Cyclotomy, Hadamard arrays and supplementary difference sets

David C. Hunt
Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Hunt, David C. and Seberry, Jennifer: Cyclotomy, Hadamard arrays and supplementary difference sets 1972.
https://ro.uow.edu.au/infopapers/944

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Cyclotomy, Hadamard arrays and supplementary difference sets

Abstract

A $4 n x 4 n$ Hadamard array, H, is a square matrix of order $4 n$ with elements $\pm A, \pm B, \pm C, \pm D$ each repeated n times in each row and column. Assuming the indeterminates A, B, C, D commute, the row vectors of H must be orthogonal. These arrays have been found for $\mathrm{n}=1$ (Williamson, 1944), $\mathrm{n}=3$ (Baumert-Hall, 1965), $n=5$ (Welch, 1971), and some other odd $n<43$ (Cooper, Hunt, Wallis).

The results for $\mathrm{n}=25,31,37,41$ are presented here, as is a result for $\mathrm{n}=9$ not based on supplementary difference sets. This gives the following new orders for Hadamard matrices < 4000: 1804, 3404, 3596, 3772. These results were obtained by using an adaption of cyclotomy which allows the product of incidence matrices to be easily derived. This adaption is developed and the constructions shown for some families of supplementary difference sets.

\section*{Disciplines}

Physical Sciences and Mathematics

\section*{Publication Details}

David C. Hunt and Jennifer Seberry Wallis, Cyclotomy, Hadamard arrays and supplementary difference sets, Proceedings of the Second Manitoba Conference on Numerical Mathematics. Congressus Numerantium, 7, (1972), 351-381.

CYCLOTOMY, HADAMARD ARRAYS AND SUPPLEMENTARY DIFFERENCE SETS

David C. Hunt and Jennifer Wallis*
 University of New South Wales, Kensington, N.S.W., 2033, Australia

and

University of Newcastle, N.S.W., 2308, Australia

ABSTRACT

A $4 n \times 4 n$ Hadamard array, H, is a square matrix of order $4 n$ with elements $\pm A, \pm B, \pm C, \pm D$ each repeated n times in each row and columh. Assuming the indeterminates A, B, C, D commute, the row vectors of H must be orthogonal. These arrays have been found for $n=1$ (Williamson, 1944), $\mathrm{n}=3$ (Baumert-Hall, 1965), $\mathrm{n}=5$ (We1ch, 1971), and some other odd $\mathrm{n}<43$ (Cooper, Hunt, Wallis).

The results for $\mathrm{n}=25,31,37,41$ are presented here, as is a result for $n=9$ not based on supplementary difference sets. This gives the following new orders for Hadamard matrices < 4000: 1804, 3404, 3596, 3772. These results were obtained by using an adaption of cyclotomy which allows the product of incidence matrices to be easily derived. This adaption is developed and the constructions shown for some families of supplementary difference sets.

[^0]PROC. SECOND MANITOBA CONFERENCE ON NUMERICAL MATH., 1972, pp. 351 - 381.

1. INTRODUCTION AND DEFINITIONS

We use I for the identity matrix and J for the matrix with every element +1 , and the order, unless specifically stated, should be deternined from the context. We sometimes use brackets, [], to denote matrices and H^{T} denotes H transposed.

Let $S_{1}, S_{2}, \ldots, S_{n}$ be subsets of V, a finite abelian group of order v written in additive notation, containing $k_{1}, k_{2}, \ldots, k_{n}$ elements respectively. Write T_{i} for the totality of a 11 differences between elements of S_{i} (with repetitions), and T for the totality of elements of all the T_{i}. If T contains each non-zero element of V a fixed number of times, λ say, then the sets $S_{1}, S_{2}, \ldots, S_{n}$ will be called $n-\left\{v ; k_{1}, k_{2}, \ldots, k_{n} ; \lambda\right]$ supplementary difference sets.

The parameters of $n-\left\{v ; k_{1}, k_{2}, \ldots, k_{n} ; \lambda\right\}$ supplementary difference sets satisfy
(1)

$$
\lambda(v-1)=\sum_{i=1}^{n} k_{i}\left(k_{i}-1\right)
$$

If $k_{1}=k_{2}=\ldots=k_{n}=k$ we will write $n-\{v ; k ; \lambda\}$ to denote the n supplementary difference sets and (1) becomes
(2) $\lambda(v-1)=n k(k-1)$.

We shall be concerned with collections, (denoted by square brackets【. D) defined on a fixed group V or order v, in which repeated elements are counted multiply, rather than with sets (denoted by braces () . If T_{1} and T_{2} are two collections then T_{1} and T_{2} will denote the result of adjoining the elements of T_{1} to T_{2} with total multiplicities retained. For example: $x_{1}, x_{2}, x_{3}, \in V$ and $T_{1}=\llbracket x_{1}, x_{2}, x_{3}, \rrbracket_{1} T_{2}=\llbracket x_{1}, x_{2}, x_{4} \rrbracket$ then

$$
\begin{equation*}
T_{1} \& T_{2}=\left\lfloor x_{1}, x_{1}, x_{2}, x_{2}, x_{3}, x_{3} \mathbb{l}\right. \tag{3}
\end{equation*}
$$

The class product or join (see Storer [12] p. 3) of two collections T_{1} and T_{2} will be denoted by $\mathrm{T}_{1} \wedge \mathrm{~T}_{2}$, which is defined as

$$
\begin{equation*}
\mathrm{T}_{1} \wedge \mathrm{~T}_{2}=\left[\mathrm{x}_{1}+\mathrm{x}_{2}: \mathrm{x}_{1} \in \mathrm{~T}_{1}, \mathrm{x}_{2} \in \mathrm{~T}_{2} \mathbb{I}_{7} \quad \mathrm{~T}_{1}, \mathrm{~T}_{2} \subset \mathrm{~V}\right. \tag{4}
\end{equation*}
$$

Suppose $x_{1}, x_{2}, \ldots, x_{v}$ are the elements of V ordered in some fixed
way, Let X be a subset of V. Further let ϕ and ψ be two maps from V into a commutative ring with unity (1). Then $M=\left[m_{i j}\right]$ is defined by

$$
\begin{equation*}
m_{i j}=\psi\left(x_{j}-x_{i}\right) \tag{5}
\end{equation*}
$$

will be called type 1 and $N=\left[n_{i j}\right]$ defined by

$$
\begin{equation*}
n_{1 j}=\phi\left(x_{j}+x_{i}\right) \tag{6}
\end{equation*}
$$

will be called type 2 .
If ϕ and ψ are defined by

$$
\phi(x)=\psi(x)= \begin{cases}1 & x \in X \tag{7}\\ 0 & x \notin X\end{cases}
$$

then M and N will be called the type 1 incidence matrix of X (in V) and the type 2 incidence matrix of X (in V), respectively. While if ϕ and ψ are defined by

$$
\phi(x)=\psi(x)=\left\{\begin{array}{rl}
1 & x \in X, \tag{8}\\
-1 & x \notin X,
\end{array}\right.
$$

M and N will be called the type $1(1,-1)$ matrix of X and the type $2(1,-1)$ matrix of X respectively. M and N are of order $|V|$. These are discussed further in [20] and [21].

We note that there exists an $R=\left[r_{i j}\right]$ defined by

$$
r_{i j}= \begin{cases}1 & \text { if } x_{i}+x_{j}=0 \tag{9}\\ 0 & \text { otherwise }\end{cases}
$$

such that if M is the type 1 matrix of $X, M \mathbb{R}$ is type 2 matrix.
Write \#(x) for the number of times x occurs in the collection X. Define the type 1 incidence matrix, $[X]=\left[z_{i f}\right]$ of X by

$$
\begin{equation*}
z_{i j}=\sharp\left(x_{j}-x_{i}\right) \tag{10}
\end{equation*}
$$

It is proved in [4] that is X and Y are collections of elements from the same abelian group V then, where the left hand side is the matrix multiplication of the two matrices:

An Hadamard matrix H of order h has every element +1 or -1 and satisfies $H H^{T}=h I_{h}$. It is shown in [20] that

$$
\begin{equation*}
4-\left\{v ; k_{1}, k_{2}, k_{3}, k_{4} ; \sum_{i=1}^{4} k_{i}-v\right\} \text { supplementary } \tag{12}
\end{equation*}
$$

difference sets yield an Hadamard matrix of order $4 v$; and in [21] that

$$
\begin{equation*}
4-\left\{v ; k_{1}, k_{2}, k_{3}, k_{4} ; \sum_{i=1}^{4} k_{1}-v-1\right\} \text { supplementary } \tag{13}
\end{equation*}
$$

differences sets necessarily have each $k_{i}=m$ or $m+1$ for $v=2 m+1$ and $k_{1}=m \pm 1, k_{2}=k_{3}=k_{4}=m$ for $v=2 m$ and yield an Hadamard matrix of order $4(v+1)$.

The Hadamard product, *, of two matrices $A=\left[a_{i j}\right]$, and $B=\left[b_{i j}\right]$ of the same size is given by

$$
\begin{equation*}
A \neq B=\left[a_{i j} b_{i j}\right] \tag{14}
\end{equation*}
$$

We define an Hadamard array, H, of order $4 n$, to be a square matrix of order 4 n with elements $\pm \mathrm{A}, \pm \mathrm{B}, \pm \mathrm{C}, \pm \mathrm{D}$ each repeated n times in each row and colum, with the property that, assuming the indeterminates A, B, C, D conmute, the row vectors of H must be orthogonal.

The Hadamard array of order 4 is

$$
\left[\begin{array}{rrrr}
A & B & C & D \\
-B & A & -D & C \\
-C & D & A & -B \\
-D & -C & B & A
\end{array}\right]
$$

and is due to Williamson [27]. In 1965, Baumert and Hall published the 12×12 Hadamard array and in $1971 \mathrm{~L} . \mathrm{R}$. Welch found a 20×20 array. These may be found in [3] and [21]. Subsequently Hadamard arrays have been found for orders $4 m, m \varepsilon\{7,9,11,13,15,17,19\}$ by Cooper and Wallis (see [5], [19], [21]). In the next section we give some arrays obtained by partitioning the Galois Fields for some prime powers.

The constructions for Hadamard arrays that we quote in the next section rely on the followfing result, see [21] :

LEMMA A: Let P and Q be type 1 incidence matrices and R be a type 2
Incidence matrix. Then
(i) $P Q=Q P, P^{T} Q=Q P^{T}, P Q^{T}=Q^{T} P, P^{T} Q^{T}=Q^{T} P^{T}$
(ii) $R Q=Q^{T} R^{T}, R^{T} Q=Q^{T} R, R Q^{T}=Q R^{T} ; R^{T} Q^{T}=Q R$.

NOTATION: We will use the notation $C_{a} \sim C_{b}$, where $C_{a} \cap C_{b}=\phi$ and C_{a} and C_{b} are collections of elements from the same abelian group V, to mean the "collection" of elements

$$
\left[c_{a_{1}}, c_{a_{2}}, \ldots,-c_{b_{1}},-c_{b_{2}}, \ldots\right] c_{a_{1}} \in c_{a}, c_{b_{j}} \in c_{b}
$$

where $-c_{b_{j}}$ does not mean the inverse $\left(c_{b}^{-1}\right)$ of c_{b} in V, but means $c_{b_{j}}$ with a negative sign attached.

$$
\text { The Incidence matrix of } C_{a} \sim C_{b} \text { and } C_{a} \& C_{b} \text { are defined by }
$$

$$
\begin{equation*}
\left[c_{a} \sim C_{b}\right]=\left[C_{a}\right]-\left[C_{b}\right], \text { and }\left[C_{a} \& C_{b}\right]=\left[C_{a}\right]+\left[C_{b}\right] \tag{16}
\end{equation*}
$$

respectively.
2. SOME RESULTS

In [5] and [21] the following theorem is given:
THEOREM 1. Suppose there exist four type $1(0,1,-1)$ matrices X_{1}, x_{2}, x_{3} X_{4} of order n_{2} defined on the same abelian group V with n elements, such that
(i) $\underline{x}_{1} * x_{j}=0_{3} i \neq j$, (* the Hadamard product).
(ii) $\sum_{i=1}^{4} X_{i}$ is, a $(1,-1)$ matrix
(iii) $\sum_{i=1}^{4} \underline{X}_{i} \underline{x}_{i}^{T}=n I_{n}$.

Further suppose A, B, C, D are indeterminates that pairwise commute. Define
(17)

$$
\begin{aligned}
& \mathrm{X}=\mathrm{X}_{1} \times \mathrm{A}+\mathrm{X}_{2} \times \mathrm{B}+\mathrm{X}_{3} \times \mathrm{C}+\mathrm{X}_{4} \times \mathrm{D} \\
& \mathrm{Y}=\mathrm{X}_{1} \times \sim \mathrm{B}+\mathrm{X}_{2} \times \mathrm{A}+\mathrm{X}_{3} \times \mathrm{D}+\mathrm{X}_{4} \times-\mathrm{C} \\
& \mathrm{Z}=\mathrm{X}_{1} \times-\mathrm{C}+\mathrm{X}_{2} \times-\mathrm{D}+\mathrm{X}_{3} \times \mathrm{A}+\mathrm{X}_{4} \times \mathrm{B} \\
& \mathrm{~W}=X_{1} \times-\mathrm{D}+\mathrm{X}_{2} \times \mathrm{C}+\mathrm{X}_{3} \times-\mathrm{B}+\mathrm{X}_{4} \times \mathrm{A}
\end{aligned}
$$

where $X_{1} \times A$ denotes X with each 1 and -1 replaced by A and $-A$ respectively: (if a matrix is substituted for $A ; X_{i} \times A$ will become the usual Kronecker product.) If S denotes the R of (9) defined on V, then
(18) $\quad H=\left[\begin{array}{cccc}X & Y S & Z S & W S \\ -Y S & X & -W^{T} S & Z^{T} S \\ -Z S & W^{T} S & X & -Y^{T} S \\ -W S & -Z^{T} S & Y^{T} S & X\end{array}\right]$

1s an Hadamard array of order 47 .
$\star * *$
We note that the condition that $X_{1}, X_{2}, X_{3}, X_{4}$ are type 1 is only imposed so that we can ensure a suitable S exists. That other matrices are possible is demonstrated in the next lemma.

LEMMA 2. Let T and R be the matrices

$$
T=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad R=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

further let
$X_{1}=\left[\begin{array}{lll}I & I & I \\ I & T & T^{2} \\ I & T^{2} & T\end{array}\right], \quad X_{2}=\left[\begin{array}{ccc}T & T & T \\ -T & -T^{2} & -\mathrm{I} \\ 0 & 0 & 0\end{array}\right], \quad X_{3}=\left[\begin{array}{ccc}\mathrm{T}^{2} & \mathrm{~T}^{2} & \mathrm{~T}^{2} \\ 0 & 0 & 0 \\ -T^{2}-T & -I\end{array}\right], \quad X_{4}=\left[\begin{array}{ccc}0 & 0 & 0 \\ T^{2} & \mathrm{I} & T \\ -T & -1 & -T^{2}\end{array}\right]$,
where 0 is the zero matrix of order 3. Then with $S=R \times R, X, Y, Z, W$ and H of the previous theorem give an Hadamard array of order 36 .

PROOF. Since $I+T+T^{2}=J$ we have conditions (i), (ii) and (ifi) of the theorem satisfied. The properties of H may be easily checked. ***

We note the row and column sum of the matrices X_{1}, $i=1,2,3,4$ are not constant and so the matrices need not (and do not) satisfy the conditions of the following lemma (see [5] and [21]).

LEMMA 3. Suppose there exist four $(0,1,-1)$ matrices $X_{1}, x_{2} x_{3}, X_{4}$ of order n which satisfy

	n		$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$
	$13=4.3+1$	$3^{2}+2^{2}+0^{2}+0^{2}$	$\left[C_{0}\right],\left[C_{1} \sim\{0\}\right],\left[C_{2} \sim C_{3}\right],[\phi]$
	19=6.3+1	$3^{2}+3^{2}+1^{2}+0^{2}$	$\left[\mathrm{C}_{0}\right],\left[\mathrm{C}_{2}\right],\left[\{0\} \& \mathrm{C}_{3}{ }^{\sim} \mathrm{C}_{4}\right],\left[\mathrm{C}_{2}{ }^{\sim} \mathrm{C}_{5}\right]$
'	$25=8.3+1$	$5^{2}+0^{2}+0^{2}+0^{2}$	$\left[C_{0} \& C_{5} \sim\{0\}\right],\left[C_{1} \sim C_{7}\right],\left[C_{2} \sim C_{3}\right],\left[C_{4} \sim C_{6}\right]$
$\stackrel{\sim}{4}$	$31=10.3+1$	$3^{2}+3^{2}+3^{2}+2^{2}$	$\left[\mathrm{c}_{0} \& \mathrm{C}_{3}{ }^{\text {c }} \mathrm{C}_{2}\right],\left[\mathrm{C}_{4} \& \mathrm{C}_{5} \dot{\sim}^{\mathrm{C}_{9}}\right],\left[\mathrm{C}_{7} \& \mathrm{C}_{8}{ }^{\sim} \mathrm{C}_{6}\right],\left[\mathrm{C}_{1} \sim\{0\}\right]$
	$37=12.3+1$	$6^{2}+1^{2}+0^{2}+0^{2}$	$\left[C_{0} \& \mathrm{C}_{1} \sim \mathrm{C}_{2} \sim \mathrm{C}_{3} \& \mathrm{C}_{4} \& \mathrm{C}_{5}\right],[\{0\}],\left[\mathrm{C}_{6}{ } \mathrm{C}_{7} \& \mathrm{C}_{8}{ }^{\sim} \mathrm{C}_{9} \& \mathrm{C}_{10}{ }^{\sim} \mathrm{C}_{11}\right]$, [ф]
	41-8.5+1	$5^{2}+4^{2}+0^{2}+0^{2}$	$\left[\mathrm{C}_{0} \sim \mathrm{C}_{2} \sim \mathrm{C}_{3}\right],\left[\mathrm{C}_{4} \& \mathrm{C}_{6} \sim \mathrm{C}_{1} \sim[0\}\right],\left[\mathrm{C}_{5} \sim \mathrm{C}_{7}\right],[\phi]$

TABLE 1
(1) $x_{i} * X_{j}=0, i \neq j, i, j=1,2,3,4$
(ii) $\sum_{i=1}^{4} x_{i} x_{i}^{T}=n I_{n}$.

Let x_{1} be the number of positive elements in each row and columm of X_{i} and y_{i} be the number of negative elements in each row and column of X_{i}.
Then
(a) $\sum_{i=1}^{4}\left(x_{i}+y_{i}\right)=n$,
(b) $\sum_{i=1}^{4}\left(x_{i}-y_{i}\right)^{2}=n$.

In Cooper and Wallis it is noted that some suftable matrices $X_{1}, X_{2}, X_{3}, X_{4}$ satisfying the conditions of theorem 1 may be formed by partitioning the Galois Field for a prime (or prime power) $p=e f+1$ and using the incidence matrices of the subgroup and cosets of order f. The results for $\mathrm{n}=13$ and $\mathrm{n}=19$ given below are in [5], for $\mathrm{n}=25$ in [21] and $n=31,37,41$ are presented here for the first time. Thus, we have from Table 1:

THFOREM 4. There exist Hadamard arrays of order $52,76,100,124,148,164$.
Matrices A, B, C and D which may be used to replace the indeterminates of Theorem 1 are known to exdst when n is a member of the set

$$
M=\{3,5,7, \ldots, 29,37,43\},
$$

[9] and when $2 m-1$ is a prime power congruent to 1 modulo 4, see [14] and [25]. So we have

COROLLARY 5. There exist Hadamard matrices of orders $52 \mathrm{~m}, 76 \mathrm{~m}, 100 \mathrm{~m}, 124 \mathrm{~m}$, $148 \mathrm{~m}, 164 \mathrm{~m}$, for $\mathrm{m} \varepsilon \mathrm{M}$.

COROLLARY 6. There exist Hadamard matrices of orders $26(q+1), 38(q+1)$, $50(q+1), 62(q+1), 74(q+1), 82(q+1)$ whenever q is a prime power congruent to 1 modulo 4.

RESULTS: The last three new classes give the following new Hadamard matrices of order < 4000; 1804, 3404, 3596, 3772.

We now make a minor adaption of the cyclotomic arrays in order to facilitate the examination of structure in matrices based on cyclotomic classes. The adaption is most useful for e even, fodd. In all cases we indicate a source for the proofs we need but do not attempt to give the original reference.

NOTATION. Henceforth we use square brackets, [], for matrices and write $[\{0\}]=I$. Let X and Y be two collections, then $[X]$ will mean the (type 1) incidence matrix of X, X^{T} will mean that collection such that $\left[X^{T}\right]=[X]^{T}$ and aX will be the collection with each element of X repeated a times, so $[a X]=a[X]$. We recall from [Cooper] that

$$
\begin{equation*}
[X \wedge Y]=[X][Y] \tag{19}
\end{equation*}
$$

and we use the definition

$$
\begin{equation*}
[X \sim Y]=[X]-[Y], \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
[X \cup Y]=[X]+[Y], X \cap Y=\phi \tag{21}
\end{equation*}
$$

(or $[\mathrm{X} \& \mathrm{Y}]=[\mathrm{X}]+[\mathrm{Y}], \mathrm{X} \cap \mathrm{Y} \neq \phi$).
In the matrix cases we consider, expressions of the type
$[\mathrm{X} \cup \mathrm{Y}][\mathrm{X} \cup \mathrm{Y}]^{\mathrm{T}}$ or $[\mathrm{X} \sim \mathrm{Y}][\mathrm{X} \sim \mathrm{X}]^{\mathrm{T}}=[\mathrm{X}]\left[\mathrm{X}^{\mathrm{T}}\right] \pm[\mathrm{X}]\left[\mathrm{Y}^{\mathrm{T}}\right] \pm[\mathrm{Y}]\left[\mathrm{X}^{\mathrm{T}}\right]$

$$
+[Y]\left[Y^{T}\right] \quad(X \cap Y=\phi)
$$

$=\left[X \wedge X^{T}\right] \pm\left[\left(X \wedge Y^{T}\right) \&\left(Y \wedge X^{T}\right)\right]+\left[Y \wedge Y^{T}\right],(X \cap Y=\phi)$
will arise so it is valuable to have

$$
\begin{equation*}
\left[\mathrm{X} \wedge \mathrm{X}^{\mathrm{T}}\right] \text { and }\left[\left(\mathrm{X} \wedge \mathrm{Y}^{\mathrm{T}}\right) \&\left(\mathrm{Y} \wedge \mathrm{X}^{\mathrm{T}}\right)\right] \quad(\mathrm{X} \cap \mathrm{Y}=\phi) \tag{22}
\end{equation*}
$$

readily available.
We now turn to Storer $[12 ; \mathrm{p} .24-25]$ for the elementary theory of cyclotomy:

Let x by a primitive root of $F=G F(q)$ where $q=p^{\alpha}=e f+1$ is a prime power. Write $G=\langle x\rangle \backslash\{0\}$. The cyclotomic classes C_{f} in F are:

$$
C_{i}=\left\{x^{e s+1}: s=0,1, \ldots, f-1\right\} i=0,1, \ldots, e-1
$$

We note the C_{i} are pairwise disjoint and their mion is G.
For fixed i and j, the cyclotomic number ($1, j$) is defined to be the number of solutions of the equation

$$
z_{i}+1=z_{j} \quad\left(z_{i} \varepsilon C_{i}, z_{j} \varepsilon C_{j}\right)
$$

where $I=x^{0}$ is the multiplicative unit of F. That is (i, j) is the number of ordered pairs s, t such that

$$
x^{e s+1}+1=x^{e t+j}(0 \leq s, t \leq f-1)
$$

Now with . the multiplicative operation in F

$$
\begin{aligned}
C_{i} \wedge C_{j} & =\left[a+b: a \varepsilon C_{i}, b \varepsilon C_{j}\right] \\
& =\left[x^{e s+1}+x^{e t+j}: 0 \leq s, t \leq f-1\right]
\end{aligned}
$$

$=\left[x^{e s+1} \cdot\left(1+x^{e(t-s)+j-i}\right): 0 \leq s, t \leq f-1\right]$
$=\left[C_{i} \cdot\left(1+x^{e r+f-1}\right): 0 \leq r \leq f-1\right]$
$=(j-i, 0) C_{i} \&(j-1,1) C_{i+1} \& \ldots \delta(j-i, e-1) C_{1+e-1}$

$$
\& \pm \theta_{j-1}\{0\}
$$

where θ_{k} is given by

$$
\theta_{k}= \begin{cases}1 & \text { f is even and } k=0 \tag{24}\\ 1 & \text { if } f \text { is odd and } k=e / 2 \\ 0 & \text { otherwise. }\end{cases}
$$

We note

$$
\begin{align*}
& C_{i} \wedge C_{j}=z_{i} \cdot\left(C_{0} \wedge C_{j-i}\right)=z_{i} \cdot\left((j-1,0) C_{0} \& \ldots \&\right. \tag{25}\\
& \left.\quad(j-i, e-1) C_{e-1} \& f \theta_{j-1}\{0\}\right) \text { where } z_{i} \& C_{i}
\end{align*}
$$

Now ($j-i, k$) is $j u s t$ the $j-1, k$ entry in the appropriate
cyclotomic array, so the expression for $C_{i} \wedge C_{f}$ can be easily determined. We note

LEMMA 7.

$$
C_{i}^{T}=\left\{\begin{array}{l}
C_{i} \quad f \text { is even } \\
C_{1+e / 2} \underline{f \text { is odd }}
\end{array}\right.
$$

PROOF. From Storer [12; Lemma 2, page 25],

$$
-1 \varepsilon \begin{cases}C_{0} & \text { if } f \text { is even }, \\ C_{e / 2} & \text { if } f \text { is odd } .\end{cases}
$$

Now if $z \varepsilon C_{i}$ then $-z \varepsilon C_{j}^{T}$, where $-z$ is the inverse of z in the additive group G, and so the result follows.

Thus for f even

$$
\mathrm{C}_{i} \wedge \mathrm{C}_{\mathrm{i}}^{\mathrm{T}}=\mathrm{C}_{\mathrm{i}} \wedge \mathrm{C}_{i}
$$

and then the cyclotomic arrays can be used imediately. We thus restrict our attention to f odd and note
LEMMA 8. $\left(C_{i} \wedge C_{j}^{T}\right) \&\left(C_{j} \wedge C_{i}^{T}\right)=\left(C_{i} \wedge C_{j+e / 2}\right) \&\left(C_{j} \wedge C_{i+e / 2}\right)$,

$$
=\left(C_{i} \wedge C_{j+e / 2}\right) \&\left(C_{i+e / 2} \wedge C_{j}\right)
$$

Hence, for $£$ odd, $£ f$

$$
C_{1} \wedge C_{j}=\underset{s=0}{e-1}(j-i, s) C_{s+1} \& f \theta_{j-i}\{0\}
$$

then, with $\delta_{1 j}$ the Kronecker delta,

$$
\begin{aligned}
& \underset{t=0}{e-1}(j-i-e / 2, t) \quad C_{t+i+e / 2} \& f\left(\theta_{j+e / 2-i}^{+\theta} j-e / 2-i\right)\{0\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { e/2-1 } \\
& =\sum_{r=0}^{e / 2-1}\left((j-j+e / 2, r)+(1-i+e / 2, r+e / 2)\left(C_{r+i} \cup C_{r+1+e / 2}\right)\right. \\
& \delta 2 f \delta_{i j}\{0\} .
\end{aligned}
$$

Thus we have proved the following rule. Note that in the case of $\left[\mathrm{X} \wedge \mathrm{X}^{\mathrm{T}}\right.$] (see equation (22)), we do not want

$$
\left(X \wedge X^{T}\right) \&\left(x \wedge \dot{x}^{T}\right)
$$

so the first row of these tables gives $X \wedge X^{T}$ only.
RULE TO OBTATN ARRAYS FROM THOSE OF LITERATURE FOR E EVEN f ODD:
(1) rearrange the rows by putting (e/2+1) th row of original array into 1 th row, $1=1,2, \ldots$, e.
(2) add element in ith column to element in (i+e/2)th column and put in ith colum, $i=1,2, \ldots, e / 2$, except for the first row which should not be altered.

For example for e $=4$, $£$ odd:

RULE TO USE ADAPTED ARRAY $A=\left[a_{i j}\right]$ FOR e EVEN, f ODD:
Write $A_{i}=\left[\begin{array}{lll}C_{1} & \cup C_{i+e / 2}\end{array}\right]$, reduce all subscripts modulo e/2.
$\left\{\begin{array}{l}{\left[C_{0} \wedge C_{0}^{T}\right]=a_{11} A_{0}+a_{12} A_{1}+\ldots+a_{1, e / 2} A_{e / 2-1}+f I} \\ {\left[C_{s} \wedge C_{s}^{T}\right]=a_{1,1+s} A_{0}+a_{1,2+s} A_{1}+\ldots+a_{1, e / 2+s} A_{e / 2-1}+f I} \\ {\left[C_{0} \wedge C_{1}^{T}\right]+\left[C_{i} \wedge C_{0}^{T}\right]=a_{1+1,1} A_{0}+a_{i+1,2} A_{1}+\ldots+} \\ a_{i+1, e / 2} A_{e / 2-1}, \\ {\left[C_{s} \wedge C_{i+s}^{T}\right]+\left[C_{i+s} \wedge C_{s}^{T}\right]=a_{1+1,1+s} A_{0}+a_{i+1,2+s} A_{1}+\ldots+} \\ a_{i+1, e / 2+s} A_{e / 2-1}\end{array}\right\}$

ADAPTED CYCLOTOMIC ARRAYS: e even, f odd

			$=2$	
			, 1	
		$0{ }^{\text {a }}$		$A=(f-1) / 2$
		A+	+B	$A+B=\mathbf{f}$
			$=4$	
		0,2	1,3	
	0	A	E	$A+E=(f-1) / 2$
	1	E+B	$\overline{\mathrm{D}}+\mathrm{E}$	$\mathrm{B}+\mathrm{D}+2 \mathrm{E}=\mathrm{f}$
	2	A+C	B+D-	$\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}=\mathrm{E}$
	3	$\overline{\mathrm{D}+\mathrm{E}}$	E+B	
			$=6$	
	0,3	1,4	2,5	
0	A	G	H	$\mathrm{A}+\mathrm{G}+\mathrm{H}=(\mathrm{f}-1) / 2$
1	B+G	F+H	I+J	$\mathrm{B}+\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{I}+\mathrm{J}=\mathrm{f}$
2	C+H	2 I	E+G	$\mathrm{C}+\mathrm{E}+\mathrm{G}+\mathrm{H}+2 \mathrm{I}=\mathrm{f}$
3	$\mathrm{A}+\mathrm{D}$	B+E	C+F	$A+B+C+D+E+F=f$
4	E+G	$\mathrm{C}+\mathrm{H}$	2 I	
5	F+H	I+J	$B+G$	

ADAPTED CYCLOTOMIC ARRAYS: e even, fodd

To illustrate the use of these arrays we now prove a lema:
LEMMA 9: If $p=4 f+1$ (fodd) is a prime power, $i=\sqrt{-1}$ then

$$
A=1\left[C_{0}\right]-\left[C_{1}\right]-i\left[C_{2}\right]+\left[C_{3}\right]
$$

satisfies

$$
\mathrm{AA}^{*}=\mathrm{pI}-\mathrm{J}
$$

where A^{*} denotes A transpose complex conjugate
PR00F. $A A^{*}=\left(\left[C_{3} \sim C_{1}\right]+i\left[C_{0} \sim C_{2}\right]\right)\left(\left[C_{3} \sim C_{1}\right]^{T}-i\left[C_{0} \sim C_{2}\right]^{T}\right)$

$$
\begin{aligned}
= & {\left[c_{3} \sim c_{1}\right]\left[c_{3} \sim c_{1}\right]^{T}+\left[c_{0} \sim c_{2}\right]\left[c_{0} \sim c_{2}\right]^{T} } \\
& +1\left(\left[c_{0} \sim c_{2}\right]\left[c_{3} \sim c_{1}\right]^{T}-\left[c_{3} \sim c_{1}\right]\left[c_{0} \sim c_{2}\right]^{T}\right) .
\end{aligned}
$$

From the array for $e=4$, fodd we get (writing if for $C_{i} \wedge C_{i}^{T}$ and ij for $\left(C_{i} \wedge C_{j}^{T}\right) \&\left(C_{j} \wedge C_{i}^{T}\right)$:

33	0,2	1,3	$\{0\}$
	E	A	f
-13	E	A	f
00	$-\mathrm{B}-\mathrm{D}$	$-\mathrm{A}-\mathrm{C}$	
22	A	E	f
-02	A	E	f
Total	$-\mathrm{A}-\mathrm{C}$	$-\mathrm{B}-\mathrm{D}$	

So $A A^{*}=(4 f+1) I-J+i\left(X Y^{T}-Y X^{T}\right)$
where $X=\left[C_{0} \sim C_{2}\right], Y=\left[C_{3} \sim C_{1}\right]$, and hence $X^{T}=-X, Y$, $Y^{T}=-$
Thus

$$
X Y^{T}-Y X^{T}=-X Y+Y X=0
$$

since X and Y are both type 1 incidence matrices and hence commute. So we have the result.

The following lemas are quoted from Storer [12; lemmas 19 and
30]:
LEMMA 10: When $e=4$, f odd, the cyclotomic numbers are determined from the adapted array for $e=4$, together with the relations:

$$
\begin{aligned}
& 16 \mathrm{~A}=\mathrm{q}-7+2 \mathrm{~s} \\
& 16 \mathrm{~B}=\mathrm{q}+1+2 \mathrm{~s}-8 \mathrm{t} \\
& 16 \mathrm{C}=\mathrm{q}+1-6 \mathrm{~s} \\
& 16 \mathrm{D}=\mathrm{q}+1+2 \mathrm{~s}+8 \mathrm{t} \\
& 16 \mathrm{E}=\mathrm{q}-3-2 \mathrm{~s}
\end{aligned}
$$

where $q=s^{2}+4 t^{2}$, with $s \equiv 1$ (mod 4), is the proper representa-
tion of q if $p \equiv 1(\bmod 4)$, where the sign of t is ambiguously
determined.

LEMMA 11. When $\mathrm{e}=8$, f odd the cyclotomdc numbers are determined
from the adapted array for $e=8$, together with the relations:
I. If 2 is a 4th power In G II. If 2 is not a 4 th power In G
$64 A=q-15-2 x$
$64 A=q-15-10 x-8 a$
$64 B=q+1+2 x-4 a+16 y$
$64 B=q+1+2 x-4 a-16 b$
$64 C=q+1+6 x+8 a-16 y$
$64 C=q+1-2 x+16 y$
$64 D=q+1+2 x-4 a-16 y$
$64 \mathrm{D}=\mathrm{q}+1+2 \mathrm{x}-4 \mathrm{a}-16 \mathrm{~b}$
$64 E=q+1-18 x$
$64 \mathrm{E}=\mathrm{q}+1+6 \mathrm{x}+24 \mathrm{a}$
$64 F=q+1+2 x-4 a+16 y \quad 64 F=q+1+2 x-4 a+16 b$
$64 \mathrm{G}=\mathrm{q}+1+6 \mathrm{x}+8 \mathrm{a}+16 \mathrm{y} \quad 64 \mathrm{G}=\mathrm{q}+\mathrm{I}-2 \mathrm{x}-16 \mathrm{y}$
$64 \mathrm{H}=\mathrm{q}+1+2 \mathrm{x}-4 \mathrm{a}-16 \mathrm{y} \quad 64 \mathrm{H}=\mathrm{q}+1+2 \mathrm{x}-4 \mathrm{a}+16 \mathrm{~b}$
$64 \mathrm{I}=\mathrm{q}-7+2 \mathrm{x}+4 \mathrm{a} \quad 64 \mathrm{I}=\mathrm{q}-7+2 \mathrm{x}+4 \mathrm{a}+16 \mathrm{y}$
$64 J=q-7+2 x+4 a \quad 64 J=q-7+2 x+4 a-16 y$
$64 K=q+1-6 x+4 a+16 b \quad 64 K=q+1+2 x-4 a$
$64 \mathrm{~L}=\mathrm{q}+1+2 \mathrm{x}-4 \mathrm{a} \quad 64 \mathrm{~L}=\mathrm{q}+1-6 \mathrm{x}+4 \mathrm{a}$
$64 M=q+1-6 x+4 a-16 b \quad 64 M=q+1+2 x-4 a$
$64 \mathrm{~N}=\mathrm{q}-7-2 \mathrm{x}-8 \mathrm{a} \quad 64 \mathrm{~N}=\mathrm{q}-7+6 \mathrm{x}$
$640=q+1+2 x-4 a \quad 640=q+1-6 x+4 a$
where x, y, a and b are specified by:
I. $q=x^{2}+4 y^{2}, x \equiv 1(\bmod 4)$ is the unigue proper
representation of $q=p^{\alpha}$ if $p \equiv(\bmod 4)$; otherwise,

$$
q=\left(\pm p^{\alpha / 2}\right)^{2}+4.0^{2} ; \text { 1.e., } x= \pm p^{\alpha / 2}, y=0
$$

II. $q=a^{2}+2 b^{2}, a \equiv 1(\bmod 4)$ is the unique proper representation of $g=p^{\alpha}$ if $p \equiv 1$ or $3(\bmod 8)$; otherwise,

$$
\mathrm{q}=\left(\pm \mathrm{p}^{\alpha / 2}\right)^{2}+2.0^{2} ; \text { i.e., } \mathrm{a}=\mathrm{tp}^{\alpha / 2}, \mathrm{~b}=0
$$

The signs of y and b are ambiguously determined.
4. CONSTRUCTIONS FOR SUPPLEMENTARY DIFFERENCE SETS

We recall from $\{20$; lemma 9] and [21]:

LEMMA 12. Let $A_{1}, A_{2}, \ldots, A_{n}$ be the type 1 inctdence matrices of $n-\left\{v ; k_{1}, k_{2}, \ldots, k_{n} ; \lambda\right\}$ supplementary difference sets then

$$
\sum_{i=1}^{n} A_{i} A_{i}^{T}=\left(\sum_{i=1}^{n} k_{i}-\lambda\right) I+\lambda J
$$

If $B_{1}, B_{2}, \ldots, B_{n}$ are the type $1(1,-1)$ Incidence matrices of the supplementary difference sets then

$$
\sum_{i=1}^{n} B_{i} B_{i}^{T}=4\left(\sum_{i=1}^{n} k_{i}-\lambda\right) I+\left(n v-4 \sum_{i=1}^{n} k_{i}+4 \lambda\right) J
$$

In particular we use
COROLLARY 13. Let $B_{1}, B_{2}, B_{3}, B_{4}$ be the type $1(1,-1)$ incidence matrices of $4-\left\{v ; k_{1}, k_{2}, k_{3}, k_{4} ; \lambda\right\}$ supplementary difference set.
then

$$
\sum_{1=1}^{n} B_{i} B_{1}^{T}=4\left(\sum_{i=1}^{4} k_{i}-\lambda\right) I+4\left(v-\sum_{i=1}^{4} k_{i}+\lambda\right) J
$$

In this section we will assume that $X_{1}, X_{2}, X_{3}, X_{4}$ are $4(0,1,-1)$ matrices of order v which have the following properties:
(30)
(1) $\sum_{i=1}^{n} X_{1} \quad$ is a $(1,-1)$ matrix
(ii) $\quad X_{i} * x_{j}=0, \quad 1 \neq j$,
(iii) $\sum_{i=1}^{4} X_{i} X_{i}^{T}=a I+(v \cdots a) J$,
(iv) X_{i} has x_{1} positive and y_{i} negative elements per row and column.

We now show how such matrices may be used to construct supplementary difference sets. Let

$$
\begin{array}{ll}
y_{1}=-x_{1}+x_{2}+x_{3}+x_{4}, & z_{1}=x_{1}+x_{2}+x_{3}+x_{4}, \\
y_{2}=x_{1}-x_{2}+x_{3}+x_{4}, & z_{2}=x_{1}-x_{2}+x_{3}-x_{4} \\
Y_{3}=X_{1}+x_{2}-x_{3}+x_{4}, & z_{3}=x_{1}-x_{2}-x_{3}+x_{4}, \\
y_{4}=x_{1}+x_{2}+x_{3}-x_{4}, & z_{4}=x_{1}+x_{2}-x_{3}-x_{4},
\end{array}
$$

Then we have
LEMMA 14. If there exist $4(0,1,-1)$ matrices $X_{1}, X_{2}, X_{3}, X_{4}$ of order v satisfying the conditions (i), (ii), (iii), (iv) above then there exist
(a) 4 - \{v; $y_{1}+x_{2}+x_{3}+x_{4}, x_{1}+y_{2}+x_{3}+x_{4}, x_{1}+x_{2}+y_{3}+x_{4}, x_{1}+x_{2}+x_{3}+y_{4}$;

$$
\left.2 \sum_{i=1}^{4} x_{i}+v-a\right\}
$$

and
(b) $4-\left\{v ; x_{1}+x_{2}+x_{3}+x_{4}, x_{1}+y_{2}+x_{3}+y_{4}, x_{1}+y_{2}+y_{3}+x_{4}\right.$,

$$
\left.x_{1}+x_{2}+y_{3}+y_{4} ; 2 x_{1}-2 y_{1}+2 v-a\right\}
$$

supplementary difference sets, where
(c) $\sum_{i=1}^{4}\left(x_{i}+y_{i}\right)=v$ and
(d) $\sum_{i=1}^{4}\left(x_{i}-y_{f}\right)^{2}=v^{2}-a(v-1)$.

PROOF. $\sum_{i=1}^{4} Y_{i} Y_{i}^{T}=\sum_{i=1}^{4} Z_{i} z_{i}^{T}=4 \sum_{i=1}^{4} X_{i} X_{i}^{T}=4 a I+4(v-a) J$.
Now using Corollary 13 we have that $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ and Z_{1}, Z_{2}, z_{3}, z_{4} are the incldence patrices (or permatations of them) of 4- $\left\{v ; k_{1}, k_{2}, k_{3}, k_{4} ; \sum_{i=1}^{4} k_{1}-a\right\}$ for some non-negative integers k_{1}, k_{2}, k_{3}, k_{4}. The actual values ${ }^{i=1}$ of k_{i} in each case may be determined by counting the number of positive elements in each row and column of Y_{i} and $z_{i}(i=1,2,3,4)$.

The condition

$$
\sum_{i=1}^{4}\left(x_{1}+y_{i}\right)=v
$$

follows immediately from property (i) of the $X_{1}, x_{2}, x_{3}, x_{4}$.
So for case (a)

$$
\sum_{i=1}^{4} k_{i}^{-a}=3 \sum_{i=1}^{4} x_{i}+\sum_{i=1}^{4} y_{i}-a=2 \sum_{i=1}^{4} x_{i}+v-a
$$

for case (b)

$$
\sum_{i=1}^{4} k_{i}-a=2 x_{i}-2 y_{i}+2 \sum_{i=1}^{4}\left(x_{i}+y_{i}\right)-a=2 x_{i}-2 y_{i}+2 v-a
$$

The condition

$$
\sum_{i=1}^{4}\left(x_{i}-y_{i}\right)^{2}=v^{2}-a(v-1)
$$

for case (a) is proved (as in [5]) by considering the constraints placed by equation (1). Write

$$
\sum_{i=1}^{4}\left(x_{i}-y_{i}\right)^{2}=s, \sum_{i=1}^{4} x_{i}=w, \quad \sum_{i=1}^{4} y_{i}=v-w
$$

Then from (1), in case (a),

$$
\begin{aligned}
(2 w+v-a)(v-1) & =\sum_{i=1}^{4}\left(w+y_{i}-x_{1}\right)\left(w+y_{i}-x_{i}-1\right) \\
& =4 w^{2}+2 w(v-2 w)+s-4 w-v+2 w
\end{aligned}
$$

that is

$$
s=v^{2}-a(v-1)
$$

From equation (1), in case (b),

$$
\left(2 x_{I}-2 y_{1}+2 v-a\right)(v-1)
$$

$$
=w(w-1)+\left(w-x_{2}-x_{4}+y_{2}+y_{4}\right)^{2}+\left(w-x_{2}-x_{3}+y_{2}+y_{3}\right)^{2}+\left(w-x_{3}-x_{4}+y_{3}+y_{4}\right)^{2}
$$

$$
-\left(3 w+2 x_{1}-2 y_{1}+2 \sum_{i=1}^{4}\left(-x_{i}+y_{i}\right)\right)
$$

$=w^{2}-2\left(x_{1}-y_{1}+v\right)+3 w^{2}+2 w\left(2 x_{1}-2 y_{1}+2 \sum_{i=1}^{4}\left(-x_{i}+y_{i}\right)\right)$ $+\left(x_{2}+x_{3}+x_{4}-y_{2}-y_{3}-y_{4}\right)^{2}+\sum_{i=1}^{4}\left(x_{i}-y_{i}\right)^{2}$
$=2\left(x_{1}-y_{1}\right)(2 w-1)-2 v+4 w(v-w)+\left(\sum_{i=1}^{4}\left(x_{i}-y_{i}\right)\right)^{2}-2(2 w-v)\left(x_{1}-y_{1}\right)$
$+\sum_{i=1}^{4}\left(x_{i}-y_{i}\right)^{2}$
$=-2 v+4 w(v-w)+2\left(x_{1}-y_{1}\right)(v-1)+(v-2 w)^{2}+\sum_{i=1}^{4}\left(x_{i}-y_{i}\right)^{2}$.
So $\sum_{i=1}^{4}\left(x_{i}-y_{i}\right)^{2}=v^{2}-a(v-1)$.
The difference sets given by lemma 14 may not be essentially different but we were not able to decide this problem.

We now apply the adapted arrays of section 3 to the constructions we have given in table 1 to see if more general results can be obtained.

LEMMA 15. Let $q=4 \mathrm{f}+1=9+4 \mathrm{t}^{2}$ (f odd) be a prime power. Then

$$
x_{1}=\left[c_{0}\right], \quad x_{2}=\left[C_{1} \sim\{0\}\right], \quad x_{3}=\left[C_{2}^{\sim} C_{3}\right], \quad x_{4}=0
$$

satisfy
(i) $\sum_{i=1}^{4} x_{i}$ is a $(1,-1)$ matrix,
(ii) $X_{i} * X_{j}=0 \quad i \neq j$,
(iii) $\sum_{i=1}^{4} x_{i} x_{1}^{T}=\frac{1}{2}(7 f+5) I+\frac{1}{2}(f-3) J$.

PROOF. (1) and (ii) are clear. To show (iii) we consider the appropriate array, lemma 10, and use the following table of contributions from the terms in the incidence matrices

	0,2	1,3	\{0\}
00	A	E	f
11	E	A	£
- $\{0\} 1$		-1	
22	A	E	f
33	E	A	f
-23	-A-C	-B-D	
\{0\}			1
Total	£-1-A-C	f-2-b-d	$4 \mathrm{f}+1$

From lemma $10 \mathrm{f}-1-\mathrm{A} \rightarrow \mathrm{C}=\mathrm{f}-\mathrm{l}-(2 \mathrm{q}-6-4 \mathrm{~s}) / 16$

$$
\mathrm{f}-2-\mathrm{B}-\mathrm{D}=\mathrm{f}-2-(2 \mathrm{q}+2+4 \mathrm{~s}) / 16
$$

so if $s=-3$

$$
\mathrm{f}-1-\mathrm{A}-\mathrm{C}=(\mathrm{f}-3) / 2=\mathrm{f}-2-\mathrm{B}-\mathrm{D}
$$

and we have the result.
We note that if $p=13$, that is $f=3$, then condition (iii) of the lemma gives

$$
\sum_{i=1}^{4} x_{i} x_{i}^{T}=131
$$

and so the matrices given satisfy the conditions for theorem 1.
This gives, using lemma 14,

COROLLARY 16. Let $q=4 f+1=9+4 \mathrm{t}^{2}$ (f odd) be a prime power. Ther there exist
(a) $4-\left\{4 f+1 ; 2 f, 2 f+1,3 f, 3 f ; \frac{1}{2}(13 f-3)\right\}$
and
(b) $4-\left\{4 f+1 ; 3 f, 2 f+1,2 f+1,3 f ; \frac{1}{2}(13 f-1)\right\}$
supplementary difference sets.
Similarly we obtain
LEMMA 17. Let $q=6 f+1=x^{2}+3 y^{2}$ (f odd) be a prime power such that $4 q=a^{2}+3 b^{2}=c^{2}+27 d^{2}, c \equiv 1(\bmod 6), 2 x-a+3 d=6, c-3 b+6 y=16$. Then $x_{1}=\left[C_{0}\right], x_{2}=\left[C_{2}\right], x_{3}=\left[\{0\} \& C_{3} \sim C_{4}\right], x_{4}=\left[C_{1} \sim C_{5}\right]$ satisfy conditions (i), (ii), (iv) of (30) and

$$
\text { (i1i) } \sum_{i=1}^{4} x_{1} x_{i}^{T}=\frac{(17 f+6)}{3} I+\frac{(f-3)}{3} \mathrm{~J} .
$$

PROOF. (1), (i1), (iv) are clear. To obtain (iii) we consider the appropriate array, lenma 27 of [12], and use the following table of contributions from the terms of the incidence matrices. As before we denote $\left(C_{i} \wedge C_{j}^{T}\right) \&\left(C_{j} \wedge C_{i}^{T}\right)$ by ij.

	0,3	1,4	2,5	\{0\}
00	A	G	H	f
22	G	н	A	f
\{0\} 3	1			
- \{0\} 4		-1		
\{0\}				1
33	A	G	H	f
- 34	-B-G	-F-H	-I-J	
44	H	A	G	£
11	H	A	G	f
55	G	H	A	f
- 15	-2I	-E-G	$-\mathrm{C}-\mathrm{H}$	
Total	f-B-G-2I	f-2-E-F-G-H	f-1-C-H-I-J	$6 \pm+1$

From the lemma 27 of [12]

$$
\begin{aligned}
\mathrm{f}-\mathrm{B}-\mathrm{G}-2 \mathrm{I} & =\mathrm{f}-(8 \mathrm{q}-4+12 \mathrm{x}-6 \mathrm{a}+2 \mathrm{c}+12 \mathrm{y}-6 \mathrm{~b}+18 \mathrm{~d}) / 72 \\
\mathrm{f}-2-\mathrm{E}-\mathrm{F}-\mathrm{G}-\mathrm{H} & =\mathrm{f}-2-(8 \mathrm{q}-16 \ldots-4 \mathrm{c}-24 \mathrm{y}+12 \mathrm{~b}+\quad) / 72 \\
\mathrm{f}-1-\mathrm{C}-\mathrm{H}-\mathrm{I}-\mathrm{J} & =\mathrm{f}-1-(8 \mathrm{q}-4-12 \mathrm{x}+6 \mathrm{a}+2 \mathrm{c}+12 \mathrm{y}-6 \mathrm{~b}-18 \mathrm{~d}) / 72
\end{aligned}
$$

these are all equal to

$$
(f-3) / 3
$$

when

$$
2 x-a+3 d=6 \quad \text { and } 3 b-c-6 y=-16
$$

For $x=4, y=-1, c=7, d=-1, a=-1, b=-5$ we have the conditions satisfied for $q=19$ which also satisfies theorem 1 but the conditions are rather awkward to satisfy, Now using lema 14 we have COROLLARY 18. Let $q=6 f+1=x^{2}+3 y^{2}$ (f odd) be a prime power such that $4 q=a^{2}+3 b^{2}=c^{2}+27 d^{2}, c \equiv 1(\bmod 6), 2 x-a+3 d=6, c-3 b+6 y=16$. Then there extst
(a) $4-\{6 f+1 ; 3 f+1,3 f+1,4 f, 4 f+1 ;(25 f+3) / 3\}$ and
(b) $4-\{6 \mathrm{f}+1 ; 4 \mathrm{f}+1,3 \mathrm{f}+1,3 \mathrm{f}, 4 \mathrm{f} ; 25 \mathrm{f} / 3\}$
gupplementary difference sets.
LEMMA 19. Let $q=8 f+1$ (f odd) be a prime power.
Then

$$
x_{1}=\left[c_{0} \& c_{5} \sim\{0\}\right], \quad x_{2}=\left[C_{1} \sim c_{7}\right], \quad x_{3}=\left[c_{2}-c_{3}\right]
$$

$X_{4}=\left[C_{4} \sim C_{6}\right]$ satisfy conditions (1), (ii), (iv) of (30) and (iii) $\sum_{i=1}^{4} X_{i} X_{i}^{T}=(q-j) I+j J$,
only for $q=25$ and $j=0$

PROOF. (i), (i1), (Iv) are clear. To show (iii) we consider the appropriate array, lema 11, and use the following table of contributions from the terms of the incidence matrices.

	0,4	1,5	2,6	3,7	\{0\}
$\{0\},{\underset{\underbrace{}}{8}=0}_{7}^{1} i 1$	f-1	f-1	£-1	f-1	$8 \mathrm{f}+1$
05	F+I	D+J	K+L,	L+M	
-\{0\} 0	-1				
$-\{0\} 5$		-1			
- 17	-K-M	-G-N	-L-0	-C-N	
- 23	-M-0	-K-0	-b-I	-H-J	
- 46	-C-N	-K-M	-G-N	-L-0	
Total	$\mathrm{f}-2+\mathrm{F}+\mathrm{I}$	$\mathrm{f}-2+\mathrm{D}+\mathrm{J}$	f-1+K	f-1+M	$8 \mathrm{f}+1$
	-C-K-2M	-G-2K-M	-B-G-I	-C-H-J	
	- $\mathrm{N}-\mathrm{O}$	- $\mathrm{N}-\mathrm{O}$	- $\mathrm{N}-\mathrm{O}$	- $\mathrm{N}-0$	

Now write

$$
\begin{aligned}
& \mathrm{f}-2-\mathrm{C}+\mathrm{F}+\mathrm{I}-\mathrm{K}-2 \mathrm{M}-\mathrm{N}-0=\alpha \\
& \mathrm{f}-2+\mathrm{D}-\mathrm{G}+\mathrm{J}-2 \mathrm{~K}-\mathrm{M}-\mathrm{N}-0=\beta \\
& \mathrm{f}-1-\mathrm{B}-\mathrm{G}-\mathrm{I}+\mathrm{K}-\mathrm{N}-0=Y \\
& \mathrm{f}-1-\mathrm{C}-\mathrm{H}-\mathrm{J}+\mathrm{M}-\mathrm{N}-0=\delta .
\end{aligned}
$$

For supplementary difference sets
When 2 is a fourth power in F (from Lemma 11)
$64 a=4 q-134+16 x-8 a+32 y+16 b$
$64 B=4 q-134+16 x-8 a-32 y-16 b$
$64 Y=4 q-54-16 x+8 a-32 y+16 b$
$64 \delta=4 q-54-16 x+89+32 y-16 b$.

Solving we have $y=b=0, a=2 x-5, \alpha=\beta=\gamma=\delta=(4 q-94) / 64$
which with the conditions $q=x^{2}+4 y^{2}=a^{2}+2 b^{2}$ (of lemma 11) leads to no possible solutions.

When 2 is not a fourth power in F (from lemma 11)

$$
\begin{aligned}
& 64 a=4 q-140+8 a+16 b \\
& 64 \beta=4 q-140+8 a-16 b \\
& 64 \gamma=4 q-60-8 a+16 b \\
& 64 \delta=4 q-60-8 a-16 b
\end{aligned}
$$

Solving we have $b=0, a=5, \alpha=\beta=\gamma=\delta=(4 q-100) / 64$. So the only possible solution is for $q=a^{2}+2 b^{2}=5^{2}+2.0^{2}=25$.

LEMMA 20. Let $q=8 f+1$ (f odd) be a prime power.
Then

$$
\begin{aligned}
& x_{1}=\left[C_{0} \sim C_{2} \sim C_{3}\right], \quad x_{2}=\left[C_{4} \& C_{6} \sim C_{1} \sim[0\}\right] \\
& X_{3}=\left[C_{5} \sim C_{7}\right], X_{4}=0 \text { satisfying conditions (i), (ii), (iv) }
\end{aligned}
$$

of (30) and

$$
\text { (iii) } \sum_{i=1}^{4} X_{i} X_{i}^{T}=(q-j) I+j J,
$$

on1y for $q=41$ and $j=0$.
PROOF. (i), (ii), (iii) are clear. To show (ifi) we consider the appropriate array, Lema 11, and use the following table of contributions from the terms of the incidence matrices.

	0,4	-1,5	2,6	3,7	(0)
$\{0\}, \underset{1-0}{8} i 1$	f-1	f-1	f-1	f-1	$8 \mathrm{f}+1$
-02	-C-N	-K-M	-G-N	-L-0	
-03	-D-J	-K-L	$-\mathrm{L}-\mathrm{M}$	-F-I	
23	M+0	K+0	$\mathrm{I}+\mathrm{B}$	$\mathrm{H}+\mathrm{J}$	
46	$\mathrm{C}+\mathrm{N}$	K+M	G+N	L+0	
-14	-F-I	-J-D	-K-L	-L-M	
-\{0\} 4	-1				
$-\{0\} 6$			-1		
-16	-L-M	-I-F	-D-J	$-\mathrm{K}-\mathrm{L}$	
\{0\} 1		1			
-57	-L-0	$-\mathrm{N}-\mathrm{C}$	-K-M	$-\mathrm{G}-\mathrm{M}$	
Total	$\mathrm{f}-2-\mathrm{D}-\mathrm{F}$	$\mathrm{f}-\mathrm{Cm} \mathrm{D}-\mathrm{F}-\mathrm{I}$	$\mathrm{f}-2+\mathrm{B}-\mathrm{D}$	f-1-F-G	$8 \mathrm{f}+1$
	-I-J-2L	-J-L-N+0	$+\mathrm{I}-\mathrm{J}-2 \mathrm{R}$	+ $\mathrm{H}-\mathrm{I}+\mathrm{J}-\mathrm{K}$	
			$-2 \mathrm{~L}-2 \mathrm{M}$	$-2 \mathrm{~L}-\mathrm{M}-\mathrm{N}$	

Now write

$$
\begin{aligned}
& \mathrm{f}-2-\mathrm{D}-\mathrm{F}-\mathrm{I}-\mathrm{J}-2 \mathrm{~L}=\alpha \\
& \mathrm{f}-\mathrm{C}-\mathrm{D}-\mathrm{F}-\mathrm{I}-\mathrm{J}-\mathrm{L}-\mathrm{N}+0=\beta \\
& \mathrm{f}-2+\mathrm{B}-\mathrm{D}+\mathrm{I}-\mathrm{J}-2 \mathrm{~K}-2 \mathrm{~L}-2 \mathrm{M}=\gamma \\
& \mathrm{f}-1-\mathrm{F}-\mathrm{G}+\mathrm{H}-\mathrm{I}+\mathrm{J}-\mathrm{K}-2 \mathrm{~L}-\mathrm{M}-\mathrm{N}=\delta .
\end{aligned}
$$

For supplementary difference sets

$$
\alpha=\beta=\gamma=\delta
$$

When 2 is a fourth power in F (from lemma 11)

$$
\begin{aligned}
& 64 \alpha=2 q-126-12 x+8 a \\
& 64 \beta=2 q+10-12 x+16 y \\
& 64 \gamma=2 q-142+20 x-8 a+32 y \\
& 64 \delta=2 q-70+4 x-48 y
\end{aligned}
$$

and these are equal for $a=19, x=9, y=1$. In this case $\alpha=\beta=\gamma=\delta=0$
implies $q=41$ but 2 is not a fourth power for $G F(41)$. In lemma 11 part I
we get $q=85$ which is not a prime power and in part II $q=19^{2}+2 \mathrm{~b}^{2}$; so we have no result.

When 2 is not a fourth power in F, we have
$64 \alpha=2 q-126+4 x-8 a$
$64 \beta=2 q+10-12 x-16 y$
$64 y=2 q-142+4 x+8 a+32 y$
$64 \delta=2 q-70+4 x-16 y$.

These have solution $x=5, y=2, a=3, \alpha=\beta=\gamma=\delta=2 q-82$.
In Lenma 11 part I we have $q=5^{2}+4 \cdot 2^{2}=41$ and in part II $q=(-3)^{2}+2 b^{2}$. So there is only one solution, $q=41$.

FINAL REMARK

We note that Joan Cooper has proved that this partitioning of the Galois Fields GF(q) to give Hadamard arrays is not possible for $q=e f+1$ when f is even.

JOAN COOPER AND JENNIFER WALLIS, A construction for Hadamard arrays, BuIl, Austral. Math Soc. 7(1972), 269-278.
[6] E. LEHMER, On residue difference sets, Canad. J. Math. 5 (1953), 425-432.
[7] E. LEHMER, on the number of solutions of $u^{k}+D \equiv w^{2}$ $(\bmod p)$, Pacific I. Math. $5(1955), 103-118$.
[8] MARSHALL HALL, JR., Characters and cyclotomy, Proceedings of the Symposia in Pure Mathematics,' 8, American Mathematical Society, Providence, Rhode Island, (1965), 3I-43.
[.9] MARSHALL HALL, JR., Combinatorial Theory, Blaisdel1, Waltham, Mass., 1967.
[10] J.B. MUSKAT, The cyclotomic numbers of order fourteen, Acta. Arith. 11 (1966), 263-279.
[11] JOSEPH B. MUSKAT AND ALBERT L. WHITEMAN, The cyclotomic numbers of order twenty, Acta Arithmetica, 17(1970), p. 185-216.
:12\} THOMAS STORER, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics, Markham, Chicago, 1967.
[13] G. SZEKERES, Cyclotomy and complementary difference sets, Acta Arithmetica 18 (1971), 349-353.
[14」 RICHARD J. TURYN, An infinite class of Williamson matrices, J. Combinatorial Theory 12(1972), 319-321.
[15] JENNIFER WALLIS, Amicable Hadamard Matrices, J.
Combinatorial Theory, ser. A. 11 (1971), 296-298.
[16] JENNIFER WALLIS, A note on Amicable Hadamard Matrices, Utilitas Math. (to appear).
[17] JENNIFER WALLIS, Supplementary difference sets, Aequationes Math. (to appear).
[18.] JENNIFER WALLIS, A note on supplementary difference sets, Aequationes Math. (to appear).
[19] JENNIFER WALLIS, Hadamard matrices of order $28 \mathrm{~m}, 36 \mathrm{~m}$ and 44m, J. Combinatorial Theory, (to appear).
[20] JENNIFER WALLIS AND ALBERT LEON WHITEMAN, Some classes of Hadamard matrix with constant diagonal, Bull. Austral. Math. Soc. $7(1972)$, 233-249.

Ł21] W.D. WALLIS, ANNE PENFOLD STREET, JENNIFER SEBERRY WALLIS, Combinatorics: Roour Squares, Sum-free Sets, Hadamard Matrices, Volume 292, Springer-Verlag, Berlin-Heide1berg-New York, 1972.
[22] ALBERT LEON WHITEMAN, A family of difference sets, Illinois J. Math. 6(1962), 107-121.
[23] ALBERT LEON WHITEMAN, The cyclotomic numbers of order sixteen, Trans. Amer. Math. Soc. 86(1957), 401-413.
[24.1 ALBERT LEON WHITEMAN, The cyclotomic numbers of order ten, Proceedings of the Symposia in Applied

Mathematics 10 , American Mathematical Society,
Providence, Rhode Island, 1960, 95-111.
[25] ALBERT LEON WHITEMAN, An Infinite family of Hadamard matrices of Williamson type, J. Combinatorial

Theory (to appear).
[26] A.L. WHITEMAN, The cyclotomic numbers of order twelve, Acta Arith. $6(1960), 53-76$.
[27] JOHN WILLIAMSON, Hadamard's determinant theorem and the sum of four squares, Duke J. Math. 11(1944), 65-81.

[^0]: * This paper was prepared while this author was a Post-doctoral Fellow in Statistics at the University of Waterloo, Canada.

