this case.
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where τ̃v,z, v = 1, . . . , nz , are the components of the delay vector τ̃z , and (∗)v,z, v =
1, . . . , nz , represents a possible conjugation, corresponding to the subset ℘z and the conju-
gate terms in (14), so that the total number of conjugations is qz .

The nth-order/q-conjugate CC of y(i)(t) at cycle frequency γ̃ and delay vector τ̃ can be
expressed as [20,21]3

c̃(i)
y (γ̃ ; τ̃ )n,q =

∑

{℘1,...,℘Z }
(−1)Z−1(Z − 1)!

∑

χ̃†1=γ̃

Z∏

z=1

m̃(i)
y (χ̃z; τ̃ z)nz ,qz , (16)

where χ̃ = [χ̃1, . . . , χ̃Z ]† is a vector of CFs, 1 is a Z -dimensional one vector, and
m̃(i)

y (χ̃z; τ̃ z)nz ,qz is the nz th-order/qz-conjugate cyclic moment of y(i)(t) at cycle frequency
χ̃z and delay vector τ̃z , defined as3

m̃(i)
y (χ̃z; τ̃ z)nz ,qz = lim

I→∞ I −1
∫ I/2

−I/2
m̃(i)

y (t; τ̃ z)nz ,qz e− j2πχ̃z t dt. (17)

Equation (16) represents the so called cyclic moment to cumulant formula, which gives the
nth-order CCs as a function of the nth- and lower-orders cyclic moments. The nth-order/
q-conjugate CCs of the discrete-time signal y(i)(m) = y(i)(t)

∣∣
t=mT/ρ

is given by (5). A
similar expression can be also written for cyclic moments [23]. Furthermore, (13)–(17) can
be easily rewritten for discrete-time signals (see, for example, [26]). The estimate of the
nz th-order/qz-conjugate cyclic moment based on N observed symbols (Nρ samples) is given
by [26]

m̂(i)
y (χz; τ z)nz ,qz = (Nρ)−1

Nρ∑

m=1

y(i)(∗)1,z
(m + τ1,z)y(i)(∗)2,z

(m + τ2,z) . . .

×y(i)(∗)nz,z
(m + τnz ,z)e

− j2πχzm, (18)

where τ z = τ̃ zρ/T , with its components τv,z = τ̃v,zρ/T, v = 1, . . . , nz , and χz =
χ̃z T/ρ. Then, the estimate of the nth-order/q-conjugate CCs, based on N observed symbols,
ĉ(i)

y (γ ; τ )n,q , is obtained by replacing the cyclic moment estimates in the cyclic moment to
cumulant formula [26].

Equations (14)–(15) can be easily written for stationary processes, by dropping the
t-dependency, and further simplified for random variables [19]. Let us consider the vari-
able s(i)

k , with values taken from the alphabet corresponding to the i-th signal constellation,
i = 1, . . . , Nmod. The nz th-order/qz-conjugate moment of the i-th constellation is defined as

ms(i),nz ,qz
= E[(s(i)∗

k )qz (s(i)
k )nz−qz ] = M−1

i

Mi∑

m=1

(s(i)∗
m )qz (s(i)

m )nz−qz . (19)

Then, by using the moment to cumulant formula, the nth-order/q-conjugate cumulant of the
i-th constellation, cs(i),n,q , can be easily expressed in terms of moments as

cs(i),n,q = Cum[(s(i)∗
k )q(s(i)

k )n−q ]

=
∑

{℘1,...,℘Z }
(−1)Z−1(Z − 1)!

Z∏

z=1

ms(i),nz ,qz
. (20)
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Appendix 2: Derivation of the Analytical Closed-Form Expressions for Higher-Order
Cyclic Cumulants and Cycle Frequencies

With the signal model in (1), and by using the cumulant properties [19], one can easily show
that the nth-order/q-conjugate time-varying cumulant of y(i)(t) at delay vector τ̃ is given by
(note that the conjugated terms are arbitrarily chosen)

c̃(i)
y (t; τ̃ )n,q = Cum[y(i)∗(t + τ̃1) . . . y(i)∗(t + τ̃q)y(i)(t + τ̃q+1) . . . y(i)(t)]

= αne jϕ(n−2q)e j2π� f (−τ̃1−···−τ̃q+τ̃q+1+···+τ̃n−1)e j2π(n−2q)� f t

×
∑

k1

∑

k2

. . .
∑

kn

Cum[s∗
k1+ξ1

, . . . , s∗
kq+ξq

, skq+1+ξq+1 , . . . , skn ]

×p∗(t − k1T − εT + τ̃1) . . .

×p∗(t − kq T − εT + τ̃q)p(t − kq+1T − εT + τ̃q+1) . . . p(t − knT − εT ).

(21)

The notation s(i)
ku+ξu

= s(i) (ku T + ξu T ) used in (21), in which ξu T = τ̃u, u = 1, . . . , n − 1,
with ξu not necessarily an integer, shows that delayed versions of the symbol transmitted
within the ku th period need to be considered. Under the assumption of independent data
symbols, the cumulant Cum[s∗

k1+ξ1
. . . s∗

kq+ξq
skq+1+ξq+1 . . . skn ] is non-zero if and only if

s(i)
k1+ξ1

= . . . = s(i)
kn

, which occurs for k1 = . . . = kn = k and delays τ̃u, u = 1, . . . , n −
1, depending on the pulse shape. For example, these delays belong to the interval [0, T )

for a rectangular pulse shape, and exceed T for a raised cosine pulse shape. In such case
Cum[s∗

k1+ξ1
. . . s∗

kq+ξq
skq+1+ξq+1 . . . skn ] = cs(i),n,q , and (21) can be further written as

c̃(i)
y (t; τ̃ )n,q = αncs(i),n,qe jϕ(n−2q)e

j2π� f
n−1∑
u=1

(−)u τ̃u
e j2π(n−2q)� f t

×
n−1∏

u=1

p(∗)u (t + τ̃u)p(∗)n (t) ⊗
∑

k

δ(t − kT − εT ), (22)

where ⊗ denotes the convolution operator.
By applying the Fourier transform to (22) with respect to t , and after some mathematical

manipulations, one can show that

�{c̃(i)
y (t; τ̃ )n,q} = αncs(i),n,q T −1e jϕ(n−2q)e

j2π� f
n−1∑
u=1

(−)u τ̃u
e− j2πβ̃εT

×
∑

k

∫ ∞

−∞

n−1∏

u=1

p(∗)u (t + τ̃u)p(∗)n (t)e− j2π tkT −1
dt

× δ
(
γ̃ − kT −1 − (n − 2q)� f

)
, (23)

where �{.} denotes the Fourier transform. It is straightforward that (23) represents a sum of
spectral components at frequencies {γ̃ } specified in (3), and with coefficients given in (2).
In other words, the nth-order/q-conjugate time-varying cumulant can be expressed as a sum
of complex exponentials with frequencies corresponding to the CFs, and the nth-order/q-
conjugate CCs as coefficients. It should be noted that results presented in [20,21] represent
a particular case of (2) and (3), for ε = 0,� f = 0, α = 1, and ϕ = 0. In addition, results
presented in (2) and (3) are also given in [10], but with no proof.
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Appendix 3: Simple Examples of Cyclic Cumulants and Cycle Frequencies

The nth-order/q-conjugate CCs of y(i)(t) in (1) and the set of associated CFs are given
by (2) and (3), respectively. For a better understanding, here we provide two examples:
(n, q) = (4, 0) and (4,2). For (n, q) = (4, 0), (2) and (3) simplify, respectively, to

c̃(i)
y (γ̃ ; τ̃ )4,0 = α4cs(i),4,0T −1e− j2πβ̃εT e j4ϕe j2π� f (τ̃1+τ̃2+τ̃3)

×
∫ ∞

−∞
p(t)p(t + τ̃1)p(t + τ̃2)p(t + τ̃3)e

− j2π t β̃dt, (24)

κ̃4,0 = {γ̃ : γ̃ = β̃ + 4� f, β̃ = k/T, k integer, c̃(i)
y (γ̃ ; τ̃ )4,0 �= 0}, (25)

whereas for (n, q) = (4, 2) we obtain

c̃(i)
y (γ̃ ; τ̃ )4,2 = α4cs(i),4,2T −1e− j2πβ̃εT e j2π� f (τ̃1+τ̃2−τ̃3) (26)

×
∫ ∞

−∞
p∗(t)p(t + τ̃1)p(t + τ̃2)p∗(t + τ̃3)e

− j2π t β̃dt,

κ̃4,2 = {γ̃ : γ̃ = β̃, β̃ = k/T, k integer, c̃(i)
y (γ̃ ; �

τ )4,2 �= 0}. (27)

The elements of the cycle frequency sets, k‘s, are explicitly given in Appendix “5” for a raised
cosine pulse shape. Note that in (26) the first and fourth p terms are conjugated. However,
we can choose any other pair in that product to conjugate. Anyway, as long as p(t) is real,
which is the case in this correspondence, this is not an issue.

Appendix 4: Derivation of the Analytical Closed-Form Expression
for the Higher-Order Cyclic Cumulant Polyspectra

By taking the (n − 1) fold Fourier transform of c̃(i)
y (γ̃ ; τ̃ )n,q given in (2) with respect to

τ̃ = [τ̃1 . . . τ̃n−1]†, one can easily write that

C̃ (i)
y (γ̃ ; f̃)n,q = αncs(i),n,q T −1e− j2πβ̃εT e j (n−2q)ϕ

×
∫ ∞

−∞
p(∗)n (t)e− j2πβ̃t

n−1∏

u=1

∫ ∞

−∞
p(∗)u (t + τ̃u)e

j2π� f
n−1∑
u=1

(−)uτu
e j2π f̃u τ̃u d τ̃udt .

(28)

With the change of variable ṽ1 = t + τ̃1, . . . , ṽn−1 = t + τ̃n−1, ṽn = t , and after simple
mathematical manipulations, one can easily find the expression for the nth-order/q-conju-
gate CCPs of y(i)(t) in (4). It should be noted that results presented in [20,21] represent a
particular case of (4), for ε = 0,� f = 0, α = 1, and ϕ = 0.

Appendix 5: The Set of Cycle Frequencies and a Proper Selection
of the Oversampling Factor

Here we derive the set κ̃n,q of CFs for a raised cosine pulse shape, as a function of the roll-off
factor, r . To illustrate the procedure, we start with an example for n = 4 and q = 2. In such
case (4) becomes
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C̃ (i)
y (γ̃ ; [ f̃1, f̃2, f̃3])4,2 = α4cs(i),4,2T −1e− j2πβ̃εT

× P∗(−β̃ + f̃1 − � f + f̃2 − � f − (− f̃3 − � f ))

×P( f̃1 − � f )P( f̃2 − � f )P∗(− f̃3 − � f ), (29)

where the two conjugated terms are arbitrarily chosen in the product given in (29).

C̃ (i)
y (γ̃ ; [ f̃1, f̃2, f̃3])4,2 �= 0

if

⎧
⎨

⎩

cs(i),4,2 �= 0 and,
P( f̃1 − � f ) �= 0, P( f̃2 − � f ) �= 0, P∗(− f̃3 − � f ) �= 0 and,

P∗(−β̃ + f̃1 − � f + f̃2 − � f − (− f̃3 − � f )) �= 0.

(30)

With a raised cosine pulse shape bandlimited to Bp = (1 + r)/(2T ), the conditions imposed
in (30) yield | f̃1 − � f | < Bp (C.1), | f̃2 − � f | < Bp (C.2), | − f̃3 − � f | < Bp (C.3)
and | − β̃ + f̃1 − � f + f̃2 − � f − (− f̃3 − � f )| < Bp (C.4). Hence, a necessary con-
dition for β̃ is |β̃| < 4Bp . By replacing β̃ = k/T and Bp = (1 + r)/(2T ) in the above
inequality, the following results can be easily obtained: the set {β̃}4 is given by {0,±1/T }
if r = 0, {0,±1/T,±2/T } if 0 < r ≤ 0.5 and {0,±1/T,±2/T,±3/T } if 0.5 < r ≤ 1.
One can show that if cs(i),4,q �= 0, the same result holds for n = 4, with q = 0, 1, 3 or 4.
Otherwise, κ̃4,q is the null set.

The same procedure can be applied for any n and q . If n is odd, the set of CFs is the null set,
since for the signal of interest cs(i),n,q = 0, for any q = 0, . . . , n. With n even, the following

results can be easily obtained. First, |β̃| < nBp is a necessary condition for β̃, any n and
q = 0, . . . , n. Then, the set {β̃}n is given by {0, . . . ,±(n/2 − 1)/T } if r = 0, and includes
{0, . . . ,±n/(2T )} if 0 < r ≤ 1. Additional values for β̃ can exist in different r regions.
By mathematical induction it can be easily proved that if 2m/n < r ≤ (2m + 2)/n, m =
1, . . . , n/2 − 1, the set of additional values for β̃ is {±(n + 2)/(2T ), . . . ,±(n + 2m)/(2T )}.
Once the set {β̃}n is determined, the set κn,q of CFs is computed using (3). Results presented
in [27] can be seen as particular cases of these findings.

By knowing the set {β̃}n , a necessary and sufficient condition for the oversampling factor
ρ to eliminate aliasing can be derived for any n and r . The nth-order CCPs of the sampled
signal at the output of the receive filter is given by [23]

C (i)
y (γ ; f)n,q = f n−1

s

∑

v∈Z

∑

ν∈Zn−1

C̃ (i)
y (γ̃ − v fs; f̃ − ν fs)n,q , (31)

with fs as the sampling frequency, γ = γ̃ / fs, f = f̃/ fs, Z the set of all integers, and
ν = [ν1, . . . , νn−1]†, where each νu, u = 1, . . . , n − 1, is an integer. One can notice that the
nth-order CCPs of the sampled signal consist of the periodic extension of the nth-order CCPs
of the original continuous signal, in both spectral (f̃ − ν fs) and cycle frequency (γ̃ − v fs)

domains. Two kinds of aliasing effects can appear due to sampling, i.e., aliasing in the spectral
frequency domain, which is the overlapping of images of CCP with the same cycle frequency,
and aliasing in the cycle frequency domain, which is the overlapping of images of the CCP
with different cycle frequencies. Let us consider n = 4 and q = 2. Obviously, based on
(C.1)–(C.3), the Nyquist condition needs to be fulfilled to eliminate aliasing in the spectral
frequency domain. This translates into the condition ρ ≥ r + 1 for the oversampling factor.
It can be easily shown that this holds for any and n and q . Let us further assume that r = 1.
In such case, as for the examined signals cs(i),4,2 �= 0 (see Table 1), the set κ̃4,2 of CFs
is {0,±1/T,±2/T,±3/T }. By using this result and (31), it is apparent that the sampling
frequency fs needs to be at least 7/T to avoid aliasing in the cycle frequency domain. This
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translates into a condition for the oversampling factor ρ, which has to be at least 7. Based on
the previously derived set of frequencies {β̃}n, n even, it is straightforward that if cs(i),n,q �= 0,
the condition for the sampling frequency fs to avoid cycle aliasing is to be at least (n −1)/T
for r = 0 and (n + 2m + 1)/T for 2m/n < r ≤ (2m + 2)/n, m = 0, . . . , n/2 − 1, which
respectively translate into the conditions ρ ≥ n −1 and ρ ≥ n +2m +1 for the oversampling
factor. Furthermore, it can be easily shown that in such case spectral aliasing is also avoided
if these conditions are fulfilled.
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