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Abstract. In this study we present a new cyclone identifi-

cation and tracking algorithm, cycloTRACK. The algorithm

describes an iterative process. At each time step it identi-

fies all potential cyclone centers, defined as relative vortic-

ity maxima embedded in smoothed enclosed contours of at

least 3 × 10−5 s−1 at the atmospheric level of 850 hPa. Next,

the algorithm finds all the potential cyclone paths by linking

the cyclone centers at consecutive time steps and selects the

most probable track based on the minimization of a cost func-

tion. The cost function is based on the average differences of

relative vorticity between consecutive track points, weighted

by their distance. Last, for each cyclone, the algorithm iden-

tifies “an effective area” for which different physical diag-

nostics are measured, such as the minimum sea level pres-

sure and the maximum wind speed. The algorithm was ap-

plied to the ERA-Interim reanalyses for tracking the North-

ern Hemisphere extratropical cyclones of winters from 1989

until 2009, and we assessed its sensitivity for the several free

parameters used to perform the tracking.

1 Introduction

Identification and tracking of atmospheric features is an ac-

tive area of research. Examples of recent works include the

mesoscale convective systems (MCSs; e.g., Machado et al.,

1998), the conveyor belts (e.g., Eckhardt et al., 2004), the

cut-off lows (Wernli and Sprenger, 2007), the fronts (Hewson

and Titley, 2010), the jet streams (Limbach et al., 2012)

and the dry air intrusions (Roca et al., 2005; Flaounas et

al., 2012). However, the most investigated atmospheric fea-

tures targeted by identification and tracking algorithms are

the tropical and extratropical cyclones (e.g., Hodges, 1999;

Blender and Schubert, 2000; Hoskins and Hodges 2002;

Ulbrich et al., 2009; Inatsu, 2009).

The typical methods for cyclone detection and tracking

follow a two-step approach. First, they identify the locations

of cyclone centers at each time step and then the cyclones

paths are extracted by connecting the centers of consecutive

time steps. During the identification step, several constraints

are applied in order to control the range and the number of

the identified features. For example, in some studies, the def-

inition of the location of a cyclone implies three constraints

on the fields of mean sea level pressure: (1) the represen-

tative grid point of the data field has to have the minimum

value among the adjacent grid points, (2) the minimum value

has to be inferior to a threshold value, and (3) the field gradi-

ent has to be superior to a threshold value (e.g., Murray and

Simmonds, 1991; Blender and Schubert, 1997; Nissen et al.,

2010). However, there is a trade-off. The application of such

“strict” constraints on pressure gradients may lead to track-

ing cyclones only during their mature stage and, furthermore,

weak cyclones may be left undetected.

An efficient cyclone-tracking algorithm has to be able to

decide whether the identified features have moved over time

or whether they have ceased to exist. An extra challenge is

that cyclones can split or even merge with other cyclones.

Also, there might exist more than one candidate location to
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be considered as the next cyclone center. This is the case of

noisy fields, where a significant number of grid points, typ-

ically located close to each, can be considered as cyclone

centers. The algorithm has to determine automatically which

of the candidate features should be tracked and which should

be neglected. Many methods apply an across-time “nearest-

neighborhood” approach where tracks are built by connect-

ing the identified cyclone centers of one time step with the

nearest neighbors of the following time step (Blender et al.,

1997; Serreze et al., 1997; Trigo et al., 1999). Other stud-

ies use more complex tracking algorithms based on displace-

ment speed (e.g., Murray and Simmonds, 1991; Wernli et al.,

2006; Davis et al., 2008; Campins et al., 2011; Hanley and

Caballero, 2012). These algorithms make a “guess” as to the

next step location of the cyclone and choose the nearest fea-

ture detected at that potential location. Finally, Inatsu (2009)

presented an algorithm where cyclones are identified as ar-

eas of enclosed grid points that satisfy a certain condition on

filtered meridional wind at 850 hPa. Then, cyclone tracking

is performed by connecting the cyclone areas that overlap in

consecutive time steps

Hodges (1999) proposed post-processing of the identified

features and their tracks. His method starts by building all

potential tracks using the nearest-neighborhood approach.

Then, the identified tracks exchange track points between

them until an overall cost function is minimized. This cost

function is a measure of the smoothness of the whole set

of tracks. Hanley and Caballero (2012) also applied a post-

processing approach in order to cover the cases where cy-

clones that have more than one center undergo any merging

or splitting process.

Raible et al. (2008) were the first to compare the perfor-

mance of three different tracking methods, applied to extrat-

ropical cyclones. Their results converged on the interannual

variability of cyclone occurrences; however, they differed on

the cyclone number trends and track densities. Recently the

IMILAST (Intercomparison of mid latitude storm diagnos-

tics) project presented a comparison of the performance of 15

different algorithms which have been applied for the tracking

of extratropical cyclones during the cold season of 21 years

over the entire planet (Neu et al., 2013). Neu et al. (2013)

found that the number of tracks, the lifetime and the inten-

sity of cyclones may vary significantly depending on the al-

gorithm used. This apparent disagreement of the algorithms

can be easily explained by the fact that there is no commonly

accepted definition of a cyclone. Consequently, each algo-

rithm applies different constraints and/or different fields. In

this sense, one of the main results of Neu et al. (2013) is

that no algorithm can be considered to be “superior” or more

“correct” than the others, since they use different definitions

of a cyclone. However, it is noticeable that even algorithms

with similar configurations may present a divergence of re-

sults. Recently, Ulbrich et al. (2013) treated the evolution of

extratropical cyclone tracks in the context of a changing cli-

mate using a multi-tracking-method approach. It was shown

that, despite the differences on the tracks number, the algo-

rithms present comparable results on the cyclones climatol-

ogy future trends. This finding confirms that there is a com-

mon robust behavior independent of the different algorithms

configurations and modeling constraints.

In this study, our principal motivation was to design an al-

gorithm that is able to provide qualitative characteristics of

the features like splitting, merging, wind speed, associated

rainfall and minimum pressure in parallel with the tracking.

A new aspect of the proposed approach is that cyclonic fea-

tures are tracked based on their physical properties by assur-

ing a gradual evolution of the cyclone relative vorticity, not

on their displacement. The use of relative vorticity presents

some advantages compared to the use of geopotential height

or mean sea level pressure. It is a high-frequency variable,

representative of local scales that – presumably – permit cy-

clone tracking at an early stage, i.e., during its initial per-

turbation and before it is characterized by closed pressure

contours (Sinclair, 1994, 1997; Hodges, 1999; Inatsu 2009;

Kew et al., 2010). This can be an advantage in cases where

cyclones intensity increases significantly within 24 h, i.e.,

explosive cyclogenesis (e.g., Sanders and Gyakum, 1980;

Trigo, 2006; Lagouvardos et al., 2007). The disadvantages of

relative vorticity is that it is a wind-based field, sensitive to

the horizontal resolution of the data set, and that local max-

ima might not correspond to wind vortices but to other fea-

tures such as an abrupt wind turning.

To deal with the spatial noise of relative vorticity, we

smooth the input fields. The smoothing operation partly

counteracts the property of relative vorticity to detect cy-

clones in their early stage; however our algorithm has a high

degree of flexibility that permits the tracking of perturbations

that did not evolve into strong cyclones. A similar approach

has been used before in other studies for capturing weak cy-

clonic features (e.g., Murray and Simmonds, 1991; Pinto et

al., 2005), but in our case it provides an additional value for

optimizing the algorithm and determining the cyclones that

are not sensitive to filtering. The application and assessment

of our method is performed in line with the efforts of the

IMILAST project. We used the same time periods and input

data sets in order to make our results comparable with those

of the aforementioned project.

In Sect. 2 we describe cycloTRACK in detail, our cyclone

detection and tracking algorithm. In Sect. 3 we present the re-

sults of several sensitivity tests of our method, applied to the

ERA-Interim (ERA-I) data set for the winters (December-

January-February) of the period 1989–2009. Finally, Sect. 4

presents the conclusions and our prospects for future re-

search.

2 Identification and tracking algorithm

In this section we present our algorithm, cycloTRACK, and

its application to the vorticity fields at 850 hPa level within
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the extratropical latitudes of the Northern Hemisphere during

the winters of 1989–2009. We use meteorological data from

the 6-hourly ERA-I reanalyses with a horizontal resolution of

1.5◦ × 1.5◦ (Uppala et al., 2008). The algorithm is composed

of two independent steps. In the first step, we identify all

cyclonic features for all time steps of a data set, and in the

second step we build the cyclone tracks.

2.1 Step 1: identifying cyclones and quantifying

their characteristics

The first step of the algorithm is devoted to the identification

of the cyclones and the quantification of their characteris-

tics. Initially, the algorithm identifies all cyclonic features, or

more precisely all cyclonic circulations. Then, for each cy-

clonic circulation, the algorithm identifies the representative

centers which will be treated as distinct cyclones. Finally, for

each center, the algorithm quantifies its characteristics, such

as the maximum relative vorticity, the maximum wind speed

and the minimum sea level pressure.

2.1.1 Identification of cyclonic circulations

To identify cyclonic circulations, the vorticity field is

smoothed by applying a spatial filter. In previous studies

the vorticity field has been smoothed by a variety of filter-

ing operations such as B-spline techniques (Hodges, 1995),

time band-pass filtering (Hoskins and Hodges, 2002; Inatsu,

2009) and 1-2-1 filters (Satake et al., 2013). In this study, we

use the simple method of a 1-1-1 spatial filter, which effi-

ciently smoothes the orographic or coastal vorticity maxima

and the gradients of relative vorticity fields. The latter also

helps the algorithm to reject local vorticity maxima that are

nested within noisy field gradients – especially when consid-

ering very high resolution data sets. The smoothing opera-

tion on the relative vorticity field is performed at each grid

point separately by multiplying the sum of all its adjacent

grid points within distance X by 1/(2X + 1)2. For instance,

at any grid point (a,b) the smoothed relative vorticity (RV)

is given by

RVa,b =
1

(2X + 1)2
·
∑a+X

i=a−X

∑b+X

j=b−X

(

RVi,j

)

. (1)

As X increases, the smoothing operation on the relative

vorticity field becomes stronger. Finally, we apply a thresh-

old and we retain only the grid points exceeding this thresh-

old.

Figure 1 shows the raw relative vorticity fields and the

corresponding fields after the application of three different

filters with 2X + 1 equal to 3, 5 and 7. The relative vortic-

ity fields are derived from ERA-I and are centered over Eu-

rope at 00:00 UTC, 3 December 1999, featuring the storm

“Anatol” over Denmark as the strongest detected cyclone.

In all panels of Fig. 1, the threshold is set to 3 × 10−5 s−1.

As the applied filter becomes stronger, the relative vorticity

values become weaker. Small vorticity features tend to be

suppressed; however the structure and location of the vortic-

ity maxima of the strongest features, such as Anatol, are not

altered among the different filter operations. We used filter-

ing for smoothing the values within a cyclonic circulation.

Thus, the filtering matrix should not be much larger than the

length scale of a cyclone. In this sense, a 7 × 7 grid point fil-

ter for ERA-I means that relative vorticity is smoothed over

a 10.5◦ × 10.5◦ region, which is a rather large area.

As shown in Fig. 1a and b, each cyclonic circulation might

correspond to a unique cyclone or to a large complex of

cyclonic centers comprised by more than one local maxi-

mum. The 3 × 10−5 s−1 threshold applied to the ERA-I data

set (1.5◦ × 1.5◦ resolution) has been found adequate for de-

scribing cyclones, even at their initial stage, for all three fil-

tering sensitivity tests. In this step, the algorithm identifies

and labels, with a number, all cyclonic circulations which

are defined as the areas composed of neighboring grid points

of values exceeding the 3 × 10−5 s−1 threshold. The thresh-

old value allows for the algorithm to be tuned for detect-

ing cyclones in coarse resolution data sets (e.g., 1.5◦ × 1.5◦,

as in ERA-I used here) or in high-resolution data sets (e.g.,

20 km regional climate runs). Applying a threshold is a con-

venient approach for adjusting the filtering strength. Alter-

natively, we could keep the filtering strength constant and

allow the threshold value to vary. However, it is only by

varying the filtering strength that the vorticity field may be

smoothed within the characteristic length scale of cyclones.

Similar approaches for identifying a feature through an en-

closed area have been used before for cyclones (e.g., Hodges,

1999; Wernli and Schwierz, 2006; Inatsu, 2009; Flaounas et

al., 2013) and for MCSs (e.g., Machado et al., 1998).

2.1.2 Identification of cyclonic centers

Careful inspection of Fig. 1b, c and d reveals that the cyclonic

circulations do not correspond to the same cyclone. For this

reason, each labeled cyclonic circulation is further treated in

order to locate all embedded local vorticity maxima. These

local maxima will be labeled, and eventually they will be

treated as centers of unique cyclones. The term “centers of

unique cyclones” has no physical basis but it is conveniently

used here in order to describe the grid points that present lo-

cal maxima of relative vorticity and that we follow in time

in order to construct cyclones tracks. In this sense we need

to provide the algorithm with a representative cyclone center

even though the cyclone structure might be very complex,

with more than one vorticity maximum (especially in very

high resolution data sets). To deal with this issue we (1) filter

the data, smoothing the noisy gradients (already performed in

the previous step); (2)define the local maximum as the maxi-

mum value of the central grid point among its eight surround-

ing grid points; and (3) consider that, between two centers,

there is a relative vorticity difference greater than a thresh-

old value (in this case set equal to 3 × 10−5 s−1) which is
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Figure 1. (a) Relative vorticity raw fields at 00:00 UTC, 3 December 1999. The applied threshold is 3×10−5 s−1. Crosses represent central

maxima located in the center of a 3 × 3 grid point area. (b) As in (a) but relative vorticity field is filtered using a 3 × 3 correlation spatial

filter. (c) As in (a) but relative vorticity field is filtered using a 5×5 correlation spatial filter. (d) As in (a) but relative vorticity field is filtered

using a 7 × 7 correlation spatial filter.

applied to define the cyclonic circulations. The last criterion

prohibits weak cyclonic circulations, i.e., cyclones of rela-

tive vorticity close to the threshold value, in order to present

multiple centers.

2.1.3 Quantifying cyclone characteristics

Once all cyclones have been identified, we determine an “ef-

fective area” for each cyclone. This area is a circular disk

centered at the cyclone vorticity maximum. The disk radius

grows gradually until (1) all grid points included in the disk

have a vorticity average inferior to a threshold value, (2) the

radius reaches a pre-defined maximum length or (3) a rela-

tive vorticity value greater than that of the cyclonic center is

found within the area. According to this empirical method,

the strong or the large and weak cyclones tend to produce

large effective areas. The third criterion favors stronger cy-

clones spreading their area independently of the presence

of other weaker ones in their region, while it prevents the

weaker cyclones from sharing the same area with stronger

cyclones. In Flaounas et al. (2013), the cyclone area was

defined by the cyclone-enclosed contour as defined by the

applied threshold value (see their appendix figure). How-

ever, such an enclosed area might not capture grid points

that present relative vorticity values lower than the applied

threshold. In Lim and Simmonds (2007), the cyclone area

was defined by a representative circular disk of radius equal

to the average distance between the cyclone center and the

enclosing zero contour of the mean sea level pressure Lapla-

cian. The circular disk seemed to be the best choice for

our algorithm in order to capture the areas affected by a

cyclonic vortex. Irregular shapes may also be considered,

such as instance enclosed contours of pressure (Wernli and

Schwierz, 2006; Hanley and Caballero, 2012) or relative vor-

ticity (Flaounas et al., 2013).

Once the effective area is defined, our algorithm com-

putes the physical properties of the cyclone within it. Fig-

ure 2 shows, as an example, the effective area and the de-

tected minimum sea level pressure and maximum 10 m wind

of Anatol at the same time as in Fig. 1b.

2.2 Step 2: tracking cyclones

In this step we combine the cyclone centers into a track. First,

the algorithm sorts the identified cyclones based on their rel-

ative vorticity value, from the strongest (i.e., the one with

the highest relative vorticity value) to the weakest. Then, it

starts from the first cyclone and searches forward and back-

ward in time for all its possible tracks. More precisely, the

algorithm constructs all possible cyclone tracks that share

the same maximum vorticity track point. Once all possible

tracks are constructed, the algorithm chooses the track that

presents the most “natural evolution” of relative vorticity, i.e.,

the track which presents the smallest differences of relative

vorticity in consecutive points, weighted by the distance be-

tween the track point locations.
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Figure 2. The storm “Anatol” at 00:00 UTC, 3 December 1999. Rel-

ative vorticity is smoothed by a 3 × 3 spatial filtering (color bar),

the contour denotes the mean sea level pressure, and arrows denote

10 m wind field. The thick black circle represents the effective area

of the cyclone. Locations and values of maximum wind speed and

lower sea level pressure are depicted by the thick lines.

Figure 3a illustrates an idealized experiment, presenting

the locations of all identified cyclones in a four-time-step

data set. Six cyclones are identified: one in the first time

step, one in the second time step, and two each for time

steps three and four. The tracking process begins from the

strongest cyclone (i.e., the cyclone 2(12)) and constructs all

possible tracks by iterating forward and backward in time

with all other features. Figure 3b shows that the first cyclone

may undertake four possible tracks; however it is obvious

that tracks 1(9), 2(12), 3(10) and 4(8) present the most “natu-

ral evolution”, since maximum relative vorticity presents the

smallest difference from one time step to the next. The al-

gorithm saves this track and deletes the locations of the cy-

clones used from the data set. Then, a new iteration begins in

which the algorithm starts from the cyclone with the highest

vorticity and a new track is eventually constructed (Fig. 3c).

We found that starting the tracks from the cyclone’s mature

state is more efficient for the construction of the first steps of

the tracks. Indeed, for most cases in the previous and in the

following time step of the cyclone with the highest vorticity

state, there is only one strong cyclone to act as a candidate

for continuing the tracks.

The practice of cost function minimization has been used

in relevant literature of tracking algorithms. Hodges (1995)

built the feature tracks by minimizing the cost function of the

feature’s track smoothness, while Hewson and Titley (2010)

built the feature tracks by applying a likelihood score to its

physical characteristics. Our cost function measures the ab-

solute average difference of the relative vorticity weighted by

the distance between two consecutive time steps:

C =

∑n=N−1
n=1 dn→n+1 (|Vn+1 − Vn|)

∑n=N−1
n=1 dn→n+1

, (2)

where C is the cost function of a candidate track, N is the to-

tal number of the track’s time steps, d is the distance between

two consecutive track points and V is the relative vorticity at

each time step.

The number of potential tracks is quite large. However,

their number can be significantly reduced by the application

of a series of legitimate heuristics that remove tracks that

present a “non-natural” behavior: (1) the location of the next

candidate cyclone must be within a threshold range between

successive time steps; (2) the maximum vorticity between the

tracked cyclone and a candidate cyclone must not differ by

more than 50 %; and (3) if the displacement between two

successive displacements is more than 3◦ long, then the an-

gle between these displacements must be greater than 90◦.

The first constraint prohibits the algorithm from searching

for candidate features in the following time step in locations

where the tracked cyclone could not be located. In our algo-

rithm the cyclones are searched within a 5◦ × 10◦ latitude–

longitude range. This is the largest possible displacement for

extratropical cyclones as proposed by Hodges (1999). The

second constraint prohibits the algorithm from choosing can-

didates that cannot be a possible evolution of the tracked fea-

ture. The use of a percentage is highly convenient since large

vorticity values are subject to higher changes between con-

secutive time steps compared to smaller vorticity values. Fi-

nally, the third constraint prohibits the algorithm from taking

into account a back-and-forth movement of the cyclone. Such

displacements are more likely to take place in raw vorticity

fields, where local maxima might change abruptly. For exam-

ple, our algorithm would not choose the track passing from

the points 2(12), 3(4) and 4(8) in Fig. 3, since the consecu-

tive displacements present an angle of 74◦ (marked in red),

which is less than the 90◦ threshold.

Finally, cycloTRACK returns one matrix as output for

each track that contains information on the cyclone’s track

and its physical characteristics. Each matrix has one row

for each of the track points and one column for each of

the standard outputs and the optional physical diagnostics.

These optional output diagnostics may vary depending on the

study and the data inputs. Labeling the cyclonic circulations

(Sect. 2.1.1) and the cyclonic centers (Sect. 2.1.2) within the

tracks permits a post-processing analysis for determining po-

tential merging and splitting of cyclones. For our applica-

tion to the extratropical cyclones we consider only maximum

10 m wind speed and sea level pressure minima. As an exam-

ple of the algorithm performance, Fig. 4 presents two cyclone

tracks which evolve by sharing the same cyclonic circulation.

Using the effective area diagnostic, in Fig. 5 we show the

evolution of the two cyclones’ relative vorticity, maximum

10 m wind speed and minima of sea level pressure.

It is likely that our method detects fronts associated with

vorticity maxima as cyclone centers, especially when applied

to high-resolution data sets, for example regional climatic

simulations. In order to avoid the detection of a frontal zone,

additional criteria of high or low complexity should be con-

sidered (e.g., Hewson and Titley, 2010). However, such crite-

ria could be dependent on several factors – such as the spatial
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Figure 3. (a) An idealized case of cyclone locations in four time steps. The locations are depicted by circles. The numbers above the locations

are in the form X(Y), where X denotes the time step and Y denotes the relative vorticity. The circle sizes are proportional to the relative

vorticity value of the cyclone. (b) All possible trajectories of cyclone 2(12) by searching backward and forward in time. (c) A selected subset

of tracks of (b): we retain those which present the minimum average change of relative vorticity in successive time steps.

resolution of the data set – and would result in a “stricter” cy-

clone definition. The more precise the mathematical criteria,

the more constrained the tracking results for systems of spe-

cific characteristics. For example, in the case of fronts, this

could exclude the early stages of certain tracked cyclones

that emerge from high-vorticity frontal areas of a “parent”

cyclone.

Figure 4 illustrates an example of a front detection. Inspec-

tion of surface pressure charts (not shown) showed that the

first track point of the second cyclone (red dot in Fig. 4b) cor-

responds to the front of an extratropical cyclone (the one de-

picted by the black track). In the following time steps (Fig. 4c

to f), this secondary vorticity maximum evolves into a strong

cyclone (red track) which presents its own low-pressure min-

imum. Here we capture the initial stage of the vorticity max-

imum, before the occurrence of a pressure minimum. Nev-

ertheless, skipping the application of additional criteria may

require a post-processing of the resulting tracks in order to

exclude the “wrong” ones or those that do not match the re-

search needs.

3 Application of cycloTRACK in a climatological

context and analysis of its sensitivity

In this section we present the results of the application of

our algorithm for all winters (December-January-February)

of the period 1989–2009. We also present the results on

three sets of sensitivity tests: (a) on relative vorticity filter-

ing, (b) on the cost function of Eq. (2), and (c) on the con-

straint that relative vorticity between two consecutive track

points must not differ by more than 50 %. In all sensitivity

tests, the threshold used to define cyclones is 3 × 10−5 s−1,

and we analyze only those tracks with lifetimes longer than

1 day.

3.1 Sensitivity of filtering the relative vorticity field

We tested three different filter strengths (described in

Sect. 2.1.1) with the ERA-I data set. The applied spatial fil-

ters correspond to 3 × 3, 5 × 5 and 7 × 7 grid point filtering,

named filter3, filter5 and filter7, respectively. Figure 6a

presents the number of detected cyclonic centers as a func-

tion of their relative vorticity for all three sensitivity tests, and

Fig. 6b presents their relative frequency. Since all tests are

bounded to identify cyclones exceeding a common thresh-

old of 3 × 10−5 s−1, and since filtering decreases the relative

vorticity values due to its smoothing operation, it is not sur-

prising that the total number of detected cyclone centers is

reduced with increasing filtering intensity. Regardless of the

spatial filtering strength, all three sensitivity tests present an

exponential distribution (Fig. 6a), and the stronger the filter,

the more the cyclones’ intensities are reduced (Fig. 6b).

Strong filtering versus weak filtering may have two effects.

First, it tends to detect fewer tracks which also correspond to

the stronger cyclones. Second, it tends to reduce the cyclone

track lengths by not taking into account the weakest vorticity

perturbations in the early and late stages of a cyclone track.

The validity of the first hypothesis is evident from Fig. 1,

where smoothing suppresses many weak cyclonic centers,

but stronger cyclones (such as Anatol) are equally detected

with all three filters. To verify the second hypothesis, we in-

vestigate the characteristics of the tracks as detected by fil-

ter3, filter5 and filter7. Figure 7a, b and c show the distri-

bution of the relative frequency for the lifetime of cyclone

tracks, the average speed of the cyclones and their maxi-

mum relative vorticity. We observed no significant changes

on the results obtained with the different filters when consid-

ering the cyclone lifetime. Consequently, the second hypoth-

esis, that average track characteristics are sensitive to filter-

ing, can be rejected. It is interesting, however, that our appli-

cations using weak filtering detect weak cyclones that have

similar lifetimes. The distributions of the relative frequencies

of average speed of cyclones are similar for all three filters

(Fig. 7b). This means that the weaker cyclones in filter3 and

filter5 do not correspond to weak stationary vorticity pertur-

bations, and they also do not evolve into strong extratropical

cyclones. The reasons for not evolving into strong cyclones is

an interesting issue; however investigation of this is beyond

the scope of this paper.
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Figure 4. Relative vorticity smoothed by a 3 × 3 spatial filter (color bar); sea level pressure (contours, with a 5 hPa interval; thick contour

denotes 1000 hPa); and tracks (thin lines) of two splitting cyclones for different times during December 1999.

Figure 8 shows the cyclone center density (CCD) for all

three filtering strengths. It is evident that different mag-

nitudes of CCD are observed that depend on the filtering

strength; however, the spatial pattern remains coherent for

all three cases. A question that may arise is whether all sen-

sitivity tests share the same cyclone centers, while additional

weak centers are detected in filter3 and filter5 that are sup-

pressed in filter7 due to the smoothing operation. To address

this question we took into account all points of the distribu-

tions in Fig. 6 and we associated the common points between

filter3 and filter7 with one another (points sharing the same

timing and having a distance inferior to 5◦). Results showed

that filter7 shared 52 % of its points (2331 points) with filter3.

The median of the intensity of the common points of filter3

corresponded to the 78th percentile of all filter3 points’ in-

tensity. Consequently, cyclones in filter7 correspond to the

strongest cyclones of the weakly filtered data. This is in

accordance with the relative frequency of cyclone centers’

intensity in Fig. 6b, where most identified cyclones using

filter7 are concentrated as weaker relative vorticity values

compared to filter3 and filter5.

The effect of filtering, for example filter7 compared to fil-

ter3, is characteristic to the CCD within the Mediterranean

region, where the cyclones are known to be weaker than the

extratropical cyclones forming over the oceans (Čampa and

Wernli, 2012). Indeed, in filter7 there is a dramatic decrease

in detected cyclones over the Mediterranean Sea compared to

filter3 and filter5. Figure 8 presents a high similarity with the

results of other algorithms (Neu et al., 2013), independent

of whether a filtering was applied or whether the sea level

pressure and the relative vorticity were used as inputs for the

detection of cyclones. Indeed, CCD maxima are distinctly

located over the Pacific Ocean, the North Atlantic Ocean

and the Mediterranean. Furthermore, regardless of the filter-

ing strength, the relative frequency distributions of cyclones

speed and lifetime (Fig. 7a and b) seem to be in good agree-

ment with the other algorithms (Neu et al., 2013) presenting

most probable cyclone speeds between 30 and 40 km h−1 and

cyclone lifetime relative frequency distributions decreasing
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Figure 5. (a) Maximum relative vorticity (solid line) at the track

centers and minimum sea level pressure (dashed line) as detected

within the cyclones effective area for the two cyclones shown in

Fig. 4. (b) As in (a) but dashed line corresponds to maximum 10 m

wind speed. Time series coloring is consistent with the tracks col-

ors in Fig. 4. The horizontal axes represent the period 6–16 Decem-

ber 1999.

Figure 6. (a) The number of cyclonic centers as function of their

relative vorticity and as detected by the three algorithm sensitivity

tests. (b) Relative frequency distributions as a function of the rela-

tive vorticity for the identified cyclone centers.

exponentially from less than 2 days up to a total of approxi-

mately 8 days.

Figure 9 presents the annual number of cyclone centers.

For all three filters, our results are in agreement with those of

Neu et al. (2013), showing no specific interannual trend. As

expected, the number of cyclone centers per year depends on

the filtering strength. It decreases from approximately 9000

per year for filter3 to approximately 3000 per year for filter7.

All three tests are within the ranges of other algorithms that

range from 2000 to 12 000 per year. However, it is only fil-

ter5 that is consistent with the majority of the results of other

algorithms, which calculated 4000 to 7000 cyclonic centers

per year. The time series phasings are in good agreement be-

tween filter3 and filter5, presenting a correlation of 0.91. On

Figure 7. (a) Relative frequency distributions of cyclones lifetimes

for the three sensitivity tests. (b) As in (a) but for cyclones average

speed. (c) As in (a) but for tracks’ maximum relative vorticity.

the other hand, correlation between filter5 and filter7 is 0.43,

suggesting that the time series phasing between the two sen-

sitivity tests is dependent on the weaker cyclones that are

suppressed in filter7. This should not raise a question as to

the soundness of the different test results but rather as to the

sensitivity of the results to the different filtering strengths.

3.2 Sensitivity of tracking parameters

We performed two additional sets of sensitivity tests in order

to assess the efficiency of our tracking method (step 2). The

first set relates to the cost function (Eq. 2) and it is composed

of (a) Srel, where the final track choice in step 2 is only de-

pendent to the track relative vorticity evolution (Eq. 3), and

(b) Sdist, where the cost function is only dependent on the

distance between consecutive track points (Eq. 4).

C =
∑n=N−1

n=1
(|Vn+1 − Vn|) (3)

C =
∑n=N−1

n=1
dn→n+1 (4)
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Figure 8. Cyclone center density expressed as the percentage of

cyclone occurrence per time step and per unit area of 1000 km2 for

(a) filter3, (b) filter5 and (c) filter7.

Figure 9. The number of cyclone centers per year for the three sen-

sitivity tests.

The second set of sensitivity experiments relates to the

constraint that the relative vorticity between consecutive

track points may not vary by more than 50 % (Sect. 2.2) and it

is composed of three tests, where the 50 % threshold has been

modified to 25 % (S25 %), 75 % (S75 %) and 100 % (S100 %).

In all three tests we used the original cost function (Eq. 2)

and the identified cyclones from filter3. We focused on filter3

since this is the data set with the highest number of identified

cyclones (Fig. 6), thus amplifying the differences between

the tracking results of the sensitivity tests.

Figure 10 presents the lifetime of tracks (i.e., the num-

ber of track points) and their average speed (i.e., distance

between the track points) for both sets of sensitivity experi-

ments. The results of the first set of experiments that focus

on the cost function (Fig. 10a and b) show that the cyclones’

lifetime and average speed is similar for all sensitivity tests:

filter3, Srel and Sdist (maximum differences are less than

1 %). This suggests that the lifetime of track points and their

average speed are rather insensitive to the change of the cost

function. This is due to the fact that the algorithm always pre-

sented several alternative tracks for a single cyclone but that,

in the majority of the cases, these alternative tracks were sim-

ilar and only presented small deviations from the cyclones’

main path. In such cases, the usefulness of the cost function

is in choosing the smoothest track in terms of intensity and

distance between consecutive track points. It is worth noting

that, in Srel and Sdist, the algorithm was still bounded by the

constraint of linking cyclone centers that presented relative

vorticity values that did not vary by more than 50 %. Cli-

matologically, the term d in the cost function does not sig-

nificantly change the results of the algorithm. However, this

term was shown to play an important role, especially when

several cyclones of quasi-equal vorticity were located within

the 10◦ × 5◦ area but unrealistically far from the tracked cen-

ter.
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Figure 10. (a) Relative frequency distribution of cyclones’ lifetime for the sensitivity tests filter3, Srel and Sdist. (b) As in (a) but for cyclones

average speed. (c) As in (a) but for the sensitivity tests filter3, S25 %, S75 % and S100 %. (d) As in (b) but for the sensitivity tests filter3, S25 %,

S75 % and S100 %.

The results of the second set of experiments that relate

to the 50 % threshold (Fig. 10c and d) reveal similar distri-

butions for all varying thresholds; however when compar-

ing S100 % and S25 %, the former tends to form longer tracks

(Fig. 10c) with longer distances between the track points

(Fig. 10d). Indeed, when applying smaller (higher) thresh-

olds to the permitted evolution of the cyclones intensity, it

is more likely that the algorithm will form shorter (longer)

tracks due to the smaller (higher) accepted differences on the

relative vorticity evolution of consecutive track points. Ide-

ally, the 50 % threshold could be neglected. However, this

would create numerous alternative tracks in the cases of high-

resolution data sets. In general, the constraints applied in step

2 (i.e., 50 % threshold, searching cyclones within a 10◦ × 5◦

area and the angle criterion; Sect. 2.2) have been found to

be a fair compromise between cutting off “unnatural” candi-

date cyclone tracks and providing all possible tracks for the

algorithm to depict the “correct” one according to the cost

function.

3.3 Physical coherence of the tracked cyclones

In this section we perform an analysis of the effective area

diagnostic tool described in Sect. 2.1.3, taking into account

only filter5 results. Figure 11 presents the composite life cy-

cle of the cyclones physical characteristics, centered on the

time of the maximum vorticity of the tracks (mature stage)

and averaged for all tracks detected in the Pacific Ocean

(from 130 to 240◦ longitude and from 30 to 90◦ latitude),

North Atlantic Ocean (from 300 to 360◦ longitude and from

30 to 90◦ latitude) and within the Mediterranean region (from

345 to 45◦ longitude and from 25 to 50◦ latitude). The re-

sults show that, regardless of the region, there is a strong co-

herence between the life cycle of sea level pressure minima,

relative vorticity and maximum 10 m wind speed. Cyclones

tend to intensify rapidly but weaken at a slower rate. For the

construction of the composites, there is no distinction regard-

ing the cyclones’ lifetime. Also, we should note that the fur-

ther we get from the time of the cyclone’s maximum vortic-

ity (i.e., the composite center), the fewer cyclones that last

long enough to provide diagnostics for the composites. For

example, the Mediterranean cyclones’ lifetime is inferior to

the other extratropical cyclones and rarely exceeds 2–3 days.

Nevertheless, our motivation here is to assess the validity of

the effective area diagnostic, which seems to correctly cap-

ture the physical characteristics of the life cycle of cyclones

regardless of the region. Indeed, in agreement with Čampa

and Wernli (2012), we found that Mediterranean cyclones

are less deep, in terms of sea level pressure, while Atlantic

cyclones are slightly deeper than those occurring over the

Pacific Ocean.

4 Conclusions

In this article we presented a new algorithm for identify-

ing and tracking cyclones, applied to winter extratropical cy-

clonic systems over the Northern Hemisphere. We tested our

algorithm’s performance for different filtering strengths ap-

plied to the high-frequency relative vorticity fields. Results

showed that the number of tracks was inversely proportional
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Figure 11. (a) Average composite time series of Pacific cyclones

physical characteristics. “0 h” corresponds to the time that the cy-

clone presents its maximum relative vorticity. We denote relative

vorticity (thick black line), sea level pressure (red thick line) and

maximum 10 m wind speed (thin black line). Wind speed scale val-

ues are shown in the left vertical axes in parentheses. (b) As in (a)

but for the Atlantic cyclones. (c) As in (a) but for Mediterranean

cyclones. Note that y axis does not have the same value intervals

across the three panels.

to the filter strength, while the cyclone spatial and tempo-

ral variability were coherent with those produced by other

tracking algorithms presented in the literature. Finally, our

algorithm successfully captured the physical characteristics

of cyclones.

Our identification and tracking algorithm uses as few con-

straints as possible, not only for tracking weak vorticity per-

turbations which evolved into strong cyclones but also for

tracking weak perturbations which did not evolve into strong

cyclones. This allows for not only assessment of the algo-

rithm’s sensitivity to data filtering but also, in the future,

a more precise description of the environmental conditions

which favor cyclone intensification. Furthermore, we chose

the vorticity criteria to vary dynamically (vorticity must not

vary by more than 50 % in consecutive time steps) and we

avoided any threshold or cut-off values. It should be noted

that although we applied our algorithm based on relative

vorticity to identify and track cyclones, the same algorithm

might be applied to any data set which presents enclosed ar-

eas after applying a threshold value. For instance, our algo-

rithm could be applied for tracking supercells or mesoscale

convective systems using data sets of brightness temperature

or cloud cover.

Our tracking approach is based on minimizing a cost func-

tion of vorticity maxima. We observed some mistakes, espe-

cially when cyclonic circulations were found to be very noisy

with multiple local maxima. As an alternative cost function,

it would be interesting to explore the weighted mean dif-

ferences of additional cyclone physical characteristics (pres-

sure, wind speed etc.) between consecutive time steps. This

has been previously applied by Machado et al. (1998) for

tracking MCSs based on brightness temperature satellite ob-

servations. However, their method assumes a priori choice of

the weighting value, risking restraining our method’s adapt-

ability in tracking cyclones of different origin (e.g., extrat-

ropical and tropical cyclones). Our algorithm links cyclone

centers in consecutive time steps, in contrast with the alter-

native configuration proposed by Machado et al. (1998) and

Inatsu (2009) to link enclosed areas. This decision was made

because large cyclonic circulations would not correspond to

a single cyclone if enclosed areas were linked, and additional

criteria – and/or filtering – would be needed, while weak cy-

clones would be neglected.

Further development of our algorithm includes the exten-

sion of the identification part to three dimensions and the ex-

tension of the method’s adaptability for different atmospheric

features such as MCSs. CycloTRACK was implemented in

MatLab, and its source code is freely available from the cor-

responding author upon request.
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