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We study one of the central open questions in one-dimensional
renormalization theory—the conjectural universality of golden-
mean Siegel disks. We present an approach to the problem
based on cylinder renormalization proposed by the second au-
thor. Numerical implementation of this approach relies on the
constructive measurable Riemann mapping theorem proved by
the first author. Our numerical study yields convincing evidence
to support the hyperbolicity conjecture in this setting.

1. INTRODUCTION

One of the central examples of universality in one-
dimensional dynamics is provided by Siegel disks of
quadratic polynomials. Let us consider, for instance, the
mapping

Pθ(z) = z2 + e2πiθz,

where θ = (
√

5 + 1)/2 is the golden mean. By a classical
result of Siegel, the dynamics of Pθ is linearizable near the
origin. The Siegel disk of Pθ, which we will herein denote
by ∆θ, is the maximal neighborhood of zero in which a
conformal change of coordinates reduces Pθ to the form
w �→ e2πiθw. By results of Douady, Ghys, Herman, and
Shishikura, the topological disk ∆θ extends up to the
only critical point of Pθ and is bounded by a Jordan
curve.

It has been observed numerically [Manton and Nauen-
berg 83] that the boundary of ∆θ is asymptotically self-
similar near the critical point. Moreover, the scaling fac-
tor is universal in a large class of analytic mappings with
a golden-mean Siegel disk. In 1983, Widom [Widom 83]
defined a renormalization procedure for Pθ that “blows
up” a part of the invariant curve ∂∆θ near the critical
point, and conjectured that the renormalizations of Pθ

converge to a fixed point. In addition, he conjectured
that in a suitable functional space this fixed point is hy-
perbolic with one-dimensional unstable direction.

In 1986, MacKay and Persival [MacKay and Persival
87] extended the conjecture to other rotation numbers,
postulating the existence of a hyperbolic renormalization
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horseshoe corresponding to Siegel disks of analytic maps,
analogous to Lanford’s horseshoe for critical circle maps
[Lanford 87, Lanford 88].

In 1994, Stirnemann [Stirnemann 94] gave a computer-
assisted proof of the existence of a renormalization fixed
point with a golden-mean Siegel disk. In 1998, McMullen
[McMullen 98] proved the asymptotic self-similarity of
golden-mean Siegel disks in the quadratic family. He con-
structed a version of renormalization based on holomor-
phic commuting pairs of de Faria [de Faria 92, de Faria
99], and showed that the renormalizations of a quadratic
polynomial with a golden Siegel disk near the critical
point converge to a fixed point geometrically fast. More
generally, he constructed a renormalization horseshoe for
bounded-type rotation numbers, and used renormaliza-
tion to show that the Hausdorff dimension of the corre-
sponding quadratic Julia sets is strictly less than two.

Having thus attracted much attention, the hyperbol-
icity part of the conjecture of Widom for golden-mean
Siegel disks is still open.

In [Yampolsky 02], the second author introduced
a new renormalization transformation Rcyl, which he
called the cylinder renormalization, and used it to
prove Lanford’s hyperbolicity conjecture for critical circle
maps. The main advantage of Rcyl over the renormaliza-
tion scheme based on commuting pairs is that this opera-
tor is analytic in a Banach manifold of analytic maps of a
subdomain of C/Z. It is thus a natural setting in which to
study the hyperbolic properties of a fixed point. In the
present paper we study the fixed point of the cylinder
renormalization numerically, and empirically confirm the
hyperbolicity conjecture, as well as study the dynamical
properties of the fixed point.

The main numerical challenge in working with cylin-
der renormalization is a change of coordinates involved in
its definition. It is defined implicitly, and uniformizes a
dynamically defined fundamental domain to the straight
cylinder C/Z. To handle it, we use the constructive mea-
surable Riemann mapping theorem developed in [Gaida-
shev 07, Gaidashev and Khmelev 06] by the first author
for numerically solving the Beltrami partial differential
equation.

2. DEFINITION AND MAIN PROPERTIES

2.1 Some Functional Spaces

For a topological disk W ⊂ C containing 0 and 1 we will
let AW denote the Banach space of bounded analytic
functions in W equipped with the sup norm. Let CW

denote the Banach subspace of AW consisting of analytic
mappings h : W → C such that h(0) = 0 and h′(1) = 0.

In the case that the domain W is the disk Dρ of radius
ρ > 1 centered at the origin, we will set ADρ

≡ Aρ and
CDρ

≡ Cρ.
For each ρ > 1 we will also consider the collection B1

ρ

of analytic functions f(z) defined on some neighborhood
of the origin with f(0) = 0, equipped with the weighted
l1 norm on the coefficients of the Maclaurin series:

‖f‖ρ =
∞∑

n=0

∣∣f (n)(0)
∣∣

n!
ρn.

We will further let L1
ρ denote the subset of B1

ρ consisting
of maps f with the normalizing condition f ′(1) = 0.

The proof of the following elementary statement is left
to the reader:

Lemma 2.1.

(1) Let f ∈ L1
ρ. Then supDρ

|f(z)| ≤ ‖f‖ρ;

(2) Let f ∈ Aρ′ and ρ′ > ρ. Then ‖f‖ρ ≤
ρ

ρ′−ρ supDρ′ |f(z)|.

The following corollary is an immediate consequence:

Corollary 2.2. L1
ρ is a Banach space.

2.2 The Cylinder Renormalization Operator

The cylinder renormalization operator is defined as fol-
lows. Let f ∈ CW . Suppose that for n ∈ N there exists a
simple arc l that connects a fixed point a of fn to 0, and
has the property that fn(l) is again a simple arc whose
only intersection with l is at the two endpoints. Let Cf

be the topological disk in C\{0} bounded by l and fn(l).
We say that Cf is a fundamental crescent if the iterate
f−n|Cf

mapping fn(l) to l is defined and univalent, and
the quotient of Cf ∪ f−n(Cf )\{0, a} by the iterate fn is
conformally isomorphic to C/Z.

Let Rf denote the first return map of Cf , and let
z denote the critical point of this map (corresponding
to the orbit of 0). Let g be the map that Rf becomes
under the above isomorphism, mapping z to 0, and h =
e ◦ g ◦ e−1, where e(z) = exp [−2πiz]. We say that f

is cylinder renormalizable with period n if h ∈ CV for
some V , and call h a cylinder renormalization of f (see
Figure 1).

We summarize below the basic properties of cylinder
renormalization proven in [Yampolsky 02].
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FIGURE 1. Schematics of cylinder renormalization.

Proposition 2.3. Suppose f ∈ CW is cylinder renormaliz-
able and that its renormalization hf is contained in CV .
Let Cf denote the fundamental crescent corresponding to
the renormalization. Then the following hold.

• Every other fundamental crescent C ′
f with the same

endpoints as Cf and such that C ′
f∪Cf is a topological

disk produces the same renormalized map hf .

• There exists an open neighborhood U(f) ⊂ CW such
that every map g ∈ U(f) is cylinder renormalizable,
with a fundamental crescent Cg that can be chosen
to move continuously with g.

• Moreover, the dependence g �→ hg of the cylinder
renormalization on the map g is an analytic mapping
CW → CV .

We now want to discuss the dynamical properties of
the cylinder renormalization of maps with Siegel disks
derived in [Yampolsky 06]. To simplify the exposition let
us specialize to the case in which the rotation number
of the Siegel disk is the golden mean θ = (

√
5 + 1)/2.

The golden mean is represented by an infinite continued
fraction,

θ = 1 +
1

1 +
1

1 +
1

1 + · · ·

≡ 1 + [1, 1, 1, . . . ].

As is customary, we will denote by pn/qn the nth con-
vergent

pn/qn = [1, 1, 1, . . . , 1]︸ ︷︷ ︸
n

.

Theorem 2.4. [Yampolsky 06] There exists a space CU

and an analytic mapping f̂ ∈ CU that has a Siegel disk
∆θ with rotation number θ whose boundary is a quasi-
circle passing through the critical point 1 such that the
following hold:

(i) There exists a branch of cylinder renormalization
with period qk, k ∈ N, which we denote by Rcyl,
such that

Rcylf̂ = f̂ .

(ii) The quadratic polynomial Pθ(z) = e2πiθz + z2 is
infinitely cylinder renormalizable, and

Rk
cylPθ → f̂ ,

at a uniform geometric rate.

(iii) The cylinder renormalization Rcyl is an analytic
and compact operator mapping a neighborhood of
the fixed point f̂ in CU to CU . Its linearization L
at f̂ is a compact operator, with at least one eigen-
value with absolute value greater than one.

A central open question in the study of Rcyl is con-
tained in the following conjecture:

Conjecture 2.5. Except for the one unstable eigenvalue,
the rest of the spectrum of L is compactly contained in
the unit disk.

Our numerical study of Rcyl will begin with establish-
ing empirically the convergence to f̂ . We will then make
explicit the choice of the neighborhood U in the above
theorem. Experimental evidence suggests that it can be
taken as a round disk Dρ for some particular value of ρ.
Having numerically established this, we will then proceed
to verify the conjecture experimentally.

3. CONSTRUCTION OF THE CONFORMAL
ISOMORPHISM TO THE CYLINDER

The principal difficulty in both numerical and analytic
study of cylinder renormalization is the inexplicit nature
of the conformal isomorphism

Φ : Cf ∪ f−n(Cf ) \ {0, a} −→≈ C
∗

of a fundamental crescent, which is a part of the defini-
tion of Rcyl. An analytic approach to this construction
based on the measurable Riemann mapping theorem was
presented by the first author in [Gaidashev 07]. It has
its roots in the complex-dynamical folklore; similar ar-
guments are found, for instance, in the work of Lyubich
[Lyubich 86] and Shishikura [Shishikura 42].

In [Gaidashev 07], the first author demonstrates how
this approach can be implemented constructively, with
rigorous error bounds. We will give a brief outline here.
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3.1 Uniformization of the Cylinder Using the
Measurable Riemann Mapping Theorem

We will start with a description of our choice of a fun-
damental crescent Cn

f with period qn for a map f ∈ CU

sufficiently close to f̂ .
To construct the boundary curve ln of Cn

f , consider
first the union l̃n of two parabolas x + i(Ax2 + Bx) and
(Cy2 + Dy + E) + iy, the first passing through points
0 and fqn+2+qn(1), the second through fqn+2+qn(1) and
a repelling fixed point aqn

. All parameters in these two
parabolas are defined uniquely after one specifies their
common tangent line at fqn+2+qn(1) (see equations (3–2)
below). While somewhat arbitrary, this choice has the
virtue of possessing a simple analytic form. It can be
shown rigorously (see [Gaidashev 07]) that by modifying
l̃n in sufficiently small neighborhoods of the endpoints
(small enough not to influence our numerical experi-
ments) we obtain a curve ln that together with f−qn(ln)
bounds a fundamental crescent Cn

f for Rcyl.
Now consider the following conformal change of coor-

dinates for z ∈ Cn
f :

z = τ(ξ) =
aqn

1 − eiαξ+β
,

τ−1(z) =
1
ia

[
ln

(
1 − aqn

z

)
− β

]
.

The normalizing constant β will be chosen such that

τ−1(fqn+2(1)) = 0,

while a real positive α will be specified by the condition

|τ−1(fqn+2+qn(1))| = 1.

The choice of this coordinate is motivated by the fact that
τ−1 maps the interior of the fundamental crescent Cn

f

conformally onto the interior of an infinite vertical closed
strip S, whose width is comparable to 1 (see Figure 2).

Next, similarly to [Shishikura 42], define a function

g̃n : U ≡ {u + iv ∈ C : 0 ≤ Re w ≤ 1 } −→ S

by setting

g̃n(u + iv) = (1 − u)τ−1(f−qn(γn(v))) + uτ−1(γn(v)),

where γn is a parameterization

γn : R → ln

that we will specify below.
Let σ0 be the standard conformal structure on C, and

let σ = g̃∗nσ0 be its pullback on U . Extend this conformal

FIGURE 2. Schematics of renormalization. The con-
tours g(γ) �→ g(Γ) are used to find a polynomial ap-
proximation of Rcylf through the Cauchy integral for-
mula.

structure to C through σ ≡ (T k)∗σ on T−k(U), where
T (w) = w + 1 for all k ∈ N.

Assuming that the mapping g̃n is quasiconformal, the
dilatation of σ is bounded in the plane. By the mea-
surable Riemann mapping theorem (see, for example,
[Ahlfors and Bers 60]), there exists a unique quasiconfor-
mal mapping g̃ : C → C such that g̃∗σ0 = σ, normalized
so that g̃(0) = 0 and g̃(1) = 1. Notice that g̃ ◦ T ◦ g̃−1

preserves the standard conformal structure:(
g̃ ◦ T ◦ g̃−1

)∗
σ0 = (g̃−1)∗ ◦ T ∗ ◦ g̃∗σ0 = (g̃−1)∗ ◦ T ∗σ

= (g̃−1)∗σ = (g̃∗)−1σ = σ0,

and therefore it is a conformal automorphism of C. Liou-
ville’s theorem implies that this mapping is affine. By
construction, it does not have any fixed points in C, and
hence is a translation. Finally, g̃ ◦ T ◦ g̃−1(0) = 1, and
thus

g̃ ◦ T ◦ g̃−1 ≡ T.

By the definition of g̃n,

g̃−1
n ◦ τ−1 ◦ fqn ◦ τ = T ◦ g̃n

−1

on the image of f−qn(ln) by τ−1. Set φ = g̃ ◦ g̃−1
n and

Φ̃ ≡ φ ◦ τ−1. Clearly, Φ̃ mod Z is a desired conformal
isomorphism

Cn
f ∪ f−qn(Cn

f ) \ {0, aqn
} −→≈ C/Z.

Again, set e(z) = e−2πiz and g = e ◦ g̃ ◦ e−1. Since

gz̄(e(w))
gz(e(w))

=
e(w)
e(w)

g̃w̄(w)
g̃w(w)

,
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the 1-periodic function g̃ is a solution of the Beltrami
equation

g̃w̄ = µ̃g̃w, µ̃ = (g̃n)w̄/(g̃n)w

whenever g is a solution of

gz̄ = µgz, µ(z) = (z/z̄)µ̃(e−1(z)).

Thus we have reduced the problem of finding

Φ ≡ e ◦ Φ̃ = g ◦ e ◦ g̃−1
n ◦ τ−1

to that of finding the properly normalized solution of the
Beltrami equation

gz̄ = µgz, µ(z) =
z

z̄

(g̃n)w̄(e−1(z))
(g̃n)w(e−1(z))

(3–1)

on the punctured plane C
∗.

It remains to describe the choice of the parameteriza-
tion of ln in the definition of g̃n. It is convenient for us
to parameterize ln using the radial coordinate in C. For
n = 1 and f ∈ CU sufficiently close the empirical fixed
point of the cylinder renormalization with period 1 we
use the following parameterization:

λ1(r) =

{
(x(r), Ax(r)2 + Bx(r)), r ≤ r̃,

(Cy(r)2 + Dy(r) + E, y(r)), r > r̃,
(3–2)

where

x(r) =
Re f4(1)
|f4(1)| T (r),

y(r) = Im f4(1)
|a1 − f4(1)| + |f4(1)| − T (r)

|a1 − f4(1)|
+ Im a1

T (r) − |f4(1)|)
|a1 − f4(1)| ,

T (r) =
|a1 − f4(1)| + |f4(1)|√

r + 1
√

r,

and r̃ is defined by T (r̃) = |f4(1)|. The constants A, B,
C, D, and E are fixed by the conditions 0, f4(1), a1 ∈
l1, together with the requirement that the slope of the
common tangent line to both parabolas at the point f4(1)
be equal to 1.1.

This particular choice of the parameterization is moti-
vated by the speed of convergence of the iterative scheme
in the measurable Riemann mapping theorem.

We define the following function on C
∗:

g1(r, φ) =
(

η(−φ) +
φ

2π

)
τ−1(f−1(λ1(r))) (3–3)

+
(

1 − η(−φ) − φ

2π

)
τ−1(λ1(r)),

where −π < φ ≤ π and η is the Heaviside step func-
tion (we have adopted the convention η(0) = 1). Then,
according to (3–1), the Beltrami differential µ is given by

µ(reiφ) = e2iφ r∂rg1(r, φ) + i∂φg1(r, φ)
r∂rg1(r, φ) − i∂φg1(r, φ)

(3–4)

on C \ (−∞, 0]. This is the expression that we have used
to compute the Beltrami differential in our numerical
studies.

3.2 A Constructive Measurable Riemann
Mapping Theorem

To solve the Beltrami equation numerically, we use
the constructive measurable Riemann mapping theorem
(MRMT) proved by the first author in [Gaidashev 07].
Before formulating it, we need to recall two integral op-
erators used in the classical approach to the proof of
MRMT (see [Ahlfors and Bers 60]). The first is the
Hilbert transform

T [h](z) =
i

2π
lim
ε→0

∫∫
C\B(z,ε)

h(ξ)
(ξ − z)2

dξ̄ ∧ dξ. (3–5)

The second is the Cauchy transform

P [h](z) =
i

2π

∫∫
C

h(ξ)
(ξ − z)

dξ̄ ∧ dξ. (3–6)

The Hilbert transform is a well-defined bounded op-
erator on Lp(C) for all 2 < p < ∞. For every
such p there exists a constant cp such that the follow-
ing holds (cf. [Calderón and Zygmund 56]): ‖T [h]‖p ≤
cp ‖h‖p for any h ∈ Lp(C), and cp → 1 as p → 2.

We are now ready to state the constructive measurable
Riemann mapping theorem of [Gaidashev 07]:

Theorem 3.1. Let µ ∈ L∞(C̄) and let an integer p > 2 be
such that ‖µ‖∞ ≤ K < 1 and Kcp < 1, where

cp = cot2(π/2p).

Assume that µ = ν + η + γ, where ν and η are com-
pactly supported in DR, and γ(z) is supported in C̄ \DR.
Furthermore, let η be in Lp(DR) and ‖η‖p < δ for some
sufficiently small δ. Also, let h∗ ∈ Lp(C) and let ε be such
that Bp(h∗, ε), the ball of radius ε around h∗ in Lp(C),
contains Bp(T [ν(h∗ + 1)], cpε

′), with

ε′ = δ essupDR
|h∗ + 1| + Kε.

Then the solution gµ of the Beltrami equation gµ
z̄ = µgµ

z

admits the following bound:

|gµ(z) − gν
∗ (z)| ≤ F (ε′, R; z, gν

∗ (z), p,K, cp), (3–7)



220 Experimental Mathematics, Vol. 16 (2007), No. 2

where gν
∗ (z) = P [ν(h∗ + 1)](z) + z and F (ε′, R) =

O(ε′, R−4/p) is an explicit function of its arguments.

Given the theorem, the algorithm for producing an
approximate solution of the Beltrami equation is as fol-
lows. Given a µ as in the condition of the theorem, we
first iterate

h → T [ν(h + 1)] (3–8)

to find a numerical approximation h∗
a to the solution of

the equation T [µ(h∗ + 1)] = h∗. After that, we compute
an approximate solution as

gν
a(z) = P [ν(h∗

a + 1)](z) + z. (3–9)

One can obtain rigorous computer-assisted bounds on
such solutions using Theorem 3.1. Such bounds have in-
deed been implemented in [Gaidashev 07] for a particular
case of the golden-mean quadratic polynomial. However,
in the present numerical work we will not require such
estimates.

In the appendix, Section 7, we will discuss several nu-
merical algorithms for the two integral transforms ap-
pearing in this scheme.

4. EMPIRICAL CONVERGENCE TO A FIXED POINT

An appropriate choice of the domains of analyticity for
the renormalized functions is central to a successful nu-
merical implementation of cylinder renormalization. Our
numerical approximation to the renormalization fixed
point is a finite-degree truncation of a function analytic
in D3 (see Section 5 for a detailed explanation of this
choice of the domain). However, for the purposes of ob-
taining bounds on higher-order terms, we will consider a
smaller domain of analyticity, a disk of radius ρ = 2.266.
Thus the cylinder renormalization will be a priori an an-
alytic operator in a neighborhood of the fixed point in
the Banach space L1

ρ with ρ = 2.266.1

Given an f ∈ L1
ρ, a numerical approximation to its

cylinder renormalization of order n is built as follows.
As the first step, we construct a fundamental crescent

1We have implemented the procedure for the cylinder renormal-
ization described in Section 3 and a particular method of solving
the Beltrami equation (see Section 7) as a set of routines in the pro-
gramming language Ada 95 (see [Taft and Duff 95] for the language
standard). We have parallelized our programs and compiled them
with the public version 3.15p of the GNAT compiler. The pro-
grams [Yampolsky 07] have been run on the computational cluster
of 92 2.2-GHz AMD Opteron processors located at the University
of Texas at Austin.

Cn
f as described above, and find the normalized solution

g of the Beltrami equation

gz̄(z) = µ(z)gz(z),

with µ as in (3–4), as described in Sections 3 and 7.
Next, we choose a contour γ in the domain of g, and

map this contour into the fundamental crescent by τ ◦g1:

γ̃ ≡ τ ◦ g1(γ).

Applying the first return map to the points of this con-
tour, we obtain Γ̃ = Rf (γ̃), and obtain the images g(γ)
and g(Γ) (where Γ = g−1

1 (τ−1(Γ̃))). The coefficients in a
finite-order polynomial approximation to

Rcylf = g ◦ g−1
1 ◦ τ−1 ◦ Rf ◦ τ ◦ g1 ◦ g−1

are then found via the Cauchy integral formula using the
two contours g(γ) and g(Γ) (see Figure 2).

As seen in Theorem 2.4, the sequence of the cylin-
der renormalizations of the quadratic polynomial Pθ con-
verges to a fixed point f̂ = Rcylf̂ . We have used this fact
to compute an approximate renormalization fixed point
f̂a as the cylinder renormalization Rk

cylPθ of order k = 11.
Further, we improved this approximation by iterating

f̂a �→ Ps ◦ Rcylf̂a, (4–1)

where Ps is the projection on the candidate stable man-
ifold of f̂ ,

Ws = {f ∈ L1
ρ : f ′(0) = e2πθi},

defined by setting

Ps[f ](x) ≡ f(x) + (e2πθi − f ′(0))x.

In this way we have obtained a polynomial f̂a of degree
17, and have obtained the estimate, not taking into ac-
count the errors in the solution of the Beltrami equation
and those due to round-off,

‖Rcylf̂a− f̂a‖ρ ≤ 1.88×10−3 ≈ 0.89×10−4‖f̂a‖ρ. (4–2)

Moreover, the iteration (4–1) does not lead to a signifi-
cant variation in the computed values for the coefficients
of f̂a, which indicates that the original approximation
is indeed quite accurate. The largest change is in the
highest coefficient, which differs by 0.4% for f̂a and its
renormalization. Of course, this represents a negligible
correction to the absolute value of the coefficient itself.
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The approximate expression for f̂a is as follows (all
numbers truncated to show six significant digits):

f̂a (x) = xe2πiθ + x2
(
8.00882 × 10−1 + i4.07682 × 10−1

)
+ x3

(−4.12708 × 10−1 + i2.97670 × 10−2
)

+ x4
(
1.02033 × 10−1 − i9.83702 × 10−2

)
+ x5

(
2.61573 × 10−5 + i4.13871 × 10−2

)
+ x6

(−8.42868 × 10−3 − i6.96474 × 10−3
)

+ x7
(
2.60095 × 10−3 − i6.58544 × 10−4

)
+ x8

(−2.01382 × 10−4 + i5.95113 × 10−4
)

+ x9
(−9.40057 × 10−5 − i1.11237 × 10−4

)
+ x10

(
3.21762 × 10−5 − i4.40144 × 10−6

)
+ · · · .

5. DOMAIN OF ANALYTICITY OF THE
RENORMALIZATION FIXED POINT

5.1 Compactness of Rcyl

We have verified experimentally the compactness prop-
erty of Rcyl stated in Theorem 2.4. More precisely, we
observe the following empirical fact:

Set ρ = 2.266 and ρ′ = 3. Then we can take U ≡ Dρ

in Theorem 2.4. More specifically, the fixed point f̂
is a well-defined analytic mapping in Cρ, and more-
over, if we set g ≡ f̂ |Dρ , then Rcyl g ∈ Cρ′ .

To verify the claim numerically, we have used the ap-
proximation f̂a obtained in the previous section. To es-
timate ρ′, we have chosen a curve γ̃ in the fundamental
crescent such that Φf̂a

(γ̃) is a simple closed loop that en-
circles D3 (Figure 3). We then verify that the orbit under
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lies within D2.266 (see Figure 4).
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For our choice of the curve γ̃, the return map of the
set

C0
f̂a

= L0
f̂a

∪ R0
f̂a

is given by the second and third iterates of f̂a on L0
f̂a

and
R0

f̂a
, respectively.

6. HYPERBOLIC PROPERTIES OF CYLINDER
RENORMALIZATION

6.1 The Expanding Direction of Rcyl

It is not difficult to see that the operator Rcyl possesses
an expanding direction at f̂ (cf. [Yampolsky 06]):

Proof of Theorem 2.4(iii): Let v(z) be a vector field in
CU ,

v(z) = v′(0)z + o(z).

Denote by γv the quantity

γv =
v′(0)

f̂ ′(0)
= e−2πiθv′(0).

For a smooth family

f̂t(z) = f̂(z) + tv(z) + o(t),

we have
f̂t(z) = αv

t (z)(f̂ ′(0)z + o(z)),

where αt(0) = 1+ tγv + o(t). The qm+1st iterate is given
by

f̂
qm+1
t (z) = (αv

t (z))qm+1((f̂ ′(0))qm+1z + o(z)).
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In a neighborhood of 0, the renormalized vector field Lv

is obtained by applying a uniformizing coordinate

Φ(z) = (z + o(z))β , where β =
1

θqm mod 1
.

Hence
αLv

t (0) = [(αv
t (0))qm+1 ]β ,

so
γLv = Λγv, where Λ = βqm+1 > 1.

Hence the spectral radius RSp(Lv) is greater than 1, and
since every nonzero element of the spectrum of a compact
operator is an eigenvalue, the claim follows.

6.2 Numerical Verification of Hyperbolicity of Rcyl

It is natural to make the following conjecture:

Conjecture 6.1. There exists an open neighborhood U ⊂
CU containing f̂ such that Rcyl is a strong contraction
in

W = {f ∈ U | f ′(0) = e2πiθ}.
Thus, W = W s

loc(f̂).

To verify this conjecture numerically, we have to jus-
tify using a finite-dimensional approximation to L to test
for contraction. For this we rely on a numerical observa-
tion discussed in the previous section:

L : L1
ρ → L1

ρ′ , with ρ = 2.266 and ρ′ = 3.

This implies that the finite-dimensional approximations
of L obtained by truncating all powers higher than zN

will converge geometrically fast in N .
Set hj to be the coordinate vectors hj(z) = zj/ρj , so

that
‖L‖ρ = sup ‖Lhj‖ρ.

Since a perturbation f̂+εhj does not lie in L1
ρ, we perturb

along a different set of vectors:

ej =
gj

‖gj‖ρ
, gj(z) = zj − j

j + 1
zj+1, j ≥ 1,

which form a basis in L1
ρ.

Numerically, to estimate the spectral radius

RSp

(
L|Tf̂ W

)
,

we can fix a large enough N and a small ε (we have used
the value ε = 0.01); compute for each ej , 2 ≤ j ≤ N , the
finite difference

1
ε
(Rcyl(f̂a + εej) −Rcylf̂a);

0.45879 0.68789 0.11338 0.13041 0.15824
−0.97624i −0.46254i −0.09738i +0.07490i +0.11616i
−0.13666 −0.64474 0.33937 0.14710 −0.21006
+1.72834i +0.54306i −0.50837i −0.13849i +0.02552i
−0.90634 0.27155 −0.05765 −0.22948 0.18338
−1.37322i −0.38270i +1.09081i +0.14700i −0.39078i
1.23970 −0.08549 −0.68227 0.12817 0.10981
+0.20634i +0.23219i −0.81153i −0.14685i +0.47861i
−0.63443 −0.02489 0.80205 −0.04014 −0.34685
+0.58168i −0.18893i +0.00357i +0.12864i −0.19936i

TABLE 1. The matrix A6.

truncate past the Nth power; and expand over the basis
vectors ej to obtain an (N − 1)× (N − 1) matrix AN . In
Table 1, we present the approximate expression for A6

(the numbers have been truncated to the fifth decimal
place).

This matrix has spectral radius

RSp(A6) ≈ 0.53.

6.3 Estimating the Spectral Radius

We now proceed to produce a justification for the above
numerical experiment. We will equip L1

ρ, viewed as a
vector space, with a new l1-norm

|f |ρ =
∞∑

k=1

|fk|,

where fk are the coefficients in the expansion of f in the
basis {ej}, f =

∑∞
k=1 fkek, and denote the new Banach

space by L̃1
ρ. The projection P≤N on span1≤j≤N{ej} will

be defined by setting

P≤Nf =
N∑

j=1

fjej . (6–1)

We will also abbreviate I − P≤N as P>N .
We would like to emphasize that P≤Nf ∈ L̃1

ρ whenever
f ∈ L̃1

ρ, and therefore the operator

A = P≤NLP≤N (6–2)

serves as a finite-dimensional approximation to the action
of L on L̃1

ρ. We will now make the latter statement more
precise.

To this end, observe that

L = A + LP>N + P>NLP≤N = A + H. (6–3)

The following lemma demonstrates how one can obtain
an upper bound on the spectral radius of the differential
L at the fixed point in terms of the norm of a power
of the finite-rank operator A and the magnitude of the
norm of H.
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Lemma 6.2. Let L = A + H be a bounded operator on
some Banach space such that ‖Ak‖ < γ < 1 for some
k ≥ 1 and ‖H‖ < δ < 1. Then the spectral radius RSp(L)
satisfies

RSp(L) ≤ γ1/k(1 + Cδ/γ)1/k (6–4)

for some (explicit) constant C.

Proof: The claim follows from the spectral radius for-
mula. First,

RSp(L) = limn→∞‖Ln‖1/n = limn→∞
∥∥∥Lk[n

k ]+k{n
k }

∥∥∥1/n

≤ limn→∞
∥∥∥Lk[n

k ]
∥∥∥1/n

limn→∞‖Lk‖1−k[n
k ]

/
n.

The norm ‖Lk‖ is finite, and therefore

limn→∞‖Lk‖
n−k[n

k ]
n = 1.

Then

RSp(L) ≤ limn→∞
∥∥∥Lk[n

k ]
∥∥∥ 1

n

≤ limn→∞
∥∥∥Lk[n

k ]
∥∥∥ 1

[n
k ]k limn→∞‖Lk‖

[n
k ]k−n

nk

≤ limm→∞
∥∥Lkm

∥∥ 1
mk .

Let nCk denote the binomial coefficients, and let C =∑k
i=1 kCi‖Ak−i‖‖H‖i−1. Then

RSp(L) ≤ limn→∞

[
‖Ak‖n +

n∑
i=1

nCi‖Ak‖n−i(Cδ)i

] 1
kn

≤ limn→∞ [γn(1 + ((Cδ/γ + 1)n − 1)]
1

kn

= γ1/k(1 + Cδ/γ)1/k,

and the proof is complete.

It is left now to bound the difference of L from A.
First, we state the following Cauchy-type estimate, whose
straightforward proof will be left to the reader:

Proposition 6.3. Assume that an operator Rcyl is analytic
in an open ball Br(f̂) ⊂ L̃1

ρ. Let ε < 1 and let h ∈ L̃1
ρ be

such that |h|ρ < r. Then

|Rcyl(f̂ + εh) −Rcylf̂ − εLh|ρ (6–5)

≤ ε2

1 − ε
sup
|s|≤1

|Rcyl(f̂ + sh) −Rcylf̂ |ρ.

Note that

|L|Tf̂ W |ρ ≤ sup
j≥2

|Lej |ρ.

This, together with the preceding proposition and the
compactness property of renormalization, immediately
implies that |L|Tf̂ W |ρ can be bounded by a finite dif-
ference. Specifically, for all j > N ,

|Lej |ρ ≤ ε−1 sup
h∈P>N L̃1

ρ
|h|ρ≤1

|Rcyl(f̂ + εh) − f̂ |ρ

+
ε

1 − ε
sup

h∈P>N L̃1
ρ

|h|ρ≤1

|Rcyl(f̂ + h) − f̂ |ρ

≤ ε−1 sup
h∈P>N L̃1

ρ
|h|ρ≤1

|P≤N [Rcyl(f̂ + εh) − f̂ ]|ρ

+
ε

1 − ε
sup

h∈P>N L̃1
ρ

|h|ρ≤1

|P≤N [Rcyl(f̂ + h) − f̂ ]|ρ

+
(

ρ

ρ′

)N+1

ε−1

× sup
h∈P>N L̃1

ρ
|h|ρ≤1

|P>N [Rcyl(f̂ + εh) − f̂ ]|ρ′

+
ε

1 − ε
sup

h∈P>N L̃1
ρ

|h|ρ≤1

|P>N [Rcyl(f̂ + h) − f̂ ]|ρ′

≡ C1. (6–6)

Similarly, for all 2 ≤ j ≤ N ,

|P>NLej |ρ ≤ ε−1 sup
h∈T

f̂
W

|h|ρ≤1

|P>N [Rcyl(f̂ + εh) − f̂ ]|ρ

+
ε

1 − ε
sup

h∈T
f̂

W

|h|ρ≤1

|P>N [Rcyl(f̂ + h) − f̂ ]|ρ

≤
(

ρ

ρ′

)N+1

ε−1

× sup
h∈T

f̂
W

|h|ρ≤1

|P>N [Rcyl(f̂ + εh) − f̂ ]|ρ′

+
ε

1 − ε
sup

h∈T
f̂

W

|h|ρ≤1

|P>N [Rcyl(f̂ + h) − f̂ ]|ρ′

≡ C2. (6–7)

We would like to emphasize that these bounds use
the fact that L is a compact operator in an essential
way. The bounds (6–6) and (6–7) can be used to estimate
|(L −A)|Tf̂ W |ρ. In particular, according to (6–3),

|(L −A)|Tf̂ W |ρ ≤ max
{
|LP>N |ρ, |P>NL|Tf̂ W P≤N |ρ

}
≤ max {C1, C2} .

This expression provides a bound on δ in (6–4).
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We have chosen N = 14, and experimentally bounded
C1 and C2 by testing on vectors h = e15 and h =
e2, which empirically maximize the respective suprema.
Choosing k = 80 in (6–4), we have the following values
for the constants that enter the estimate (6–4):

γ < 2.07 × 10−18, δ < 0.24, C < 8.4 × 10−6.

Therefore, according to (6–4),

RSp(L|Tf̂ W ) < 0.85.

A better bound can be obtained if one computes all
relevant constants for a larger value of N , which requires
more computer time. It is plausible that the spectral
radius is close to 0.58, since we have observed that as N

increases, the largest eigenvalue of the operator

P≤NL|Tf̂ W P≤N

converges to
λ = 0.15 + i0.56.

This eigenvalue has been truncated to two decimal places.
As a final comment, note that the following simple ob-

servation implies that perturbations in the directions of
the vectors hj can also be used for estimating the spectral
radius of L|Tf̂ W .

Proposition 6.4. We have

Spec(L|B1
ρ
) = Spec(L|L1

ρ
).

To see this, note that the only difference between the
spectra is that 0 (contained in both spectra) is an eigen-
value of the operator L|B1

ρ
corresponding to linear rescal-

ings. We leave the straightforward details to the reader.

7. APPENDIX

The objective of this appendix is to describe how the
Cauchy (3–6) and Hilbert (3–5) transforms can be com-
puted numerically.

The constructive measurable Riemann mapping theo-
rem, Theorem 3.1, deals with Lp functions that generally
do not need to be differentiable. Therefore, one has to
choose an appropriate representation of the Lp functions
that enter Theorem 3.1 possibly as a collection of val-
ues on a grid, or as a Fourier series with radially depen-
dent coefficients. The latter choice has been made, for
instance, in [Daripa 92, Gaidashev 07, Gaidashev and

Khmelev 06], and will also be adopted in the present
paper.

Represent h and P [h] in (3–6) as

h(reiθ) =
∞∑

k=−∞
hk(r)eikθ, (7–1)

P [h](reiθ) =
∞∑

k=−∞
pk(r)eikθ, (7–2)

where the coefficients of the P -transform are given by

pk(r) =
1
2π

∫ 2π

0

e−ikθP [h](reiθ) dθ. (7–3)

A classical theorem of analysis (cf. [Ahlfors 66,
Fletcher and Markovic 06]) states that the Cauchy trans-
form of an Lp function, p > 2, is well defined and is
Hölder continuous with exponent 1 − 2/p. In [Daripa
92] and [Gaidashev and Khmelev 06] this fact has been
used to show that the Fourier coefficients of a Cauchy
transform are given by the following equations:

pk(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
∫ r

0

(
r

ρ

)k

hk+1(ρ) dρ, k < 0,

−2
∫ ∞

r

(
r

ρ

)k

hk+1(ρ) dρ, k ≥ 0.

(7–4)

To obtain similar formulas for the Hilbert transform,
assume that h is a Hölder continuous function compactly
supported in an open disk around zero of radius R,
B(0, R) ⊂ C. The Hilbert transform of such a func-
tion is known to exist as a Cauchy principal value (cf.
[Ahlfors 66, Carleson and Gamelin 91]). As with the
Cauchy transform, represent this transform as a Fourier
series:

T [h](reiθ) =
∞∑

k=−∞
ck(r)eikθ,

ck(r) =
1
2π

∫ 2π

0

e−ikθT [h](reiθ) dθ.

In [Daripa 93, Daripa and Mashat 98, Gaidashev and
Khmelev 06], the authors arrive at the following expres-
sions for these coefficients:

c0(0) = −2 lim
ε→0

∫ R

ε

h2(ρ)
ρ

dρ and ck(0) = 0, (7–5)

whenever k �= 0, and

ck(r) = Ak

∫ r

0

rk

ρk+1
hk+2(ρ)dρ (7–6)

+ Bk

∫ R

r

rk

ρk+1
hk+2(ρ)dρ + hk+2(r),
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where

Ak =

{
0, k ≥ 0,

2(k + 1), k < 0,

and

Bk =

{
−2(k + 1), k ≥ 0,

0, k < 0.

We would like to mention that the fact that the Hilbert
transform is a singular integral operator makes a rigor-
ous justification of formulas (7–5) and (7–6) significantly
more involved than that of (7–4).

Formulas (7–4)–(7–6) can be used to construct an ef-
ficient algorithm for solving a Beltrami equation. Given
values of h, for instance on a circular N × M grid that
contains the compact support of h, one can use a fast
Fourier transform (FFT)—see, for example, [Press et al.
92])—to find the values of the coefficients hk at the radii
ri, 1 ≤ i ≤ M .

Next, one can use these values to construct a piecewise
constant, piecewise linear, or spline approximation of the
functions hk (the choice of approximation, of course, de-
pends on the known or expected smoothness of hk). This
allows one to compute integrals in (7–4)–(7–6).

Armed with these implementations of the Hilbert and
Cauchy transforms, one can try to solve the Beltrami
equation (3–1), first by running iterations (3–8) for some
time, and finally, applying (3–9). It is convenient to use
the pointwise multiplication of grid values of h and µ+1
inside the Hilbert transform in (3–8), rather than the
multiplication of their Fourier series: The order of the
computational complexity of the pointwise multiplication
is O(NM), as opposed to O(NM2) for the series. The
transition from the representation of h as a Fourier series
to point values at each iteration step can be performed
with the help of the FFT. This way, the computational
complexity of one iteration step becomes O(NM log2 M).
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