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ABSTRACT

A 4n X 4n Rademard array, H, is a square matrix of order 4n with
elements * A, * B, * C, t I} eaach repeated n times in each row and column.
Assuming the indeterminates A, B, C, D commute, the row vectors of H must
be orthogonmal. These grrays have been found for n = 1 (Williamson, 1944),
n = 3 {Baumert-Hall, 1965), n = 5 (Welch, 1971), and some other odd n < 43
{Cooper, Hunt, Wallis).

The results for n = 25, 31, 37, 41 are presented here, as is a
result for n = 9 not based on supplementary difference sets. This gives the
following new orders for Hadamard matrices < 4000; 1804, 3404, 3596, 3772.
These resulis were obtained by using 2an adaption of cyclotomy which allows
the product of incidence matrices to be easily derived. This adaption is
developed and the constructions shown for some families of supplementary

difference sets.
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1. INTRODUCTION AND DEFINITIONS

We use I for the identity matrix and J for the matrix with every
.element + 1, and the order, unless specifically stated, should be determined
from the context. We sometimes use brackets, [ ], to denote matrices and

T
E" denctes H transposed.

Let Sl’ Sz, . Sn be subsets of V, a finite abelian group of
order v written in additive notation, containing kl’ k2, ey kn elements
respectively. Write Ti for the totality of all differences between elements
of Si (with repetitions), and T for the totality of elements of all the
Ti' If T contains each non-zers element of V a fixed number of times, X

gay, then the sets Sl’ SZ’ res Sn will be called n - {v; k,, k., ..., ku;l}

2’
supplementary difference sets.

The parameters of n — {v; kl’ kz, ey kn;k} supplementary difference
sets satisfy
n
@ Ae-1) = %, (-1
i=1
if kl = k2 T e = kn = k we will write n - {v; k; A} to denote the n

supplementary difference sets and (1) becomes

(2} Aiv-1) = nk(k-1}.

We shall be concerned with collections, (denoted by square brackets
[ I) defined on a fixed group V or order w, in which repeated elements
are counted multiply, rather than with sets (denoted by braces { }}. If Tl
and T2 are two collections then Tl and T2 will denote the result of adioining
the elements of T, to T, with total myltiplicities retained. For example:

1
Xy» ¥ps X3, € V and Tl = [xl, X,» x3,], T2 = Exl, Xy x4} then

(3) _ Tl &T, = [xl, Xs Kys Kyy Xy, x3].

The class product or join (see Storer [12] p. 3) of two collections
T, and T, will be denoted by T

A T2, which is defined as

1 2 1
M = H .
(4 T, AT, {xl + X BT, X € T2], Tys Ty € ¥
Suppose Xps Fgy vy X are the elements of V ordered in some fixed

- 352 -



way. Let X be a subset of Vv, Furtﬁgr let ¢ and { be two maps from V inte a
commutative ring with wnity (1), Then M = [mij] is defined by

(3) myy = w(xj—xi)

wlll be called type 1 and N = Inijj defined by

(6) T ¢(xj+xi)
will be called type 2.

If ¢ and ¥ are defined by

1 xe X,

) $Gx) = Yx) = {0 <4 x.

then M and N will be called the type 1 incidence matrix of X (in V) and the

type 2 incidence matrix of X (in ¥), respectively, While if ¢ and ¢ are
defined by

1 xe X,

) $Gx) = W(x) = {_1 c b

M and N will be called the type 1 (1, -1) matrix of X and the type 2 (1, -1}
matrix of X respectively. M and N are of order |V|. These are discussed
further in [20] and [21]. ’

We note that there exists an R = [rij] defined by

1 1f x, +x, = 0,
T,, = t J
13

0 ctherwise,

®

such that if M is the type 1 matrix of X, MR is a type 2 matriz.
Write #(x) for the number of times x occurs in the collection X.

Define the type ! incidence matrix, [X] = [zij] of X by

(10} 235 = #(xj—xi).

It is proved in [4] that is X and Y are collections of elements
from the same abelian group V then‘where the left hand side is the matrix

multiplication of the two matrices!
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an [X] I¥] =X A ¥] .

An Hadamard matrix H of order h has every element + 1 or - 1 and

satisfies H HT =h L. It iz shown in [20] that
A
(12) 4 — {v; ks Ky k3, ks izlki - v} supplementary
difference sets yield an Hadamard matrix of order 4v; and in [21] that
4
(13) 4 - {v; kl, Ky k3, k3 izl ky - v - 1} supplementary

differences sets necessarily have each ki =morm+ 1 for v=>2m+ 1 and
kl =m*1i, k
order 4(v+l).

The Hadamard product, *, of two matrices A = Iaij], and B = jbij]
of the same size is given by

(14) A%B=[a bl

5 = k3 = k4 =m for v = 2m and yield an Hadamard matrix of

We define an Hadamard array, H, of order &4n, to be a square matrix

of order 4n with elements = A, * B, £ C, ¥ D each repeated n times in each
row and column, with the property that, assuming the indeterminates A, B,

C, D commute, the row vectors of H must be orthogonal,
The Hadamard array of order 4 is

A B C D

-B A -D ¢
(15)

-0 -C B A

and is due to Williamson [27]. 1In 1965, Baumert and Hall published the

12 % 12 Hadamard array and in 1971 L. R. Welch found a 20 x 20 array.

These may be found in [3] and [21]. Subsequently Badamard arrays have been
found for orders &m, m £ {7, 9, 11, 13, 15, 17, 191 by Cooper and Wallis
{see [5], [19], [21]}. In the next section we give some arrays obtained by

partitioning the Galois Fields for some prime powers.

The constructions for Hadamard arrays that we quote in rhe next

section rely on the following result, see [21] :
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LEMMA A: Let P and { be type 1 incidence matrices and R be a type 2
incidence matrix. Then .

(1) Pq = gp, PQ = @7, g’ - ', PTQ" = oTpT

(ii) RQ = QTRT, RTQ = QTR, RQT = QRT,‘ RTQT = QR.

HOTATION: We will use the notation Ca ~

Cb, where Ca f Cb = ¢ and Ca

and

G, are collections of elements from the same abelian group V, to mean the

“eollection" of elements

[e

2] e,

P I e
a b b 1

1 %2 1 2

€ Ca' ijg Cb’

where —-c,. deoes not mean the Inverse (cgl) af in V¥, but means ¢
b not 3 ij by

with a negative sign attached.

The incidence matrix of Ca ~Gy and Ca & G, are defined by

(16) [c, ~ ¢, =[] - [, ad [C, &C]=IC]T+IC,]

respectively.
2. SOME RESULTS

In [5] and [21] the following theorem is given:

THECREM 1. Suppuse there exist four type 1 (0, 1, -1) matrices X, X5, X,

§4 of order n, defined on the same abelian group V with n elements, such

that
(1Y X, *# X, =0, 1i# 4, {* the Hadamard product).
1 |
4
{i1) Z X, is & (1, -1} matrix
-1
i=1
4 T
(1i1) 121 XX =nl.

Further suppose A, B, C, D are indeterminates that pairwise cowmute.

Define

X = Xl X A+ Xz x B + XB = G+ x& X D,
Y=X xB+X XA+ X, XD+ X, x=C
1 2 4 :
an 3
%=X *C+X, %D+ Xy XA+X xB,
W=X %D+ X, % C+Xy%B+X XAa,

3 4
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where X, X A denotes X with edch 1-and -1 repldaced by A and —A respectively:

(if a matrix is substituteéd for A, X, X A will becomeé the usual Kronecker
i

product.) If S denctes the R of (9) defined on V, then

[[x  vs  z5 WS |
-¥s ¥ -W's 1zs
(18) H =
-Z8 WTS X -YTS
-HS —ZTS YTS X
is an Hadamard array of order 4m. *kk

We note that the condition that Xl, XZ’ X3, Xé are type 1 is only-
imposed so that we can ensure a suitable 5 exists, That other matrices are

possible is demonstrated in the next lemma.

LEMMA 2. Let T and R be the matrices

0 1 0 4 0 1
T = a 0 1 and R = 0 1 0 H
1 00 1L 6 0
further let
I 1 1 T T T T2 T2 T2 0o 0 ¢
X,=|1 T T2 s X =-T—T2—I , X.=|0 0 0, X, = TZI T ,
1 3 2 3 5 4 9
I T T b 0 Q0 -T -T -I ~T -1 =T

where 0 is the zero matrix of order 3. Then with § = R xR, X, Y, Z, W

and H of the previous theorem give an Hadamard arvay of order 36.

PROOF. Since T + T + T2 = J we have conditions (i), (ii) and (1{i) of the

theorem satisfied., The properties of H may be easily checked. #hE

We note the row and column sum of the matrices Xi’ i=1,2,3,4
are not constant and so the matrices need not {and do not) satisfy the

conditions of the following lemma {see [5] and [21]).

LEMMA 3. Suppose there exist four (0, 1, -1) matrices Xlz.Ega XE* x! of

order n which satisfy

- 3536 -



- {8¢ =

Xl,Xz,X3,X4

13=4.3+1

19=6.3+1

25=8.3+1

31=10.3+1

37=12.3+1

41=8,5+1

12452402402

2 .2

32442492407

524024024+0°

32+32+32+22

2

5241%+0%+0°

52442102402

[Cyl, [cy~{0}], [C,C,l, [#]

[cyl, [C,1, ({0} & C5oC,T, [Cy~Cq)

[Cy & 05~{0}], [C,~C,1, [Cy~Cql, [C,7C4)

[Cy & C47C,1, IC, & csicgl, [c, & cgc], [Cy~{0}]

1€y & €,~C,"Cy & C, & C.1, [{0}1, [Ce T, & Cg*Cq & €1 7Coy 1, [&]

[CyC fe, & cgrc ~1011, fc~c,l, [4]

2 C3]s

TABLE 1



(1) J_(F,*KJ.EO: 1#3, 1, 4=1,2,3,4

(11)

Let x, be the number of positive elements in each row and column of X,

and v, be the number of negative elements in each row and column of X .
'y L

Then

4

4
2
(a) izl(xiwi) =, (b) izl(xi-yi) = n.

In Cooper and Wallis it is noted that some sultable matrices
Xl’ Xz, X3, X4 satisfying the conditions of theorem 1 may be formed by
partitioning the Calois Field for a prime (or prime power) p = ef + 1
and using the incidence matrices of the subgroup and cosets of order f.
The results for n = 13 and n = 19 given below are in [5], for n = 25
in [21] and n = 31, 37, 41 are presented here for the first time. Thus,

we have from Table 1:

THEQOREM 4. There exist Hadamard arrays of order 52, 76, 100, 124, 148, 164.

Matrices A, B, C and D which may be used to replace the indeterminates

of Theorem 1 are known to exlst when n 18 a member of the set
M=1{3, 5,7, ..., 29, 37, 43},

[9] and when 2m-1 is & prime power congruent to 1 module 4, see [14] and [25].

So we have

COROLLARY 5. There exist Hadamard matrices of orders 52m, 76m, 100m, 124m,
148m, 164m, for m £ M.

COROLLARY 6, There exist Hadamard matrices of orders 26(g+l), 38{(q+l),

50(q+1), 62{q+l), 74(q+1), 82(g+l) whenever q is a prime power comngruent

to 1 modulo 4.

RESULTS: The last three new classes give the following new Hadamard matrices
of order < 4000; 1804, 3404, 3596, 3772. '
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3. CYCLOTOMY

We now make 2 minor adaption of the cyeclotomic arrays in order
to facilitate the examinatien of structure in matrices based on cyclotomic
classes. The adaptiom is most ﬁseful for e even, £ odd. TIn all cases we
indicate a source for the proofs we need but do not attempt to give the

original reference,

NOTATION. Henceforth we use square brackets, [ ], for matrices and write
[{0}]= I. Let X and Y be two collections, then [X) will mean the (type 1)
incidence matrix of X, XT will mean that collection such that [XT] - [X]T
and aX will be the collection with each element of X repeated a times, so
[aX] = a[X]. We recall from [Cooper] that

(19) X » Y] = [X][¥],
and we use the definitiom

(20} X~ ¥]

IX] - [Y] 3

(21) % u Y]

[X] + [¥], X nY

[}
=

for X & Y] = [X] + [¥), Xn Y # &),
In the matrix cases we comsider, expressions of the type
[x v Y1x v ¥]" or [x - ¥IX ~ ¥IT = [XI[L) ¢ [XIY0) & [YIIX]
+ 1YY" XnY=9)
SR AT E[XAY) & (FAXDI+ Y AT, RnY=o)
will arise so it is valuable to have

(22) XA X7 and [(X A YD) & (¥ A XD)] (XnY=¢)
readily available.

We now turn to Storer {12; p. 24-25] for the elementary theory

of cyclotomy:

lLet x by a primitive root of F=GF(q) where q = pu —ef+1

is a prime power. Write € = <x> \ {0}. The cyclotomic ¢lasses C

i
in F are:
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et e =0, 1, vu., £-17 1 = 0,1,...,e-1.

C, =
3 {=

We note the Ci are palrwise disjoint apd their mmien is G.

For fixed { and j, the cyclotomic number (1, j) is defined to be
the number of sclutions of the equation

z, £ C.),

z; + 1= zj (zi € Ci’ b B

whera 1 = xo is the multiplicative unit of F. That is (i,j) is the aumber
of ordered pairs s, t such that

xes+i + 1= xgt+j (0 < s,t = £-1).
Now with . the multiplicative operation in F

C. AC, = [ath: a £ C

3 5 begC,]

1 2
= S e 2™ 0 <6, £ o< £-1)

RTINS

(23)
= 1o, "y L0 s p < 21
= (j—l,O)Ci & (j—i,l)ci+1 &...&(f-1, e-l)Ci+e_1
& f ej_i{o}
vwhere Bk is given by
1l f is even and k =10
(24) Bk = 1 4if f 15 0dd and k = e/2
o] otherwise.
We note
(25) ¢y A cj = zi.(c0 A cj_i) = zi.((j—i,D)CO &uu &

(3-i,e-1)C,_,; & £0 j_'l{o}) where z; ¢ C,.
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Now (j-i,k) is just the j-1,k entry in the approepriate

cyclotomic array, so the expression for €, A C, can be easily determined.

13

T {Ci f 15 eyen

1 c f is odd

We note
LEMMA 7. C

1+ef2

PROOF. From Storer [12; lemma 2, page 25],

{Co if £ is even,
o i >

Ce{2 1f f is edd,

Now 1f z ¢ Ci then -z ¢ Ci, where -z is the inverse of z in the additive
group G, and so the result follows. kak

Thus for f even

T
Ci A Ci = Ci ALC

i

and then the cyclotomic arrays can be used immediately. We thus restrict

our attention to f cdd and note

T T
LEMMA 8. (Ci A cj) & (cj A ci) = (ci A Cj+ef2) & (cj A Ci+e!2)’
= (Cp A Cyper) & Cypgpp ~ €y
Hence, for f odd, if
e-1
c, A cj = siO (4-1,8) C_,, & fehi {0}
then, with 5ij the Kronecker delta,
T T e-1
(Ci A Cj) & (Cj A Ci) = S:O (j+e!2—i,s)Cs+i &
e-1
tiO (-1-e/2,8) Cpyy sy & f(ej+e’,2_i+ej_e,,2_i){0}
e-1
= Sfo.(j—i+ef2,s)(cs+i v Cs+i+ef2) & 2f Gij{o}
ef2-1
= riO ((j-1+ef2,r) + {j—i+ef2,r+9f2»(cr+i U Cr+i+ef2)
& 2f 6., {0},
ij
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Thus we have proved the following rule., Note that in the case of [X 4 XT]
(see equation (22)), we do not want

@ A X & XA KD
so the first row of these tables gives X A X0 only,

RULE TO OBTATN ARRAYS FROM THOSE QF LITERATURE FOR e EVEN, f ODD:

{1) rearrange the rows by putting {(e/2+i)th row of original array
into ith row, 1 = 1,2,...,2. '

(2) add element in ith column to element in (i+e/2)th column and
put in ith e¢oluvm, i = 1,2,...,ef2, except for the first row

which ghould not be altered.

For example for e = 4, f odd:

0 1 2 3 6,2 1,3
] 4 B C D 0 A E
1 E E D B 1 | BB IHE
- >
2 A E A E 2 | &+C  B4D
3 E D B E 3 | E+4b E+B

RULE TO USE ADAPTED ARRAY 4 = [aii] FOR e EVEN, f ODD:

Write Ai = [Ci U Ci+e;’2]’ reduce all subscri?ts modulo e/f2.

..

[

T
[CO A CO] alle + alel +oat al,e;‘2 Ae!'2—-1 + f1

A+ a A, t...t a fI

T
[Cg ACT=a; 14abp ¥ 21 24 Ay 1,e/245e/2-1 T

A + a2 A +.. .+

T T
[GprcCd+Io AChlma 14 a4y 04

e 8i41,e/2 Bef2-1°

A, + a. AL+, 4

T
ACY = Ay 1es B0 T P0a1,04s A1

T
[cs A Ci+s] + IC:i.+si

2441,e/2+s Pef2-1°
- A
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ADAPTED CYCLOTOMIC ARRAYS:

o oW =D

LTEI S D o = |

E+B

2,5

e even, f odd

A= (f-1)/2
AB = f

AE = (£-1)/2
BHHZE = f
A+BHCHD = f

AMGHH = (£-1)/2

F+H

I+1

BAFHGHHAIAHT =f

C+H

21

E+H:

CHEHGHH+2ZT =

A+D

-C+F

A+BHCAHDAFEAF = |

E+G

C+H

2I

F+H

I+J

3G
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~N W B oW = O

L= - = Y LT - R =)

ADAPTED CYCLOTOMIC ARRAYS: e even, f odd

e =28
6,4 1,5 2,6 3,7
A I N K] A+THHT = (£-1)/2
BAT | BFJ | MHO | K40 BHIHTHIHAMH20 =
CHN | KM | GiN | 140 CHGHKHAMHINGC = £
TR T I | T4 | FHL DHF+T+JHEHZLAM =
BYE | B+F | C+G | D¥H A+BHCHIHE+FHCHE = £
F+L | DHJ | AL | LAM |
G | LH | ol | K
JH | Y0 | R+0 | B+I

e = 10
0,5 1,6 2,7 3,8 4,9
A K R T L | A+RHLARHT=(£-1) /2
BHK | JHL | Q¥5 | U4V | FHS | BRJHKHLAMHH 254V =f
CFR | MH) | I+T | P#V | BE+V |CHIAMEHPHOIRITH2V=E
DHT | N4U | P+U | HIR | OFS5 |DHHHNHO+PIRISHTH2USF
E+L | MHO | NP | O4Q | OFE |EHGHRALAMINA204P4Q=1
AFF | BHG | CHH | DL | EFJ | AtBACHDAEAFAGHE+I+T =f
GtK | EHL | w0 | MtP | 040
BHR | O+S | D¥T | MU | PHU
T+T | P+ | N+V | CHR | MG
JHL | oS | U4V | MFs | B
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To illustrate the use of these arrays we now prove a lemma:

LEMMA 9: If p = &4 £ + 1 (f 0dd) is a prime power, i = ¥~1 then

satisfies
AA¥ = pI-J

where A* denotes A transpose complex conjugate
* = - : ~ -
PROOF. AA ([c3 cl] + 1C, 02]){[C3 C

T ~ T
~ - T ” T
= [Cy ~ €110€, ~ €17 + [Cy ~ €,11¢) ~ €]
- . T - - T
+i([C0 Cz][C3 Cl] - [03 Cl][C0 02] ).

From the array for e = 4, f odd we get (writing 11 for Ci A C: and 1ij
T T
for (Ci A Cj) & (Cj A Ci).

0,2 1,3 {0}
33 E A
11 E A f
=13 -B-D -A-C
o . A E f
22 A E
=02 -A-C -B-D
Total -1 -1 - 4f

S0 AA* = (4f+1) I-J + i(XYT - YXT)
~ T T
where X = [C0 ~ CZ]’ ¥ = [C3 Cl], and hence ¥~ = -X, Y = -Y.

Thus X~ - ¥X = -XY¥ + YX = 0,

since X and Y are both type 1 incidence matrices and hence commute. So

we have the result. ETT

Thé following lemmas are quoted from Storer [12; lemmas 19 and
30]:

LEMMA 10: When e = 4, f odd, the cyclotomic numbers are determined

from the adapted array for e = 4, together with the relationst
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164 2s

n
=]
|
-d
+

168 = q+ 1 + 28 - 8t
16C = q + 1 - 68
16D = q + 1 + Zs + 8t

16E = q - 3 - Zg

where q = 82 + 4t2, with 8 = 1 (mod 4), is the proper representa—

tion of q if p = l(mod 4), where the sign of t is ambiguously

determined.

LEMMA 11. When e = 8, £ odd the cyclotomlc numbers are determined

from the adapted array for e = 8, together with the relations!

I. If 2 is a 4th power 1n G II, If 2 is not a 4th power dn G
64A = q ~ 15 - 2x b4A = q - 15 - 10x - 8a
648 = q + 1 + 2x - 4a + 16y 64B = q + 1 + 2x — 4a - 16b
64C = g+ 1 + 6x + 8a — 16y 64C = q + 1 - 2x + 16y

64D = q+ 1+ 2x - 4a - léy 64D = q + 1 + 2x ~ 4a — 16b
G4E = g + 1 - 18x 64E = q + 1 + b6x + 24a

64F = q+ 1 + 2x - 4a + 16y 64F = q + 1 + 2x - 4a + 16b
64G = q+ 1 + 6x + Ba + léy 64G = g+ 1 - 2x -16y

64t = q+ 1+ 2x - 4a - lby 64H = q + 1 + 2x -~ 4a +16b
64l = q - 7+ 2x + 4a 641 = g - 7+ 2x + 4a + 1by.
645 = q - 7 + 2x + 4a 64 = g — 7 + 2x + 4a - 16y
64K = q + 1 - 6x + 4a + 16b 64K = g + 1 + Zx - 4a

64L = q + 1 + 2% - 4a 64L = q + 1 - 6x + 4a

64M = q + 1 - 6x + 48 —- 16b 64M = q + 1 + 2x - 4a

64N = q -7 - 2x - Ba 64 = q - 7 + 6x

640 = q+ 1 + 2x - 4a 640 = g+ 1 - 6x + 4a
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where x,y,a and b are specified by:

1. g = x2 + 4y2, x =1 {(mod 4) is the unique proper

representation of g = pa if p = (mod 4); otherwise,

q = (tpalz)2 + 4.02; i.e., x = ipafz, v = 0.

II, g = az + 2b2, a =1 (mod 4) is the unique proper representation of

q = pu if p =1 or 3 (mod 8); otherwise,

(tpa/2)2 2 o2

q = + 2.07; 1.,e., a = %p , b= 0.

The signs of v and b are ambiguously determined.

4, CONSTRUCTIONS FOR SUPPLEMENTARY DIFFERERCE SETS

We recall from §20; lemma 91 and [21]:

LEMMA 12, Let Al . A2 ey An be the tvpe 1 incidence matrices of

n -~ {v; kl, k2, vany kn; A} supplementary difference sets then

Lo o=}
A AT =€) k - + AT,
= i1 151 1

1

If Bl, B . Bn are the type I (1, -1) incidence matrices of the

g3

supplementary difference sets then

n hal n

T
_Z B, By = z.(_z k=1 + (nv —4'2 k +40)T. hk
i=1 i=1 i=1

In particular we use

COROLLARY 13. Let Bl’ By, B3, Bd be the type 1 (1, -1} incidence

matrices of 4 — {v; ky, kz, k3, k4; A} supplementary difference sets
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then n T 4 - 4
: Z B, B, = 4&( E kAT + 4lv —_E kM) hkk
1=1 1=1 i=1

In this section we will assume that Xy, Xy, Xq, X, are 4 (0, 1, -1
matrices of order v which have the following properties:
i n
1) )) X, is a (1, -1) natrix,
i=1

@)  x *x, =0, 144,
4

(111) )

i=1

(30) |

T-— -
Xi Xi = gl + {v-a)l,

(iv) Xi has positive and ¥y negative elements per row

Xy

\ and column.

We now show how such mattices may be used to construct supplementary

difference sets, Let

Yl=—X1+X2+X3+X4, Zl=X1+X2+X3+Xﬁ,
Y, = X =X+ X+ X, Z, = X - X, + X4 - X,.
Y3= le+X2—X3+X4, Z3=X1—X2-X3+X4,
T = Xt X Xy~ X, Zy = X v &y - X3 - Xy

Then we have

LEMMA 14. If there exist 4 {0, 1, -1) matrices Xl, Xys X3, X4 of

order v satisfying the conditions (i), (ii), (£ii}, (iv) sbove then

there exist

@) 4 - {v; yl+x2+x3+x4, x1+y2+33+x4, xl+x2+y3+x4, xl+x2+x3+y4;
4
2 Z xi+v-a},
i=1

and (b)) 4 - v xphigbrgbi, xpbypbagly,, 2ty ty gty
xl-Px 2+y 3+Y£} H le— 2y l+2V—&}

supplementary difference sets, where
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4
() § Gxgby,) = vand
i=1

&4
@  J &xy)? = Ve,
1=1

4 T 4 T 4 T
PROOF. | ¥, ¥, = [Z Z/ =4 [ X X =4+ 4(v-a)d.
i=1 i=1 i=1
Now using Corollary 13 we have that Yl’ Yz, YB’ Y4 and zl, 22,
ZS’ 24 are the incidence §atrices (ot permutations of them) of
o v Ky, ks kg Ky b
k3, 4 The actual valuds of ki in each case may be determined by

counting the number of positive elements in each row and column of T, and
() (i=1, 2,3, 4.

k,-al for some non~negative integers kl’ kZ’
k

The condition

4
I Gy = v
i=1

follows immediately from property (i) of the Xl’ XZ’ X3, X&'

So for case (a}

) Ja+ ] i
k,-a =3 =, + ¥.-a = 2 x,+v—-a;
j=1 1 =1 b ogap TR im1 ¥

for case (b)
L

4
izlki—a = 2xi—2yi + Zizl(xi+yi)—a = in~2y1+2v-a.

The condition

4
3 (xi—yi)z = vP-alv-1)
1=1

for case (a) is proved {as in [5])} by considering the constraints placed
by equation (1). Write

{nten §nen |
(x,-y,)" = s, X, = W, Vi = V=W
gm0 1R =1 =1t
Then from (1), in case (a),
.
(2wtv-a) (v-1) = 121 (wty,—x,) Gty -, -1)

= G2 (- 2w ) s—bu—vt 2w
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that is
g = vz—a(v—l).

From equation (1), in case (b),

(2x1—2y1+2v—a)(v—1)
- wla-1) + (amx,,- ¥+ (w-x - )2 4 G, )2
X%yt WX, =Xy )14 WXy~ K, 4y 41,
4
- (3w+2xl—2y1+Zi£l(-xi+yi))

4
wz - Z(xl—y1+v) + 3w2 + 2w(2x1—2yl+2 z (—xi+yi))
1=1

4
2 2
+ (x2+x3+x4—y2—y3-y4) + 151 (xi-yi)

4
2(x1—y1)(2w—1)—2v+4w(v-w) + (igl(xi_yi))z - 2(2W—v)(xl—y1)

4 2
D Gy
i=1

4
=2v + dywlv-w) + 2(xl—yl}(v—l) + (v—2w)2 + .E (xi-yi)z.

i=

4

S0 Z {x, -y }2 = vz—a(v—l). Rk
et 1 71

The difference sets given by lemma 14 may not be essentially

different but we were not gble to decide this problem. -

We now apply the adapted arrays of section 3 to the constructions

we have given in table 1 to see 1f more general results can be obtained.

LEMMA 15. Let q = 4f+1 = 9+4t2 (f odd) be a prime power. Then

X, = [col, X, = [cl~{0}], X, = [c2~c3], X, =0,

- satisfy

4
(i) } X isa {1, -1) matrix,
=1 1
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(1) =, * X =0 i # 3,

4
(14 X, X = RO + H(E-DI.
1=1"
PROOF. (1} and (4i) are clear. To show (111) we comsider the appropriate

array, lemma 10, and use the following table of countributions from the terms

in the incidence matrices

0,2 1,3 {0}

a0 A E f

11 E A £

-{0} 1 -1

22 A E i

33 E A f

-23 =~A-C -R-D

{o} 1
Total £-1-4-C f-2-B-D HE+1

From lemma 10 £ - 1 - 4 - O £f-1- {2q-6-4s)/16

f-2-B-0D

£ - 2 - (2q+2+48)/16

so if 8 = =3

(f-3)/2 =f-2~-B-1D

f-1-4-¢C

1

and we have the result. ek k

We note that if p = 13, that is f = 3, then condition {iii) of the
lemma gives

xixT = 131
1 1

Il b1 b

i
and s¢ the matrices given satisfy the conditions for thecrem 1.

This gives, using lemma 14,
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COROLLARY 16. Let q = 4f+1 = 9+4t2 (f odd) be 4 prime power. Then
there exist

(a) 4 - [4f+1; 2F, 2f+1, 3f, 3f; %(13£-3)}
and (b) & — {4F+1; 3f, 241, 2£H1, 3f; L(13E-D1)}

supplementary difference sets,

Similarly we obtainm

LEMMA 17. Let q = 6f4l = x2+3y2 (f odd) be a prime power such that

4 = az+3b2 = c2+27d2, c =1 (iod 6), 2x—a+3d = 6, c-3b+6y = 16, Then
X = el X, = 6], Xy - {0} & Cq ™ Culs X, = Ic; ~ ;] satisfy
conditions (i), (1i), {dv) of (30) and

4
T (175+6) (£-3)
(111) 121 XX, = - I+

I,

PROOF. (1), (ii), (iv} are clear. To obtain (iii) we consider the
approptriate array, lemma 27 of [12], and uge the following table of
contributions from the terms of the incidence matrices. As before we

denote (ci A cT) & (C, A Ci) by ij.

b J
0,3 1,4 2,5 {0}
00 B £
22 G H A
{0} 3 1
- {0} 4 -1
{o} 1
33 A G B
- 34 -B-G -F-H -I-J
44 H A G £
11 H A e £
55 G H A £
- 15 =21 -E-iz —L-H
Total | f-B-G-ZI|f-2-E-F-G-H|f-1-C-H-I-J|6f+1
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From the lemma 27 of [12]
fuB=-G-2I = f - (8q-4+12x-6a+2c+12y-6b4184) /72
f-2~B-F—G-H = £ - 2 - (8g-16 . . —4c-24y+12b+ )}/72
f-1-C-H-I-J = £ - 1 - {8q-&-12x+6a+2ct+l2y=-6b-18d)/72
these are all equal to
(£-3)/3

when

2x—a+3d = 6 and 3b-c-6y = -16,

It

_ For x =4, y=-1,c=7,d=-1, a=-1, b =-5uwe have the
conditions satisfied for q = 19 which alsc satisfies theorem 1 but the
conditions are rather awkward to satiasfy, HNow using lemma 14 we have

COROLLARY 18. Let q = 6f+l = x2+3y2 {(f 6dd) be a prime power such that
2

4q = a%+3” = %+27d%, ¢ = 1 (mod 6), 2x-a+3d = 6, c-3bt6y = 16. Then
there exdst '

{a) 4 - {6f+l; 3£+i, 3F+1, 4F, 4f+1; (258+3)/3) and

(b) & - {6f+l; 4f+1, 3f+%, 3f, 4f; 25£/3}

supplementary difference sets.

LEMMA 19. Let g = 8f+l (f odd) be s prime power.

Then
x1=[00&05~{0}], x2=[c1~c7], x3=102~c3],

X, = [04 ~ CG] satisfy conditions (1), {ii}, (iv) of (30} and

&
(i11) } xixi = (g-{)I + jJ,
i=1

only for q = 25 and j = 0

PROOF. (i), (i1}, (iv) are clear. To show (iil) we congider the
appropriate array, lemma 11, and use the following table of contributions

from the terms of the incidence matrices,
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0,4 1,5 2,6 3,7 {o}
7
{0}, & it £-1 f-1 £-1 f-1 8f+1
120
05 F+1 ] KH, L+M
-{0} 0 -1
-{o} 5 -1
- 17 —Kui ~G-N -1.-0 -C-N
- 23 -M-0 ~K=0 -B-I -H-J
- 46 -C-N -F-M -G-N -L-0
Total £~24P+1 f-24D43 £-14 £-14M 8E+1
-C-K-2M | -G-2K-M | -B-G-I -C-H-J
-§-0 -N-0 -§-0 -N-0

Now write

fu2—CHF+I-K-2M-N-0 =

f-24D-G+J-2K-M-K-0

f-1-B-G-THK-N-0 = 7y

f-1-C-H-J+M-N-0 = §.

B

For supplementary difference sets

When 2 is a fourth power in F (from Lemma 11)

Bho = 4q-134+16x-8a+32y+16b

648 = 4g-134+16x-8a-32y-16b

b4y

646

hq-54-16%+8a-32y+16b

bq-54-16x+894+32y-16b.
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Selving we have y = b = 0, a = 2x-5, a = § = v = § = (4q-94)/64
which with the conditions q = x2+4y2 = a2+2b2 (of lemma 11) leads to no

possible solutions.

When 2 is not a fourth power in F (from lemma 11}

640 = 4q-1404+8a+16b
64B = hq-140+82-16b
64y = 4g-60-Ba+léb
648 = bq-60-8a-16b

v =& = (4g-100}/64. So the only

Solving we have b = 0, a = 5, a = B
202 < s%42.0% = 25. whx

poasible solution is for q = a +2b

LEMMA 203, Let q = B8f+l (f odd) be a2 prime power.

Then
% = [c0 C, ~ c3], X, = [04 &G~y {611,
XB = [C5 ~ CT}’ Xa = 0 satisfyinp conditions (i), (ii), {(iv)
of (30) and
4 T
(1)  } XX = (q-3)T+33,
=1 -

only for g = 41 and j = 0.

PROOF. {i), (1i), (1ii) are clear. To show (ifi) we consider the
appropriate array, Lemma 1!, and use the following table of contributions

from the terms of the incidence matrices.
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Now write

For supplementary difference sets

B=v=3§

When 2 iz a fourth power in F (from lemma 11)

840 = 2q-126-12x+8a
648 = 2q+10-12x  +l6y
b4y = 2q-142+20x-8a+32y
643 = 2q~70+4x-48y

- 376 -

0,4 1,5 2,6 3,7 {0}
7
& i1 £-1 f-1 £-1 F=1 8f+1
1=0 )
~02 -C-N -E-M -G-N ~L-0
-03 -D-J -K-L ~T~M ~F-1
23 MHO R+0 I+B B+
46 CHY KM GHN L+0
-14 -F-1 -J-D ~K-1, -L-M
-{o} 4 -1
-{0} 6 -1
-16 -L-M -I-F -D-J -K~L
{0} 1 1
-57 -L-0 -N-C F =K=M ~G=M
;
Total f-2-p-F | f-C~D-F-I | £-24B-D f-1-F-G 8f+1
-I-J-2L | -J-L-N40 | +I-J-2K +i-I+J-K
| ~2L-2M -2L-M-N i
f-2~D-F-I-J-2L = o
£f-C-D-F-I-J-L-N+0 = B
£=24B-DHI~Jm2K-2L-2H = ¥
f-1-F-G+H-1+J-E-2L-M-K = &.




and these are equal for a = 19, x =9, y = 1. In this casea = B =y = §=0
tmplies q = 41 but 2 1s not a fourth power for GF(41l). In lemma 11 part I
we get g = B5 which is not a prime power and in part II q = 192+2b%

20 we have no result.

When 2 is not a fourth power in F, we have

64 = 2q-126+4x-Ba
64f = 2q+10-12x-lby
bhy = 2q-142+4x+8a+32y
645 = 2q-7(H+4x-16y,
These have splution x = 5, y = 2, a =3, a=0§=7yv =4 = 2q - 82,
In Lemma 11 part I we have q = 52+4.2-2 = 4] and in part I1 q = (—3}2+2b2.
So there is only one solution, g = 41. kkik

FINAL REMARK

We note that Joan Cooper has proved that this partitioning of the
Galols Fields GF(q) to give Hadamard arrays is not possible for g = ef+l when

f is ewven.
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