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ABSTRACT

Context. Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars.
A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the
calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over
the scattering cross section and the (thermal) velocity distribution of the scattering electrons.
Aims. We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of
the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling
the scattering electron’s final spin.
Methods. The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a
prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta
sampled during these simulations were analyzed and justified using theoretically determined boundaries.
Results. We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron
scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01 ≤ B/Bcrit ≤ 0.12, where Bcrit = 4.413 ×
1013 G, and 3 keV ≤ kBT ≤ 15 keV). The sampling of the tables is chosen such that the results have an estimated relative error of at
most 1/15 for all points in the grid. The tables are available online (see link in footnote, page 1).

Key words. X-rays: binaries – stars: neutron – methods: numerical

1. Introduction

Cyclotron resonant scattering features (CRSFs, often also called
“cyclotron lines”) have been measured in numerous accreting
X-ray pulsars and are the only direct way to measure a neutron
star’s magnetic field. They result from the interaction of photons
with electrons in the presence of strong B-fields approaching the
critical field strength,

Bcrit =
m2

ec3

e~
= 4.413 × 1013 G, (1)

⋆ The electronic tables described here are available at http://www.
sternwarte.uni-erlangen.de/research/cyclo

where me is the electron rest mass, e its charge, and c the speed of
light. Their positions can be estimated as ∼n Ecyc (n = 1, 2, 3, ...)
using the 12-B-12 rule, Ecyc ≈ 12B12 keV, with the B-field
strength B12 given in units of 1012 G. Cyclotron lines have their
origin in transitions of electrons between different Landau lev-
els, which are the discrete energy states an electron can occupy
within such a strong magnetic field.

The electrons are quantized perpendicular to the field and
therefore give rise to quantum mechanical absorption and
resonant scattering processes altering the spectral and spatial
distribution of the participating photons. The probability for an
interaction to occur is given by the corresponding cyclotron
cross section. In the course of simulating this process with
Monte Carlo (MC) methods, these cross sections can be used
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to sample the mean free path of a photon within such a medium.
We have separated this core issue from the larger simulation code
to allow for an efficient simulation of any complex X-ray pulsar
geometry based on precalculated tables of the mean free path.

In the following we describe the calculation method and us-
age of these mean free path interpolation tables and discuss how
the sampling of electron parallel momenta influences the for-
mation of CRSFs. In Sect. 2 we discuss the necessity of mean
free path interpolation tables and their usage and introduce their
computation and the interpolation mechanism. In Sect. 3 we ex-
plain the importance of the sampling of the electron parallel
momentum. In particular we illustrate the connection between
cyclotron resonances and the corresponding behavior of the sam-
pled electron parallel momenta, since the understanding of these
parameters is essential for the application of the Monte Carlo
code to generate synthetic spectra. Many more applications can
be envisioned, including the simulation of the influence of cy-
clotron scattering on the electrons, or the overall accretion ge-
ometry. Here, we restrict ourselves to the discussion of the mean
free path interpolation tables. Their motivation and application
is described against the background of Monte Carlo simulation
of cyclotron lines. The description and application of the full
MC scattering code, which has been written with the prime goal
of imprinting cyclotron lines on the continuum emission of astro-
nomical X-ray sources, and which includes a working fit model,
will be the subject of a forthcoming publication (Schwarm et al.,
in prep., hereafter Paper II). Compared to previous MC simula-
tions, it allows for much more complex physical scenarios, the
exploration of which is the goal of this series of papers.

2. Mean free path interpolation tables

2.1. Motivation

When simulating synthetic cyclotron line spectra using an
MC method, a photon with an initial energy is generated. Then
the optical depth τ to be traveled by the photon is drawn from
the exponential distribution exp(−τ/λ), and converted into a geo-
metric path length. This requires the calculation of the mean free
path λ, that is, the inverse thermally averaged scattering cross
section. The photon is then propagated over this distance and the
scattering process is simulated. This simulation requires us to
choose an electron that has properties appropriate for this mean
free path (MFP). Paper II and Schwarm et al. (2012) show a flow
chart of the full MC scattering process. Since the calculation of
the geometric path and the scattering simulation are very time
consuming, we have developed a tabular interpolation scheme
for the mean free path and electron parallel momentum sampling
to save computing time. It works on precalculated tables, which
were obtained using an adaptive process refining the table until
the interpolation error is smaller than a preset limit.

The mean free path of a photon in a CRSF medium is the in-
verse of the sum over the cross sections of all possible CRSF
related interactions between the photon and its possible scat-
tering partners, which throughout this work are assumed to be
only electrons (see Eq. (4) below). This calculation not only in-
volves a summation over all possible final Landau levels and spin
states of the electrons, but also a summation over all possible
intermediate states. Furthermore, the electrons have a tempera-
ture dependent continuous momentum distribution parallel to the
magnetic field, which leads to Lorentz boosting of the scattering
photons in the electrons’ rest frames giving rise to an integration
over possible initial electron parallel momenta as well. Finally,
the cross sections are summed over final polarization states and

averaged over the initial ones for a polarization averaged mean
free path. Photons are either in ordinary or extra-ordinary polar-
ization mode. The modes differ in the orientation of a photon’s
electric field vector with respect to the plane defined by the di-
rection of motion and the external magnetic field (Canuto et al.
1971; Mészáros & Ventura 1978; Becker & Wolff 2007).

Calculating the mean free path is only the first step in
the MC sampling process, but replacing it by an interpolation
scheme has a very large impact on the overall simulation time.
The CRSFs can form at rather small optical depths due to the
resonant nature of the cross sections. The small optical depths as
considered here mean that most of the injected seed photons es-
cape the CRSF medium immediately. Only 1–10% of the initial
photons will interact with the medium via cyclotron scattering.
Therefore the only evaluation necessary for the majority of pho-
tons is the one for their initial mean free path.

The simulations show that interacting photons tend to scat-
ter around the resonances in energy space until an electron with
parallel momentum that deviates sufficiently from the resonance
condition is hit. Spawned photons, that is, photons emitted by
previously excited electrons during their transition to a lower
Landau level, are also generated close to the resonances. This
leads to a large number of resonant photons compared to contin-
uum photons and further motivates the usage of the interpolation
tables presented here since the calculation time tends to increase
significantly near the resonances.

For each interaction between photons and electrons, the par-
allel momentum of the electron must be sampled according to
the corresponding thermal momentum distribution. For a given
photon energy and angle, the electrons with momenta that cause
the photon to be resonant in the electron rest frame have a much
higher scattering probability. Therefore the cyclotron resonances
manifest in parallel momentum resonances of the scattering elec-
trons (see Sect. 3).

The mean free path tables presented here store the total mean
free paths as well as the probability distributions needed for sam-
pling the electron momentum. Interpolating from these tables
speeds up our simulation by a factor of ∼60 compared to the case
where all data needed during the simulation is calculated with-
out resorting to interpolation tables. The difference between in-
terpolation and calculation becomes even larger, if the tables are
used outside of the simulation to simply interpolate mean free
paths for several energies without performing any other simula-
tion steps. In this case interpolation is faster by a factor of ∼2400
for input angles almost perpendicular to the magnetic field.

2.2. Calculation of the averaged cross sections

The calculation of the mean free path needed for the sampling of
propagation lengths of photons within a scattering medium relies
on the integration of the scattering cross sectionσ over a range of
electron momenta p, effectively averaging the cross section over
the parallel electron temperature (Daugherty & Harding 1986),

〈σ(ω, µ)〉 fe =
∫ +∞

−∞
dp fe(p,T )(1 − µβ)σrf(ωrf , µrf), (2)

where µ = cosϑ, ϑ is the angle between the photon’s direction
and the magnetic field, ω is the photon energy, and β = v/c. The
subscript “rf” refers to values in the rest frame of the electron.
fe(p,T ) is the electron’s momentum distribution, chosen here as
a relativistic Maxwellian with temperature T :

fe(p,T ) ∝ exp

(

− 1
kBT

(

√

m2
ec4 + p2c2 − mec2

))

. (3)
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The mean free path, λ, is then given by (Araya & Harding 1999)

λ(ω, µ) = 1/〈σ(ω, µ)〉 fe . (4)

The fully relativistic differential Compton scattering cross sec-
tion, σrf , used here was derived by Bussard et al. (1986) and
Sina (1996). These authors used the Breit-Wigner broadening
approximation and electron wave functions from Sokolov et al.
(1968), which are consistent with the perturbation theoretic or-
der of the calculation and the expected “time dilation” relation
(Graziani 1993). Daugherty & Ventura (1978) presented an al-
ternative derivation of the cross sections using electron wave
functions from Johnson & Lippmann (1949). See Herold et al.
(1982) for the relativistic transition rates, which are needed for
the cross section calculation and for the sampling of the final
Landau level into which an initially excited electron decays.

We use a revised implementation of the code developed
by Sina (1996) for the calculation of the scattering cross sec-
tions. His original code is used in the MC simulation from
Araya (1997), which has been employed by Schönherr et al.
(2007) to calculate the Green’s functions necessary for their
CRSF fitting model. The thermally averaged cross sections used
in the Araya (1997) code differ from the ones calculated by
Harding & Daugherty (1991; Schwarm et al. 2012). We veri-
fied that the origin of this difference lays in the integration of
the cross section code into the MC simulation rather than the
cross section calculation itself, by succeeding to reproduce the
Harding & Daugherty (1991) profiles with our revised imple-
mentation of the Sina (1996) code. The code has been restruc-
tured to minimize code repetition and increase readability. It has
been generalized to allow for previously hard-coded variables,
such as numerical integration boundaries and methods, or the
maximum number of Landau levels taken into account, to be
changed dynamically. It has been extended to arbitrary temper-
atures by including an adaptive Simpson integration scheme for
averaging the cross sections over the thermal electron momen-
tum distribution. Improved error handling and the addition of
warning messages result in a more robust implementation as
needed for the time consuming MFP table calculations. Unit
tests ensure that the resulting cross sections are in agreement
with the ones calculated by the original code. The resulting cross
sections are also in agreement with the work of Gonthier et al.
(2014). These authors derived the cross section for the special,
ϑ = 0, case of photons propagating parallel to the magnetic field,
following the approach of Sina (1996) as well.

The cross sections are sharply peaked functions, which are
difficult to integrate numerically. Figure 1 shows an example for
transitions from the Landau ground state with initial spin −1/2
to a final state with negative spin summed over the first five pos-
sible final Landau levels. A slight shift of the position of the
resonances to higher energies occurs for smaller angles of the
photon to the magnetic field.

The numerical evaluation of Eq. (2) is closely related to the
evaluation of the probability distribution of the electron momen-
tum (Araya & Harding 1999),

F(p) ∝
∫ p

−∞
dp′ fe(p′,T )(1 − µβ)σrf(ωrf , µrf), (5)

which is required in Monte Carlo simulations in order to find the
momentum of the photon’s scattering partner. The total inverse
mean free path, calculated by Eq. (2), accounts for all possible
electron momenta and is used to normalize F(p) to unity. By
searching for the momentum p for which F(p) = Rn, with a
random number 0 ≤ Rn ≤ 1, the parallel momentum of the
scattering electron can be sampled.
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Fig. 1. Scattering cross section as a function of rest frame energy for
exciting an electron in initial Landau level ni = 0 with spin −1/2 to
level nf with ni ≤ nf ≤ 6 and final spin −1/2 within a magnetic field
of strength B = 0.0385 Bcrit, resulting in a fundamental cyclotron reso-
nance at ∼20 keV. The solid, dashed, and dotted lines show cross sec-
tions for µ = cosϑ = 0.1, 0.5, 0.9, corresponding to angles between
the path of the incoming photon and the B-field of 84◦.2, 60◦, and 26◦.8,
respectively.

In order to calculate F(p) for a given magnetic field, tem-
perature, photon energy, and angle, we use an adaptive Simpson
integrator (McKeeman 1962). The thermal momentum distribu-
tion fe(p,T ) becomes very small for large absolute values of the
electron momentum. Therefore the numerical integration limits
were set to ∼±mec2. They cover a range much larger than the
expected momentum range of the electrons. This way the 45kBT
boundaries used by, for example, Araya & Harding (1999) are
also covered for the temperature range of 3 keV to 15 keV. In our
adaptive approach the integration interval is successively split
into smaller intervals. The integrals of these intervals are ap-
proximated by integrating a suitable third order polynomial. Due
to the adaptive nature of the integration method, the larger mo-
mentum range we use compared to earlier works leads to only
marginally increased computing time.

The splitting of the integration intervals has to be stopped
when a suitable convergence criterion is fulfilled. Lyness (1969)
shows that in fifth order approximation the maximum error of
the integrator can be estimated as

ǫ =
1
15

∑

i

Fci
ai
−

(

Fbi
ai
+ F

ci

bi

)

, (6)

where F
ci
ai

and (Fbi
ai
+F

ci

bi
) are the numerical estimates for the inte-

grals over the interval [ai, ci] before and after bisecting the inter-
val. We choose a relative maximum error of 1/15 as a convenient
compromise between accuracy, calculation time, and table size.
The error is halved in each recursion step to ensure that the total
error estimate remains below the chosen maximum error for the
total interval.

2.3. Optimizing table size: adaptive calculation

The adaptive nature of this integration method takes advantage
of the fact that only few integration points are needed out-
side the resonances. These choices allow for a computation-
ally manageable creation of mean free path tables on a time
scale of 3000–30 000 CPU hours on a typical work station with
processor speed of 2–3 GHz, depending on the magnetic field,
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Fig. 2. Absolute CPU time (filled symbols) on the left axis and multi-
core efficiency (open symbols) on the right axis for MFP table cal-
culation. The efficiency is calculated as η = t1/(ntn), where tn is the
execution time on n CPUs. t1 = 2t2 is assumed since performing the
calculation on only one core is too time consuming. The MFP table cal-
culations were performed on an AMD Opteron 2.2 GHz system. The
execution times are for a magnetic field B = 0.12Bcrit and a temperature
kBT = 3 keV with a maximum error of 2/15. The CPU time scales with
the table file size (see Sect. 2.4).

the temperature, and the error tolerance. These calculation times
are achieved by utilizing a few dozen CPU cores1 at the same
time using the Message Passing Interface (MPI; MPI Forum
1994). Parallelization leads to a significant speed up by a factor
of up to 0.8NCPU with respect to earlier implementations, where
NCPU is the number of CPUs used. Figure 2 shows this speed
up as a function of NCPU in terms of the parallel computing effi-
ciency, that is, the total CPU time used for a mean free path table
calculation or for a simulation divided by the CPU time needed
on only one CPU.

As discussed in Appendix A, for the fast interpolation of the
mean free path we evaluate the integrals using another adaptive
process where the energy and the angular grid points are iter-
atively refined until the mean free paths interpolated from the
table do not deviate from the corresponding calculated ones by
more than a given maximum deviation. After each calculation
step of a new energy grid point, the result is compared to the
value obtained by linear interpolation. The relative error of the
interpolation is determined and used as a convergence criterion.
A minimum recursion depth as well as maximal angle and en-
ergy differences prevent premature convergence.

The partial integrals, forming the cumulative distribution
function (CDF) of the electron momentum, are stored in FITS bi-
nary tables allowing for efficient loading into a simulation. FITS
tables can be opened and read by many processes in parallel, en-
abling the usage of parallel computation in simulations. Another
advantage of the FITS format is the efficient caching provided
by modern FITS libraries such as cfitsio2, which minimize
the bottleneck of disk reading operations. Although the whole
size of such an interpolation table is on the order of 1–200 GB
for the currently required accuracy, and thus will not completely
fit into memory for most common computers, for a given setup
the resonant nature of the scattering process means that the most
frequently required mean free paths will be from a small fraction
of the whole table only, which fits completely into memory and
therefore reduces the number of disk reads dramatically.

1 For the sake of simplicity the terms “CPU” and “CPU core” are used
equivalently throughout this work.
2 http://heasarc.nasa.gov/fitsio/fitsio.html

10000

1000

100

10

1

54321

0

-0.02

-0.04

〈σ
〉/

σ
T

ω/ωB

r
e
l.

E
r
r
o
r

Fig. 3. Thermally averaged cyclotron scattering cross sections in units
of the Thomson cross section σT interpolated for B = 0.12 Bcrit, kBT =
3 keV, and angle ϑ = 60◦. The relative deviations to the calculated pro-
files, shown in the lower panel, are not exceeding the maximum error of
1/15 of the MFP table used for the interpolation.

For testing the accuracy of the interpolation from the result-
ing tables, we calculated the thermally averaged scattering cross
section profiles (Eq. (2)) on a much finer grid than the tabulated
one (∼700–1800 energy grid points). Figure 3 visualizes the pro-
file for a magnetic field of B = 0.12 Bcrit, interpolated on a grid of
5000 energy grid points. The relative deviations from the calcu-
lated values do not exceed the relative maximum error of 1/15.

Appendix B shows interpolated profiles for the parameter
combinations for which tables are provided. They are plotted as
a function of frequency and scattering angle for several B-fields
and temperatures in Figs. B.1 and B.2.

2.4. Parameter ranges and file sizes

The electronic data provided with this publication is available
online (see link in footnote, page 1). We provide tables for the
mean free path calculated for B-fields and temperatures covering
the parameter ranges typical for accreting X-ray pulsars, namely
B = 0.01, 0.03, 0.06, 0.09, and 0.12 Bcrit and kBT = 3, 6, 9,
12, and 15 keV. Table B.2 shows a list of the available tables
and their uncompressed file size. As shown by Araya & Harding
(1999), the low continuum optical depth and the small collisional
excitation rate (Bonazzola et al. 1979; Langer 1981) of a typical
accretion column, combined with the high radiative cyclotron
de-excitation rate (Latal 1986), imply that we can assume that all
electrons are initially in the ground state Landau level and have a
relativistic thermal momentum distribution, which is not altered
by cyclotron resonant scattering. We therefore provide tables for
this case only. The full data set has an uncompressed size of
approximately 2.7 Terabytes. Compressing the tables using gzip
leads to a size reduced by roughly 50%.

The number of momentum grid points needed for conver-
gence of the numerical integration of Eq. (2), correlates posi-
tively with the resulting inverse mean free path. Thus broader
profiles and those with larger absolute values require more
p-grid points. The number of energy grid points needed for ac-
curate interpolation strongly depends on the complexity of the
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Fig. 4. Number of µ-grid points with respect to the electron temperature.
Each line corresponds to one magnetic field strength.

profile and therefore on the scattering angle. The sharply peaked
profiles for angles ∼90◦ to the magnetic field require many more
angle grid points. The average number of energy grid points
for each table does not depend on the temperature, nor does
it vary with the magnetic field strength for all but the high-
est field, B = 0.12 Bcrit. For this field the tables have twice as
many energy grid points as the other tables. The number of an-
gle grid points in each table is correlated with the temperature
and the magnetic field strength. More µ-grid points are needed
for higher temperatures since the broadening of the profiles to-
wards larger µ increases with temperature. The negative correla-
tion with magnetic field strength can be explained by the larger
absolute values of the corresponding profiles. Figure 4 shows the
number of µ-grid points, in the set of MFP tables presented here,
as a function of the electron temperature and the magnetic field
strength. The largest table was obtained for the lowest magnetic
field strength and the highest temperature, and is 238 GB in size.

3. The sampling of the electron parallel momentum

The electrons’ momenta perpendicular to the magnetic field are
quantized. The momenta parallel to the B-field are distributed ac-
cording to Eq. (3). The integration of the product of this distribu-
tion with the corresponding scattering cross sections leads to the
cumulative distribution function (Eq. (5)). During the MC sim-
ulation the scattering electron’s parallel momentum is drawn
from this distribution. The influence of this sampling process
on the cyclotron line shape is illustrated in Fig. 5. It shows the
momenta drawn during a simulation with respect to the scat-
tering photons’ energies. The probability for photons to scat-
ter off an electron with the right momentum to make the pho-
ton fulfill the resonance condition in the electron’s rest frame
is much higher. Therefore the events shown in Fig. 5 track
the resonance condition (see, e.g., Daugherty & Ventura 1978;
Harding & Daugherty 1991)

√

p2c2 + m2
ec4 = pc cosϑ + n

B

Bcrit

m2
ec4

ω
−
ω

2
sin2 ϑ. (7)

Harding & Daugherty (1991) already discussed the solutions to
this equation, which have to be found numerically and are often
being referred to as zero line width solutions. They are shown
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Fig. 5. Sampled electron parallel momenta for one MC run. Each point
represents one scattered photon by its energy on the x-axis and the cor-
responding electron’s momentum before (red) and after (blue) the scat-
tering process on the y-axis. Scattering events involving photons incom-
ing at angles of ∼90◦, 79◦, 60◦, 37◦, and 1◦ to the magnetic field (from
top to bottom) are shown. The setup of the calculation is the same as
in Isenberg et al. (1998) with a magnetic field B = 0.0385 Bcrit, electron
parallel temperature kBT = 5 keV, and a bottom-illuminated slab geom-
etry of the line-forming region. Vertical dashed lines show the cyclotron
line energy, which is slightly shifted to higher energies for smaller an-
gles to the magnetic field, because of the angular dependence of the
resonance energy. This shift is often neglected by observers in favor of
using the simplified 12-B-12 rule. Solid vertical lines mark the position
of the cut-off energy beyond which no resonant scattering is possible.
Dotted horizontal lines enclose the electron momentum range in which
99% of the electrons are located (assuming a relativistic Maxwellian,
Eq. (3)). Solid curved lines show the possible solutions for resonant
scattering. The vertical dotted lines indicate the Doppler width of the
cyclotron lines (see Eq. (9)).
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as curved lines in Fig. 5. The resonance condition can only be
fulfilled for photon energies below the cut-off energy,

ωcut(n) =

√
1 + 2nB/Bcrit − 1

sinϑ
mec2. (8)

The vertical solid lines in Fig. 5 mark the corresponding posi-
tions of the cut-off energies. No interaction involving the ex-
citation of an electron to Landau level n occurs beyond that
energy. In the following we describe the zero line width solu-
tions in energy-momentum space and provide physically moti-
vated regimes in which these solutions are expected to be ful-
filled, that is, energy and momentum limits. We show, for the first
time, simulated MC scattering events in the context of these zero
line width solutions (and their limits) with the aim to establish
an understanding of the complex cyclotron scattering process.
Furthermore, we use this representation as a consistency check
for our MC simulation. Schwarm (2010) performed a similar
check using the MC code by Araya (1997) without the phys-
ically motivated limits in energy and momentum space. Only
photons moving upwards or almost perpendicular to the column
axis are shown, which is why no decrease in electron momentum
occurs. Numerically calculated solutions of Eq. (7) are shown in
Fig. 5 as black solid curves. Vertical solid lines mark the posi-
tions of the cut-off energies corresponding to the three cyclotron
resonances shown. Positive and negative electron momenta are
possible to fulfill the resonance condition for photons with in-
coming angles almost perpendicular to the magnetic field and
energies below the cut-off energy. At the cut-off energy a unique
solution is possible for electrons with zero parallel momentum.
For smaller angles to the magnetic field the momentum solutions
deform, following the cut-off energy which is shifting to higher
energies. The sampled events are bound to a limited region of the
energy-momentum space. The cyclotron resonance widths pro-
vide boundaries on the energy axes, since only photons whose
momentum averaged mean free path is small enough for scatter-
ing to take place will appear in the figure. As an estimate, we
use the full Doppler width for thermal cyclotron line broadening
(Meszaros & Nagel 1985),

∆E

E
=

√

8 ln 2
kBT

mec2
cosϑ. (9)

The electron momentum space is limited by the width of the
relativistic Maxwellian momentum distribution. We use its defi-
nition in Eq. (3) to calculate the momentum range in which 99%
of the initial electrons reside. Therefore, the plasma temperature
is the main parameter responsible for a limited spreading of scat-
tering events in energy-momentum space (Mészáros 1978). The
boundaries of the energy-momentum space available for scatter-
ing events are shown in Fig. 5 as dotted vertical and horizontal
lines respectively.

Finally, the dashed lines in Fig. 5 show the cyclotron line
energies, that is, where n(ω, µ) is an integer (see Eq. (A.3)). For
photons moving perpendicular to the B-field this line overlaps
with the cut-off energy.

Comparing the red points in Fig. 5, which mark the initial
parallel momentum, with the blue points, which correspond to
the electron momentum after the scattering process, shows that
the electrons gain parallel momentum in the (projected) direc-
tion of the incoming photon. For angles perpendicular to the
magnetic field there is no continuous momentum transfer, while
for photons incoming at smaller angles to the magnetic field
parallel momentum is transferred. Figure 5 shows only photons

moving upwards. The electron momenta for scattering processes
with a parallel component are therefore shifted to higher positive
momenta.

The number of scattering events declines for very small pho-
ton angles to the magnetic field, from ∼4000 scattering events
in the top panel to ∼300 events in the bottom panel. The rea-
son for this is twofold: first, the almost zero photon momentum
component perpendicular to the field leads to a decrease of res-
onant cyclotron scattering events and second, repeated cyclotron
scattering favors a redistribution of the interacting photons to-
wards larger angles to the B-field, especially for photon energies
close to the cyclotron energy. A detailed description of the clas-
sic CRSF geometries will be provided in Paper II.

Now we are able to verify that scattering events are of res-
onant nature (i.e., they involve an excitation of an electron), the
resonant scattering events coincide with the zero line width so-
lutions, and the final electron momentum is increasing with de-
creasing scattering angle. The points which are not located on
the zero line width solutions mark elastic scattering processes
not involving any electron excitations. They occur mainly close
to ϑ ∼ 90◦ where resonant scattering is suppressed because the
photons have to have exactly the right energy to excite an elec-
tron. Photons with a smaller angle to the magnetic field, on the
other hand, can transfer excessive energy to the electron’s mo-
mentum parallel to the field. Therefore the red and blue points
of the resonant scattering events are almost congruent in the top
panel of Fig. 5, while the gap between them increases with in-
creasing µ = cosϑ. The data show that our physically motivated
limits provide accurate boundaries for the majority of scattering
events and further justifies the usage of Eq. (9) as an approxima-
tion to the CRSF line width.

4. Summary

For accelerating Monte Carlo simulations of cyclotron lines we
replaced the most time consuming part – that is the calculation of
the photon mean free path – with a tabular interpolation scheme.
These tables store the mean free paths of photons for different
incident angles and energies. The partial results necessary for
interpolating the electron momentum after a mean free path has
been drawn from the exponential probability distribution, and the
spin dependent results, are saved as well. The electronic tables
described here are available online (see link in footnote, page 1).

This interpolation scheme is used to generate synthetic cy-
clotron line spectra using our MC simulation code. It enables us
to simulate much more complex physical scenarios than previ-
ous works. As an example, we have investigated the application
of the momentum sampling.
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Appendix A: Interpolation techniques

In the following we explain the interpolation techniques used
for the creation of the MFP tables and to interpolate from them
during CRSF simulations with our new MC code.

As discussed above, the interpolation tables were refined
adaptively by comparing the calculated profile σcalc of a new
point with the profile obtained by interpolation from the table
σinterp, without taking this newly calculated point into account.
A linear interpolation scheme was used for refining the energy
grid, that is

〈σ〉interp(µ, ω) = 〈σ〉(µ, ω1) +
〈σ〉(µ, ω2) − 〈σ〉(µ, ω1)

ω2 − ω1
(ω − ω1).

(A.1)

The splitting of the energy intervals is stopped if

〈σ〉interp − 〈σ〉calc

〈σ〉calc
≤ ǫ, (A.2)

where ǫ = 1/15 has been found to be a good compromise be-
tween precision and calculation time.

The same linear interpolation method can be used to inter-
polate profiles during Monte Carlo simulations. For an interpo-
lation in µ and ω two linear interpolations have to be performed.
First the inverse mean free path is interpolated for the surround-
ing angular grid points, each one on its own energy grid. Linear
interpolation between these values with respect to the angle then
gives the desired value.

For using the computed mean free path tables for the simu-
lation of synthetic spectra with CRSFs, a physically motivated
interpolation method was implemented as well. Instead of inter-
polating for the same energy on two different angular grid points,
the energy is shifted to the corresponding energy of the angular
point considered. This is done by calculating the order n of the
energy in terms of the resonance condition for the desired an-
gular value. This value is used to calculate the corresponding
energies at the angular boundaries used for interpolation.

n(ω, µ) =
(ω sin2 ϑ/mec2 + 1)

2 − 1

2B/Bcrit sin2 ϑ
· (A.3)

This interpolation scheme eliminates inaccuracies due to the
shift of the resonance energy with ϑ, because interpolation is
done at nearly constant “elevation” along the resonance ridges
(Harding & Daugherty 1991).

Appendix B: Mean free path table structure

The naming convention of the mean free path tables was
chosen as follows: all names start with mfp_ followed by
the table specific parameters, namely the magnetic field
strength B and the temperature T . The magnetic field is in
units of the critical magnetic field strength, with five digits The
temperature kBT is given in units of MeV with five digits as well.

Table B.1. List of FITS keywords.

Name Description
B Magnetic field [Bcrit]
T Electron temperature kBT [MeV]

MU Cosine of the incoming photons angle to the
magnetic field, µ = cosϑ

MAX_ERR Maximum relative error in units of 1/15

Table B.2. Uncompressed file sizes for the parameter combinations
made available in GB.

B/Bcrit
kBT [keV] 0.01 0.03 0.06 0.09 0.12

3 44 16 10 7 11
6 89 29 16 11 16
9 148 42 23 16 22

12 198 61 32 20 26
15 238 74 35 24 32

Notes. Compression reduces the file size by approximately 50%.

For example, the first table in alphabetical order is named
mfp_B0.0100T0.0030.fits.

Each mean free path table starts with an empty image HDU
containing header keywords for the magnetic field strength B,
the temperature T , and the relative maximum error as listed in
Table B.1. It is followed by a variable number of binary exten-
sions any of which corresponds to one angular grid point. These
binary extensions are ordered by increasing µ = cosϑ and are
described in detail in the following.

The value of µ is stored in the header keyword MU. Each row
corresponds to one energy grid point, the value of which can
be found in the first column. The second column contains the
total thermally averaged scattering cross section summed over
final electron spin states. The number of grid points used for
the adaptive Simpson integration over the thermal electron mo-
mentum distribution (Eq. (2)), can be found in the third column.
The corresponding electron momentum grid points are stored in
the fourth column as a variable length array of double numbers,
followed by the spin averaged cumulative distribution function
(CDF), the ensemble of partial integrals obtained from Eq. (5).
The sixth column contains, again, the number of electron mo-
mentum grid points used for the integration of Eq. (2) taking
into account only transitions with final electron spin down. Fol-
lowing the corresponding momentum grid points and cumulative
distribution functions the pattern repeats once again for the case
of final electron spin up.

The header keyword MAX_ERR contains the relative error of
the table, that is, ǫ from Eq. (A.2), in units of 1/15.

Table B.3 visualizes the structure described here. The last six
columns for the spin dependent cases are omitted for the sake of
clarity.
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Table B.3. Description of the mean free path table structure for given values of kBT and B/Bcrit.

EXTENSION MU COLUMNS

Energy [MeV] Cross section [σTh] # of grid points Grid [MeV] CDF

1 µ1 k1 〈σ(µ1, k1)〉 Np [p1, . . . , pNp
] [F p1

−mec, . . . , F
pNp

−mec]
...

kNk
〈σ(µ1, kNk

)〉 Np [p1, . . . , pNp
] [F p1

−mec, . . . , F
pNp

−mec]
...

...
...
...

...
...

...
...

...
...

...
...

Nµ µNµ k1 〈σ(µNµ , k1)〉 Np [p1, . . . , pNp
] [F p1

−mec, . . . , F
pNp

−mec]
...

kNk
〈σ(µNµ , kNk

)〉 Np [p1, . . . , pNp
] [F p1

−mec, . . . , F
pNp

−mec]

Notes. The column pattern # of grid points, Grid [MeV], CDF is repeated two more times, omitted below for clarity, for the case of final
electron spin down and final electron spin up, respectively. The first element of each Grid and CDF array is used for internal consistency checks.
The user should only use the indices 1 to Np. The dependency of Np on angle and energy is not stated explicitly. Nµ, Nk, and Np are typically on
the order of a few hundred to thousand of points.
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Fig. B.1. Visualization of the adaptively calculated inverse mean free path values from the interpolation tables for B = 0.01, 0.06, and 0.12 Bcrit.
The colors correspond to the averaged scattering cross sections.
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Fig. B.2. Adaptively calculated averaged cyclotron resonance scattering cross sections. The colors correspond to different angles of the scattering
photon with respect to the magnetic field.
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