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CYCLOTOMY, HADAMARD ARRAYS AND SUPPLEMENTARY DIFFERENCE SETS 

• David C. Hunt and Jennifer Wallis 

University of New South Wales, Kensington, N.S.W., 2033, Australia 

ond 

University of Newcastle, N.S.W., 2308, Australia 

ABSTRACT 

A 4n x 4n Hadamard array, H, is a square matrix of order 4n with 

elements ± A, ± B, ± C, ± D each repeated n times in each row and column. 

Assuming the indeterminates A, B, C, D commute, the row vectors of H must 

be orthogonal. These arrays have been found for n ~ 1 (Williamson, 1944), 

n ~ 3 (Baumert-Hall, 1965), n ~ 5 (Welch, 1971), and some other odd n < 43 

(Cooper, Hunt, Wallis). 

The results for n - 25, 31, 37, 41 are presented here, as is a 

result for n ~ 9 not based on supplementary difference sets. This gives the 

following new orders for Hadamard matrices < 4000: 1804, 3404, 3596, 3772. 

These results were obtained by using an adapt ion of cyclotomy which allows 

the product of incidence matrices to be easily derived. This adaption is 

developed and the constructions shown for some families of supplementary 

difference sets • 

• This paper was prepared while this author waS a Post-doctoral Fellow 

in Statistics at the University of Waterloo, Canada. 
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1. INTRODUCTION AND DEFINITIONS 

We use I for the identity matrix and J for the matrix with every 

element + 1, and the order, unless specifically stated, should be determined 

from the context. We sometimes use brackets, [ ], to denote matrices and 

HT denotes H transposed. 

Let Sl' S2' ... , Sn be subsets of V, a finite abelian group of 

order v written in additive notation, containing k
l

, k2' .•. , k
n 

elements 

respectively. Write Ti for the totality of all differences between elements 

of Si (with repetitions), and T for the totality of elements of all the 

T
i

. If T contains each non-)lero element of V a fixed number of times, A 

say. then the sets 51' 52' ... , Sn will be called n - {v; kl , k2' ... , kn;A} 

supplementary difference sets. 

The parameters of n - {v; kl , k2' •.• , kn;A} supplementary difference 

sets satisfy 

(1) A(v-l) 
n 

,l: ki(ki-l). 
1.=1 

If kl = k2 = ••• ~ k
n 

B k we will write n - {v; k; A} to denote the n 

supplementary difference sets and (1) becomes 

(2) A(v-l) = nk(k-l). 

We shall be concerned with collections, (denoted by square brackets 

[ ]) defined on a fixed group V or order v, in which repeated elements 

are counted mUltiply, rather than with sets (denoted by braces { }). If Tl 

and T2 are two collections then TI and T2 will denote the result of adjoining 

the elements of TI to T2 with total multiplicities retained, For example: 

Xl' x2 ' x 3 ' E V and TI = [Xl' x2 , x 3 ']' T2 = [Xl' x2 ' x4 ] then 

(3) 

The class product or join (see Storer [12] p. 3) of two collections 

TI and TZ will be denoted by TI A TZ ' which is defined as 

(4) 

Suppose Xl' x 2 ' "', Xv are the elements of V ordered in some fixed 
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way. Let X be a subset of V. Further let 

commutative ring with unity (1). Then M = 

(5) 

~ and W be two maps 

[m,.] is defined by J . 

will be called ~ and N ~ InijJ defined by 

(6) 

will be called ~. 

If ~ and ware defined by 

(7) q,(x) 1j!(x) 
x e: X, 

x ~ X. 

from V into a 

then M and N will be called the type 1 incidence matrix of X (in V) and the 

type 2 incidence matrix of X (in V), respectively. While if q, and 1j! are 

defined by 

(8) q,(x) 1j!(x) [

Ix e: X, 

= -1 x ~ X, 

M and N will be called the ~ 1 (1, -1) matrix of X and the ~ 2 (I, -I) 

matrix of X respectively. M and N are of order Ivi. These are discussed 

further in [20] and [21]. 

(9) 

We note that there exists an R = [r
ij

] defined by 

+ x. = 0, 

", .. [' 
J 0 

J 

otherwise, 

such that if M is the type 1 matrix of X, MR is a type 2 matrix. 

Write lI(x) for the number of times x occurs in the collection X. 

Define the type 1 incidence matrix, [X] = [zij] of X by 

(10) 

It is proved in [4] that is X and Yare collections of elements 

from the same abelian group V then\where the left hand side is the matrix 

multiplication of the two matrices~ 
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(11) IX] IY] = ~Ix "Y] . 

satisfies 

An Hadamard matrix H of order h has every element + 1 or - 1 and 
T H H = h I

h
• It is shown in {20] that 

(12) 
4 

k3' k4 ; I k i - v} 
i=l 

supplementary 

difference sets yield an Hadamard matrix of order 4'1; and in {2l] that 

(13) 
4 

k 4; L k
i 

- v - 1} 
i=l 

supplementary 

differences sets necessarily have each k
i 

~ m or m + 1 for v = 2m + 1 and 

kl '" m ± I, k2 = k3 = k4 - m for v = 2m and yield an Hadamard matrix of 

order 4(V+l). 

The Hadamard product, *, of two matrices A = Iaij ], and B = lbij ] 
of the same size is given by 

(14) A * B '" [aij bijl 

We define an Hadamard array, H, of order 4n, to be a square matrix 

of order 4n with elements ± A, :!: B, ± C, ± D each repeated n times in each 

row and column, with the property that, assuming the indeterminates A, B, 

C, D commute, the row vectors of H must be orthogonal. 

The Hadamard array of order 4 is 

A B C D 

-B A -D c 
(15) 

-c D A -B 

-D -c B A 

and is due to Williamson [27]. 'n 1965, Baumert and Hall published the 

12 x 12 Hadamard array and in 1971 L. R. Welch found a20 x 20 array. 

These may be found in [3] and I2l]. Subsequently Hadamard arrays have been 

found fn, orders 4m, m <: p, 9, II, 13, 15, 17, 19} by Cooper and Wallis 

(see [5], [191, [21]). In the next section we give some arrays obtained by 

partitioning the Galois Fields for some prime powers. 

The constructions for Hadamard arrays that we quote in the next 

section rely on the following result, see I2l] 
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LEMMA A: Let P and Q be type 1 incidence matrices and R be a type 2 

incidence matrix. Then 

(1) PQ QP. pTQ = QpT, PQT = QTp. pTQT = QTpT 

(ii) RQ QTRT, RTQ "' QTR , RQT ~ QRT .. RTQT B QR. 

NOTATION: We will use the notation C
a 

- Cb ' where C
a 

n C
b 

= ¢ and C
a 

and 

Cb are collections of elements from the same abelian group V, to mean the 

"collection" of elements 

c , •.• ,-c
b

' -c
b 

, ••• J c E; Ca ' 
aZ 1 Z a i 

'b ' '1" 
j 

where -cb 
j 

does not mean the inverse (C;;~) of ~ in 
j 

V. but means cb . 
J 

with a negative sign attached. 

The incidence matrix of C
a 

- C
b 

and C
a 

I< C
b 

are defined by 

respectively. 

Z. SOME RESULTS 

In [5] and [ZlJ the following theorem is given: 

THEOREM 1. Suppose there exist four type 1 (0, 1, -1) matrices Xl' !Z' !3 

~ of order n, defined on the same abelian 8¢OuP V with n elements, such 

chac 

(i) 

(ii) 

(iii) 

x *X =0, iij, '"l---"j 
4 

(* the Hadamard product). 

I ~ is a (1, -1) matrix 
i=l 

4 T I lL~ = nl • 
i=1 --'--J.---n 

Further suppose A. B. C, D are indeterminates that pairwise commute. Define 

X X, x A + X
z " B + X3 

, C + X4 " D, 

Y X, H + X, " A + X3 " D + X4 
x-C, 

(17) 
z "l '-c + X, "-D + X3 " A + X

4 " B, 

W ~ "l '-D + X, " C + X3 x-B + X
4 

, A, 
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where Xi x A denotes X with each l~and -1 replaced by A and -A respectively: 

(if a matrix is substituted for A, Xi x A will become the usual Kronecker 

product.) If 5 denotes the R of (9) defined on V, then 

x YS ZS WS 

-YS X _WT5 ZTS 
(18) H 

wTS _yT5 -ZS X 

-WS _zTs yTS X 

is an Hadamard array of order 4n. ••• 
We note that the condition that Xl' X2 ' X3 , X

4 
are type 1 is only 

imposed so that we can ensure a suitable 5 exists. That other matrices are 

possible is demonstrated in the next lemma. 

LEMMA 2. Let T and R be the matrices 

T - R 

further let 

where 0 is the 'l'ero matrix of order 3. Then with S ~ R x R, X, Y! Z, W 

and H of the previous theorem give an Hadamard array of order 36. 

PROOF. Since I + T + r2 ~ J we have conditions (i), (ii) and (iii) of the 

theorem satisfied. The properties of H may be easily checked. 

We note the row and column SUIII of the matrices Xi' i ~ 1,2,3,4 

are not constant and so the matrices need not (and do not) satisfy the 

conditions of the following lemma (see [5] and [21]). 

... 

LEMMA 3. Suppose there exist four (0, 1, -1) matrices XlJ2.........!~....£i 

order n which satisfy 
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w 
~ , 

n 

13>--4.3+1 32+22+02+02 

19-6.3+1 132+32+12+02 

25~8.3+1 15
2
+0

2
+0

2
+0

2 

31-10.3+1 132+32+32+22 

37-12.3+1 162+12+02+02 

41-8.5+1 15
2
+4

2
+0

2
+0

2 

X
1

,X
Z

,X
3

,X
4 

[COl. [el-{o}], [ez-c)]. [ep] 

[COl. [Cz]' [{oJ & C3-C4 J. [C1-Csl 

[CO I> Cs-{O}], [el-e7l, [ez-c)], [C4-C61 

[CO & c)-ezl. [C4 & C/Cgl. [C 7 & CS- C
6 l. [C1-{O}J 

[CO & C
1

-C
Z

-C
3 

& C4 & Csl. rio}], [C 6-C7 & c S-c9 & clO-clll. [¢] 

[C
O
-C

Z
-C

3
]. [C

4 
& C

6
-C

1
-{O}], [e s- e

7
l, [¢] 

TABLE 1 



(1) !t~j - D, 1 f j ! i, 1 12 13,4 

4 
T (ii) 1 XiX! n1 

1=1 
n 

Let xi b. ". number of j20sitive elements in each row and column of X, 
~ b. ". number 0' negative elements in each row and column of Xi" 

Then 
4 

4 2 
(.) ir

1 
(xi+Yi) n. (b) l (x.-y.) - n. 

1",1 1. J. 

In Cooper and Wallis it is noted that some suitable matrices 

~, X
2

, X
3

, X
4 

satisfying the conditions of theorem 1 may be formed by 

partitioning the Galois Field for a prime (or prime power) p ef + 1 

and using the incidence matrices of the subgroup and easets of order f. 

The results for n = 13 and n = 19 given below are in IS]. for n = 25 

in [21] and n = 31, 37, 41 are presented here for the first time. Thus, 

we have from Table 1: 

THFnREM 4. There exist Hadamard arrays of order 52, 76. 100, 124, 148, 164. 

Matrices A, B, C and D which may be used to replace the indeterminates 

of Theorem 1 are known to exist when n is a member of the set 

M~ {3. 5, 7, ... , 29, 37, 43J, 

[9] and when 2m-I is a prime power congruent to 1 modulo 4, see [14] and [25]. 

So we have 

COROLLARY 5. There exist Hadamard matrices of orders s2m, 76m, 100m, 124m, 

148m, 164m, for m ~ M. 

COROLLARY 6. There exist Hadamard matrices of orders 26(q+l), 38(q+1), 

50(q+l). 62 (q+1) , 74(q+l), 82(q+1) whenever q is a prime power congruent 

to 1 IOOdu10 4. 

RESULTS: The last three new classes give the following new Hadamard matrices' 

of order < 4000; 1804, 3404, 3596, 3772. 
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3. CYCLQTOMY 

We now make a minor adaption of the cyclotomic arrays in order 

to facilitate the examination of structure in matrices based on cyclotomic 

classes. The adaption is most useful for e even, f odd. In all cases we 

indicate a source for the proofs we need but do not attempt to give the 

original reference. 

NOTATION. Henceforth we use square brackets, [ 1, for matrices and write 

[{On = 1. Let X and Y be two collections, then [X) will mean the (type 1) 

incidence matrix of X, xT will mean that collection such that [XT] _ [X]T 

and aX will be the collection with each element of X repeated a times, so 

[aX] = a[X]. We recall from [Cooper] that 

(19) [x A Y] '" [X] [Y], 

and we use the definition 

(20.) [X - Y] IxI IY] , 

(21) IX u Y] [X] + [Y]. X n Y I 

(or [X&Y] = [x] + [Y], X roY r $). 

In the matrix cases we consider, expressions of the type 

(XnY=$) 

Ix A XT] ± [(X A yT) & (y A XT)] + [Y A yT], eX n Y $) 

will arise so it is valuable to have 

(22) ex n Y 

readily available. 

We now turn to Storer [12; p. 24-25] for the elementary theory 

of cyclotomy: 

Let x by a primitive root of F=GF(q) where q = pO: = e f + 1 

is a prime power. Write G = <x> \ {O}. The cyclotomic classes C
i 

in Fare: 
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c ... {xes+i 
: s .. O. 1 •.•.• f-1} i '" 0,1, ... ,e-I. , 

We note the Ci are pairwise disjoint apd their union is G. 

For fixed i and j, the cyclotomic number (i, j) is defined to be 

the number of solutions of the equation 

where 1 = xO is the multiplicative unit of F. That is (i,j) is the number 

of ordered pairs s, t such that 

xes+i + 1 z xet+j (0 S s,t :;; f-l). 

Now with • the multiplicative operation in F 

Ci A C
j 

= Ia+b: a € Ci , b € C
j

] 

[xes+! + xet+j : 0 :;; s, t sf-I] 

OSs.t,;f-l] 
(23) 

(j-i.O)Ci & (j-i,l)Ci+l & ..• &(j-i, e-l)Ci+e_l 

where 9k is given by 

f is even and k 0 

(24) if f is odd and k e/2 

otherwise. 

We note 
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Now (j-i,k) is just the j-i,k entry in the appropriate 

cyclotomic array, so the expression for C
i 

II C
j 

can be easily determined. 

We note 
is even 

LEMMA 7. 
f is odd-

PROOF. From Storer Il2; lemma 2, page 25], 

if f is even, 

if f is odd. 

T Now if z £ Ci then -z £ Ci , where -z is the inverse of z in the additive 

group G, and so the result follows. *** 
Thus for f even 

C C
T 

i II i 

and then the cyclotomic arrays can be used immediately. We thus restrict 

our attention to f odd and note 

LEMMA 8. 

Hence, for f odd, if 

.-1 
£, (j-i,s) Cs+i £, f9 j _i {oJ 

,-0 

then, with 0ij the Kronecker delta, 

H 
£, (j+e/Z-i,s)Cs+i &i 

s=O 

0-1 

£, (j-i-e/2.t) Ct +i +e/2 & f(9j+e/2_i+ej_e/2_i){0} ,-0 

e/2-l 
£, «(j-i+e/2,r) 

r=O 

- 361 -
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Thus we have proved the following rule. 

(see equation (22)). we do not want 

T Note that in the case of [X A X ] 

T so the first row of these tables gives X A X only. 

RULE TO OBTAIN ARRAYS FROM THOSE OF LITERATURE FOR e EVEN, f ODD: 

Foe 

(1) rearrange the rows by putting {e/2+i)th row of original array 

into ith row, i m 1,2, .•. ,e. 

(2) add element in ith column to element in (i+e/2)th column and 

put in ith column, i = 1,2, •.. ,e/2, except for the first row 

which ahould not be altered. 

example for e 4, f odd: 

0 1 2 3 0,2 1,3 

0 A B e D A E A E 0 A E 

1 E E D B E D B E 1 E+B IH-E 
+ + 

2 A E A E A B e D 2 A+C B+D 

3 E D B E E E D B 3 E+D E+B 

RULE TO USE ADAPTED ARRAY A [aijl FOR e EVEN, f ODD: 

Write Ai ~ [Ci u C
i
+e/ 21, reduce all subscripts modulo e/2. 

[e , , 
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ADAPTED CYCLOTOMIC ARRAYS: e even, £ odd 

° 
1 

2 

3 

4 

5 

e = 2 

0,1 

e = 4 

0,2 1,3 

A = (£-1)/2 

A+B = £ 

o A+E ~ (£-1) /2 A E 

1 B+D+2E " f "+0 DtE 

2 A+B+C+D '" £ A+C B+O 

3 

0,3 

A 

B+G 

C+H 

A+D 

E+G 

F+H 

DtE m 

e '" 6 

1,4 2,5 

G H 
--

F+H 1+J 

21 E+G 

B+E C+F 

C+H 21 

1+J B+G 

- 363 -
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C+E+G+H+2I '" £ 

A+B+C+D+E+F = f 



o 
1 

2 

3 

4 

5 

6 

7 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

o 4 , 
A 

B+I 

C+N 

DU 

A+E 

F+I 

G+N 

J+H 

0,5 

A 

B+K 

C+R 

IH-T 

E+L 

A+F 

G+K 

H+R 

HT 

J+L 

ADAPTED CYCLOTOMIC ARRAYS: e even, f odd 

1 5 , 
I 

.+J 

K+M 

L+K 

B+F 
-
O+J 

L+O 

M+O 

1,6 

K 

J+L 

M-Kl 

N+U 

M+O 
-

B-K; 

E+L 

0+5 

P+V 

Q+5 

, - 8 

2 6 , 
N 

M+{) 

G+N 

L+M 

C+C 

K+L 

C+N 

K+O 

e g 10 

2,7 

R 

Q+5 

HT 

P+U 

N+P 

C+H 

M+O 

O+T 

N+V 

U+V 

3 7 , 
J 

K+O 

L+O 

F+I 

0+. 

L+M 

K+M 

B+I 

3,8 

I 

U+V 

P+V 

H+R 

O«l 

IH-I 

N+P 

4,9 

L 

M+5 

N+V 

0+5 

OW 

E+J 

O«l 

A+I+N+J '" (f-l)/2 

B+H+I+J+K+M+20 

C+G+K+L+M+2N+O 

D+F+I+J+K+2L+M 

f 

f 

f 

A+B+C+D+E+F+G+H - f 

A+K+L+R+T-(f-l)/2 

B+J+K+L+H+Q+2S+U+V"'f 

C+I+M+N+P+Q+R+T+2V",f 

D+H+N+O+P+R+S+T+2U"'f 

E+G+K+L+M+N+20+P+Q:f 

A+B+C+D+E+F+G+H+I+J~f 

._-
N+U P+U 

C+R M+{) 

M+5 B+K 
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To illustrate the use of these arrays we now prove a lemma: 

LEMMA 9: If p m 4 f + I (f odd) is a prime power, i'" I=l then 

satisfies 

AA* .. pI-J 

~ A* denotes A transpose complex conjugate 

PROOF. AA* ~ (IC) - CII + iICO - CZI){[C) - CII
T 

- iICO - CZIT) 

= IC) - CI][C) - CIIT + [CO - CZ][CO - CzI
T 

From the array 

for (Ci A C~) 

H(lCO - CZ][C) - CIIT - IC) - C1][CO - C2IT). 

odd we get (writing it for C
i 

A ci 

0,2 1,3 {o} 

33 E A f 

11 E A f 

-13 -B-D -A-C 

00 A E f 

22 A E f 

-02 -A-C -B-D 

Total -1 -1 4f 

So AA* = (4f+1) I-J + i(xy
T _ yXT) 

where X '" [CO - C
2
l, y ~ [C) - C

l
], and hence XT 

= -X, yT co -y. 

Thus xyT _ yXT = -XY + YX = 0, 

and ij 

since X and Yare both type 1 incidence matrices and hence commute. So 

we have the result. *** 

The following lewmas are quoted from Storer I12; lemmas 19 and 

30] : 

LEMMA 10: When e - 4, f odd, the cyclotomic numbers are determined 

from the adapted array for e = 4. together with the relations! 
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16A q 7 + 25 

16B q + 1 + 28 - at 

16C q+1-6s 

I6n q + 1 + 28 + 8t 

16E = q 3 - 28 

82 + 4t2 , with s _ 1 (mod 4). is the proper represenra-

tion of q if p := l(Inod 4), where the sign of t is ambiguously 

determined. 

LEMMA 11. When e = 8, f odd the cyclotomic numbers are determined 

from the adapted an:ay for e = 8, together \-lith the relations: 

1. If 2 is a 4th Dower i.!L_G __ ~If 2 is not a 4th power in G 

64A = q 15 - 2x 

64B =. q + 1 + 2x - 4a + 16y 

64C q + 1 + 6x + 8a - 16y 

64D q+l+2x-4a-16y 

64. q + 1 18x 

64F q + 1 + 2x - 4a + 16y 

64G=q+l+6x+8a+16y 

64H q+l+2x-4a 16y 

64l q 7+2x+48 

64J=q 7+2x+4a 

64K ~ q + 1 - 6x + 4a + 16b 

64L q + 1 + 2x - 48 

64M = q + 1 - 6x + 48 - 16b 

64N=q 7-2x-8a 

640=q+l+2x-4a 

64A q IS-lOx-8a 

64. 

64C 

64D 

64e 

64F 

640 

64H 

641 

64J 

64K 

64L 

64M 

64N 

640 

q+l+2x- 4a-16b 

q+1-2x+16y 

q+l+2x-4a-16b 

q+l+6x+24a 

q + 1 + 2x 4a + 16b 

q + 1 2x -16y 

q + 1 + 2x - 4a +16b 

q 7+2x+4a+16y 

q-7+2x+4a-16y 

q+l+2x-4a 

q+16x+4a 

q+l+2x 4a 

q-7+6x 

q+16x+4a 
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where x.y.a and b are specified by: 

1. 
2 2 

q ~ x + 4y • x :: 1 (mod 4) is the unique proper 
a _ 

representation of 9 - P if P - (mod 4); otherwise. 

II. q ~ a 2 + 2b 2 • a:: 1 (mod 4) is the unique proper representation of 

a if -1 3( dB) 'h . q - p p = or mo; 0 erwJ.se, 

q o. 

The signs of y and b are ambiguously determined. 

4. CONSTRUCTIONS FOR SUPPLEMENTARY DIFFERENCE SETS 

We recall from [20; lemma 9] and [Z1]: 

LEMMA. 12. Let Al • A2 , •••• An be the type 1 incidence matrices of 

n - {v; k
l

• k
Z

' .•.• k
n

; Ie} supplementary difference sets then 

n 
= {L ki-le)I + AJ. 

i=l 

If B
1

• BZ' .••• Bn are the type 1 (1, -1) incidence matrices of the 

supplementary difference sets then 

In particular we use 

n 
4( L kCIe}I + Cnv 

i=1 

n 

-4 L k
i
+4),)J. 

1=1 
... 

COROLLARY 13. Let B
l

• B2' B
3

, B4 be the type 1 (I, 1) incidence 

matrices of 4 - {v; k l , kZ' k3' k4 ; Ie} supplementary difference sets 
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then 4 
4( r k.-A)I + 4(v 

i",1 1. 

... 
In this section we will assUme that Xl' X

2
, X

3
, X

4 
are 4 (0, I, -1) 

matrices of order v which have the following properties: 

(30) 

(i) 

(ii) 

(iii) 

Xi * Xj 

4 
r Xi X~ 

i",l 

is a (I, -1) matrix, 

0, i I- j, 

a1 + (v-a)J, 

(iv) Xi has xi positive and Yi negative elements per row 

and column. 

We now show how such matrices may be used to construct supplementary 

difference sets. Let 

Y, -X, + X
2

+X
3

+X
4

, " Xl + X2 + X, + X4 , 

Y, - X, X2 +X
3

+ X4 , '2 ,,"- X, +X3- X4' 

Y, Xl + X2 - X, + X
4

, " Xl - X2 - X, + X
4

, 

Y4 Xl + Xz + X3 - X4 , 24 Xl + X2 - X3 - X4 • 

Then we have 

LEMMA 14, If there exist 4 (0, I, -1) matrices Xl' X2 ' X3' X4 of 

order v satisfying the conditions (1), (ii), (iii), (iv) above then 

there exist 

(a) 4 - {v; YI+xZ+x3+x4 , x1+Y2+x3+x4' xI+x2+Y3+x4' x1+xZ+x3+Y4; 

4 
2 I x.+v-a}, 
i~l l. 

~ (b) 4 - {v; x1+Xz+x3+x4, xl +Y2+x3+Y4' xl+YZ+Y3+x4' 

eupplementary difference sets, where 
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(0) 

(d) 

PROOF. 

4 
) (xi+Yi) '" v and 
~=1 

4 
I Y, 

1=1 
- 4 4a1 + 4(v-a)J. 

'" 4 -

Now using Corollary 13 we have that Yl' Y2' Y3' Y4 and Z1' Z2' 

Z4 are the incidence ~atrices (or permutations of them) of 

{v; kl , kZ' k3' k 4 ; 'i ki-a} for some non-negative integers kI , 
i=1 k4" The actual values of k

i 
in each case may be determined by 

k2 , 

k" 
counting the number of positive elements in each row and column of Y

i 
and 

Z1 (i = I, 2, 3, 4). 

The condition 

4 
I (xi+Yi) = v 

i",1 

follows innnediately from property (i) of the Xl' XZ' XJ • X4" 

So for case (a) 

for case (b) 

4 
Ik.-a=3 
i~l ~ 

4 4 

y.-a • 
4 

21 
i=1 

I k.-a 
1"'1 1 

2xi-2Yi + 2 I (xi+Yt)-a ~ 2xi-2Yl+Zv-a. 
1-1 

The condition 

2 
~ v -a(v-I) 

for case (a) is proved (as in IS]) by considering the constraints placed 

by equation (1). Write 

4 
w, I Y, 

1=1 
v-w 

Then from (1), in case (a), 
4 

(2w+v-a) (v-I) ~ I (W+Yi-xl) (W+Yi-xi-l) 
i"'1 

- 4w2+2w(v-2w)+s-4w-v+2w 
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that is 
2 

s '" v -a(v-l). 

From equation (1), in case (b), 

4 2 ( r (x.-Y,» 
i=l 1. 

2 
= -2v + 4w(v-w) + 2(xCYl) (v-I) + (v-2w) + 

So 
4 2 2 l (xi-Y i ) ~ v -a(v-l). 

'.1 

4 2 L (x-y.) 
i=l 1. 1 

The difference sets given by lemma 14 may not be essentially 

different but we were not able to decide this problem. 

••• 

We now apply the adapted arrays of section 3 to the constructions 

we have given in table 1 to see if more general results can be obtained. 

LEMMA 15. Let q '" 4f+l = 9+4t2 (f odd) be a prime power. ~ 

Xl = [CO] , X • [Cl~{O}l, X3 '" [C z ~CJ], X4 
. 0, 2 

satisf;)l: 
4 

(1) 1 X, ~ (1, -1) matrix, 
i=l 
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(ii) 

(iii) 

x * x '" 0 i j 
i .; j, 

4 
L x. x~ = ~(7f+5)I + ~(f-3)J. 

i""'l l. -"-

PROOF. (i) and (ii) are clear. To show (iii) we consider the appropriate 

array, lemma 10, and use the following table of contributions from the terms 

in the incidence matrices 

00 

11 

- {O} 1 

22 

33 

-23 

{o} 

Total 

From lemma 10 f - 1 A c 

f 2 B D 

so if 10 -3 

f-l-A-C 

and we have the result. 

0,2 

A 

E 

A 

E 

-A-C 

f-1-A-C 

f 1 

f 2 

(f-3)/2 

1,3 {o} 

E f 

A f 

-1 

E f 

A f 

-B-D 

1 

f-Z-B-D 4f+1 

(Zq-6-4s)!16 

(2q+Z+4s)/16 

f-2-B-D ... 
We note that if p ~ 13, that is f 3, then condition (iii) of the 

lemma gives 

131 

and so the matrices given satisfy the conditions for theorem 1. 

This gives. using lemma 14, 
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2 
COROLLARY 16. Let q .. 4£+1 .. 9+4t (f odd) be a prime power. Then 

there exist 

(a) 4 - {4f+1; 2£, 2f+1, 3£', 3£; !:1(13f-3)} 

~ (b) 4 - {4f+l; 3£, 2f+1, 2£+1, 3£; ~(13f-l)} 

supplementary difference sets. 

Similarly we obtain 

2 2 
LFHolA 17. Let q = 6£+1 .. x +3y (f odd) be a prime power such that 

2 2 2 2 _ 
4q ~ a +3h '"' c +27d , c = 1 (mod 6). 2x-a+3d '"' 6, c-3b+6y = 16. ~ 

~ ~ [COl. X2" [Czl, x) = I{O} &. C3 ~ C41. X4 = ICI - C5] satisfy 

conditions (1). (ii), (tv) of (30) and 

(iii) 
4 T 
! X,X. 

i-I 1. 

(17~+6) I + (£;3) J. 

PROOF. (1), (H), (iv) are clear. To obtain (iii) we consider the 

aPJlropriate array. lemma 27 of [12], and use the following table of 

contributions from the terms of the incidence matrices. As before we 

denote (e i " C~) &. (C j " C~) by ij. 

0,3 1,4 2,5 {oj 

00 A G H f 

22 G H A f 

{oj 3 1 

- {oj 4 -1 

{oJ 1 

33 A G H f 

- 34 -B-G -F-H -I-J 

44 H A G f 

11 H A G f 

55 G H A f 

- 15 -21 -E-G -{;-H 

Total £-B-G-ZI £-2-E-F-G-H f-I-C-H-I-J 6£+1 
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From the lemma 21 of 112J 

f-B-G-21 f - (Sq-4+llx-6a-+:2c+l2y-6b+18d)/72 

f-2-E-F-G-H ~ f - 2 (8q-16 .• -4c-24y+12b+ )/72 

(Sq-4-12x+6a+2c+12y-6b-18d)/72 f-1-C-H-I-J f 1 

these are all equal to 

(f-3)/3 

when 

2x-a+3d 6 and 3b-c-6y ~ -16. 

Forx=4,y -I, c 7, d = -1, a '" -I, b = -5 we have the 

conditions satisfied for q = 19 which also satisfies theorem 1 but the 

conditions are rather awkward to satiafy. Now using lemma 14 we have 

COROLLARY 18. 
2 2 4q = a +3b = 

there exist 

(a) 4 

(b) 4 

2 2 6f+1 '" x +3y (f odd) be a prime power such that 

c ;:; 1 (mod 6), 2x-a+3d = 6, c-3b+6y = 16. Then 

{6f+1; 3f+1, 3f+1, 4f, 4f+1; (25f+3)/3} ~ 

{6f+1; 4f+l, 3f+1, 3f, 4f; 25f/3} 

supplementary difference sets. 

LEMMA. 19. ~ q = 8f+1 (f odd) be a prime power. 

(iii) 

satisfy conditions (i), (ii), 

4 , 
~ XiXi (q-j)I + jJ, 

i=l 

only for q = 25 ~ j '" 0 

(iv) of (30) and 

PROOF. (i), (ii), (iv) are clear. To show (iii) we consider the 

appropriate array. lemma II, and use the following table of contributions 

from the terms of the incidence matrices. 
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0,4 1,5 

7 
{ol, 6 if '-1 '-1 ,-0 

05 F+I IH-J 

-{oJ 0 -1 

-{oJ 5 -1 

- 17 -K-M -G-N 

- 23 -M-O -K-O 

- 46 -C-N -K-M 

Total f-2+F+I £-2+D+J 

-C-K-2M -G-2K-M 

-N-Q -N-O 

Now write 

f-2-C+F+I-K-2M-N-O - a 

f-2+D-G+J-2K-M-N-O = B 

f-l-B-G-I+K-N-O ~ y 

£-l-C-H-J+M-N-O = o. 

For supplementary difference sets 

2,6 

'-1 

K+L 

-L-O 

-B-1 

-G-N 

£-I+K 

-B-G-I 

-N-O 

When 2 is a fourth power in F (from Lemma 11) 

64a - 4q-134+16x-8a+32y+16b 

646 - 4q-134+16x-8a-32y-16b 

64y = 4q-54-16X+8a-32y+16b 

646 = 4q-54-16x+89+32y-16b. 
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3,7 {oj 

'-1 8f+! 

L+M 

-C-N 

-H-J 

-L-O 

f-l+M 8£+1 

-C-H-J 

-N-O 



Solving we have y 

which with the conditions q 

possible solutions. 

a ~ 2X75, a ~ S = Y ~ 0 - (4q-94)/64 
2 2 . 

.. a +2b (of lemma 11) leads to no 

When 2 is not a fourth power in F (from lemma 11) 

64a 4q-140+8a+16b 

6413 4q-140+8a-16b 

64y 4q-60-8a+ l6b 

640 4q-60-8a-16b 

Solving we have b = 0, a 

possible solution is for q 

(4q-lOO)/64. 

= 25. 

LEMMA 20. Let q 8f+1 (f odd) be a prime power. 

Thon 

So the only . .. 

X3 rC5 - C7l. X4 '" 0 satisfying conditions (0. (ii). (iv) 

of (30) and 

4 
(iii) 1 

i=l 

only for q ~ 41 and j O. 

PROOF. (i), (li). (iii) are clear. To show (iii) we consider the 

appropriate array, Lemma II, and use the following table of contributions 

from the tertIIS of the incidence matrices. 
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(O) , 

Now write 

0,4 _1,5 2,6 

7 
& ii 

~ 
f-1 f-1 

1-0 

-02 -C-N -K-M -G-N 

-03 -D-J -K-L , -L-M 

i 
, 

23 M<-O K+O i 1+. 
46 I C+N , K-H1 

I 
G+N 

I -14 I -F-I I -J-D , -K-L 

-{oJ 4 
I 

! I I -1 

-{oJ 6 ! -1 , 
-16 -L-M -I-F 

, 
I I -D-J 

I 
(O) 1 1 I 

-57 -L-O -N-C 
i 

-K-M 
I 

Total f-2-D-F f-C-D-F-I I f-2+B-D 

-1-J-2L -J-L-N+O I +I-J-2K 

-2L-2M 

f-2-D-F-I-J-2L ~ a 

f-C-D-F-I-J-L-N+O = S 

f-2+B-D+I-J-2K-2L-lM ~ Y 

f-l-F-G+H-I+J-K-2L-M-N - o. 

For supplementary difference sets 

a=8=y=6 

When 2 is a fourth power in F (from lemna 11) 

64a = 2q-126-12x+8a 

64B 2q+lO-12x +l6y 

641' 2q-14Z+20x-8a+32y 

646 2q-70+4x-48y 
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3,7 (O) 

f-1 8£+1 

-L-O 

-F-I 
R+J 

L+O 

-L-M 

I -K-L 

I -G-M 

f-l-F-G 8f+1 

+H-I+J-K 

-2L-M-N 



and these are equal for a ~ 19, .x = 9, Y = 1. In this case (j. = 8 • '( ~ 0 '" 0 

implies q = 41 but 2 is not a fourth power for GF(4l). In lerrma 11 part I 

we get q = 85 which is not a prime power and in part II q = 19
2

+2b
2
; 

so we have no result. 

When 2 is not a fourth power in F, we have 

64a 2q-126+4x-8a 

648 2q+lO-12x-16y 

64'( = 2q-142+4x+8a+32y 

640 2q-70+4x-16y. 

These have .$olution X = 5, Y 2, " ~ 3, " ~ ~ '" '( 
, 

~ 2q - 82. 

In L_ 11 part Iwehaveq= 5
2
+4.2.2 41 "nd in part IIq (_3)2+2b 2. 

So there i, only on, solution, q ~ 41. ... 
FINAL REMARK 

We note that Joan Cooper has proved that this partitioning of the 

Galois Fields GF(q) to give Hadamard arrays is not possible for q = ef+l when 

f is even. 
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