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Unidirectional transport and localized cyclotron motion are two opposite physical phenomena.
Here, we study the interplay effects between them on nonreciprocal lattices subject to a magnetic
field. We show that, in the long-wavelength limit, the trajectories of the wave packets always form
closed orbits in four-dimensional (4D) complex space. Therefore, the semiclassical quantization rules
persist despite the nonreciprocity, which preserves real Landau levels. We predict a different type of
non-Hermitian spectral transition induced by the spontaneous breaking of the combined mirror-time
reversal (MT ) symmetry, which generally exists in such systems. An order parameter is proposed
to describe the MT phase transition, not only to determine the MT phase boundary but also to
quantify the degree of MT -symmetry breaking. Such an order parameter can be generally applied
to all types of non-Hermitian phase transitions.

Introduction.-Non-Hermitian physics [1–3] has at-
tracted growing research interest recently for its in-
triguing properties and potential applications that can
be implemented in various physical systems, including
photonic systems [4–9], open quantum systems coupled
to the environment [10–13], quasiparticles in condensed
matter [14–17], and electrical circuits [18–22]. The non-
Hermitian topological band theory has been studied
extensively and achieved plentiful results [23, 24], such
as anomalous edge modes [25, 26], enriched topological
phases [27–30], and topological lasing [31–33]. It is now
well accepted that the conventional Bloch band theory
should be replaced by the non-Bloch band theory for non-
Hermitian systems with the so-called non-Hermitian skin
effect (NHSE) [34, 35].

The NHSE is a unique phenomenon [34–41] meaning
that all the bulk states are driven to the edge of the
system under the open boundary condition (OBC), which
has been confirmed in recent experiments in various
physical systems [42–48]. Its intriguing interplay with
the parity-time (PT ) phase transition has attracted
attentions very recently [49–52], which opened up the
possibility of manipulating the PT transition by the
NHSE. Physically, the NHSE in one-dimensional (1D)
systems originates from the point gap topology of the
energy spectra under the periodic boundary condition
(PBC) [37–39], which is manifested as the nonreciprocal
propagation of the wave packet through the system [53,
54]. Such nonreciprocity as shown in Figs. 1(a) and (b) is
a particular type of delocalization effect and can induce
a delocalization transition [55–57].

In contrast to nonreciprocal propagation, a magnetic
field in a 2D system leads to the opposite effect. The
motion of charged particles in a magnetic field forms cy-
clotron orbits with the guiding centers localized in space;
see Fig. 1(e). The quantization of these cyclotron orbits
results in flat Landau bands with zero mobility, which is
incompatible with the picture of nonreciprocal propaga-
tion. Given that a magnetic field and nonreciprocity may

coexist in a variety of natural and artificial systems [58–
61], it is interesting to explore their fascinating interplay
and the resultant physical effects. Open questions that
naturally arise include the robustness of cyclotron orbits
as well as their quantization against nonreciprocity and
possible new types of non-Hermitian phase transitions,
etc.

In this Letter, we study the physical effects in non-
reciprocal systems subject to a magnetic field. We
show that semiclassical trajectories of the wave packets
always form closed orbits in the 4D complex space in
the long-wavelength limit despite the nonreciprocity. As
a result, the Onsager-Lifshitz quantization rule persists,
which protects real Landau levels from being complex.
Moreover, we show that such non-Hermitian magnetic
systems generally possess an inherent mirror-time rever-
sal (MT ) symmetry, which dictates a spectral phase
transition, dubbed the MT transition. Specifically, a
real-to-complex spectral transition occurs along with the
spontaneous breaking of the MT symmetry. An order
parameter is proposed to quantify the MT -symmetry
breaking, which not only gives a definite phase boundary
but also specifies to what extent the symmetry is broken.
Our work generalizes the celebrated PT physics [7–9] to
the MT scenario in a class of magnetic systems, which
may lead to interesting observations and applications.
Model.-To be concrete, we first study the nonreciprocal

square lattice in Fig. 1(a) and then verify the universality
of the results on the honeycomb lattice in Fig. 1(b).
A square lattice with nonreciprocal hopping under a
magnetic field B can be described by the modified
Harper-Hofstadter model as [62, 63]

H = −
∑
m,n

(
t+x c
†
m+1,ncm,n + t−x c

†
m,ncm+1,n

+ tei2πmφc†m,n+1cm,n + te−i2πmφc†m,ncm,n+1

)
,

(1)

where c†m,n (cm,n) are the creation (annihilation) op-
erator on the site (m,n), t±x = t ± δx describe the
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FIG. 1: Schematic illustration of (a) nonreciprocal Harper-Hofstadter model and (b) nonreciprocal honeycomb
lattice model with unequal hopping strengths t± δx in the x-direction and equal hopping t in others. The gray

dashed box in (b) denotes the unit cell composed of two sites A, B and a1,2 are the unit vectors. (c) Low-energy
parabolic dispersion with the linear imaginary part corresponding to the square lattice model in (a). (d) Dirac cone
dispersion and its imaginary part corresponding to the honeycomb lattice in (b). The signs of the imaginary part of

the energy coincide with those of the velocity. The contours in (c) and (d) are the closed orbits that satisfy the
Onsager-Lifshitz quantization rule. (e) Semiclassical cyclotron motion of charged particles in a magnetic field. (f)

Semiclassical picture of the MT symmetry, in which the successive actions of the MT operation
(y → −y, vx → −vx) and the time evolution U(t) leave the state unchanged.

nonreciprocal hopping in the x-direction with δx the
strength of nonreciprocity. The phase factor φ = Φ/Φ0 is
defined by the magnetic flux Φ = Ba2 through a lattice
cell (lattice constant a) divided by the flux quantum
Φ0 = h/q with q the charge of the particle. Here, the
Landau gauge A = (0, Bx) has been adopted. In the
rest of this Letter, we set h = q = a = 1 in all numerical
calculations for simplicity and denote the OBC and PBC
in the α-direction (α = x, y) as α-OBC and α-PBC for
brevity.

For B = 0, the energy spectrum under the x, y-PBC is
E(k) = −2t(cos kx+cos ky)+2iδx sin kx with k = (kx, ky)
the wave vector. The low-energy expansion at the band
bottom yields the parabolic dispersion plus an imaginary
part as ε(k) = t(k2x + k2y) + 2iδxkx; see Fig. 1(c), which
resembles a non-Hermitian normal particle. The odd
function with Im[E(kx)] = −Im[E(−kx)] induces a point
gap topology for each transverse ky-mode, which results
in the nonreciprocal propagation of the wave packet
in the x-direction [53, 54]. Accordingly, the system
exhibits NHSE in the x-direction under the x-OBC [37–
39], which can be read from the right eigenfunctions
of Eq. (1) under the x, y-OBC as ψR(x, y) = ψm,n =
(t+x /t

−
x )m/2 sin (mkx) sin (nky). A positive δx results in

an envelope function (t+x /t
−
x )m/2 on top of the standing

waves so that all the wave functions are localized at the
right boundary, namely NHSE. Due to its incompatibil-
ity, a small magnetic field is sufficient to drive the skin
modes to penetrate deeply into the bulk, showing a con-
siderable suppression of the NHSE [64, 65]. Physically,
it stems from the shrinkage of the point gap for each ky
channel, i.e., a reduction of the nonreciprocity [64].

Semiclassical Onsager-Lifshitz quantization.-It is of
particular interest to investigate the semiclassical quan-
tization of magnetic cyclotron orbits subject to nonre-
ciprocal propagation. Intuitively, nonreciprocity tends
to break those closed orbits [cf. Fig. 1(e)] and thus
the quantization condition. To study the wave packet
dynamics inside the bulk and get rid of the boundary
effects, we adopt the x, y-PBC. The Hamiltonian (1) can
be written in momentum space and diagonalized directly,
with the energy spectra for δx = 0 and δx > 0 shown in
Figs. 2(a) and 2(b), respectively.

For δx = 0, Fig. 2(a) presents the familiar butterfly
diagram. The Landau fan structure near the band edges
for small B indicates the high degeneracy of Landau
levels with vanishing band width, which stems from local-
ized cyclotron motion. A finite nonreciprocal hopping δx
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FIG. 2: Energy spectra under the x, y-PBC calculated
in the momentum space for (a) δx = 0 and (b) δx = 0.2.
(c) Complex energy spectra for different B marked in
(b). (d) Complex energy spectra as a function of δx

with B = 0.05. In all figures, t = 0.5.

leads to visible modifications in the energy spectra with
complex energy spectra showing up at the band center;
see Figs. 2(b) and (c). As a result, the self-similar fractal
patterns merge into continuous pieces along with multiple
gap closings. Notably, as δx increases, the energy levels
coalesce in pairs and create multiple exceptional points;
see Fig. 2(d). Given the high degeneracy of the magnetic
spectra, a large number of exceptional points can be
implemented in such systems.

Remarkably, one can find that the Landau levels near
the band top and bottom remain unchanged despite
the nonreciprocity by comparing Figs. 2(a) and 2(b).
Moreover, these low-energy Landau levels remain real
[see Fig. 2(c)], which indicates that the magnetic field
prevents the system from a real-to-complex spectral
transition in the long-wavelength limit. It can be shown
that the quantized energy levels exhibit the scaling
En ∝ nB [64], which reduces to the behavior of free
particles with a quadratic dispersion [cf. Fig. 1(c)]. Such
observations indicate that the Onsager-Lifshitz quanti-
zation rule [66, 67] remains valid even in the presence of
nonreciprocal propagation.

We prove this assertion based on the semiclassical
equation of motion. In the long-wavelength limit, the
effective Hamiltonian in a magnetic field can be written
as ε(p− qA) = t(p− qA)2 + 2iδxkx through Peierls sub-
stitution ~k→ p− qA with p the canonical momentum.
By solving the canonical equation ṗ = −∇rε, ṙ = ∇pε,
we obtain the time(τ)-dependent coordinate functions

(a) (b)

FIG. 3: Projections of the semiclassical trajectories in
the real and imaginary x-y planes. (a) Closed orbits in
the long-wavelength limit with x(0) = 1, y(0) = 0.75,
px(0) = 0, py(0) = 0 and (b) open trajectories beyond

this limit with x(0) = 2, y(0) = 2.5, px(0) = 0.4,
py(0) = 0. Other parameters are B = 0.26, δx = 0.1.

as [64]

x(τ) = A1e
iωτ +A2e

−iωτ + x0,

y(τ) = i(A1e
iωτ −A2e

−iωτ ) + y0,
(2)

with the parameters A1,2, x0, y0 determined by the initial
conditions and ω = 2Btq/~2 the cyclotron frequency.
The solutions clearly show that the semiclassical trajecto-
ries of the wave packet always form closed orbits despite
the nonreciprocity; see Fig. 3(a). However, different from
the Hermitian case, the closed orbits generally reside in
4D complex x-y space [2].

Although closed orbits are formed in higher-
dimensional coordinate space, the single-valuedness of
the wave function for the periodic motion still imposes
the quantization condition, which is the non-Hermitian
Onsager-Lifshitz quantization rule [66, 67]:∮

p · dr = (n+
1

2
)h. (3)

Substituting the solutions p(τ), r(τ) into the quantiza-
tion condition results in exactly the Landau levels εn =
(n+1/2)~ω+δ2x/t of a normal particle apart from a small
shift δ2x/t [64], consistent with the numerical results in
Fig. 2(b). Therefore, we conclude that the semiclassical
quantization is robust against the nonreciprocity and
thus can protect the energy from being complex. Mean-
while, as E(k) deviates from the long-wavelength limit,
the coordinate functions can be solved numerically, which
exhibit unclosed trajectories in the complex x-y space;
see Fig. 3(b). As a result, the energy spectra become
complex due to the nonreciprocal hopping as those in
Figs. 2(b) and (c).
MT phase transition.-The properties of the whole en-

ergy spectra strongly depend on the boundary conditions
in the x-direction. The magnetic spectra are entirely real
for the x-OBC [64] and partially complex for the x-PBC.
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We will show that a real-to-complex transition of the
entire spectra can be implemented, which is associated
with the spontaneous breaking of the inherent MT
symmetry of the systems.

The Hamiltonian (1) possesses the combined MT
symmetry as

MT H(MT )−1 = H, (4)

with the operators of mirror reflection (M) about the
x-axis and time reversal (T ) defined by

Mcm,nM−1 = cm,−n, T cm,nT −1 = cm,n, T iT −1 = −i.
(5)

The MT symmetry can be understood by the semi-
classical picture as illustrated in Fig. 1(f). A quantum
state under successive actions of the MT operation
and the time evolution U(t) remains the same, i.e.,
U(t)MT U(t)MT = 1. The constraint by the MT
symmetry can be rewritten in another standard form as
MOH†(MO)−1 = H, with O the transpose operation,
and then H is said to be MO-pseudo-Hermition [3].
As a result, the energy spectra can be either entirely
real or composed of complex conjugate pairs. For a
specific state, the real (complex) nature of the energy
corresponds to its wave function with (without) theMT
symmetry [68].

The MT -symmetry breaking for the ith right eigen-
state ψRi can be measured by the Hilbert-Schmidt quan-
tum distance diHS [69], which is given by

diHS =
√

1− |〈MT 〉i|2, 〈MT 〉i = 〈ψRi |MT |ψRi 〉. (6)

It characterizes the quantum mechanical distance be-
tween the wave functions before and after the MT
operation. For the state that satisfies theMT symmetry,
the MT operation yields only an overall phase factor,
i.e., MT |ψRi 〉 = eiθ|ψRi 〉, so that diHS = 0. In contrast, if
the state breaks theMT symmetry, one has 0 < diHS ≤ 1.

It is convenient to introduce an order parameter to
quantify the spontaneous symmetry breaking in non-
Hermitian phase transitions. An insightful choice of the
order parameter can be the average quantum distance of
all N eigenstates defined as

dHS =
1

N

N∑
i

diHS. (7)

TheMT -symmetric andMT -broken phases correspond
to dHS = 0 and dHS > 0, respectively, resembling
the spontaneous symmetry breaking in continuous phase
transitions. Importantly, in addition to being a criterion
of the MT transition, the magnitude of dHS can tell to
what extent the MT symmetry is broken.

A tunable boundary condition [26, 70] that can
drive a continuous MT transition is defined by the
boundary hopping −γB(t+x c

†
1,ncM,n + t−x c

†
M,nc1,n). The

parameter γB ∈ [0, 1] and its two limits γB = 0
and γB = 1 correspond to the x-OBC and x-PBC,
respectively. We perform Fourier transformation to
the bulk Hamiltonian in the y-direction and rewrite it
as H̃ = −

∑
m,ky

[
t+x c
†
m+1,ky

cm,ky + t−x c
†
m,ky

cm+1,ky +

2t cos (ky + 2πmφ)c†m,kycm,ky
]
. Its eigenstates ψRi (m, ky)

are labeled by i and ky. In this representation, it can be
proved that the MT operator acts on the wave function
as MT ψRi (m, ky) = ψR∗i (m, ky). The order parameter
dHS as a function of γB and δx can be calculated by
Eq. (7), in which the average is taken over all states
labeled by i and ky.

B=0.02

MT-Broken

(a) (b)

B=0

MT-Broken

MT MT

FIG. 4: Order parameter dHS as a function of δx and γB
for the nonreciprocal square lattice with (a) B = 0 and

(b) B = 0.02. Critical points in (a) mark the
real-to-complex spectral transition and the phase
boundary defined by the dHS contours is fitted by

exponential functions. Other parameters are M = 50,
t = 0.5.

Numerical results of dHS for zero and finite B are
shown in Fig. 4. One can see that there is a clear phase
boundary formed between theMT -symmetric (dHS = 0)
and MT -broken (dHS > 0) regions. Such a phase
boundary can also be obtained by the critical points of
the real-to-complex spectral transition as usually done
in the literature, and the phase boundaries obtained by
the two methods show good coincidence; see Fig. 4(a).
This is assured by the theorem associated with the MT
antiunitary symmetry [68]. Interestingly, the critical
phase boundary in Fig. 4(a) turns out to be exponential
functions, which can be strictly proved [64].

Without a magnetic field, the system is in the MT -
symmetric and MT -broken phases under the x-OBC
(γB = 0) and x-PBC (γB = 1), respectively; see
Fig. 4(a). By tuning the boundary parameter γB , a
continuousMT transition connecting two limiting cases
can be implemented. However, varying with δx, there
is no phase transition happening in either the x-OBC
or the x-PBC. Remarkably, a finite magnetic field can
effectively suppress the MT -symmetry breaking; see
Fig. 4(b), which is reflected in two aspects. First, the
MT -symmetric region with large γB expands with B
increased. Second, the order parameter dHS diminishes
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in theMT -broken region so that the symmetry breaking
becomes weaker, which is consistent with the magnetic
field induced real Landau levels. These results reflect the
incompatible nature between the nonreciprocity and the
magnetic field. Such magnetic suppression on the MT -
symmetry breaking indicates that a MT transition can
be driven by either δx or B for a finite system [64].

In the discussion above, the hopping strength tx is
chosen to be real. By adding a small imaginary part
iη to the hopping terms as t̃±x = t + iη ± δx, the MT
symmetry of the Hamiltonian in Eq. (4) is destroyed.
As a result, the energy spectra become entirely complex
without anyMT transition. This further proves that the
MT dictates the spectral transition; see Supplemental
Material for details [64] .

Results for nonreciprocal honeycomb lattice.- The in-
terplay between the nonreciprocity and a magnetic field
possesses a general picture so that the physical results
are expected to be universal. To verify this, we perform
parallel investigations on the nonreciprocal honeycomb
lattice [64]; see Fig. 1(b), whose low-energy physics
corresponds to the non-Hermitian massless Dirac particle
as sketched in Fig. 1(d). We show that the main
results obtained in the main text hold true for the
nonreciprocal honeycomb lattice as well [64]. Specifically,
the quantization rule persists against nonreciprocity in
the long-wavelength limit, which gives rise to the familiar
Landau levels εDn ∝ ±

√
nB for massless Dirac particles

[cf. Figs. 1(d)]. The closed cyclotron orbits formed in the
complex space are the physical origin of the semiclassical
quantization. The MT phase transition can also be
implemented on the honeycomb lattice, which exhibits
similar phase diagrams and magnetic suppression on the
MT -symmetry breaking; see the Supplemental Material
for details [64].
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[31] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda,
G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang,
Nature Physics 10, 394 (2014).

mailto:Corresponding author: pchenweis@gmail.com
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
https://iopscience.iop.org/article/10.1088/0034-4885/70/6/R03
https://iopscience.iop.org/article/10.1088/0034-4885/70/6/R03
https://www.tandfonline.com/doi/abs/10.1080/00018732.2021.1876991
https://www.tandfonline.com/doi/abs/10.1080/00018732.2021.1876991
https://www.nature.com/articles/s41566-017-0031-1
https://www.nature.com/articles/s41566-017-0031-1
http://dx.doi.org/10.1103/RevModPhys.91.015006
http://dx.doi.org/10.1103/RevModPhys.91.015006
https://www.nature.com/articles/nphys4323
https://www.science.org/doi/full/10.1126/science.aar7709?casa_token=7YjnjFPGrvkAAAAA%3AY60Ty3BZ0Kv_X7rsQqNgrGF8KSU8IsPTPNUf9CGiF161UzYvpcSXQwlJ2EyzWsoUfhzEUtLt_NcC9g
https://iopscience.iop.org/article/10.1088/0034-4885/54/4/003
https://iopscience.iop.org/article/10.1088/1751-8113/42/15/153001
https://iopscience.iop.org/article/10.1088/1751-8113/42/15/153001
http://dx.doi.org/10.1103/PhysRevLett.115.200402
http://dx.doi.org/10.1103/PhysRevLett.115.200402
https://www.nature.com/articles/nphys1073
https://arxiv.org/abs/1708.05841
https://arxiv.org/abs/1708.05841
https://arxiv.org/abs/1708.05841
http://arxiv.org/abs/1708.05841
http://arxiv.org/abs/1708.05841
http://dx.doi.org/10.1103/PhysRevLett.121.026403
http://dx.doi.org/ 10.1103/PhysRevB.99.201107
http://dx.doi.org/ 10.1103/PhysRevB.99.201107
http://dx.doi.org/10.1103/PhysRevB.98.035141
http://dx.doi.org/10.1103/PhysRevB.98.035141
http://dx.doi.org/ 10.1103/PhysRevA.84.040101
https://www.nature.com/articles/s42005-018-0035-2
https://www.pnas.org/doi/10.1073/pnas.2106411118
https://www.pnas.org/doi/10.1073/pnas.2106411118
http://dx.doi.org/ 10.1103/PhysRevX.5.021031
https://www.nature.com/articles/s41567-018-0246-1
https://www.nature.com/articles/s41567-018-0246-1
http://dx.doi.org/ 10.1103/PhysRevLett.120.146402
http://dx.doi.org/ 10.1103/PhysRevLett.120.146402
http://dx.doi.org/10.1103/RevModPhys.93.015005
http://dx.doi.org/10.1103/RevModPhys.93.015005
http://dx.doi.org/10.1103/PhysRevLett.116.133903
https://iopscience.iop.org/article/10.1088/2399-6528/aab64a/meta
https://iopscience.iop.org/article/10.1088/2399-6528/aab64a/meta
http://dx.doi.org/ 10.1103/PhysRevX.8.031079
https://www.nature.com/articles/s41467-018-08254-y
http://dx.doi.org/10.1103/PhysRevLett.118.045701
http://dx.doi.org/10.1103/PhysRevLett.118.045701
http://dx.doi.org/10.1103/PhysRevB.99.161115


6

[32] P. St-Jean, V. Goblot, E. Galopin, A. Lemâıtre,
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Supplemental Material for “Cyclotron quantization and mirror-time
transition on nonreciprocal lattices”

I. SUPPRESSION OF NHSE BY A MAGNETIC FIELD

In this section, we show that a magnetic field can effectively suppress the NHSE. Its physical reason is the shrinkage
of the point gap for each ky channel. We present first the results for the nonreciprocal square lattice and then those
for the nonreciprocal honeycomb lattice.

A. Nonreciprocal square lattice

Given that there is no nonreciprocity in the y-direction, meaning that the boundary condition in this direction
is unimportant, we set the y-PBC for simplicity. The Hamiltonian can then be Fourier transformed into H̃ =
−
∑
m,ky

[
t+x c
†
m+1,ky

cm,ky +t−x c
†
m,ky

cm+1,ky +2t cos (ky + 2πmφ)c†m,kycm,ky
]
. Taking the x-OBC, we plot in Fig. S.1(a)

the spatial distribution function W (x, ky) =
∑
i |ψRi (m, ky)|2/M defined by all the right eigenstates ψRi (m, ky) (labeled

by i) of H̃ for a given ky. One can see that a small B is sufficient to drive the skin modes to penetrate deeply into the
bulk, showing a considerable suppression of the NHSE. This result generally holds for all transverse wave vectors ky.

HighLow
𝝍𝝍𝑹𝑹 𝟐𝟐

(a) (b) (c1)

(c3)

𝛿𝛿𝑥𝑥 = 0

(c2)

(c4)

𝛿𝛿𝑥𝑥 = 0.05

𝛿𝛿𝑥𝑥 = 0.05

𝛿𝛿𝑥𝑥 = 0

FIG. S.1: (a) Spatial distribution functions W (x, ky) under the x-OBC and y-PBC. (b) Complex energy spectra
under the x, y-PBC for different B with δx = 0.05, M = 100 and ky = 0. (c1-c4) Modulation of the wave functions
by the nonreciprocal hopping δx. (c1,c2) The 8th and (c3,c4) 58th eigenstates numbered by ascending Re(E) are

randomly chosen and other parameters are B = 0.02 and M = N = 50. In all figures, t = 0.5.

The above results can be understood by the following pictures. At B = 0, the energy spectra Eky (kx) for a given ky
forms a closed loop with a point gap topology in its complex plane under the x-PBC; see Fig. S.1(b), indicating the
presence of the NHSE under the x-OBC. For a finite B, real energy spectra develop from the band edges to the center
with B increased, accompanied by a shrinkage of the complex loop; see Fig. S.1(b). According to the correspondence
between the spectra under the x-PBC and the NHSE under the x-OBC, this means that a magnetic field tends to
suppress the NHSE. One can also analyze the results from the real-space perspective under the x, y-OBC and start
with the opposite limit of δx = 0. With increasing δx from zero, the wave functions under the magnetic field are
modulated by the exponential envelope function introduced by the NHSE; see Figs. S.1(c1-c4). Then the results in
Fig. S.1(a) can be understood as the superposition of all the broken loops in real space.

B. Nonreciprocal honeycomb lattice

Next, we investigate the nonreciprocal honeycomb lattice in Fig. 1(b) of the main text . With the same Landau
gauge A = (0, Bx) adopted and the zigzag edges oriented along the y-direction, the Hamiltonian for the nonreciprocal
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honeycomb lattice reads

H ′ =
∑
mn

(
t+x b
†
m+1,nam,n + t−x a

†
m,nbm+1,n

)
+ t
∑
mn

(
ei2πφ

′mb†m,nam,n + e−i2πφ
′mb†m,n+1am,n + H.c.

)
,

(S.1)

where a†m,n, b
†
m,n (am,n, bm,n) are the creation (annihilation) operators for the A, B sublattices, respectively, and

R(m,n) = ma1 + na2 is the location of the lattice sites with (a1,a2) the unit vectors shown in Fig. 1(b) of the main

text. The phase factor is defined by φ′ = Φ′/(2Φ0) with Φ′ = 3
√

3Ba′2/2 the flux through a unit cell and a′ the bond
length that is set to a′ = 1 henceforth.

Similar to the square lattice, we take the y-PBC and rewrite the Hamiltonian into H̃ ′ =
∑
m,ky

[
∆a†m,kybm,ky +

∆∗b†m,kyam,ky + t+x b
†
m+1,ky

am,ky + t−x a
†
m,ky

bm+1,ky

]
with ∆ = 2t cos [

√
3ky/2 + πφ(m− 5/6)]. The spatial distribution

function is calculated by W ′(x, ky) =
∑
i(|ψRa,i(m, ky)|2 + |ψRb,i(m, ky)|2)/(2M) with ψRa,i(m, ky) and ψRb,i(m, ky) the

components on the A and B sublattices, respectively. The spatial distribution W ′(x, ky) is plotted in Fig. S.2(a).
Similar to the results of the square lattice, the skin modes are strongly suppressed by just a small B. It is closely
related to the shrinkage of two complex loops of the energy spectra under the x-PBC (for an arbitrary ky); see
Fig. S.2(b). The conclusions agree with those of the square lattice in Sec.I.A.

(a) (b)

FIG. S.2: (a) The spatial distribution functions W ′(x, ky) under the x-OBC and y-PBC and (b) the complex energy
spectra under the x-PBC and y-PBC for different B with δx = 0.05, t = 1, M = 200 and ky = 0.

II. SCALING OF LOW-ENERGY LANDAU LEVELS

Fig. S.3 shows the energy spectra for different δx under the x-PBC. One can see that the spectra undergo a visible
modification as δx increases. Interestingly, the Landau fan structures with real energy values persist in the long-
wavelength limit. Figs. S.3(e-h) show that the Landau levels exhibit the scaling En ∝ nB, which resembles the
normal particle behavior. Such numerical results can be well explained by the semiclassical quantization introduced
in the next section.

III. SEMICLASSICAL ORBITS AND QUANTIZATION CONDITIONS

In this section, we derive the time-dependent coordinate functions and the trajectories of the wave packet under
a magnetic field based on the semiclassical equation of motion for both the nonreciprocal square and honeycomb
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x-PBC

𝛿𝛿𝑥𝑥 = 0

(a) (b)

𝛿𝛿𝑥𝑥 = 0.2

x-PBC
(c) (d)

(e) (f) (g) (h)

𝛿𝛿𝑥𝑥 = 0.05 𝛿𝛿𝑥𝑥 = 0.15

x-PBC x-PBC

R
e(

E
)

R
e(

E
)

R
e(

E
)

FIG. S.3: (a-d) Energy spectra under the x-PBC and y-PBC with δx = 0, 0.05, 0.15, 0.2 and t = 0.5. (e-h) Zoom of
the Landau fan structures corresponding to (a-d).

lattices. We show that, in the long-wavelength limit, the semiclassical orbits are always closed loops, which give rise
to real Landau levels. Beyond the long-wavelength limit, the orbits become open and the energies are complex.

A. Nonreciprocal square lattice

Without a magnetic field, the eigenenergy of Hamiltonian (1) in the main text is

E(k) = −2t(cos kx + cos ky)− 2iδx sin kx (S.2)

The Hamiltonian under a magnetic field can be obtained through the Peierls substitution (~k → p− qA) as

h = −2 [t cos px + t cos(py −Bx) + iδx sin px] , (S.3)

where A = (0, Bx) and ~ = q = a = 1 have been adopted. The Hamilton’s canonical equations read

dx

dτ
=

∂h

∂px
= 2t(sin px − iδx cos px),

dy

dτ
=

∂h

∂py
= 2t sin (py −Bx),

dpx
dτ

= −∂h
∂x

= 2Bt sin (py −Bx),

dpy
dτ

= −∂h
∂y

= 0.

(S.4)

One can obtain the coordinate functions and trajectories of the wave packet with given initial conditions of the
coordinates and canonical momenta. In general, the above differential equations can only be solved numerically.

We are mainly interested in the long-wavelength limit, where expanding E(k) around (kx, ky) = (0, 0) yields
ε(k) = t(k2x + k2y) + 2iδxkx. Accordingly, Eq. (S.4) reduce to
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dx

dτ
= 2(tpx − iδx),

dy

dτ
= 2t(py −Bx),

dpx
dτ

= 2Bt(py −Bx),

dpy
dτ

= 0,

(S.5)

which can be solved analytically. By eliminating the momenta in Eq. (S.5) we obtain the differential equations solely
for the coordinates as

d2x

dτ2
= 2Bt

dy

dτ
,

d2y

dτ2
= −2Bt

dx

dτ
.

(S.6)

The solutions of Eq. (S.6) have the form of

x(τ) = A1e
iωτ +A2e

−iωτ + x0,

y(τ) = i(A1e
iωτ −A2e

−iωτ ) + y0,
(S.7)

where ω = 2Btq/~2 is the cyclotron frequency and the four parameters are determined by the initial conditions for
the coordinates x(0), y(0) and those for the momenta px(0), py(0) through

A1 =
t [Bx(0)− ipx(0)− py(0)]− δx

2Bt
,

A2 =
t [Bx(0) + ipx(0)− py(0)] + δx

2Bt
,

x0 = py(0)/B, y0 = y(0)− tpx(0)− iδx
Bt

.

(S.8)

The periodic functions in Eq. (S.7) imply that a wave packet always forms closed orbits in the complex x-y space.
Specifically, the projections of the trajectories in the Re(x)-Re(y) and Im(x)-Im(y) planes are closed loops described
by the equations as

Re :

[
x− py(0)

B

]2
+

[
y − y(0) +

px(0)

B

]2
=

(
A

B

)2

,

Im : x2 +

(
y − δx

Bt

)2

=

(
δx
Bt

)2

,

(S.9)

where A =
√

[Bx(0)− py(0)]2 + px(0)2. The closed orbits of the wave packet under a magnetic field mean that the
quantization rule must be maintained due to the single-valued nature of the wave functions, which determines the
energy values. Here, it is just the Onsager-Lifshitz quantization rule∮

p · dr = (n+
1

2
)h. (S.10)

From Eq. (S.5), the relations between canonical momenta and velocities are

px =
1

2t

dx

dτ
+
iδx
t
,

py =
1

2t

dy

dτ
+Bx.

(S.11)

By inserting Eq. (S.11) into ε(p− qA) we obtain the energy as

ε =
1

4t

[
(
dx

dτ
)2 + (

dy

dτ
)2
]

+
δ2x
t

=
ω2

t
A1A2 +

δ2x
t
. (S.12)
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Meanwhile, inserting Eq. (S.11) into the integral of Eq. (S.10) yields∮
p · dr =

∮
p · dr

dτ
dτ =

2πω

t
A1A2 = (n+

1

2
)h. (S.13)

By combining Eqs. (S.12) and (S.13) we finally obtain the real Landau levels as

εn = (n+
1

2
)~ω +

δ2x
t
, (S.14)

which deviates from the standard results of normal particles by a factor δ2x/t stemming from the nonreciprocity.
We conclude that, in the long wave-length limit, the closed orbits of the wave packet impose the quantization rule,
which preserves real Landau levels despite the nonreciprocity. In contrast, semiclassical orbits solved numerically by
Eq. (S.4) are open lines beyond the long-wavelength limit, which are shown in Fig. 3(b) of the main text. As a result,
the quantization rules break down and the spectra become complex.

B. Nonreciprocal honeycomb lattice

In this subsection, we derive the semiclassical trajectories of the wave packet on the nonreciprocal honeycomb
lattice. Without a magnetic field, the Bloch Hamiltonian reads

H ′(k) =
∑
kx,ky

(
0 t+x e

−ik·∆1 + te−ik·∆2 + te−ik·∆3

t−x e
ik·∆1 + teik·∆2 + teik·∆3 0

)
c†kx,kyckx,ky , (S.15)

where ∆1 = (1, 0),∆2 = (− 1
2 ,
√
3
2 ),∆3 = (− 1

2 ,−
√
3
2 ). The conduction and valence bands possess the following

dispersion

E′±(k) = ±

√
t2 − δ2x + 4t2 cos2

√
3ky
2

+ 4t2 cos
3ky
2

(
cos

3kx
2
− δx

t
sin

3kx
2

)
. (S.16)

We expand the expressions around two Dirac points K = (0, 4π
3
√
3
),K′ = (0,− 4π

3
√
3
) to study the physics in the

long-wavelength limit. The energies reduce to

ε′±(k) = ±3t

2

√
k2x + k′2y −

(
2δx
3t

)2

+
4iδx
3t

kx, (S.17)

where k′y = ky − 4π
3
√
3

is measured from the Dirac points. For δx = 0, Eq. (S.17) describes massless Dirac particles.

The semiclassical Hamiltonian for the conduction band under a magnetic field is modified into

h′ = t0

√(
px + i

δx
t0

)2

+ (py −Bx)2 = t0h0, (S.18)

with t0 = 3t/2 and h0 =
√

(px + i δxt0 )2 + (py −Bx)2. The Hamilton’s canonical equations read

dx

dτ
= t0

(px + i δxt0 )

h0
,

dy

dτ
= t0

(py −Bx)

h0
,

dpx
dτ

= t0
B(py −Bx)

h0
,

dpy
dτ

= 0.

(S.19)
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Eliminating the momenta in Eq. (S.19) we obtain the differential equations solely for the coordinates as

d2x

dτ2
= B

t0
h0

dy

dτ
,

d2y

dτ2
= −B t0

h0

dx

dτ
.

(S.20)

The solutions of Eq. (S.20) have the form of

x(τ) = A′1e
iω′τ +A′2e

−iω′τ + x′0,

y(τ) = i(A′1e
iω′τ −A′2e−iω

′τ ) + y′0,
(S.21)

where ω′ = qBt20/(~2h0) is the cyclotron frequency and the four parameters are determined by the initial conditions
through

A′1 =
t0[Bx(0)− ipx(0)− py(0)] + δx

2Bt0
,

A′2 =
t0[Bx(0) + ipx(0)− py(0)]− δx

2Bt0
,

x′0 = py(0)/B, y′0 = y(0)− t0px(0) + iδx
Bt0

.

(S.22)

The coordinate functions possess the same form as those of the normal particles in Eq. (S.7) so that the trajectories
form closed orbits as well. The projections of the trajectories in the Re(x)-Re(y) and Im(x)-Im(y) planes are closed
loops described by the equations as

Re :

[
x− py(0)

B

]2
+

[
y − y(0) +

px(0)

B

]2
=

(
A

B

)2

,

Im : x2 +

(
y +

δx
Bt0

)2

=

(
δx
Bt0

)2

,

(S.23)

with A =
√

[Bx(0)− py(0)]2 + px(0)2; see Fig. S.4(a). The same results hold true for the valence band as well.
Similarly, closed orbits impose the following Onsager-Lifshitz quantization rule as∮

p · dr = (n+
1

2
− γ)h, (S.24)

in which the factor γ = 1
2 is due to the Berry phase of the Dirac particles, different from the case of normal particles.

We will show that the quantization also gives rise to real Landau levels. From Eq. (S.19), we have

px =
h0
t0

dx

dτ
− iδx

t0
,

py =
h0
t0

dy

dτ
+Bx.

(S.25)

By inserting Eq. (S.25) into Eq. (S.18), the energy can be expressed as

ε′± = ±h0

√
(
dx

dτ
)2 + (

dy

dτ
)2 = ±2h0

√
A1A2ω. (S.26)

Meanwhile, inserting Eq. (S.25) into the integral in Eq. (S.24) yields∮
p · dr =

∮
p · dr

dτ
dτ =

2πωh0
t0

4A1A2 = nh. (S.27)

By combining Eqs. (S.26) and (S.27) we obtain the real Landau levels as

εDn = ε′±n = ±3

2
t
√
q~nB, (S.28)
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(c) (d)

FIG. S.4: Projections of the semiclassical trajectories in the real and imaginary x-y planes for the nonreciprocal
honeycomb lattice. (a) Closed orbits in the long-wavelength limit with B = 0.4, x(0) = 0, y(0) = 1, px(0) = 0,
py(0) = −0.15, and (b) open trajectories beyond this limit with B = 0.2, x(0) = 0, y(0) = 12, px(0) = 0.8,

py(0) = 0.8. Other parameter is δx = 0.2.

which are just the familiar Landau levels for massless Dirac particles.
For more general cases, the Hamilton’s canonical equations read

dx

dτ
=

3it cos [
√
3(py−Bx)

2 ]e−
3ipx

2 (−t+ e3ipx(t− δx)− δx)

2E′+(p− qA)
,

dy

dτ
= −
√

3te−
3ipx

2 sin [
√
3(py−Bx)

2 ](t+ e3ipx(t− δx) + δx + 4te
3ipx

2 cos [
√
3(py−Bx)

2 ])

2E′+(p− qA)
,

dpx
dτ

= −
√

3Bte−
3ipx

2 sin [
√
3(py−Bx)

2 ](t+ e3ipx(t− δx) + δx + 4te
3ipx

2 cos [
√
3(py−Bx)

2 ])

2E′+(p− qA)
,

dpy
dτ

= 0,

(S.29)

with E′+(p − qA) =

√
t2 − δ2x + 4t2 cos2 [

√
3(py−Bx)

2 ] + 4t2 cos [
3(py−Bx)

2 ](cos 3px
2 −

δx
t sin 3px

2 ). We solve these
equations numerically and plot the semiclassical trajectories that are open lines in Fig. S.4(b). Therefore, the
quantization conditions disappear and the energy spectra become complex beyond the long-wavelength limit.

IV. ENERGY SPECTRA OF NONRECIPROCAL SQUARE LATTICE UNDER x-OBC

Fig. S.5 shows the energy spectra for different strengths of the nonreciprocal hopping δx ∈ [0, 2t/5] under the
x-OBC, where the in-gap streaks are edge states. The energy spectra are entirely real and exhibit a weak dependence
on δx. Moreover, the Landau fan in the long-wavelength limit exhibits equal level spacing and linear dependence on
B, which reduces to the behavior of free particles with a quadratic dispersion, the same as that under the x-PBC.

V. PROOF OF THE EXPONENTIAL PHASE BOUNDARY

We have seen in Fig. 4 of the main text that a MT transition can be induced by both the boundary parameter
γB and the magnetic field B for systems with a finite size in the x-direction. The critical phase boundary can always
be well fitted by exponential functions. Here, we prove this result for B = 0. In this case, the Fourier transformed
(y-direction) Hamiltonian reduces to

H̃ = t+x c
†
m+1cm + t−x c

†
mcm+1 + 2tc†mcm + γB(t+x c

†
1cM + t−x c

†
Mc1), (S.30)

where the original ky dependent term that is irrelevant to the phase boundary has been dropped and the tunable
boundary hopping is introduced.
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x-OBC

𝛿𝛿𝑥𝑥 = 0

(a)
x-OBC

𝛿𝛿𝑥𝑥 = 0.05

(b)

𝛿𝛿𝑥𝑥 = 0.15

x-OBC

𝛿𝛿𝑥𝑥 = 0.2

x-OBC
(c) (d)

(e) (f) (g) (h)

FIG. S.5: (a-d) Energy spectra under the x-OBC and y-PBC for δx = 0, 0.05, 0.15, 0.2 with M = 50, t = 0.5. (e-h)
Zoom of the Landau fan structures corresponding to (a-d).

The eigenvalue equation H̃|Ψ〉 = E|Ψ〉 with |Ψ〉 =
∑
m ψm|m〉 and |m〉 = c†m|0〉 (m = 1, . . . ,M) consists of the

bulk equations

t+x Ψj−1 − EΨj + t−x Ψj+1 = 0 (S.31)

with j = 2, . . . ,M − 1, and the boundary equations

−EΨ1 + t−x Ψ2 + γBt
+
x ΨM = 0,

γBt
−
x Ψ1 + t+x ΨM−1 − EΨM = 0.

(S.32)

Due to the spatially translational invariance of bulk equations, we can take the ansatz of wave function Ψi as:

Ψi = (βi, β
2
i , β

3
i , · · · , βM−1i , βMi )T . (S.33)

From Eq. (S.31) and Eq. (S.33), we obtain the eigenvalue in terms of βi as

E =
t+x
βi

+ t−x βi. (S.34)

For any E, there are two solutions βi = β1, β2 that fulfill the constraint

β1β2 =
t+x
t−x
. (S.35)

Note that any superposition of the two linearly independent solutions Ψ = b1Ψ1 + b2Ψ2 = (ψ1, ψ2, · · · , ψM ) is also a
solution of Eq. (S.31), where ψm = b1β

m
1 + b2β

m
2 .

Inserting Ψ into the boundary equations yields

(βM+1
1 + βM+1

2 )− (
t+x γ

2
B

t−x
)(βM−11 − βM−12 )−

[
(1 +

( t+x
t−x

)M]
γB(β1 − β2) = 0. (S.36)

It is convenient to set the two solutions as

β1 = reiθ, β2 = re−iθ (S.37)
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with r =
√
t+x /t

−
x , which fulfills Eq. S.35. Then Eq. (S.36) reduces to

sin[(M + 1)θ]− η1 sin[(M − 1)θ]− η2 sin θ = 0, (S.38)

with η1 = γ2B and η2 = γB(r−M + rM ), and the eigenvalues become

E = 2
√
t+x t
−
x cos θ. (S.39)

The eigenvalue E may be real or complex depending on the solutions of θ in Eq. (S.38).
For γB = 0, i.e., the x-OBC, we have η1 = η2 = 0, Eq. (S.38) reduces to

sin[(M + 1)θ] = 0, (S.40)

which yields M real roots as θ = lπ/(M + 1) with l = 1, . . . ,M . As a result, the system is in the MT -symmetric
phase with entirely real energy spectra under the x-OBC.

For γB 6= 0, we rewrite Eq. (S.38) as F1(θ) = F2(θ) with

F1(θ) = sin[(M + 1)θ]− η1 sin[(M − 1)θ], F2(θ) = η2 sin θ. (S.41)

The eigenvalues E are determined by the solutions of F1(θ) = F2(θ), which correspond to the crossing points of the
two functions. It can be shown that as long as η2 < 1 + η1, there exist M real solutions for θ and E; Otherwise, as
η2 > 1 + η1, some of the solutions of θ and E become complex [70]. As a result, η2 = 1 + η1 gives the MT transition
point, which determines the critical value γcB = r−M for γB ≤ 1. The phase boundary possesses the asymptotic form
for δx � t as

γcB = e−δxM/t, (S.42)

showing that it is an exponential function.

VI. SIZE EFFECT OF THE MT TRANSITION

Eq. (S.42) also tells that the function of the phase boundary γcB(δx) strongly depends on the system size M in
the x-direction. Specifically, the area of the MT -symmetric phase reduces as M increases. In Fig. S.6, we plot the
phase diagrams to show the size effect on the MT phase transition. One can see that for M = 200 that is larger
than M = 50 in the main text, theMT -symmetric region undergoes a considerable shrinkage for both zero and finite
magnetic field. Although the magnetic field has a smaller effect on the critical phase boundary compared with that
for M = 50, it still results in a considerable reduction of the order parameter dHS, which indicates that the magnetic
field always increases the number of states with real energies, consistent with our discussion on the Onsager-Lifshitz
quantization in the long-wavelength limit.

The size effect implies that no phase transition can occur as the system is infinitely large in the x-direction. However,
realistic physical systems always possess a finite size and the boundary condition can also be continuously tuned in
certain artificial systems such as the electrical circuits. Therefore, theMT transition can be promisingly achieved by
experiments.

VII. MT -BREAKING BY NON-HERMITIAN COMPLEX HOPPING

In this section, we study the case that a small imaginary part iη added to the hopping terms as t̃±x = t + iη ± δx,
which yields a non-Hermitian complex hopping. Mathematically, this is just a substitution t → t̃ = t + iη in the
x-direction, which leads to entirely complex energy spectra including the energy levels in the long-wavelength limit;
see Fig.S.7 for comparison. From the symmetry perspective, the additional iη term breaks the MT symmetry. As a
result, the original MT spectral transition disappears, which further verifies the MT scenario in our work.

From Fig.S.7, one can see that the real and imaginary parts of the eigenvalues exhibit a linear relation in the
long-wavelength limit (band edges), which can be solved analytically as

ε̃n = (n+ 1/2)~ω̃ + δ2x/t̃, (S.43)
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B=0.005

MT-Broken

(a) (b)

B=0

MT-Broken

MT MT

FIG. S.6: MT phase diagram for M = 200. Other parameters are the same as those in Fig. 5 of the main text.

𝜂𝜂 = 0

(a) (b)

𝜂𝜂 = 0.1

FIG. S.7: Complex energy spectra under different B with (a) η = 0 and (b) η = 0.1, respectively. Common
conditions: x-PBC, y-PBC, t = 0.5 and δx = 0.2.

where ω̃ = qB/
√
mxmy becomes complex due to the complex effective mass mx = ~2/(2t̃a2) in the x-direction.

Although the eigenvalues ε̃n become complex, the quantization persists. It is verified by the numerical results in
Fig. R.5, in which the Landau fan structure of the real components still possesses equal level spacing and a linear
B-dependence.

VIII. MAGNETIC ENERGY SPECTRA AND PHASE DIAGRAMS FOR NONRECIPROCAL
HONEYCOMB LATTICE

From Eq. (S.1) and the Fourier transformed Hamiltonian H̃ ′, we plot the magnetic energy spectra in Fig. S.9 under
both the x-OBC and x-PBC for the nonreciprocal honeycomb lattice. The spectra under the x-OBC are entirely
real despite the nonreciprocity. In contrast, complex spectra are induced by the nonreciprocity under the x-PBC,
where the fractal patterns merge into continuous pieces in the parametric regions far away from the long-wavelength
limit. In the vicinity of the Dirac points, the same Landau fan structures arise for both the x-OBC and x-PBC;
see Figs. S.9(a) and S.9(d). In particular, the quantized energy levels satisfy En ∝ ±

√
nB with n = 0, 1, · · · ; see

Fig. S.9(b), manifesting the massless Dirac particle.

To study the MT -symmetry breaking, we introduce a tunable boundary hopping, γB(t+x b
†
1,naM,n + t−x a

†
M,nb1,n),

between the outmost sites (1, n)B and (M,n)A, where γB ∈ [0, 1] with γB = 0 and γB = 1 corresponding to the x-OBC
and x-PBC, respectively. We calculate the order parameter dHS usingMT ψRa(b),i(m, ky) = ψR∗a(b),i(m, ky) and plot the
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𝛿𝛿𝑥𝑥 = 0.1

(a) (b)

(c) (d)

𝛿𝛿𝑥𝑥 = 0.1

Y-PBC

Y-OBCFIG. S.8: Energy spectra under x-PBC, y-PBC with δx = 0.1, η = 0.1, t = 0.5, and N = 50.

x-OBC

𝛿𝛿𝑥𝑥 = 0.1

x-OBC
(a) (b)

x-PBC

𝛿𝛿𝑥𝑥 = 0

x-PBC

𝛿𝛿𝑥𝑥 = 0.2

(c)

𝛿𝛿𝑥𝑥 = 0.1

(d)

FIG. S.9: (a) Energy spectra under the x-OBC and y-PBC with δx = 0.1 and M = 100. (b) Zoom of the Landau fan
with the rescaled horizontal ordinate

√
B. Energy spectra under the x-PBC and y-PBC calculated in the

momentum space (kx, ky) for (c) δx = 0 and (d) δx = 0.2. In all figures, t = 1.

phase diagrams in Fig. S.10. The phase diagrams resemble the main text fig(4) for the square lattice quite well, which
reveals the universality of the spectral phase transition induced by spontaneously MT -symmetry breaking, and a
magnetic field can effectively suppress the MT -symmetry breaking.

All the results in this section are consistent with those of the nonreciprocal square lattice.
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B=0.04

MT-Broken

(a) (b)

B=0

MT-Broken

MT MT

FIG. S.10: The order parameter dHS as a function of δx and γB with (a) B = 0 and (b) B = 0.04. Critical points in
(a) mark the real-to-complex spectral transition. The phase boundaries defined by the dHS contours are fitted by the

exponential functions. Other parameters are set as M = 25 and t = 1.
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