Cyclotron emission from accreting magnetic white dwarfs

A. R. Masters and J. E. Pringle ${ }^{\star}$ Department of Physics, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA

A. C. Fabian and M. J. Rees Insitute of Astronomy, Madingley Road, Cambridge CB3 0HA

Received 1976 September 22; in original form 1976 August 18

Summary. A corrected version of the estimates of cyclotron emission from accreting magnetic white dwarfs by Fabian, Pringle \& Rees, is presented, which takes into account harmonics higher than the fundamental.

1 Introduction

Fabian, Pringle \& Rees (1976) have considered accretion onto magnetic white dwarfs, and in particular have made estimates of the relative efficiencies of bremsstrahlung (which yields X-rays) and cyclotron (infrared, optical, ultraviolet) emission at radiating away the accretion energy released in a standoff shock near the stellar surface. Fabian et al. considered only emission at the fundamental cyclotron frequency, $\omega_{\mathfrak{c}}$, and so underestimated the efficiency of the cyclotron process. They also made an error in their calculations - their equation (14) - which, as it happens, roughly compensates for this omission. Here we present a better, but still somewhat uncertain, treatment of cyclotron emission, including the radiation from harmonics above the fundamental.

2 Estimate of cyclotron emission

The temperature of the emission region is approximately the shock temperature
$T_{\mathrm{s}}=64\left(M / M_{\odot}\right)\left(R / 5 \times 10^{8} \mathrm{~cm}\right)^{-1} \mathrm{keV}$
where M and R are the dwarf mass and radius. The plasma is mildly relativistic at this temperature, and an electron would typically emit more than 90 per cent of its cyclotron radiation above the fundamental (Trubnikov 1958; see also Bekefi 1966, for a summary). When the plasma is optically thin to cyclotron radiation, the emission from an electron decreases approximately exponentially at successive harmonics. The spread of electron energies in (for example) a Maxwellian distribution, smears the higher harmonics into a continuum and causes the emissivity to fall off with frequency less steeply than an exponential.

[^0]The optical depth of a mildly relativistic plasma to cyclotron absorption at the fundamental cyclotron frequency, $\omega_{\mathbf{c}}$, is approximately
$\Lambda\left(m_{\mathrm{e}} c^{2} / k T\right) \equiv\left(3 / 2 \tau_{\mathrm{es}} m_{\mathrm{e}} c^{2} / a \hbar \omega_{\mathrm{c}}\right)\left(m_{\mathrm{e}} c^{2} / k T\right)$
where τ_{es} is the electron scattering optical depth through the region, and a is the fine structure constant. In our case the dimensionless size parameter $\Lambda=10^{10} \tau_{\text {es }} B_{6}^{-1} \gg 1$, where B_{6} is the dwarf's surface field in units of $10^{6} \mathrm{G}$, and $\tau_{\text {es }} \sim 1$. Consequently, cyclotron emission is self-absorbed up to a frequency $\omega^{*}\left(>\omega_{\mathrm{c}}\right)$ where the optical depth is unity.

Various workers have provided calculations and approcimations with which to estimate $\omega^{*} / \omega_{\mathrm{c}}$ in plasma fusion devices (Trubnikov 1973, and references therein; Hirschfield, Baldwin \& Brown 1961). Their formulae apply directly to values of Λ between $\sim 10^{3}$ and $\sim 10^{6}$, and we do not expect them to provide accurate extrapolations to $\Lambda \sim 10^{10}$. The yield expression of Trubnikov (1973) implies $\left(\omega^{*} / \omega_{\mathrm{c}}\right) \propto \Lambda^{1 / 6}$ and probably overestimates $\left(\omega^{*} / \omega_{c}\right)$ when Λ is large. The fits of Hirschfield et al. (1961), $\omega^{*} / \omega_{c} \propto \ln \Lambda$, are not reassuring when applied to their own graphs, and probably underestimate ω^{*} / ω_{c} when it is large (large Λ). Thus we might expect that these expressions bracket the 'true' value of $\omega^{*} / \omega_{\mathrm{c}}$, and that the dependence of $\omega^{*} / \omega_{\mathrm{c}}$ on B_{6} is weak. We find $120 \gtrsim \omega^{*} / \omega_{\mathrm{c}} \gtrsim 25$, for $T_{\mathrm{s}}=64 \mathrm{keV}$ and $\Lambda=10^{10}$.

These estimates assume a Maxwellian (i.e. collision dominated) velocity distribution for the electrons. This is reasonable if bremsstrahlung is important or if cyclotron emission is heavily self-absorbed. The assumption may fail at high temperature when the optically thin cyclotron emission at $\omega>\omega^{*}$ becomes important, or just behind the shock before the Maxwellian tail is established. If the electron distribution were monoenergetic and spherically symmetric, $\omega^{*} / \omega_{\mathrm{c}}$ would be of order 10 for our T_{s} and Λ.

Cyclotron radiation is directional, especially at high harmonics $\left(\omega / \omega_{\mathrm{c}}>m_{\mathrm{e}} c^{2} / k T\right)$. The extraordinary mode is emitted in a fan beam of FWHM
$\Psi \simeq 90^{\circ}\left(\omega / \omega_{\mathrm{c}}\right)^{-1 / 6}(k T / 64 \mathrm{keV})^{1 / 3}$
(Trubnikov 1961). The ordinary mode is negligible (Drummond \& Rosenbluth 1961). For our present purposes we ignore this angular dependence of the cyclotron emission, noting that other uncertainties - e.g. variations in density, temperature and magnetic field within the emitting region - can be just as important.

To estimate the rate at which cyclotron radiation is emitted, we approximate the spectrum as a Rayleigh-Jeans spectrum ($h \omega^{*} \ll k T$) at the electron (shock) temperature, truncated above ω^{*} (Trubnikov 1958; Hirschfield et al. 1961; Drummond \& Rosenbluth 1963). The cyclotron luminosity from a region of area A is then

$$
\begin{equation*}
L_{\mathrm{cyc}}=A k T_{\mathrm{s}}\left(\omega^{*}\right)^{3} / 12 \pi^{2} c^{2} \tag{4}
\end{equation*}
$$

where $A=f .4 \pi R^{2}, f<1$, and R is the stellar radius. The condition that the cyclotron and bremsstrahlung luminosities be equal, $L_{\mathrm{cyc}}=L_{\mathrm{br}}=1 / 2 \mathrm{GM} \dot{M} / R$, is
$F_{20}=3.28 \times 10^{-13}\left(\omega^{*} / \omega_{\mathrm{c}}\right)^{21 / 5} B_{6}^{17 / 5} R_{9}^{9 / 5}\left(M / M_{\odot}\right)^{1 / 5}$,
where F_{20} is the mass accretion rate in units of $10^{20} \mathrm{~g} / \mathrm{s}$ and R_{9} the stellar radius in units of $10^{9} \mathrm{~cm}$. This condition corresponds to $\gamma_{1}=1$ in the work of Fabian et al. (1976). We have used a value of f appropriate to spherical accretion outside the white dwarf magnetosphere, making the standard assumptions (cf. for example Section 4 of Fabian et al.). These assumptions are incorrect if the Alfvén radius, R_{A}, is so small as to prevent cusp formation above the magnetic poles (Lamb, Pethick \& Pines 1973; Arons \& Lea 1976; Elsner \& Lamb 1977a) or if the magnetospheric boundary layer is very thin or very thick (Elsner \& Lamb 1977b; Basko \& Sunyaev 1976).

Figure 1. This diagram is relevant to spherically symmetric accretion at rate $F \mathrm{~g} / \mathrm{s}$ onto a magnetic white dwarf of mass $1 M_{\odot}$, radius $5 \times 10^{8} \mathrm{~cm}$ and surface field B gauss ($c f$. Fig. 2 of Fabian et al. 1976). The line on which bremsstrahlung and cyclotron emission are comparable is drawn for various values of $\omega^{*} / \omega_{\mathrm{c}}$, the cyclotron harmonic above which the emitting region is optically thin. We expect $120>\omega^{*} / \omega_{c}>25$ (see text). The dashed line derived (erroneously) by Fabian et al. is also shown. In practice, $\omega^{*} / \omega_{\mathrm{c}}$ will be a slowly decreasing function of B (for a given value of F). We would therefore expect the true curve to be (like that in Fabian et al.) slightly less steep than the lines drawn here for constant $\omega^{*} / \omega_{\mathrm{c}}$.

Fig. 1 shows the behaviour of equation (5) in the (F, B) plane for a $1 M_{\odot}, 5 \times 10^{8} \mathrm{~cm}$ radius white dwarf. As the above discussion emphasizes, the actual line along which the cyclotron and bremsstrahlung luminosities are equal is expected to lie between the lines for $\left(\omega^{*} / \omega_{\mathrm{c}}\right)=25$ and $\left(\omega^{*} / \omega_{\mathrm{c}}\right)=120$ in Fig. 1. This result is similar to that obtained (erroneously) by Fabian et al.

3 Discussion

Although we have accounted for the principal qualitative features of cyclotron processes in the mildly relativistic plasma expected in shocked gas settling onto a white dwarf, we wish to stress that our quantitative results are very uncertain. This is partly because we lack an accurate approximation for $\omega^{*} / \omega_{\mathrm{c}}$ appropriate to the field geometry and large Λ of the white dwarf problem, even for a uniform plasma. A reliable quantitative calculation would treat radiative transfer through the (non-uniform) emission region, and include the directionality of the cyclotron radiation. Our general conclusions with regard to hard X-ray and cyclotron emission are similar to those presented in Fabian et al. We stress that the old nova DQ Herculis is a suitable object on which the above calculations can be tested (Bath, Evans \& Pringle 1974; Lamb 1974). Observations of cyclotron emission (polarized ultraviolet, optical and infrared) and X-radiation are especially important. Optical polarization and soft X-ray observations of the nova-like variable AM Herculis suggest it to be another candidate (S. Tapia, private communication).

Acknowledgments

We gratefully acknowledge discussions with D. Q. Lamb, R. F. Elsner, C. J. Pethick, F. K. Lamb and J. I. Katz. Most of this work was completed while JEP was visiting the Department of Physics, University of Illinois at Urbana-Champaign. The work was supported in part by the US National Science Foundation, under grant PHY75-08790.

References

Arons, J. \& Lea, S. M., 1976. Astrophys. J., 207, 914.
Basko, M. M. \& Sunyaev, R. A., 1976. Mon. Not. R. astr. Soc., 175, 395.
Bath, G. T., Evans, W. D. \& Pringle, J. E., 1974. Mon. Not. R. astr. Soc., 166, 113.
Bekefi, G., 1966. Radiation Processes in Plasmas, Wiley.
Drummond, W. E. \& Rosenbluth, M. N., 1961. Phys. Fluids, 4, 277.
Drummond, W. E. \& Rosenbluth, M. N., 1963. Phys. Fluids, 6, 276.
Elsner, R. F. \& Lamb, F. K., 1977a. Astrophys. J., in press.
Elsner, R. F. \& Lamb, F. K., 1977b. Astrophys. J., in press.
Fabian, A. C., Pringle, J. E. \& Rees, M. J., 1976. Mon. Not. R. astr. Soc., 175, 43.
Hirschfield, J. L., Baldwin, D. E. \& Brown, S. C., 1961. Phys. Fluids, 4, 198.
Lamb, D. Q., 1974. Astrophys. J., 199, 148.
Lamb, F. K., Pethick, C. J. \& Pines, D., 1973. Astrophys. J., 184, 271.
Trubnikov, B. A., 1958. PhD thesis, AEC-tr-4073 Office of Technical Services, Washington.
Trubnikov, B. A., 1961. Phys. Fluids, 4, 195.
Trubnikov, B. A., 1973. JETP Lett., 16, 25.

[^0]: * Permanent address: Institute of Astronomy, Madingley Road, Cambridge CB3 0HA.

