
Citation: Benavides Cesar, L.; Manso

Callejo, M.Á.; Cira, C.-I.; Alcarria, R.

CyL-GHI: Global Horizontal

Irradiance Dataset Containing

18 Years of Refined Data at 30-Min

Granularity from 37 Stations Located

in Castile and León (Spain). Data

2023, 8, 65. https://doi.org/

10.3390/data8040065

Academic Editors: Vladimir

Sreckovic and Juanle Wang

Received: 13 December 2022

Revised: 8 March 2023

Accepted: 23 March 2023

Published: 26 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

data

Article

CyL-GHI: Global Horizontal Irradiance Dataset Containing
18 Years of Refined Data at 30-Min Granularity from 37 Stations
Located in Castile and León (Spain)
Llinet Benavides Cesar * , Miguel Ángel Manso Callejo , Calimanut-Ionut Cira and Ramon Alcarria

Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía,
Geodesia y Cartografía, Universidad Politécnica de Madrid, Calle Mercator, 2, 28031 Madrid, Spain
* Correspondence: llinet.bcesar@upm.es

Abstract: AbstractAccurate solar forecasting lately relies on advances in the field of artificial intel-
ligence and on the availability of databases with large amounts of information on meteorological
variables. In this paper, we present the methodology applied to introduce a large-scale, public,
and solar irradiance dataset, CyL-GHI, containing refined data from 37 stations found within the
Spanish region of Castile and León (Spanish: Castilla y León, or CyL). In addition to the data cleaning
steps, the procedure also features steps that enable the addition of meteorological and geographical
variables that complement the value of the initial data. The proposed dataset, resulting from apply-
ing the processing methodology, is delivered both in raw format and with the quality processing
applied, and continuously covers 18 years (the period from 1 January 2002 to 31 December 2019),
with a temporal resolution of 30 min. CyL-GHI can result in great importance in studies focused
on the spatial-temporal characteristics of solar irradiance data, due to the geographical information
considered that enables a regional analysis of the phenomena (the 37 stations cover a land area
larger than 94,226 km2). Afterwards, three popular artificial intelligence algorithms were optimised
and tested on CyL-GHI, their performance values being offered as baselines to compare other fore-
casting implementations. Furthermore, the ERA5 values corresponding to the studied area were
analysed and compared with performance values delivered by the trained models. The inclusion
of previous observations of neighbours as input to an optimised Random Forest model (applying a
spatio-temporal approach) improved the predictive capability of the machine learning models by
almost 3%.

Dataset: https://doi.org/10.5281/zenodo.7404167

Dataset License: : CC-BY-SA-NC

Keywords: global horizontal irradiance; weather measurements; extended area; Spain region

1. Introduction

In solar forecasting, like any other research field, access to data is a primary factor
in the discovery process, and the open publication of the datasets and methodologies
used by authors in their studies is encouraged [1,2]. Lately, tools have been developed to
facilitate access to publicly available solar data [3,4], and public institutions are increasingly
providing their data [5,6]. However, as this is not always possible, created datasets are
often private, or there are strong limitations on their use and distribution, and the number
and quality of published irradiance datasets are still insufficient when compared to other
research fields where large-scale datasets can be found in known repositories such as UC
Irvine Machine Learning Repository (UCI) [7], Kaggle [8], and Linked Open Data Cloud [9].

In relation to published datasets for solar forecasting, references can be made to the
source of the data provided such as store photovoltaic (PV) data [10], data collected by

Data 2023, 8, 65. https://doi.org/10.3390/data8040065 https://www.mdpi.com/journal/data

https://doi.org/10.3390/data8040065
https://doi.org/10.3390/data8040065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0003-3558-570X
https://orcid.org/0000-0003-2307-8639
https://orcid.org/0000-0002-7713-7238
https://orcid.org/0000-0002-1183-9579
https://doi.org/10.5281/zenodo.7404167
https://doi.org/10.3390/data8040065
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data8040065?type=check_update&version=2


Data 2023, 8, 65 2 of 21

meteorological stations [11,12], and to the datasets resulting from the combination of several
sources [13–15]. There are also datasets that accumulate data from many years [11,16], or
datasets that take into account a larger number of measurement sites [10,17]. In this regard,
Bright et al. [10] published a dataset containing photovoltaic system power measurements
and metadata from 1287 PV systems located in three Australian states with a temporal
granularity of ten min, and, although it features a high number of sites, it contains only
seven months of data. The source of this data is a website where owners shared data on
PV power generation using automated data loggers. Pedro et al. [13] proposed a dataset
using data outputs from four different sources, namely, ground-based measurements,
satellite-imagery features, sky-camera images, and numerical weather prediction for a
selected site in Folsom, California. This dataset contains data for three years (2014 to
2016), with a temporal granularity of one min. Driemel et al. [11] provided high-quality
ground-based radiation measurements in one-minute resolution collected by 59 stations,
scattered around the world, from 1992 to 2017, from the Baseline Surface Radiation Network
(BSRN). The proposed dataset is suitable for point analysis, but not for studies considering
the spatial component, because the stations are not concentrated in a single site, and the
different groups or organisations controlling the stations might apply distinct quality
control procedures.

However, solar forecasting has a spatio-temporal characteristic, which has recently
been studied in more detail by researchers in the field [18–24], and we believe that, in order
to study the variability of radiation with respect to the spatial component, datasets with a
wide spatial representation are needed.

In Spain, the databases with the greatest spatial distribution in the territory are main-
tained by the Meteorology State Agency (Spanish: Agencia Estatal de Meteorología, or
AEMET) [25] and the Agroclimatic Information System for Irrigation (Spanish: Sistema de
Información Agroclimática para el Regadío, or SIAR) [26]. Data from the Spanish SIAR
network have been used in previous studies; for example, data from the Community of
Castile and León has been used by Rodriguez et al. [27] to study four spatial interpolation
methods over large areas with few measurement points. The authors used four AEMET
stations as a reference to evaluate the quality of the results, and the Universal Kriging
method, which considered the metrics evaluated, yielded the best results. Eschenbach
et al. [28] used data from the SIAR network of the region of Castile and León to compare and
evaluate the spatio-temporal characteristic. They compared a region with a high dispersion
of sensors (the SIAR network of the region of Castile and León) versus a region with a
high concentration of sensors (OAHU Solar Measurement Grid from National Renewable
Energy Laboratory in the United States). The authors employed four machine learning
models and obtained a forecast skill between 13% and 70%, concluding that the sensor
network density, time resolution, and lead-time of the dataset have an important effect on
the skill forecast of the model. Gutierrez-Corea et al. [29] used data from ten stations from
the SIAR network from the Community of Castile and León to forecast solar irradiance
and evaluate the influence of data from neighbouring stations to improve accuracy. The
authors applied an artificial neural network that obtained the best results for the short-term
horizon using information from the neighbours.

Of these two databases (AEMET, SIAR), Urraca et al. [30] point out that AEMET is the
most reliable database, due to the quality of the devices used to make the measurements
and, above all, due to the quality control to which the data are subjected; however, its
stations are more dispersed and its access is restricted. In contrast, the SIAR network meets
two important criteria: (1) it is highly representative throughout the Spanish territory, and
(2) provides data in an open way, allowing access to its historical data, although the quality
of its data is lower because the measuring devices are of lower quality. In addition, there
are also regional databases such as Meteo Navarra (from the Spanish region of Navarra),
Meteocat (Catalonia), Euskalmet (Basque Country), MeteoGalicia (Galicia), SIAR Rioja, and
SOS Rioja [30].
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In this paper, data from the SIAR network of the region of Castile and León (Spanish:
Castilla y León, or CyL), managed by CyL’s Institute of Agricultural Technology [31] or
ITACyL (ITA references the Spanish: Instituto Tecnológico Agrario), was chosen for the
preparation of a dataset. The objective was to describe the methodology applicable to create
a dataset of Global Horizontal Irradiance (GHI) that could be used in solar forecasting,
with a wide spatial distribution, important for designing a spatio-temporal analysis, using
openly available meteorological data captured for agricultural purposes. Furthermore,
experiments for obtaining baseline performance values of optimised machine learning
(ML) algorithms were carried out, and an improvement of almost 3% was observed in the
forecast skill when considering the spatial component in the training.

The contributions of the research carried out is summarised as follows.

• A dataset of public irradiance, CyL-GHI, is introduced, and the methodology applied
to create it is described in detail.

• Three popular artificial intelligence algorithms were optimised and tested on CyL-GHI;
their performance values being offered as baselines to compare other forecasting im-
plementations. Furthermore, the ERA5 values corresponding to the studied area were
analysed and compared with performance values delivered by the trained models.

• The inclusion of previous observations of neighbours as input to an optimised Random
Forest model (by applying a spatio-temporal approach) improved the predictive
capability of the machine learning models by almost 3%, indicating the importance of
approaching the irradiance prediction task considering the spatial component.

The value of the presented dataset, named CyL-GHI, resides in:

• Its temporal representation, because it presents irradiance data for an 18-year period
from January 2002 to December 2019 with a temporal resolution of 30 min.

• In its spatial representation, as it contains data from 37 stations that allow for a
regional-level analysis (it covers a land area of approximately 94,226 km2).

• It contains meteorological variables that enable the analysis of correlation and the use
of explanatory variables in the models to study their influence on performance.

• Its publication allows other researchers to train their forecasting model implementa-
tions, without reapplying data cleaning and quality control procedures.

• It can be used with emerging trends based on deep machine learning for solar ir-
radiance forecasting and serve as a benchmark dataset where comparisons can be
established between novel implementation models tested on the same data (as a
train-data data split procedure is also proposed).

The remainder of the paper is organized as follows. Section 2, the process of obtain-
ing, transforming, and quality control performed over the data is described. Section 3
presents a set of baseline models; Section 4 explains in detail the experiments carried
out on the dataset as well as the analysis of the results. The manuscript ends with the
conclusion section.

2. Data

In this section, we review the process of obtaining the dataset, starting with Section 2.1,
where the methodology used to obtain the dataset is described. Section 2.2 shows the
quality control carried out, Section 2.3 describes the dataset obtained, while Section 2.4
provides a brief description of ERA5, a public dataset used for comparison reasons.

2.1. Procedure Applied for the Dataset Creation

For the dataset generation process, we applied the methodology illustrated in Figure 1.
Briefly, we began by downloading all the available data offered by ITACyL, using a File
Transfer Protocol (FTP) provided by the public agency. The data was then transformed
using ETL (Extract, Transform, and Load) tools. Afterwards, we carried out an exploratory
data analysis. The subsequent step was to perform a quality control (QC) of the data. In
the end, the files were created for the proposed CyL-GHI dataset.
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Figure 1. Methodology applied to obtain the CyL-GHI dataset.

A detailed description of this methodology is presented below, where each of the steps
involved in the process of obtaining the CyL-GHI dataset will be explained.

2.1.1. Raw Data

We started by downloading the 21-year hourly data from the 53 stations located in the
Spanish autonomous community of Castile and León using the FTP service [32] provided
by the ITACyL to generate the raw data. Figure 2 shows the spatial distribution of the
stations forming the raw data within the Castile and León region. As can be found in
Figure 2, the region has stations spread over its nine provinces, although the representation
is denser towards the centre of the region.

The raw data downloaded from the FTP is pre-separated according to the following
classification: hourly data, daily data, and monthly data—hourly and daily data being
collected from 1 January 2001, to the present and monthly data being collected from
1 January 2019, onwards. The hourly data are disaggregated into folders named with the
name of the year it contains; each folder containing a zip file for each day of the year.
These files, in turn, store a csv file with the data collected for the day. The observations are
captured with a frequency of 30 min.

The generic notation used to name the raw files is “20010101_RedClimaITACyL_
Horario.csv”. In this mentioned formulation, “20010101” represents the year, month, and
day; “RedClimaITACyL” represents the name of the network (ITACyL references the
Agroclimatic Technological Institute of Castile and León); and “Horario” represents time
granularity for data to be stored, while the “.csv” represents the file extension. Each raw
file from every station illustrated in Figure 2 contains the variables described in Table 1.
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Table 1. Description of the fields in the raw data files.

Name Format/Measuring Unit Description

id - Station identifier
date (AAAA-MM-DD) Date of the observation
hour (HHMM) Hour of the observation

precipitation (mm) Precipitation
temperature (◦C) Temperature

relative-humidity (%) Relative humidity
irradiance (W/m2) Irradiance

wind-speed (m/s) Wind speed
wind-direction (◦) Wind direction

The description of the equipment used to acquire the measurements at station-level is
presented in Table 2. In Table 2, for each of the meteorological variables, the measurement
ranges, the accuracy of the sensor, the measurement unit and the instrument used in the
measurement is specified. The information regarding the data capturing instruments was
compiled from the information provided by the ITACyL. According to its productor, as part
of the SIAR network, all stations must undergo preventive maintenance every six months
and annual calibration of the measuring sensors [33].
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Table 2. Complementary data of the ranges of values and uncertainty of the instruments used in the
measurement of each of the variables of the raw data.

Meteorological
Variable

Sensor
Accuracy

Measurement
Range

Measurement
Units Instruments

Irradiance 3% 350 to 1100 nm Wm−2 Pyranometer SKYE
SP1110 (CAMPBELL)

Wind speed

±0.3 m/s for 1
to 60 m/s

±1 ms−1 for 60
to 100 m/s

1 to 60 m/s m/s Wind Monitor RM
YOUNG 05103

Wind
direction ±3◦ 0 to 360◦ ◦ Wind Monitor RM

YOUNG 05103

Temperature ±0.2 ◦C −39.2 ◦C to 60 ◦C ◦C
Probe VAISALA

HMP45C
(CAMPBELL)

Relative
humidity ±2% 0.8 to 100% %

Probe VAISALA
HMP45C

(CAMPBELL)
Note: This table was created by adapting the information published by ITACyL [33] (the producer and maintainer
of the original data on which the CyL-GHI dataset is based on).

2.1.2. Extract, Transform and Load

In order to unify all the information in a single csv file, ETL tools were used to
(1) group the zip files of the days in a csv file for each year; (2) convert of coordinates and
spatial reference system (European Datum 1950 UTM projection Huso 30 to Geographic
Coordinates European Terrestrial Reference System 1989); (3) merge the information related
to the locations of the stations (X and Y coordinates and height); and (4) unify the date and
time fields into a single field with the format (yyyy-MM-dd HH:mm:ss).

The FTP service also provided a csv file consisting of descriptive information regard-
ing the stations, namely, the fields “IDPROVINCE”, “IDSTATION”, “SHORT NAME”,
“NAME”, “LENGTH (ED50 DDMMSS.SSS)”, and “LATITUDE (ED50 DDMMSS.SSS)”. The
FTP service also provided the “HEIGHT”, “X (UTM30N ED50)”, and “(UTM30N ED50)”
variables that were used for assigning geographic data to the stations.

2.1.3. Exploratory Data Analysis

During the data exploration operation, it was found that only 37 of the 53 meteo-
rological stations collected data since January 1st, 2001. The rest of the 16 stations were
progressively incorporated into the network in the 2001–2012 period after which 53 stations
have been maintained.

To have a global view of the stored data, all the variables of all stations for all years
were plotted. Stations that had joined later were found to have long periods of missing
data (as shown in Figure 3). The periods of absence observed varied from days to full
months. This first inspection of the data also revealed the presence of outliers and errors.
As part of the screening process, we calculated the number of records per station, verified
that all stations had the same attributes (or characteristics), homogenized the data types,
calculated the number of missing values, and validated the range of allowable values for
each variable (considering the data published by ITACyL).
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in the province of Avila (all variables are shown). Notes: (1) Periods with no data are marked with
red rectangles. (2) It is important to note that the stations with these issues were not included in the
final dataset.

One of the most common identified problems was the absent data from the tempera-
ture, precipitations, and relative humidity variables (for example, that Station ZA02, located
in Villaralbo, province of Zamora, had missing precipitation values since 2001). Another
problem identified was that the data corresponding to the period 1st of January 2011 to 31st
of January 2015 had the wrong year values in the time index of some of the stations.

The outcome of this exploratory process, a reduced dataset with 37 stations that
contained complete data for the period from 1st of January 2002 to 31st of December 2019
was obtained, where the outliers values found were labelled with the data type NaN
(Not a Number). Figure 4 shows the spatial representation of the 37 stations selected to
be part of the CyL-GHI dataset. In this dataset, the spatial distribution is concentrated
towards the centre of the region, and, apart from stations LE01 (Spanish: Carracedelo) and
SA01 (Spanish: Ciudad Rodrigo) from the provinces of León and Salamanca), all the other
stations are located within a 70 to 100 km range of each other.
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2.2. Quality Control of Dataset

The quality control performed on the data is an important step in the creation of a
dataset. There are different controls to be performed and, even within the experts in the
field, types of controls differ between works [34], as shown below:

The “BSRN Global Network recommended QC tests, v2.0” [35] (BSRN stands for
Baseline Surface Radiation Network) are considered amongst the most recognised. Wilbert
et al. [34] proposed eight quality checks on the basis of the most commonly used in the
literature. The quality checks are named (1) the missing timestamps; (2) the missing values;
applying (3) the K-Tests; (4) the BSRN’s closure tests; (5) the BSRN’s extremely rare limits
test [35]; (6) the BSRN’s physically possible limits test [35]; (7) the tracker-off test; and
(8) carrying out a visual inspection. Of the eight quality controls proposed by Wilbert et al.,
the following five will be used in our analysis: (1)-missing timestamps; (2)-missing values;
(4)-BSRN’s extremely rare limits test [35]; (5)-BSRN’s physically possible limits test; and
(8)-visual inspection.

2.2.1. Missing Timestamps

For the quality control of a time series, its timestamps are essential, so the following
had to be considered. Each station in the SIAR network of Castile and León has its own
local mean solar time, corresponding to the meridian on which it is located. Before applying
any control on the data, it was necessary to correct this issue by converting the data to the
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Universal Time Coordinated (UTC) format. The conversion was performed for each of the
stations considering their longitude to correct the time error in their timestamps.

Furthermore, when collecting the data, there may be missing timestamps in the time
series caused by failures of the equipment that performs the storage. In order to identify
these gaps, an analysis of the time indexes was carried out, and, in cases where it was
found that they were not complete, the time indexes were completed with the expected
timestamps, and the corresponding series values were filled in with NaN values.

2.2.2. Missing Values

The presence of missing values can have several causes. Missing data may be due to
the fact that values were not recorded for a specific time period because of inconsistency in
the data acquisition equipment. Another possible cause is that, for a particular station or
variable, one of the measurement equipment was not available (e.g., Station ZA02 located
in Villaralbo, province of Zamora, is missing the values of the precipitation variable for the
entire year of 2001, while station AV01, located in Nava de Arévalo, province of Avila, has
hourly timestamps for the month of January 2001, and after 6th of February 2001, it starts
delivering data with a granularity of 30 min).

An analysis was conducted for each of the stations in the raw data. As shown in
Figure 5, there are stations that reach 40% data loss in the raw data. However, stations with
high percentages of missing data were already left out of the final dataset in the first steps
of the application of the methodology and are not presented in the CyL-GHI dataset.
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The mean percentage of missing values in the CyL-GHI dataset is 2.64% (ranging from
minimum 1.60% at the AV01 station to maximum 3.98% at the ZA05 station). It is important
to note that missing values occurrence percentages are below 4% in all the stations that
compose the CyL-GHI dataset, as shown in Figure 6.
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The missing values in the CyL-GHI dataset were completed with NaN values to
maintain the completeness of the time series time index (as having a complete time index is
important in the pre-processing step of the dataset to obtain the input data structure for
machine learning algorithms). After obtaining the time windows, it is possible to eliminate
NaN values without losing the sequence necessary to contemplate past observations
for prediction.

2.2.3. BSRN’s Limits Test

In this step, the limit set for the global horizontal irradiance was evaluated by cal-
culating the irradiance value against extremely rare limits with Equation (1), and against
physical possible limits with Equation (2) as follows.

−4 ≤ GHI ≤ 1.5 × ETN × cos1.2(SZA) + 100 (1)

−2 ≤ GHI ≤ 1.2 × ETN × cos1.2(SZA) + 50 (2)

In Equations (1) and (2), ETN represents the Extra-Terrestrial irradiance at Normal
incidence, and SZA represents the solar zenith angle. The astronomical variables required
for the irradiance analysis were retrieved from the “Solar Geometry 2” [36] library, and the
process calculates the astronomical information of each station considering the coordinates,
height, period, and desired time resolution of the data. The mentioned library returned
a file with universal Julian date (day), year, month of the year, day of the month, hour
of the day (decimal hour), day of the year, topocentric declination (radian), topocentric
hour angle (radian), topocentric Sun elevation angle without refraction correction (radian),
topocentric Sun azimuth angle Eastward from North (radian), and Sun-Earth Radius (ua).

The data obtained with the above-mentioned library had to be processed to obtain
new variables and to match the format in some cases. First, the fields referring to time were
unified into a single field by transforming the decimal time to the “hh : mm : ss” format.
Next, the sun elevation angle was used to calculate the solar zenith angle and the variable
ETN. In the end, the variables Top of Atmosphere Radiation (toa), solar elevation angle,
and azimuth angle were kept as part of the final dataset.

Graphical representations of Extremely rare limits and Physical possible limits, pro-
posed by [37], were created for all the 37 stations from the CyL-GHI dataset for the GHI,
Direct Normal Irradiance (DNI), and Diffuse Horizontal Irradiance (DHI) variables (an
example is shown in Figure 7 for the station BU04 in the province of Burgos). The DNI and
DHI variables were calculated from the GHI values using the pvlib library [38], as they
were not part of our initial raw data.

2.2.4. Visual Inspection

In datasets where, large time windows and stations distributed over large areas are
considered at the same time, a visual inspection of the measurements is complex. For this
reason, we applied this operation in the data exploration stage to visualise the GHI and the
meteorological variables for all years for each of the stations, and even carried out specific
analysis of individual stations or years when needed.

By carrying out this operation in each station for the whole considered period, we
managed to detect the presence of extreme outliers (as shown in Figure 8 for the case of
the relative humidity and air temperature variables for the station BU03, located in Lerma,
in the province of Burgos) or to find missing data at month level (Figure 9). Automated
error-finding processes complemented this operation, and, after the search process, the
errors found were analysed, and actions were taken to correct them.
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Figure 7. Visualizations of the BSRN’s Limits Test of (a) Global Horizontal Irradiance; (b) Diffuse
Horizontal Irradiance; and (c) Direct Normal Irradiance for the station BU04 (located in Valle de
Valdelucio, in the province of Burgos). Notes: (1) the physical possible limit of the irradiance
is represented with the green colour, the extremely rare limit is represented with red, while the
measurements are represented with blue. (2) The variables GHI, Direct Normal Irradiance (DNI) and
Diffuse Horizontal Irradiance (DHI) are displayed as a function of zenith angle. (3) The graph shows
that the measurements from the BU04 station with respect the limit checks as the correct. However,
the corresponding graphics were generated and analyzed for each of the 37 stations in the CyL-GHI
dataset and all the data values were within the expected limits.

2.3. Dataset Description

CyL-GHI data is based on the raw data provided by the public agency Agroclimatic
Technological Institute of Castile and León (ITACyL), where refinement operations have
been applied. The raw data contains 21 files grouped into folders that were downloaded
directly from a service provided by ITACyL [31]. The original raw data contained informa-
tion from a period of 21 years (January 1st, 2001, to November 11, 2021) for the 53 stations
found in the considered region.

The CyL-GHI dataset is provided in three csv (Comma Separated Values) files (“CyL_
GHI_ast.csv”, “CyL_meteo.csv”, and “CyL_geo.csv”) and two zip (compressed file format)
files (“CyL_by_stations.zip” and “CyL_raw.zip”), and can be downloaded from the Zenodo
repository [39] under a CC-BY-SA-NC license.

CyL-GHI contains records from 1st of January 2002 to 31st of December 2019, with a
time granularity of 30 min, from 37 stations located in Castile and León.

Table 3 presents the name of files found in the Zenodo repository [39] and a brief
description of its data and variables. It is important to note that, when training forecasting
models, the first 17 years (data from 1st of January 2002 to 31st of December 2018) should
be used for training, while data corresponding to the last year of the CyL-GHI dataset
(the period from 1st of January 2019 to 31st of December 2019) should be used to test the
performance of the forecasting implementation. The forecasting model did not have access
to the testing data during training. This requirement with respect to the partitioning of the
data in order to be able to make fair comparisons between models based on the use of the
CyL-GHI dataset.
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Figure 8. Example of visual inspections applied to BU03 station (located in Lerma, in the province
of Burgos), where outlier samples were found in the (c) humidity and (e) air temperature variables,
but no outliers were identified in the (a) GHI; (b) wind direction; (d) precipitation; and (f) wind
speed variables. Notes: (1) Zones with outlier values are marked with red rectangles in each variable.
(2) The outliers were replaced by the data type NaN in each station. (3) Temperature and humidity
were the variables with the most outliers in the station data, followed by the GHI variable.
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Figure 9. (a) Irradiance measurements as a function of time and (b) the histogram of GHI values
for station AV01, located in Nava de Arévalo, in the province of Avila, for the year 2002. Note: The
histogram shows a graphical representation of the frequency of irradiance values for this particular
year. The values are in the normal range expected for the variable GHI.
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Table 3. Description of files found in the CyL-GHI dataset.

ID File Name Description Data Names of the Variables Contained

1 CyL_raw.zip
Downloaded raw data,

with no refinement
operations applied

18 folders (named with the
year number). Each folder
contains the data in its raw
format saved at day-level.

Spanish: “Código”, “Fecha”, “Hora”,
“Precipitacion”, “Temperatura”,

“Humedad_relativa”, “Radiación”,
“Vel. Viento”, “Dir. Viento”

2 CyL_GHI_ast.csv GHI data combined with
astronomical variables

Data from all stations was
combined in a single csv file GHI, sun_elev, toa, sun_azim

3 CyL_meteo.csv Meteorological data for
the considered period

Data from all stations was
combined in a single csv file

air_temp, humidity, wind_sp,
wind_dir, precipitation

4 CyL_geo.csv Geographical data for
localising the 37 stations

A single csv files with the
geographical location of the

37 stations.

station_code, name, latitude,
longitude, height

5 CyL_by_stations.zip

For each of the 37
stations, data from sets

with IDs 2, 3, and 4 have
been combined.

37 csv files, one for each
weather station, named
with the corresponding

station_code

GHI, sun_elev, toa, sun_azim,
air_temp, humidity, wind_sp,

wind_dir, precipitation, station_code,
latitude, longitude, height

Abbreviations: GHI and Spanish: “Radiación”—Global Horizontal Irradiance, sun_elev—solar elevation angle;
toa—Top of Atmosphere Radiation; sun_azim—azimuth angle; air_temp and Spanish: “Temperatura”—air tem-
perature; Spanish: “Humedad_ relativa”—humidity; wind_sp and Spanish: “Vel. Viento”—wind speed; wind_dir
and Spanish: “Dir. Viento”—Wind direction; Spanish: “Precipitacion”—precipitation. Notes: (1) Datasets with
IDs 2 and 5 contain the variables “toa”, “Sun_Elev”, and “sun_azim” added from a public web service [36] and
can be used as additional information for forecasting. (2) Datasets 2 and 3 feature the same temporal index and
can be merged. (3) Machine learning models have been trained on the dataset with ID 2, whose base performance
values can be found in Section 5. (ID = 1): “CyL_raw.zip” contains the original data in raw format. (ID = 2):
“CyL_GHI_ast.csv” contains refined data of the Global Horizontal Irradiance (GHI) and the following astronom-
ical variables for each station: Top of Atmosphere Radiation (“toa”), solar elevation angle (“sun_elev”), and
azimuth angle (“sun_azim”). The label of a variable is represented by the union of its name with the code of the
station (e.g., “GHI_AV01”, “sun_elev_AV01”, and “sun_azim_AV01”). (ID = 3): “CyL_meteo.csv” contains refined
data of the following meteorological variables: temperature (“air_temp”), humidity, wind speed (“wind_sp”),
wind direction (“wind_dir”), and precipitation for each station, and applies the same procedure for naming
variables as the “CyL_GHI_ast.csv” file (e.g., “air_temp_AV01”, “wind_dir_AV01”, and “wind_sp_AV01”, etc.).
(ID = 4): “CyL_geo.csv” contains geographic variables and information related to the stations, namely the code
(“station_code”), the name, the coordinates, and the altitude of each station. (ID = 5): “CyL_by_stations.zip”
contains refined data separated (grouped) by stations—for each station, there is a csv file containing astronomical,
meteorological, and geographic variables.

2.4. ERA5

ERA5 is the fifth reanalysis data set from the European Centre for Medium-range
Weather Forecasts (ECMWF) [40]. According to its producer, the ERA5 data published
covers the period starting from 1950 to present and new data continuously added in near-
real time. The Global Horizontal Irradiance variable provided by ERA5 as “Mean surface
downward short-wave radiation flux” features a spatial resolution of 31 km and a temporal
resolution of one hour. For this study, GHI data corresponding to our studied region was
downloaded from the official repository [41] from 1st of January 2002 to 31 December 2019.
It is important to mention that resampling to a frequency of 30 min had to be carried out to
align the temporal resolution of ERA5 to our data. The resulting data was used to compare
the performance of the optimised baseline models with the ERA5 GHI data (in Section 4).

3. Baseline Models

Next, three widely used models were trained on the CyL-GHI dataset to be used as a
baseline to allow future comparison with more complex models, namely, the Persistence
and Linear models, a tree-based model, together with a support vector model. In particular,
Random forest (RF) and Support Vector Regression (SVR) models were chosen for the
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study because they have been used with good results in solar forecast [42–45]. In 2017,
Voyant et al. [46] performed an analysis of machine learning models that included them
and predicted their future importance in the field of solar forecast. In addition, as more
complex models have appeared, these models have been kept as a baseline to evaluate the
effectiveness of these new models. The RF and SVR models have been used as baselines
in multiple studies either independently (RF [47–50], SVR [51–55]) or both in the same
study [56,57].

(1) The Persistence model is a naïve model that is widely used in the literature and
delivers acceptable results for short prediction horizons. It consists of using the previous
observation as the input of the next prediction. Equation (3) defines the model, where G
represents the global horizontal irradiance.

Gt = Gt−1 (3)

(2) The Linear Regression model (LR) defined in Equation (4) assumes that the value
to be predicted is a consequence of a linear combination of previous observations.

Gt = ∑
l

al ∗ G(t−l) + b (4)

In Equation (4), l represents the lags (past observations) used for the prediction; al
represents regression coefficients, and b is the bias term.

(3) The RF model [58] consists of a generating multitude of classifiers structured
as trees. In regression tasks, a RF model will return the average of the individual trees
predictions as the final prediction.

(4) SVR algorithm [59] applied in regression tasks. During training, SVR translates
the data from the existing input space into the feature space and will model an optimal
regression function that is capable of mapping the data expressed in a high-dimensional
space, while achieving the minimum error. However, it is important to mention that,
when considering a large number of characteristics for training, the computational cost
increases exponentially.

The three baseline models use different approaches to process the predictors. The
results will let other researchers to preview the behaviour of the dataset with different
machine learning models.

4. Experiments, Results and Discussion

To carry out the experiments, the initial phase is to transform the data into the data
structure expected by the machine learning models. For this purpose, a set of steps had to
be performed, which are described graphically in Figure 10.

As shown in Figure 10a, we start from the initial CyL-GHI (CyL_GHI_ast.csv) dataset.
The initial dataset has a GHI time series represented by Si for each of the 37 stations. Each
time series, Si, corresponding to the columns of the matrix, illustrated in Figure 10a, is
transformed using the window sliding method shown in Figure 10b. This method creates
the input and output of the model, where the input is formed by previous GHI observations,
and the output is the GHI value for the time horizon to be predicted.
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Figure 10. Transformation of the data into the data structure expected as input by the machine
learning models. (a) CyL-GHI_ast.csv dataset; (b) sliding window method over a time series;
(c) deleting night hours and NaN values; (d) matrix obtained after applying the first 2 steps; (e) matrix
division into train and test; and (f) k-fold division on the train dataset obtained in the previous step.
Note: Blue color represents the characteristics used as predictors, green color represents the target to
predict. In (c) we represent the removed invalid rows from the matrix. Red color in (f) represents the
train part used for validation.

The next step (presented in Figure 10c) is based on the solar elevation angle of 5◦ and
uses data where the night-time hours data and NaN values data are eliminated. A matrix
containing the concatenation of all valid windows for the prediction is formed after the
reduction in step (c) (as presented in Figure 10d). The matrix is divided into train and
testing sets (Figure 10e). For training, data from the first 17 years (from 1st of January 2002
to 31st of December 2018) was used, while, for evaluating the performance on unseen data,
the last year of the dataset (the period from 1st of January 2019 to 31st of December 2019)
was to be used.

To optimize the results, a search for the best parameters for each model and time series
was carried out and a five-fold cross validation evaluation was performed (as presented in
Figure 10f). The cross-validation operation is only performed on the train set (obtained in
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step (e)), and it is important to properly partition the time series data according to the time
index (since future data must not be used for training).

The selection of the number of past observations used as input to the model varies de-
pending on several factors such as the temporal resolution of the data, the prediction model
chosen, among others. There are authors who used two to three past observations [60,61]
and others who used a range of values [62,63] to evaluate which best fit the configuration
of their model. In this study, the past observations corresponding to the last 24 h period
was taken as the input, and the outputted, predicted value corresponds to one instance of
time forward (the forecast horizon would be a single step, i.e., for the future thirty min).
This selection was made after an autocorrelation analysis and exploration of the best
performing combination.

The models were implemented in the Python programming language using the scikit-
learn library [64]. The values of the explored parameters for the RF and SVR models are
shown in Table 4.

Table 4. Hyperparameters values explored in the training of the Random Forest and Support Vector
Regression models.

Model Hyperparameter Values Considered

Random Forest
“min_samples_leaf” 0.0001, 0.001, 0.01, 0.05, 0.025

“n_estimators” 100, 200, 250, 300, 350, 450, 500, 600

Support Vector Regressor
“epsilon” 0.05, 0.1, 0.15, 0.2, 0.25

“C” 0.5, 1, 2, 3, 4
Abbreviations: “min_samples_leaf” is the minimum number of samples required to be at a leaf node;
“n_estimators” represents the number of trees in the forest; “epsilon” parameter defines the margin of tolerance
to errors; while “C” is the regularisation parameter of the algorithm. Notes: (1) The best “min_samples_leaf”
parameter of the RF model and the best “C” parameter of the SVR model have a unique value for all stations;
the best identified value for “min_samples_leaf” parameter is 0.001, while the best value “C” parameter is 0.5.
(2) The parameters “n_estimators” of the RF model and epsilon of the SVR model varied within the range of
values evaluated for the different stations.

The metrics considered in the evaluation of the performance of the trained models
on unseen data are, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
Forecast Skill (FS), defined by Equations (5)–(7), respectively.

MAE =
∑n

i=1|(yi − ŷi)|
n

(5)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (6)

FS = 1− RMSEmodel
RMSEpersistence

(7)

The results of evaluating the 37 stations on unseen data for each of the models offered
as baseline values of the machine learning implementations on the CyL-GHI dataset
(CyL_GHI_ast.csv) is shown in Table 5.
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Table 5. Performance metrics obtained by the Persistence, ERA5, Linear Regression model, Support
Vector Regression, and Random Forest models trained on the CyL-GHI dataset to predict GHI (at
station level).

Station

Model Persistence ERA5 Linear Regressor Random Forest Support Vector Regressor

MAE (W/m2) RMSE (W/m2) MAE (W/m2) RMSE (W/m2) MAE (W/m2) RMSE (W/m2) FS (%) MAE (W/m2) RMSE (W/m2) FS (%) MAE (W/m2) RMSE (W/m2) FS (%)

AV01 73.90 96.84 54.74 98.16 45.91 74.16 23.42 39.89 70.03 27.68 43.72 74.96 22.59

BU02 73.06 98.39 53.78 101.13 49.69 76.35 22.41 44.49 72.98 25.83 47.55 77.23 21.51

BU03 70.43 94.24 49.55 92.12 47.78 74.29 21.17 40.53 69.63 26.11 45.42 75.14 20.26

BU04 69.69 93.13 51.99 95.81 45.18 72.49 22.17 39.54 68.32 26.64 43.44 73.09 21.52

BU05 69.26 88.89 56.25 103.15 43.48 69.29 22.05 37.39 65.24 26.61 41.19 69.51 21.8

LE01 60.95 80.61 46.78 90.45 34.25 57.27 28.95 31.24 55.54 31.1 33.37 58.45 27.49

LE02 63.54 83.17 47.85 90.00 38.99 62.12 25.31 33.83 58.25 29.97 37.41 62.98 24.28

LE03 65.41 85.73 50.78 93.71 37.88 59.79 30.26 33.86 56.54 34.05 36.06 60.45 29.49

LE04 67.16 87.82 52.66 96.82 37.64 61.22 30.29 33.55 57.9 34.07 36.12 62.36 29

LE05 66.01 86.11 48.50 91.17 36.5 58.63 31.91 32.29 55.27 35.82 35.04 59.64 30.75

LE06 66.72 88.30 55.30 101.20 39.66 62.46 29.26 34.59 58.72 33.5 37.78 63.11 28.53

LE07 64.89 84.75 51.37 98.82 37.13 58.29 31.22 31.97 53.91 36.39 35.28 58.8 30.62

LE08 66.21 88.35 51.80 94.11 40.87 63.44 28.2 35.82 59.66 32.47 38.83 63.98 27.59

LE09 68.34 90.83 49.69 92.65 42.76 66.61 26.67 38.22 63.31 30.3 41.01 67.36 25.84

P01 72.53 96.15 54.42 97.43 46.56 77.39 19.51 40.54 73.1 23.98 44.69 78.77 18.08

P02 73.04 96.81 51.98 93.81 49.59 78.2 19.22 43.84 74.51 23.03 47.61 79.61 17.77

P03 71.51 93.72 52.39 94.73 47.89 75.54 19.4 42.33 72.09 23.08 45.92 76.67 18.19

P04 72.33 95.66 50.65 92.48 47.39 75.34 21.24 42.11 71.86 24.88 45.01 75.97 20.59

P06 67.97 89.33 51.81 95.40 43.54 68.06 23.81 37.64 64.44 27.86 41.53 68.59 23.21

P07 69.78 101.96 60.06 108.58 53.39 80.49 21.06 46.39 77.27 24.22 51.27 82.03 19.55

SA01 62.69 79.54 46.28 87.17 31.45 52.12 34.48 29.17 50.57 36.42 30.52 53.05 33.3

SG01 72.97 96.01 52.57 97.43 48.54 77.47 19.31 42.92 73.73 23.21 46.73 78.89 17.83

SG02 72.17 95.13 51.47 94.67 47.27 75.25 20.89 41.13 71.61 24.73 45.33 76.62 19.46

SO01 66.79 83.94 49.34 90.85 42.32 63.81 23.98 37.21 61.2 27.1 40.96 64.63 23.01

SO02 67.71 86.73 51.85 94.80 41.59 68.33 21.21 36.82 66.42 23.41 39.67 69.74 19.59

SO03 66.86 83.94 51.27 94.20 43.56 67.48 19.61 39.01 64.71 22.91 42.27 68.59 18.29

VA01 69.21 91.26 50.53 93.38 40.88 63.86 30.02 35.97 60.28 33.94 39.32 64.89 28.9

VA02 70.79 92.14 47.83 88.36 42.51 67.08 27.2 37.6 63.82 30.74 40.7 68.03 26.17

VA03 73.35 96.62 49.86 90.92 47.49 76.29 21.04 41.13 72.71 24.74 44.96 77.19 20.11

VA05 73.60 111.11 46.92 91.63 55.36 86.92 21.77 42.96 73.34 34 53 89.17 19.75

VA06 69.23 90.93 53.16 96.62 40.81 64.84 28.69 36.68 61.78 32.06 39.04 65.81 27.62

VA07 72.47 95.48 49.54 91.26 47.4 76.87 19.49 41.67 72.55 24.02 45.73 78.16 18.13

ZA01 62.65 81.75 47.22 87.88 37.4 58.48 28.46 33.12 55.88 31.65 35.97 59.3 27.46

ZA02 68.53 88.67 47.08 87.77 40.09 62.1 29.97 36.14 59.29 33.14 38.72 62.84 29.13

ZA04 68.02 88.82 48.34 89.87 40.32 64.86 26.98 36.13 61.76 30.46 38.78 65.62 26.12

ZA05 63.58 83.31 49.89 93.27 35.29 57.86 30.55 31.73 55.53 33.34 34.09 58.35 29.96

ZA06 68.09 89.24 47.93 89.11 40.09 64.12 28.15 35.34 60.58 32.12 38.9 65.16 26.99

Average 68.69 90.69 50.90 94.08 42.93 68.09 25.12 37.70 64.44 29.07 41.16 69.05 24.07

In average values, the Persistence achieved a RMSE of 90.69 W/m2, while the ERA5
obtained a RMSE of 94.08 W/m2. It is observed that the regression models provide higher
performance values (within the range of 64.44 W/m2 to 69.05 W/m2) and achieve an
improvement of 30 W/m2 in average when compared to the Persistence and ERA5.

According to the mean RMSE and FS metrics, RF is the model with the highest
prediction capacity. SVR forecast skill is the lowest with respect to other models trained
(this may be caused by the form the models perform the regularization). The LR and SVR
models have an average forecast skill with respect to all stations of 25.12% and 24.07%,
respectively, and there is a reduced difference between them. The RF model represents an
average improvement of 5.0% with respect to the LR and SVR models.

In another experiment, of RF, we also explored the influence of different combinations
of parameter values on the predictive capacity of the model. The following three training
scenarios were considered: (1) the model was implemented with the default parameters,
(2) a parameter optimisation was performed for each of the stations, and (3) the exogenous
variables were included (lags of neighbours and solar elevation and zenith angles). The
average results of the evaluation on unseen data for each station of CyL-GHI are presented
as boxplots in Figure 11.



Data 2023, 8, 65 18 of 21

Data 2023, 8, x FOR PEER REVIEW 18 of 22 
 

 

SO02 67.71 86.73 51.85 94.80 41.59 68.33 21.21 36.82 66.42 23.41 39.67 69.74 19.59 

SO03 66.86 83.94 51.27 94.20 43.56 67.48 19.61 39.01 64.71 22.91 42.27 68.59 18.29 

VA01 69.21 91.26 50.53 93.38 40.88 63.86 30.02 35.97 60.28 33.94 39.32 64.89 28.9 

VA02 70.79 92.14 47.83 88.36 42.51 67.08 27.2 37.6 63.82 30.74 40.7 68.03 26.17 

VA03 73.35 96.62 49.86 90.92 47.49 76.29 21.04 41.13 72.71 24.74 44.96 77.19 20.11 

VA05 73.60 111.11 46.92 91.63 55.36 86.92 21.77 42.96 73.34 34 53 89.17 19.75 

VA06 69.23 90.93 53.16 96.62 40.81 64.84 28.69 36.68 61.78 32.06 39.04 65.81 27.62 

VA07 72.47 95.48 49.54 91.26 47.4 76.87 19.49 41.67 72.55 24.02 45.73 78.16 18.13 

ZA01 62.65 81.75 47.22 87.88 37.4 58.48 28.46 33.12 55.88 31.65 35.97 59.3 27.46 

ZA02 68.53 88.67 47.08 87.77 40.09 62.1 29.97 36.14 59.29 33.14 38.72 62.84 29.13 

ZA04 68.02 88.82 48.34 89.87 40.32 64.86 26.98 36.13 61.76 30.46 38.78 65.62 26.12 

ZA05 63.58 83.31 49.89 93.27 35.29 57.86 30.55 31.73 55.53 33.34 34.09 58.35 29.96 

ZA06 68.09 89.24 47.93 89.11 40.09 64.12 28.15 35.34 60.58 32.12 38.9 65.16 26.99 

Average 68.69 90.69 50.90 94.08 42.93 68.09 25.12 37.70 64.44 29.07 41.16 69.05 24.07 

In average values, the Persistence achieved a RMSE of 90.69 W/m2, while the ERA5 

obtained a RMSE of 94.08 W/m2. It is observed that the regression models provide higher 

performance values (within the range of 64.44 W/m2 to 69.05 W/m2) and achieve an im-

provement of 30 W/m2 in average when compared to the Persistence and ERA5. 

According to the mean RMSE and FS metrics, RF is the model with the highest pre-

diction capacity. SVR forecast skill is the lowest with respect to other models trained (this 

may be caused by the form the models perform the regularization). The LR and SVR mod-

els have an average forecast skill with respect to all stations of 25.12% and 24.07%, respec-

tively, and there is a reduced difference between them. The RF model represents an aver-

age improvement of 5.0% with respect to the LR and SVR models. 

In another experiment, of RF, we also explored the influence of different combina-

tions of parameter values on the predictive capacity of the model. The following three 

training scenarios were considered: (1) the model was implemented with the default pa-

rameters, (2) a parameter optimisation was performed for each of the stations, and (3) the 

exogenous variables were included (lags of neighbours and solar elevation and zenith an-

gles). The average results of the evaluation on unseen data for each station of CyL-GHI 

are presented as boxplots in Figure 11. 

 

Figure 11. Analysis of the influence on the Forecast Skill (FS) metric of the three scenarios considered 

for the Random Forest (RF). Notes: (1) The average results of the evaluation on unseen data for each 

station of CyL-GHI are presented as boxplots. (2) It can be observed that, as the model parameters 
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Figure 11. Analysis of the influence on the Forecast Skill (FS) metric of the three scenarios considered
for the Random Forest (RF). Notes: (1) The average results of the evaluation on unseen data for each
station of CyL-GHI are presented as boxplots. (2) It can be observed that, as the model parameters
are adjusted for each of the stations, their forecast skill increases. (3) The best results are obtained in
Scenario 3, when GHI data from neighbouring stations was added as input to the model.

Figure 11 shows the difference between the averages in which the performance values
oscillate, from 28% for the first scenario evaluated to 33% for the third scenario evaluated.
The inclusion of previous observations from neighbours delivered a 3% improvement
between Scenarios 2 and 3, which indicates the assumption that the dataset used in a
spatio-temporal analysis (i.e., introducing information from neighbours) can achieve im-
provements in decreasing the forecasting error at the target station. The results illustrated
in Figure 11 also show that it is possible to achieve an increase in the model skill as a
function of the refinement of the parameters and the increase in the input variables.

5. Conclusions

In this paper, the methodology applied to introduce a large-scale, public, and irradi-
ance dataset, CyL-GHI, has been presented. The methodology proposed for the obtained
dataset from raw data has also been explained and involved several operations such as
downloading the data, pre-processing, and applying quality control procedures, and could
be reapplied to other similar data generation tasks. It should also be noted that, as part
of the processing of the dataset, the transformation from Local Mean Time to UTC was
performed, and astronomical variables calculated based on the geographic data of the
stations were also included. CyL-GHI can result important for research purposes in the
field of solar forecasting.

In addition, the performance metrics of four baseline models on unseen data have been
provided as benchmark performance values for comparisons with future implementations,
as well as for the analysis of the results obtained on the proposed dataset. For training,
data from the first 18 years of the dataset was used for training (from 1st of January 2002
to 31st of December 2018), while the data from the last year (1st of January 2019 to 31st of
December 2019) was used for testing the performance of the trained models. Furthermore,
the ERA5 values corresponding to the studied area were analysed and compared with
performance values delivered by the trained models.

Tests performed with the Random Forest model on the CyL-GHI dataset indicate that
the forecast error of a model can be reduced by adding variables from its neighbouring
stations. As future works, it is expected to use the dataset with models of emerging trends
such as deep learning in data science that exploit the spatio-temporal characteristics of the
irradiance data.
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