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ABSTRACT

Large deviation statistics is implemented to predict the statistics of cosmic densities in cylin-
ders applicable to photometric surveys. It yields few percent accurate analytical predictions
for the one-point probability distribution function (PDF) of densities in concentric or compen-
sated cylinders; and also captures the density-dependence of their angular clustering (cylinder
bias). All predictions are found to be in excellent agreement with the cosmological simulation
Horizon Run 4 in the quasi-linear regime where standard perturbation theory normally breaks
down. These results are combined with a simple local bias model that relates dark matter
and tracer densities in cylinders and validated on simulated halo catalogues. This formalism
can be used to probe cosmology with existing and upcoming photometric surveys like DES,
Euclid or WFIRST containing billions of galaxies.

Key words: cosmology: theory — large-scale structure of Universe — methods: analytical,
numerical

1 INTRODUCTION

Understanding the nature of dark energy is the main challenge cos-

mology is facing today, as it accounts for ∼70 per cent of the

energy budget of our Universe. Multiplexed fiber or slit-less in-

struments allow astronomers to collect thousands of spectroscopic

redshifts (either ongoing GAMA (Driver et al. 2016), VIPERS

(Guzzo et al. 2014), or upcoming DESI (DESI Collaboration et al.

2016) PFS (Takada et al. 2014), MSE (McConnachie et al. 2016)).

Such surveys provide a direct mean to probe accurately the cosmic

evolution of the large-scale structure. Yet photometric redshift re-

mains the most efficient method to map large volumes of the sky

to position billions of galaxies. Obtaining galaxy statistics such

as the one-point density PDF and the angular correlation function

in thick redshift slices does not require modelling the cosmology-

dependent distance-redshift relation and allows us to accumulate

enough statistics for populations of rare objects. This has motivated

international collaborations such as DES (Rykoff et al. 2016), Eu-

clid (Laureijs et al. 2011), WFIRST (Spergel et al. 2013), LSST

(LSST Dark Energy Science Collaboration 2012), KiDs (de Jong

et al. 2013), to carry out extensive large scale structure surveys

relying primarily on photometric redshifts to study the details of

structure formation at different epochs and therefore offer insight

into the engine of cosmic acceleration.

The prime estimators which will be implemented on these sur-

veys are angular clustering, weak lensing and supernovae. The for-

mer will rely on photometric redshifts to estimate the distance of

the lensed galaxies and improve the derived constraint on the equa-

tion of state of dark energy while reconstructing the mass distribu-

tion of lenses on dozens of distinct planes simultaneously (imple-

menting so called weak lensing tomography). The extracted cata-

logues can at no extra cost be used to carry out count-in-cell statis-

tics (Bouchet et al. 1993; Efstathiou 1995; Yang & Saslaw 2011;

Wolk et al. 2013; Bel & Marinoni 2014; Bel et al. 2016; Friedrich

et al. 2017; Gruen et al. 2017). Count-in-cell has been identified

as an ancillary probe for these space missions, as it accesses the

non-linear regime of clustering analytically up to cosmic variance

of the order of one. Indeed Uhlemann et al. (2016, 2017c) derived

the theory of one- and two-point counts-in-cells statistics for spher-

ical symmetry in three dimensions using a fully analytical saddle-

point approximation as a substitute for the numerical integration

required in Bernardeau et al. (2014a); Codis et al. (2016b). This

analytic estimator can quantify more modes of the underlying clus-

tering, hence has improved statistical power (Codis et al. 2016a). It
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has also recently been extended to account for tracer bias so as to

operate directly on galaxy catalogues (Uhlemann et al. 2017a).

This paper theoretically models the one- and two-point statis-

tics of densities-in-concentric-cylinders that can be obtained from

measured 2D maps of the large scale structure in redshift bins.

It focuses on extending and combining Uhlemann et al. (2016,

2017a) to projected densities extracted from photometric – quasi-

cylindrical – galaxy surveys with tracer bias. In a highly symmetric

configuration such as cylindrical symmetry, one can take advantage

of the fact that a non-linear solution to the gravitational dynamics

(so-called cylindrical collapse) is known exactly and can be used to

accurately probe the non-linear regime. In particular, this statistics

allows us to study the density dependence of gravitational cluster-

ing in terms of the conditional one-point PDF of the density within

underdense (resp. overdense) regions and the modulation of angu-

lar clustering therein.

It also provides the basis for an application to cosmic shear

experiments sensitive to the matter distribution itself, such as the

weak lensing signal around shear peaks (Kacprzak 2016), galaxy

troughs (Gruen et al. 2016) or more general density split statis-

tics (Friedrich et al. 2017; Gruen et al. 2017). Indeed, density-

split statistics from counts and lensing in cells can yield cosmo-

logical constraints competitive with the two-point function mea-

surements if the stochasticity of the tracer-halo connection can be

controlled (see fig. 10 in Gruen et al. 2017). In this respect, the-

oretical progress has been made in deriving the one-point PDF

for weak lensing shear and local aperture mass in the mildly non-

linear regime (Bernardeau & Valageas 2000; Munshi & Jain 2000,

2001; Munshi et al. 2004, 2014; Reimberg & Bernardeau 2017).

This is particularly interesting because, despite an approximate log-

normality of 3D matter and tracers densities (Coles & Jones 1991;

Kayo et al. 2001; Bel et al. 2016; Hurtado-Gil et al. 2017; Agrawal

et al. 2017) and weak lensing statistics (Taruya et al. 2002; Hilbert

et al. 2011; Clerkin et al. 2017), lognormal models have fundamen-

tal limitations regarding joint modelling of the two (Xavier et al.

2016).

The outline of the paper is the following. Section 2 presents

how large deviation statistics can be used to obtain the PDF of dark

matter densities in cylinders using cylindrical collapse dynamics

and perturbative arguments. Section 3 compares these theoretical

predictions for the one-point PDF and the two-point clustering of

dark matter densities in cylinders to the Horizon Run 4 simulation.

Such statistics allow us to probe differentially the slope of the den-

sity field in regions of low or high density. Section 4 demonstrates

how tracer densities can be related to dark matter densities using a

simple local bias relation and leads to accurate predictions for the

statistics of tracers. Section 5 concludes and provides an outlook

for future use of the results presented here. Appendix A contains

further details on the treatment in the main text, in particular re-

garding the cylinder depth and leading order cumulants from per-

turbation theory, while Appendix B shortly addresses the accuracy

of lognormal reconstructions.

2 LARGE DEVIATION FOR PROJECTED DENSITIES

The general formalism of large deviation statistics for cosmic den-

sities has been presented in Bernardeau et al. (2014b); Bernardeau

& Reimberg (2016); Uhlemann et al. (2016) for 3D spherical cells.

It is presented here in the context of the density field smoothed in

cylinders. In that case the general framework is left unchanged pro-

vided that

(i) The cylindrical instead of spherical filter is used to compute

the initial correlation matrix of projected densities.

(ii) The cylindrical instead of spherical collapse is used to map

initial to final densities.

(iii) The dimension of the cylinders instead of spheres is prop-

erly rescaled from the initial to the final conditions according to

mass conservation.

(iv) The finite character of the redshift slices is accounted for.

After addressing those four points in the following subsection,

Section 2.2 describes how to compute the density PDF from large

deviation statistics.

2.1 Large deviation statistics with symmetric collapse models

When considering a highly symmetric observable such as the den-

sity in spheres or infinitely long cylinders, one can argue that the

most likely dynamics (amongst all possible mappings between the

initial and final density fields) is the one respecting the symmetry

(Valageas 2002)1. For spherical and cylindrical symmetry, one can

then take advantage of the fact that non-linear solutions to the gravi-

tational dynamics are known explicitly in terms of the spherical and

cylindrical collapse model, respectively.

2.1.1 Filters for cylinders and spheres

To relate the average density in a region of a given shape to the un-

derlying density field, the appropriate top-hat filters are used. For a

finite cylinder with radius R and depth d, a top-hat filter is used in

cylindrical coordinates W (r⊥, r‖) ∝ Θ(R − r⊥)Θ(d/2 − r‖)
where (r⊥, r‖) is the distance perpendicular and parallel to the

cylinder axis, while Θ is the Heaviside step function. The Fourier

transform of the cylindrical filter is a product of a two- and one-

dimensional top-hat filter

W̃cyl(Rk⊥, dk‖) =
2J1(Rk⊥)

Rk⊥
sinc

(

dk‖
2

)

, (1)

=W̃2D(Rk⊥)W̃1D

(

dk‖
2

)

,

where J1 is the Bessel function of the first kind of order one. For

an infinitely long cylinder d → ∞, the cylindrical filter (1) reduces

to a disk top-hat filter Wdisk(r2D) ∝ Θ(R− r2D) in 2 dimensions.

In comparison, for a spherical top-hat filter Wsph(r3D) ∝ Θ(R −
r3D) in 3 dimensions one has

W̃sph(kR) =
3(kR cos(kR)− sin(kR))

(kR)3
. (2)

For a galaxy redshift survey, one would eventually consider

truncated conical filters Wcone(r‖, γ̂), that select objects depending

on their radial distance r‖ and solid angle γ̂ on the sky. For coni-

cal shapes, one typically puts a selection function F (r‖) along the

radial direction (pointing along the line of sight n̂los) that encodes

the mean density of observable objects at given distance (and hence

redshift). Then one considers all solid angles γ̂ around the line of

sight n̂los with an angle θ = ∠(n̂los, γ̂) smaller than a given aper-

ture θ0 such that Wcone(r‖, γ̂) ∝ F (r‖)Θ(θ0 − θ). If the redshift

1 This is a result of the so-called contraction principle in the context of

large deviation theory as explained in Bernardeau & Reimberg (2016),

which formalizes the idea that amongst all unlikely fates (in the tail of the

PDF) the least unlikely one (symmetric collapse) dominates.

MNRAS 000, 000–000 (0000)



Non-Gaussian statistics of the projected cosmic density field 3

slices are thin compared to the radial distance of the redshift bin, a

truncated cone should be virtually identical to a cylinder centred at

the corresponding mean redshift.

Using equations (1) and (2), the filtered linear covariance for

concentric volumes is then obtained from the linear power spectrum

according to

σ2
s,L(Rs,1,Rs,2)=

∫

ddsk

(2π)d
PL(k)W̃s(k,Rs,1)W̃s(k,Rs,2) , (3)

where ds encodes the dimension of integration and W̃s is the

Fourier transform of an appropriate filter enclosing a volume of a

given shape s (e.g cylinders, spheres) and characteristic dimensions

Rs. For a cylinder, Rcyl = {R, d} and for a sphere Rsph = R.

Fig. A3 shows a comparison of the scale-dependence of the vari-

ance for cylinders and spheres and Appendix A3 describes an effi-

cient power-law parametrisation for the covariance.

2.1.2 From spherical to cylindrical collapse

Let us denote ζSC(τ) the non-linear transform of an initial fluctu-

ation with linear density contrast τ , in a ds-dimensional sphere of

radius Rini, to the final density ρ (in units of the average density)

in a sphere of radius R according to the spherical collapse model

ρ = ζSC(τ) , with ρRds = Rds
ini , (4)

where the initial and final radii are connected through mass con-

servation. Bernardeau (1992, 1995) showed that in 2D and 3D, the

spherical collapse obeys the following differential equation

−ζSCτ
2ζ′′SC+c(τζ′SC)

2− 3

2
ζSCτζ

′
SC+

3

2
ζ2SC(ζSC−1) = 0 , (5)

with c2D = 3/2 and c3D = 4/3. While equation (5) is strictly valid

only for an Einstein-de Sitter background, it is also a good approx-

imation for a general cosmological background. In both cases, one

has ζ(τ) ≃ 1 + τ + O(τ2) for small values of the linear density

contrast τ as expected in the linear regime. The second and third

orders then allows to predict the skewness from the spherical col-

lapse dynamics as is described in Appendix A1. Equation (5) has

a parametric solution for an Einstein-de Sitter background in three

dimensions and can be solved numerically in other cases. An ex-

plicit possible fit for the relation between the initial density contrast

τ and the final density ρ is given by

ρSC(τ) = (1− τ/ν)−ν ⇔ τSC(ρ) = ν(1− ρ−1/ν) , (6)

where ν depends on the dimension and the symmetry of collapse

(ds = 3 for spherical and ds = 2 for cylindrical/disk-like) and can

be adjusted to the actual values of the cosmological parameters.

The Zeldovich approximation, which is exact in 1D, corresponds

to setting νZA = 12.

In 3D, ν3D = 21/13 ≃ 1.6 provides a good description of

the spherical dynamics for an Einstein-de Sitter background for the

range of τ values of interest. In particular, this number allows us

to reproduce the tree-order reduced skewness S3 which captures

the behaviour for small and intermediate values of τ . From equa-

tion (5), Bernardeau (1995) found that for the 2D case asymptot-

ically ζ(τ) ∝ τ−(
√
13−1)/2 for large τ and therefore proposed to

2 For an analytical treatment of the PDF arising from 1D gravitational

collapse and non-perturbative effects therein, we refer to Pajer & van der

Woude (2017) which also addresses the relation of the PDF in Lagrangian

and Eulerian space.

use the parametrisation (6) with ν2D = (
√
13−1)/2 ∼ 1.30. If in-

stead, in analogy to the 3D case, one wants to reproduce the value

of the tree-order unsmoothed skewness for cylindrical symmetry

S2D
3 = 36/7 then one shall set ν2D = 1.4. Appendix A1 recaps

the expression for the skewness at tree-order in perturbation theory

and its relation to the spherical collapse parameter ν.

2.1.3 Relating initial to final volumes

Because of mass conservation, the dependence of the variance on

the initial shape of the cells Rini translates into a density depen-

dence when the final dimensions of the cylinder R = {R, d} are

fixed. Hence, a prescription of the form Rini = Rini(R, ρ) is

needed to map the final to the initial dimensions of the cell given

the enclosed final density. For a maximally symmetric case, like

spherical symmetry in 3D, mass conservation completely fixes the

relation between initial and final radii via Rini
sph = Rsphρ

1/3
sph. The

same holds true for an infinitely long cylinder that corresponds to

a 2D disk, for which mass conservation enforces to map the initial

radius to the final one via

long cylinders: Rini
disk = Rdisk · ρ1/2disk , (7)

where ρdisk is the surface density in the cylinder. In these maxi-

mally symmetric cases, the only unknown is the initial radius and

the sole constraint of mass conservation is sufficient to fix it.

Conversely, for a finite cylinder, two unknowns have to be

determined (radius and depth) from one single constraint that re-

lates the initial and final volume according to mass conservation

V ini
cyl = Vcylρcyl. One can then distribute the density ρcyl between

the two scales of the problem: the radius R and depth d of the cylin-

der. For a cylinder which has sphere-like dimensions d ≃ 2R2D,

one can expect that the ratio of cylinder radius to depth remains

constant since the cylinder should collapse similarly to an equiva-

lent sphere. Hence, for a sphere-like cylinder one should perform

an equal splitting

sphere-like cylinders: (Rini
cyl, d

ini
cyl) = (Rcyl, dcyl) · ρ1/3cyl , (8)

as opposed to infinitely long cylinders for which all the density

factor is attributed to the radius.

In the remainder of the text, the focus will be on long cylin-

ders with axis ratios 2R/d < 1/10 for which the approximation

of infinitely long cylinder should hold.3 Indeed, for those axis ra-

tios, previous studies for prolate spheroids (elongated symmetric

ellipsoids that should closely resemble cylinders) in Yoshisato et al.

(1998, 2006) suggest that effective two-dimensional spherical col-

lapse is accurate and the evolution of the axis corresponds to the

one of infinitely long cylinders (7). This argument is seconded in

Appendix A1 by comparing the skewness of the measured density

field to tree-order perturbation theory.

2.2 The one-point density PDF in the large deviation regime

Let us now compute the one-point PDF of the density field

smoothed in a cylinder from large deviation statistics.

3 It was checked that as far as the one-point PDF is concerned, sphere-like

cylinders with R = 10, d = 20 Mpc/h are well described by spherical

collapse with ν = 1.6 and a sphere-like mapping of the axis ratio as in (8).

MNRAS 000, 000–000 (0000)
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2.2.1 PDF and decay-rate function for an initial Gaussian field

The principles of large deviation statistics yield a formula for the

PDF of finding a certain density in a symmetric volume given the

initial conditions once it is assumed that the most likely dynamics

that relates the initial to the final configurations is given by the ap-

propriate collapse model. To achieve this goal, the main ingredient

is the decay-rate function which encodes the exponential decay of

the PDF. This formalism can be applied to any number of concen-

tric symmetric volumes (e.g spheres, cylinders) as the symmetry

is preserved in this configuration. For Gaussian initial conditions,

which is assumed here4, the initial PDF of density contrasts τk in N
concentric cylinders with characteristic dimensions Rk = {Rk, d}
can be written as

P ini
{Rk}({τk})=

√

√

√

√det

[

∂2Ψini
{Rk}

∂τi∂τj

]

exp
[

−Ψini
{Rk}({τk})

]

(2π)N/2
, (9)

where Rini
k = (Rini

k , dinik ) encodes the characteristic dimensions of

the initial cylinders. The initial decay-rate function is given by the

usual quadratic form in the initial density contrasts τk in cylinders

with characteristic dimensions Rk

Ψini
{Rk}({τk}) =

1

2

∑

i,j

Ξij({Rini
k }) τiτj , (10)

where Ξij is the inverse of the linear covariance matrix,

σ2
L(Rini

i ,Rini
j ) obtained from equation (3) and encoding all de-

pendency with respect to the initial power spectrum and the volume

which is averaged over. Note that equation (9) is merely a rewrit-

ing of a Gaussian distribution, emphasizing the central role of the

decay-rate function (10).

2.2.2 Large deviation statistics PDF for an evolved field

Using the so-called contraction principle in the zero variance limit

(Bernardeau & Reimberg 2016)

Ψ(Y ) = inf
X→Y

Ψ(X) (11)

the final decay-rate function is obtained from re-expressing the ini-

tial decay-rate function in terms of the final densities ρ and charac-

teristic dimensions of the cylinder R = {R, d}

Ψ{Rk}({ρk})=
1

2

∑

i,j

Ξij({Rini
k (Rk, ρk)})τSC(ρi)τSC(ρj) ,

(12)

where the mapping between initial and final densities τSC(ρ) is

given by the cylindrical collapse from equation (6). The non-linear

covariance is approximated by rescaling the linear covariance from

equation (3) using a reference scale

σ(Rini) ≡ σ(Rini,Rini) ≃
σ(R)

σL(R)
σL(Rini) , (13)

while the relation between the initial and final characteristic dimen-

sions of the cylinders Rini(R, ρ) is given by equations (7) for long

cylinders. The non-linear variance at reference scale – also known

as driving parameter in the context of large deviations theory – can

be either measured directly from the densities in spheres extracted

4 See Uhlemann et al. (2017b) for an extension of the formalism to include

primordial non-Gaussianity.

from the simulation, derived following equation (3) using the non-

linear power spectrum or found by a best fit to the measured one-

point PDF (Codis et al. 2016a).

The PDF of evolved densities in concentric cylinders,

P{Rk}({ρk}), at one point can then be obtained in full analogy

to the case for densities in concentric spheres as discussed in Uh-

lemann et al. (2016). Therein, it has been shown that the saddle-

point technique provides an excellent approximation to the exact

result from large-deviations statistics if a suitable variable is cho-

sen. For a single cylinder the suitable variable is the log-density

µ = log ρ while for concentric cylinders one should use logarith-

mically mapped combinations of the densities, see Section 3.3 for

the case of two cylinders. The PDF of those mapped densities is

then given by

Pcyl

µ,{Rk}({µk}) =
√

det

[

∂2Ψ{Rk}
∂µi∂µj

]

exp
[

−Ψ{Rk}
]

(2π)N/2
, (14a)

where Ψ is now given by equation (12). The PDF of the log-density

can be related to the PDF of the density via a simple change of

variables

Pcyl

{Rk}({ρk}) = Pcyl

µ,{Rk}[{µk({ρi})}]
∣

∣

∣

∣

det

[

∂µi

∂ρj

]∣

∣

∣

∣

. (14b)

Equation (14a) assumes that the mean of µj vanishes independently

of the variance. For a generic non-linear mapping, it will translate

into a mean density which can deviate from one as σ grows. In

order to avoid this effect, one has to consider the shifted PDF

P̂cyl

µ,{Rk}({µk}) = Pcyl

µ,{Rk}({µ̃k = µk − 〈µk〉}) , (14c)

with the shifts 〈µk〉 chosen such that the resulting mean densities

are one 〈ρi〉 = 1 ∀i = 1, · · · , n. Furthermore, since the saddle-

point method yields only an approximation to the exact PDF, the

PDF obtained from equation (14) is not necessarily perfectly nor-

malized (Uhlemann et al. 2017c). In practice, this can be corrected

for by considering

P̂cyl

R ({ρk}) = Pcyl

R ({ρk})/〈1〉 , (14d)

with the shorthand notation 〈1〉 =
∏

k

∫∞
0

dρk Pcyl

R ({ρk}). Note

that this effect is however very minor as the deviation of 〈1〉 from

unity is typically at the sub-percent level.

2.3 The two-point cylinder bias in the large deviation regime

Let us finally close this section by turning to the two-point statistics

of densities in cylinders and in particular to the two-point cylinder

bias from large deviation statistics.

2.3.1 Kaiser bias for an initial Gaussian field

The initial two-point bias used in previous works on densities-in-

spheres (see e.g. Bernardeau 1996; Codis et al. 2016b; Uhlemann

et al. 2017c) can also be straightforwardly generalised to cylinders.

Cylinder bias is defined as the ratio between the conditional mean

density contrast induced by a given initial density contrast τ0 in a

cylinder of characteristic dimensions Rini at separation r⊥ (per-

pendicular to the cylinder axis) and the average correlation

bini(τ0, r⊥) =
〈τ(x + r⊥)|τ(x) ≡ τ0〉

〈τ(x + r⊥)τ(x)〉
=

∫

dτ τ P2pt
Rini

(τ0, τ ; r⊥)

PRini
(τ0)ξL(Rini, r⊥)

,

and can be expressed in terms of the joint PDF P2pt
Rini

of densities

in cylinders of equal characteristic dimensions Rini at separation

MNRAS 000, 000–000 (0000)
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r⊥ and their correlation function ξ(Rini, r⊥) = 〈τ(x + r⊥)τ(x)〉.
The initial correlation function is obtained from the linear power

spectrum as

ξL(Rini, r⊥)=

∫

d3k

(2π)3
PL(k)W̃

2(k,Rini) exp(ik⊥ · r⊥). (15)

For Gaussian initial conditions, it is straightforward to determine

and diagonalise the linear covariance matrix to find that the cylin-

der bias predicted by large deviation theory is independent of sep-

aration r⊥ and reads

bini(τ, r⊥) ≡ bini(τ) =
τ

σ2
L(Rini)

, (16)

which is proportional to the initial overdensity τ as expected from

Kaiser (1984). Since the cylinder bias is independent of the separa-

tion r⊥, the density dependence of the two-point statistics of den-

sities in cylinders can be factorised at large separations r⊥ ≫ 2R
according to

P2pt
Rini

(τ, τ ′; r⊥)

PRini
(τ)PRini

(τ ′)
≃1+ξL(Rini, r⊥)bini(τ)bini(τ

′) . (17)

2.3.2 Large deviation statistics bias for an evolved field

The cylinder bias can be defined in the evolved density field in com-

plete analogy to the initial one from equation (15) and reads

bcyl

R (ρ0, r⊥) =
〈ρ(x + r⊥)|ρ(x) ≡ ρ0〉 − 1

〈ρ(x + r⊥)ρ(x)〉 − 1
. (18)

Following the same prescription as for the PDF for replacing ini-

tial and final densities and characteristic dimensions of the cylinder,

large deviation theory predicts that the final cylinder bias is inde-

pendent of the transverse separation and given by

bcyl

R (ρ) =
σ2
L(R)

σ2
µ(R)

τSC(ρ)

σ2
L(Rini(R, ρ))

. (19a)

Equation (19a) must also be shifted and normalised (Uhlemann

et al. 2017c) according to

b̂cyl

R (ρ) =
bcyl

R (ρ)− 〈bcyl

R (ρ)〉
〈ρbcyl

R (ρ)〉 − 〈bcyl

R (ρ)〉
. (19b)

where the averages denoted by 〈·〉 are computed as integrals with

the one-point PDF from equation (14). As before, the prediction

depends on the assumed mapping between initial and final radii

and depths and the choice of the filter function for obtaining the

linear variance σL.

3 VALIDATION FOR DARK MATTER DENSITIES

Let us now compare the theoretical predictions for the one-point

PDF and the two-point clustering of dark matter densities in cylin-

ders to the cosmological N-body simulation Horizon Run 4.To

avoid confusion between dark matter densities considered here and

tracer densities that will be used in Section 4, from now on ρm
stands for matter densities and ρh for halo densities.

3.1 Horizon Run 4 simulation

The Horizon Run 4 simulation (HR4, Kim et al. 2015) is a mas-

sive N -body simulation, evolving 63003 particles in a 3.15 Gpc/h
box using the GOTPM TreePM code (Dubinski et al. 2004). It

assumes a WMAP-5 cosmology, with (Ωm,ΩΛ,Ωb, h, σ8, ns) =

z = 0.7
❍
❍

❍
❍

d

R
3 5 7 10

σ̂ρ 150 0.330 0.274 0.242 0.209

σ̂µ 150 0.300 0.259 0.232 0.203

σ̂ρ 300 0.235 0.196 0.173 0.150

σ̂µ 300 0.22 0.190 0.169 0.148

σ̂µ 450 0.193 0.161 0.142 0.123

σ̂µ 450 0.185 0.157 0.140 0.122

σ̂ρ 700 0.154 0.129 0.114 0.099

σ̂µ 700 0.150 0.127 0.113 0.099

Table 1. Variances of the cylindrical density ρ and log-density µ = log ρ

for different lenghts d [Mpc/h] and radii R [Mpc/h] at redshift z = 0.7 as

measured from the HR4 simulation.

(0.26, 0.74, 0.044, 0.72, 0.79, 0.96), yielding a particle mass of

9× 109h−1 M⊙. The initial conditions were generated at z = 100
using the second order Lagrangian perturbation theory, which en-

sures accurate power spectrum and halo mass function at redshift 0

(see L’Huillier et al. 2014, for details). For the purpose of this pa-

per, cylinders of various radii and lengths were extracted from the

dark matter and halo catalogues at fixed redshift and used to mea-

sure the statistical properties of their encompassed mean densities.

Error bars for the PDFs are determined from the standard error on

the mean that is obtained by dividing the full simulation cube into 8

subsamples and computing the corresponding histograms. A spher-

ical slice of width 60 Mpc/h was also extracted at redshift 0.36
and projected onto the sky using the HealPix5 equal area scheme to

produce Fig. 9.

3.2 One-point PDF of density in single cylinders

The explicit formula for the one-point PDF for dark matter densi-

ties ρm within a cylinder of radius R and depth d at redshift z is

expressed as

Pcyl

R (ρm)=

√

Ψ′′
R(ρm) + Ψ′

R(ρm)/ρm
2πσ2

µ

exp

(

−ΨR(ρm)

σ2
µ

)

, (20)

where the prime denotes a derivative with respect to ρm and

ΨR(ρm) =
τ2
SC(ρm)σ2

L(R)

2σ2
L(Rini(R, ρm))

. (21)

Note that σµ ≡ σµ(R, z) is the non-linear variance of the log-

density in a cylinder with characteristic dimensions R = (R, d),
which enters because the formula has been derived from an analytic

approximation based on the log-density µm = log ρm, while σL is

the linear variance. Table 1 reports the values for the variance of the

density and log-density for different radii and depths of the cylin-

ders. In Equation (21), τSC(ρm) is the linear density contrast which

can be mapped to the non-linearly evolved density ρm using the col-

lapse model (6) where the parameter ν = 1.4 characterises the dy-

namics of cylindrical collapse and matches the high-redshift skew-

ness obtained from perturbation theory. The initial (Lagrangian)

characteristic dimensions of the cylinder Rini(R, ρm) are mapped

using equation (7) for long cylinders. To ensure a unit mean den-

sity and the correct normalization of the PDF, as described in Sec-

5 http://healpix.jpl.nasa.gov/

MNRAS 000, 000–000 (0000)



6 C. Uhlemann, C. Pichon, S. Codis, B. L’Huillier, J. Kim et al.

tion 2.2 one can simply evaluate the PDF obtained from equa-

tion (20) according to

P̂cyl

R (ρm) = Pcyl

R

(

ρm
〈ρm〉
〈1〉

)

· 〈ρm〉
〈1〉2 , (22)

with the shorthand notation 〈f(ρm)〉 =
∫∞
0

dρm f(ρm)Pcyl

R (ρm).
Fig. 1 compares the theoretical prediction for long cylinders

with fixed depth d = 150 Mpc/h and various radii R to the sim-

ulation results. The upper panel gives an overall view on the expo-

nential decay of the one-point PDF for large deviations from the

mean density. It is complemented by the lower panel which shows

the residuals around the maximum of the PDF, and displays the 2-

σµ region around the mean for the log-density since the PDF of the

log-density is close to Gaussian and hence allows for a fair com-

parison of under- and over-densities. An equivalent plot with fixed

radius R = 5 Mpc/h and varying depth d is shown in Fig. A2.

Given the few percent-level agreement between the theoretical pre-

diction and the simulation6, a future application of counts-in-cells

statistics to photometric surveys is in order. The description is next

generalised to concentric cylinders and two-point clustering that

allow to consider density-split statistics. To connect the results for

dark matter to tracer densities, tracer bias is also discussed in Sec-

tion 4 following closely Uhlemann et al. (2017a) .

3.3 One-point PDF of densities in concentric cylinders

3.3.1 Two concentric cylinders

It is of interest to consider the joint PDF of concentric cylinders

as it allows us to deduce conditionals which may e.g. act as proxies

for peak or voids. To obtain such PDF for the densities ρ1, ρ2 in the

cylinders of equal depth d and radii R1 < R2, one can also apply a

logarithmic density mapping that relies on the sum and difference

of mass in the two cylinders, (see for the analogous sphere case

Uhlemann et al. 2016)

µ1 = log
(

r212ρ2,m + ρ1,m
)

, µ2 = log
(

r212ρ2,m − ρ1,m
)

,
(23)

where the relative shell thickness is r12 = R2/R1 > 1. The PDF

Pcyl

R1,R2
(ρ1,m, ρ2,m) can then be approximated via equation (14).

Analogously to the one cell case, one still has to enforce the mean

and normalization for the saddle point PDF following the proce-

dure described in equations (14c)-(14d). It is convenient to ex-

press the joint density PDF Pcyl

R1,R2
(ρ1,m, ρ2,m) in terms of the

inner density ρ1,m and the density in the outer shell ρ12,m =
(R2

2ρ2,m−R2
1ρ1,m)/(R2

2 −R2
1). Note that for the sake of simplic-

ity, a simpler scheme is used to compute the linear covariance ma-

trix here, namely a power-law parametrisation of the power spec-

trum (A6) with index n = ncyl(R, d) according to equation (A7)

instead of the exact linear power spectrum, see Appendix A3.

The result is displayed in Fig. 2 and compared to measure-

ments. Overall a very good agreement is found.

3.3.2 One-point PDF of densities in cylindrical rings

From the joint PDF of densities in concentric cylinders, one can

obtain the PDF of a cylindrical shell and conditionals given inner

6 Note that in contrast, the lognormal model shows residuals of about 5-

20% in the central region and larger deviations in the tails, see Fig. B1 in

Appendix B.
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Figure 1. (Upper panel) PDF of the matter density field smoothed in cylin-

drical cells of length d = 150 Mpc/h and radii R = 3, 5, 7, 10 Mpc/h at

redshift z = 0.7. Shown are the HR4 measurements (data points) against

the theoretical predictions computed with the finite cylinder filter given by

equations (1) and (7) together with the spherical collapse parametrized by

ν = 1.4 (solid lines). (Lower panel) Residuals of the theoretical prediction

using finite cylinder filter against the measurements around the maximum

of the PDF for log density within two-sigma from the mean.

over- or under-density via a simple marginalisation over the inner

density

P shell
R1,R2

(ρ12,m)=

∫

dρ1,mPcyl

R1,R2
(ρ1,m, ρ12,m) , (24)

P shell
R1,R2

(ρ12,m|ρ1,m≷1) (25)

=

∫

dρ1,mPcyl

R1,R2
(ρ1,m, ρ12,m)Θ(±(ρ1,m−1))

∫

dρ12,m

∫

dρ1,mPcyl

R1,R2
(ρ1,m, ρ12,m)Θ(±(ρ1,m−1))

.

A comparison between the marginal PDF and conditionals for

over- and under-dense environments is shown in Fig. 3, while

Fig. 4 focuses on the marginal PDF in cylindrical rings. For both

statistics, very good agreement is found between the simulation

measurements and the theoretical prediction, despite the simplify-

ing assumption for the power spectrum. This is encouraging be-

cause statistics conditional on over- or underdensities have recently

gained renewed interest in the context of weak lensing around

galaxy troughs (Gruen et al. 2016) or more general density quan-

tiles (Friedrich et al. 2017). While the statistics was here condi-

tioned on the underlying dark matter density, in practice one has

to rely on tracer densities. To this end, the inclusion of tracer

bias is discussed in Section 4. The marginal PDF of the densi-

ties in cylindrical rings gives a qualitative impression of the ex-
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Figure 2. Joint PDF of the projected matter densities in concentric cylinders

of depth d = 150 Mpc/h and radii R1 = 5 Mpc/h and R2 = 7 Mpc/h at

redshift z = 0.7 from the saddle point approximation with ν = 1.4 and the

disk filter for a power-law spectrum with n = −1.4 (solid lines) compared

to the HR4 measurements (dashed lines).

pected weak lensing signal that can probe the dark matter density

up to a mass-sheet degeneracy, hence requires the use of compen-

sated filters such as the difference of two cylinders. Note that the

relation between conical cells and long cylinders can change the

underlying analytical properties of the cumulant generating func-

tions (see equation (34) in Bernardeau & Valageas 2000). However,

large deviation statistics can be applied to many continuous nonlin-

ear functionals of density profiles (Reimberg & Bernardeau 2017).

Investigating approximations to compute PDFs for weak lensing

convergence and cosmic shear fully analytically in the spirit of the

log-density will be the subject of future work.

3.4 Two-point cylinder bias

In analogy to the 3D case leading to sphere bias described in Codis

et al. (2016b); Uhlemann et al. (2017c), cylinder bias encodes the

density dependence of large-scale angular clustering. This idea is

related to the concept of sliced or marked correlation functions, see

for example early works of Sheth & Tormen (2004); White & Pad-

manabhan (2009) as well as Neyrinck et al. (2016); White (2016).

Cylinder bias is defined as the ratio between the mean density ρ′

at separation r⊥ (perpendicular to the axis of the cylinder) from a

given density ρ in a cylinder of radius R and depth d and the aver-

age angular-correlation function, see equation (18). In the simula-

tion, the cylinder bias is measured by using 4 neighbours at separa-

tion r⊥ (along the two grid directions perpendicular to the cylinder

axis) for every cylinder. A comparison between the prediction from

equation (19) using a cylindrical filter and the measurement from

the simulation is shown in Fig. 5 for fixed cylinder depth and vary-

ing radius. Except for the very low density end, there is a very good

(ρ12,m|ρ1,m>1)(ρ12,m|ρ1,m<1)(ρ12,m)
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0.0
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2.0

2.5
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
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shell (ρ12,m|ρ1,m)

�=���� ��=�� ��=�� �=���� ν=���� �=-���

Figure 3. Marginalised PDF of the matter densities in cylindrical rings of

depth d = 150 Mpc/h and radii R1 = 5 Mpc/h and R2 = 7 Mpc/h at

redshift z = 0.7 from the saddle point approximation with ν = 1.4 and

the disk filter for a power-law spectrum with n = −1.4 for arbitrary inner

densities (green line), overdensities (red line) and underdensities (blue line)

compared to the HR4 measurements (data points).

R1=7, R2=10

R1=5, R2=7

R1=3, R2=5

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0
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1.5

2.0

2.5

ρ12,m


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�=���� �=���� ν=���

Figure 4. Marginalised PDF of the matter densities in cylindrical shells

of depth d = 150 Mpc/h and radii (R1, R2) = {(3, 5), (5, 7), (7, 10)}
Mpc/h at redshift z = 0.7 from the saddle point approximation with ν =
1.4 and the disk filter for a power-law spectrum with n = −{1.5, 1.4, 1.3}
(colored lines) compared to the HR4 measurements (points with error bars).

agreement between the theoretical prediction and the measurement

in the simulation.

The cylinder bias can be used to approximate the two-point

PDF of densities in cylinders at large separation r⊥ > 2R accord-

ing to

P2pt
R (ρm, ρ′m, r⊥) = Pcyl

R (ρm)Pcyl

R (ρ′m) (26)

×
[

1+ξm(r⊥)b
cyl

R (ρm)bcyl

R (ρ′m)
]

,

and is hence also useful to quantify correlations between neigh-

bouring cylinders that contribute to the error budget of PDFs (Codis

et al. 2016b).
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Figure 5. Two-point cylinder bias of dark matter densities in cylinders of

depth d = 150 Mpc/h and varying radii R at separation r⊥ = 30 Mpc/h
and redshift z = 0.7 . The HR4 measurement (data points) is compared to

the theoretical prediction from equation (19) using the cylindrical filter.

4 APPLICATION TO TRACER DENSITIES

Let us now investigate tracer counts using a local bias relation.

4.1 Halo identification

The haloes in HR4 were detected using Ordinary Parallel Friends-

of-Friends (OPFOF, Kim & Park 2006), a massively parallel imple-

mentation of the friends-of-friends (FoF) algorithm, using a canon-

ical linking length of 0.2 mean particle separations. Subhaloes were

detected by the Physically Self-Bound algorithm (PSB, Kim & Park

2006), which finds the density peaks within each FoF halo, re-

moves unbound particles, similarly to the SUBFIND halo finder,

and additionally truncates the subhaloes to their tidal radius. All

subhaloes with more than 30 particles were considered, yielding a

masses from 2.7 × 1011h−1M⊙ to 4.2 × 1015h−1M⊙. Follow-

ing the observations made in Seljak (2009); Hamaus et al. (2010);

Jee et al. (2012) and Uhlemann et al. (2017a), let us consider a

mass-weighted halo density (instead of number-weighted) because

this makes the bias relation much tighter and considerably reduces

the scatter. This can be intuitively understood as the mass-weighted

halo densities resemble the overall dark matter density more closely

than halo number. Note however that the mass-weighted densities

of subhaloes are expected to be very similar to the mass weighted

density of haloes (with no substructure) as the mass is almost pre-

served from haloes to subhaloes. Note finally that the subhaloes

can be related to galaxies using for instance abundance matching

techniques (Kravtsov et al. 2004; Vale & Ostriker 2004).

4.2 A local bias model for halo densities in cylinders

The treatment of mass-weighted halo densities in cylinders as bi-

ased tracers of the dark matter closely follows the procedure pre-

sented in Uhlemann et al. (2017a) for densities in spheres. In order

to map the dark matter statistics to the halo statistics, let us rely

on an ‘inverse’ quadratic bias model µm(µh) (writing the matter

densities ρm as a function of the tracer densities ρh) for the log-

densities µa = log ρa (a=m,h) which reads

µm =

nmax
∑

n=0

bnµ
n
h , with nmax = 2 . (27)

variance correlation bias

R σµ,m σµ,h ξρ,m ξρ,h b0 b1 b2
3 0.300 0.683 0.0088 0.0040 0.0199 0.4643 0.052

5 0.259 0.546 0.0081 0.0041 0.0184 0.4921 0.0562

7 0.232 0.472 0.0075 0.0042 0.0177 0.5067 0.0583

10 0.203 0.402 0.0067 0.0043 0.0175 0.5177 0.0627

Table 2. Collection of simulation results for different radii R and depth

d = 150 Mpc/h at redshift z = 0.7. The measured nonlinear variances

σµ of the log-density µ = log ρ and the correlation ξ of the density ρ at

separation r⊥ = 30Mpc/h of both dark matter (m) and haloes (h) in real

space along with the bias parameters obtained from fitting the quadratic

model (27) to the CDF bias function (28).

Following the idea of Sigad et al. (2000); Szapudi & Pan (2004), a

direct way to obtain the mean bias relation is to use the properties of

the cumulative distribution functions (CDFs), defined as Ca(ρa) =
∫ ρa
0

dρ′Pcyl
a (ρ′) with index a = m for matter and a = h for halos,

so that

Cm(ρm) = Ch(ρh) ⇒ ρm(ρh) = C−1
m (Ch(ρh)) . (28)

This is used to verify the accuracy of the polynomial log-bias

model by fitting the bias parameters in equation (27) to the

parametrisation-independent bias function obtained from the CDFs

and comparing the two resulting functions.

Fig. 6 presents a scatter plot showing ρh as a function of ρm
for redshift z = 0.7, depth d = 150 Mpc/h and radius R = 5
Mpc/h in order to assess how well bias models characterise the

halo density bias. The lines correspond to the mean bias obtained

in a parametrisation-independent way from the CDF method (red

line) and fits based on a quadratic bias model for the log-densities

(dashed and solid orange line) according to equation (27). The cor-

responding values of the best-fit bias parameters are given in Ta-

ble 2 for different radii at z = 0.7. The second-order bias model for

the logarithmic densities based on equation (27) agrees almost per-

fectly with the parametrisation-independent way of inferring bias

using CDFs as in equation (28) and matches simulation results very

well. An approximation of the standard linear bias parameter be-

tween matter and halo densities can be obtained by expanding the

logarithmic relation to get δh/δm ≃ [exp(b0)b1]
−1 which gives

values close to 2 and slightly decreases with increasing radius.

4.3 One-point PDF and two-point cylinder bias for tracers

Equipped with a bias model for the mean relation ρm(ρh), the halo

PDF Ph is now obtained from the dark matter PDF Pcyl
m in equa-

tion (14) by conservation of probability

Pcyl

h (ρh) = Pcyl
m (ρm(ρh)) |dρm/dρh| . (29)

One can also obtain the modulation of the two-point correlation

function, the cylinder bias b◦ for haloes, from the result for dark

matter given in equation (19)

bcyl

h (ρh) = bcyl
m (ρm(ρh))

√

ξm/ξh , (30)

where the ratio of correlation functions is given by

√

ξh/ξm =
〈

ρh(ρm)bcyl
m (ρm)

〉

, (31)

and can be approximated by expanding the log-bias relation to first

order to obtain
√

ξm/ξh ≃ exp(b0)b1. A validation of those the-

oretical predictions against the numerical simulation is shown in

Fig. 7 for the one point PDF and in Fig. 8 for cylinder bias as func-

tion of halo density. The agreement is once again very good.
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Figure 6. Density scatter plot of the halo density ρh with mass-weighting

(blue-green region) versus the dark matter density ρm for a cylinder of

radius R = 5 Mpc/h and depth d = 150 Mpc/h at redshift z = 0.7.

The figure also shows the best-fit quadratic bias model for the log-density

obtained from a fit to the scatter plot (dashed, orange) and to the CDF bias

function (orange line, overlapping with the red line) which agrees very well

with the parametrisation-independent bias obtained from the CDF (red line)

in particular in the intermediate density region .
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Figure 7. PDF of the mass-weighted halo density in cylindrical cells of

length d = 150 Mpc/h and radii R = 3, 5, 7, 10 Mpc/h at redshift

z = 0.7. Shown is a comparison of HR4 measurements (data points) and

the prediction from equation (29) computed with the cylindrical filter (1)

together with the spherical collapse parametrized by ν = 1.4 (solid lines)

and the fitted bias parameters from Table 2.
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Figure 8. Two-point cylinders bias of mass-weighted halo densities in

cylinders of depth d = 150 Mpc/h and radii R = 3, 5, 7, 10 Mpc/h at

separation r⊥ = 30 Mpc/h and redshift z = 0.7 . The HR4 measurement

(data points) is compared to the theoretical prediction from equation (30)

using the cylindrical filter and the best-fit bias parameters from Table 2.

4.4 Conditional PDF of DM density given tracer densities

The conditional PDF of dark matter density in cylindrical rings

given a central tracer density is interesting because it can be used

to probe the matter density profile (for example measured through

weak lensing) around regions of fixed tracer density. The matter

density profile can be related to the tangential shear or lensing con-

vergence profile around under- and overdense regions as is done in

Friedrich et al. (2017). The mixed halo matter joint PDF can be ob-

tained from the joint PDF of dark matter using the one-to-one bias

mapping

Pcyl

R1,R2
(ρ1,h, ρ2,m)=Pcyl

R1,R2
(ρ1,m(ρ1,h), ρ2,m)

∣

∣

∣

∣

dρ1,m
dρ1,h

∣

∣

∣

∣

, (32)

and then defining conditionals in analogy to equation (25). Simi-

lar to Figs. 2 and 4 showing the joint PDF of matter in concentric

cylinders and the conditional PDFs of density in rings given an in-

ner dark matter over- or under-density, Fig.s A4 and A5 show the

case of a mixed joint PDF of dark matter around tracer density.

4.5 Prospects for dark energy experiments

Given the accuracy of the theoretical predictions for one and two-

point statistics of halo densities in cylinders, counts-in-cells statis-

tics seem promising for constraining cosmological parameters. In

particular, measuring the tracer PDF in relatively thin redshift slices

through photometric surveys gives access to the time evolution of

clustering and hence can probe dark energy. Let us discuss briefly

how the joint fit of estimators for counts-in-cells statistics presented

in the previous subsection could be used to constrain dark energy.

In this context the goal is to estimate the so-called equation of state

of dark energy w(z) = w0+wa/(1 + z) with parameters (w0, wa)
from the PDF while relying on the cosmic model for the growth rate

(Blake & Glazebrook 2003),

D(z|w0, wa) =
5ΩmH2

0

2
H(a)

∫ a

0

da′

a′3H3(a′)
, (33)

H2(a) = H2
0

[

Ωm

a3
+ΩΛ exp

(

3

∫ z

0

1 + w(z′)

1 + z′
dz′

)]

, (34)
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with Ωm, ΩΛ and H0 the dark matter and dark energy densi-

ties and the Hubble constant respectively at redshift z = 0 and

a ≡ 1/(1 + z) the expansion factor. If one had access to the pro-

jected dark matter PDF at different redshift slices directly (through

weak lensing convergence), one could follow the fiducial exper-

iment described in Codis et al. (2016a). The key idea is to take

advantage of the fact that the variance is the only parameter in

the dark matter PDF and that its redshift-dependence is given by

σ(z) ∝ D(z|w) where D is given by equation (34).

When applying this idea to galaxy counts, the main difficulty

is that disentangling bias parameters and variance (following Uh-

lemann et al. 2017a) requires both one- and two-point statistics.

Those are difficult to extract accurately enough on a thin slice-

by-slice basis (such as that shown on Fig. 9), because the num-

ber of cylinders is limited by the available cosmic volume and the

average number of galaxies per cylinders. In this case, one has

to circumvent this difficulty by parametrising the redshift evolu-

tion of the bias parameters (a possible parametrisation could be

e.g. bn(z) =
∑

anpz
p). Then, one could marginalise over some

prior values for this parametrisation or use information at differ-

ent scales (either varying radius or separation of the cylinders) to

constrain those parameters jointly with w. To constrain dark en-

ergy, one could naturally compute the joint log-likelihood, L of the

measured densities encoded in the halo PDF as

L({(ρh)i,k}|w) =

Nz
∑

k=1

Ncyl(k)
∑

i=1

logPcyl

R

(

(ρh)i,k|zk, w
)

, (35)

where Nz is the number of redshift slices, Ncyl(k) the number of

cylinders per slice and P ((ρh)i,k|zk, w) is the theoretical density

probability of having halo densities (ρh)i,k in a cylinder of given

radius at redshift-slice zk for a cosmological model with dark en-

ergy e.o.s parametrized by w = (w0, wa) and marginalized over

possible values of the bias parametrization. Optimizing L in equa-

tion (35) with respect to w would yield a maximum likelihood es-

timate for the dark energy equation of state parameters. As men-

tioned earlier, the key ingredient is to parametrize the redshift bias

evolution with a few parameters, so that each new redshift slice

does not introduce new unknown parameters. One could also at-

tempt taking correlations between neighbouring cylinders into ac-

count. The DE parameters could then be explored for example us-

ing an adapting (importance) sampling scheme where the sampling

proposal could be a multi-variate Gaussian copula, see e.g. Ben-

abed et al. (2009). An alternative strategy to address the tracer bias

problem would be to use a joint count and lensing-in-cell analy-

sis as done in Gruen et al. (2017); Friedrich et al. (2017), possibly

applied to tomographic bins.

Implementing the idea to constrain dark energy on the light-

cone of HR4 will be the topic of future work (but see Fig 10).

5 CONCLUSION AND OUTLOOK

Building upon recent works on large deviation statistics for cos-

mic densities in spherical cells, estimators for the one-point PDF of

densities in concentric cylinders and for the density-dependence of

their angular clustering (cylinder bias) – therefore their two-point

statistics – were presented. These statistics were combined with a

simple polynomial local bias model (in log-densities) relating dark

matter and tracer densities in cylinders to produce estimators for 2D

count-in-cell statistics and compensated filters. The validity of the

parametrised bias model was established using a parametrisation-

independent extraction of the bias function. All these estimators

Figure 9. Logarithmic view on the mass weighted count-in-cell of sub-

haloes in the HR4 lightcone at redshift z = 0.36 in a slice of 60 Mpc/h
projected on the sphere using the HealPix scheme (here ℓmax = 512).
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Figure 10. Subhalo counts from the (non-cylindrical) HealPix cells for

ℓmax = 256 also displayed in Fig. 9 at various redshifts as labeled. As ex-

pected, the PDFs become more Gaussian at higher redshift. Fitting counts

like this following the procedure presented in Fig 7 should allow us to put

constraints on the cosmic evolution of σ.

were found to be in excellent agreement with state-of-the-art nu-

merical simulations. The present formalism will allow to probe cos-

mology using photometric surveys containing billions of galaxies.

It also provides the basis for a direct bias independent application

to weak lensing mass aperture maps. The PDF for dark matter and

biased tracers could also be used to rapidly generate mock top-hat

smoothed maps for e.g. weak lensing or intensity mapping.

A possible extension of this work is a validation of the analy-

sis on lightcone slices with virtual galaxies extracted from Horizon

Run 4. This could be used to quantify the accuracy at which dark

energy parameters can be extracted from 2D count-in-cells follow-

ing the fiducial dark energy experiment sketched in Sec. 4.5. An-

other direction is to apply the large deviation statistics formalism to

MNRAS 000, 000–000 (0000)
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weak lensing convergence and shear in order to directly extract in-

formation from the dark matter density and its relation to biased

tracers. The PDF presented in equation (29) could also be used

(while relying on a fast particle-mesh code such as Feng et al. 2016,

to generate dark matter maps at the ∼ 5 Mpc/h scale with accurate

two-point functions) to rapidly generate mock top-hat smoothed 2D

maps for dark haloes which would by construction have the right

one and two-point statistics.

Eventually, this formalism should be applied to constrain cos-

mology using density and 2D counts-in-cells statistics in ongoing

or upcoming surveys like DES, Euclid, WFIRST, LSST, KiDs.
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APPENDIX A: DEPTH, COLLAPSE AND CUMULANTS

A1 Leading order cumulants depending on shape

While a closed-form spherical collapse solution is known for den-

sities in spheres and densities in infinitely long cylinders (that cor-

respond to two-dimensional disks on the sky), no solution for finite

cylinders is known yet. To get an intuition about the finite-size ef-

fects related to cylinders, let us perturbatively compute the cumu-

lants at leading order. Once the second order kernel from standard

(Eulerian) perturbation theory is written as (see e.g. Bernardeau
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Figure A1. Skewness of the density in cylindrical cells with length d =
50, 150, 300, 450, 700 Mpc/h (lower blue to higher red) and radii R =
3, 5, 7, 10 Mpc/h at redshift z = 0.7 from the HR4 measurements (data

points with error bars) and the tree-order skewness computed from equa-

tion (A2) for d = 50, 150, 300 as well as the infinitely long cylinder limit

according to equation (A5) (black line).

et al. 2002)

F2(k1, k2) =
5

7
+

1

2

(k1 · k2)(k
2
1 + k2

2)

k2
1k

2
2

+
2

7

(k1 · k2)
2

k2
1k

2
2

, (A1)

the leading-order skewness for a smoothing kernel of arbitrary

shape can be computed as

κ3(R) = 3 〈(δ(1))2δ(2)〉 (A2)

= 6

∫

d3k1
(2π)3

∫

d3k2
(2π)3

F2(k1, k2)PL(k1)PL(k2) (A3)

W (k1,R)W (k2,R)W (−(k1 + k2),R) .

The reduced skewness S3 = κ3/σ
4 is obtained as the ratio of the

skewness and the square of the variance which can be evaluated in

linear theory according to equation (3). The result of a numerical

integration for the tree-order skewness with a finite cylindrical fil-

ter is shown in Fig. A1. Analytical computation of cumulants from

symmetry. When computing the cumulants for unsmoothed fields

(hence W = 1), one has to compute an angular average of the

F2 kernel which gives for spherical symmetry and in an EdS uni-

verse the well-known result S3D
3 = 34/7. Using the approximate

power law for spherical collapse from equation (6) can be matched

to S3 = 3(1 + 1/ν) giving ν3D = 21/13. In analogy, one ob-

tains S2D
3 = 36/7 for the disk symmetry which holds for an infi-

nite cylinder where on can switch to cylindrical coordinates where

k = (k⊥, k‖) and 0 ≃ k‖ ≪ k⊥ and hence ν2D = 7/5 = 1.4.

When including the top-hat filtering in real space, the effects of

smoothing for a power law initial spectrum P (k) ∝ kn are given

in Bernardeau (1994, 1995) and read

S3D
3 =

34

7
+ γ1 ≃ 34

7
− (n3D + 3) , γ1 =

d log σ2
sph

d logR
, (A4)

S2D
3 ≃ 36

7
− 3

2
(n2D + 2) (A5)

There is a slight Ωm dependence in the constant term which is

bracketed by 21/4 > S2D
3 > 36/7 for Ωm ∈ [0, 1].

For finite-size cylinders, one needs to take the component of

the wave-vector parallel to the line of sight into account such that

one cannot obtain a direct analytical expression but has to numer-

ically evaluate equation (A2). Fig. A1 shows the reduced skew-
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Figure A2. (Upper panel) PDF of the projected density in cylindrical cells

of length d = 150, 300, 450, 700 Mpc/h and radius R = 5 Mpc/h at

redshift z = 0.7. Shown is a comparison of HR4 measurements (data

points) and the prediction computed with the cylindrical filter (1) with

mass-splitting for long cylinders (7) together with the spherical collapse

parametrized by ν = 1.4 (solid lines). (Lower panel) Residuals of the the-

oretical prediction against the HR4 measurements with error bars.

ness measured from the HR4 simulation. As expected by cylindri-

cal collapse, the reduced skewness becomes independent of depth

if the axis ratio is large enough (typically for 2R/d & 1/10). Note

that the nonlinear variance σ2(R, d) ∝ 1/d, see equation (31) in

Bernardeau & Valageas (2000), such that the product σ2(R, d)× d
remains constant to a very good accuracy.

A2 Large deviation statistics with varying cylinder depth

Fig. A2 compares the theoretical prediction for infinitely long

cylinders, hence effectively 2D-spherical densities when fixing the

radius R and varying the depth d. The limit of essentially infinitely

long cylinders is achieved at 10% accuracy in the PDF already for a

depth to radius ratio of about (2R)/d ≃ 1/5 and quickly improves

with increasing depth. This effect can be also seen in Fig. A1 which

compares the measured skewness to the perturbation theory result

for the corresponding hierarchical clustering ratio.

A3 Scale-dependence of the linear covariance

The scale-dependence of the linear variance from equation (3) for

varying radius and depth of the cylinder is shown in Fig. A3 and

compared to the variance computed with a spherical filter of equal

volume. For concentric cylinders of different radii Ri but identical

depth d, for the sake of simplicity, the covariance matrix from equa-

tion (3) is parametrized in analogy to a power-law initial spectrum

MNRAS 000, 000–000 (0000)



Non-Gaussian statistics of the projected cosmic density field 13

5 10 15 20 25

10

100

1000

R

d

σlincyl(R,d) vs. σlinsphere(Rsph(R,d))

Figure A3. Scale dependence of the linear variance σ induced by a cylin-

drical filter with radius R and depth d, both in Mpc/h. The contours indi-

cate variances from 0.1 (blue) to 1.0 (red) in steps of 0.1. The cylindrical

filter (solid lines) is compared to a volume-equivalent spherical filter with

Rsph = (3/4R2d)1/3 (dashed lines). As expected, they are approximately

equal for an axis ratio 2R/d = 1 (black line).

with spectral index n2D(Rp) ≃ ncyl(Rp, d) by

σ2(Ri, Ri, d)

σ2(Rp, d)
=

(

Ri

Rp

)−ncyl(Rp,d)−2

, (A6a)

σ2(Ri, Rj>i, d)

σ2(Rp, d)
= G

(

Ri

Rp
,
Rj

Rp
, ncyl(Rp, d)

)

, (A6b)

where the 2D-spectral index is obtained as

ncyl(R, d) = −2− d log σ2
cyl(R, d)

d logR
. (A7)

and

G(x, y, n) =

∫

d
3k knW2D(kx)W2D(ky)

∫

d
3k knW2D(kRp)W2D(kRp)

,

=
(x+y)α

(

x2+y2−αxy
)

−(y−x)α
(

x2+y2+αxy
)

2α(n+ 1)x3y3
,

with α = 1− n. The key parameter in the prediction of the PDF is

the value of the variance at the pivot radius Rp and depth d which

is measured in the simulation and use as an input to our theoretical

model.

A4 Joint PDF of dark matter around halo density

Figs. A4 and A5 show the joint PDF of matter density in rings

around halo density in cylinders and the conditional PDF of matter

density in rings given tracer density. The curves of the theoreti-

cal prediction for the conditional look almost identical to Fig. 4,

which is due to the fact that the best-fit bias model leads to a sim-

ilar split ρm(ρh = 1) ≃ 1.02 between over- and underdensity
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Figure A4. Joint PDF of the projected halo densities in a cylinder of depth

d = 150 Mpc/h and radius R1 = 5 Mpc/h and dark matter density in a

surrounding cylindrical ring with R2 = 7 Mpc/h at redshift z = 0.7 from

the saddle point approximation with ν = 1.4 and the disk filter for a power-

law spectrum with n = −1.4 and the best fit bias parameters from Table 2

(solid lines) compared to the HR4 measurements (dashed lines).

for both matter and haloes. A possible cause of the residuals seen

in the PDFs conditional-on-halo-density is the scatter around the

mean bias relation which should increase the probability of un-

likely events such as over-/underdense matter rings around under-

/overdense halo cores that are not captured in a one-to-one bias

model.

APPENDIX B: LOGNORMAL RECONSTRUCTION

One widespread phenomenological ansatz for the one-point PDF of

either dark matter or its tracers is the lognormal distribution (Coles

& Jones 1991). Assuming a lognormal density field, the one-point

PDF is fully determined by the variance of the log-density and

hence one can attempt a reconstruction of the density PDF using

the functional form

PLN(ρ |σµ) =
1√
2πσµ

1

ρ
exp

[

− (log ρ+ σ2
µ/2)

2

2σ2
µ

]

. (B1)

Fig. B1 shows a comparison of the lognormal model for the PDF of

dark matter in cylinders with fixed depth and varying radius. When

plotted as ratio between the measured PDF and the lognormal re-

construction, a clear residual skewness is visible which leads to

deviations at the 5%-20% level for all densities of interest. Overall,

the accuracy improves with increasing cylinder radius and cylinder

depth.
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Figure A5. Marginalised PDF of the matter densities in cylindrical rings of

depth d = 150 Mpc/h and radii R1 = 5 Mpc/h and R2 = 7 Mpc/h at

redshift z = 0.7 from the saddle point approximation with ν = 1.4 and

the disk filter for a power-law spectrum with n = −1.4 together with the

best fit bias model from Table 2 for arbitrary inner tracer densities (dashed,

green line), overdensities in tracers (dashed red line) and underdensities in

tracers (dashed blue line) compared to the HR4 measurements (data points).

Comparing the theoretical prediction to the PDF given over- or underdensity

in dark matter in Fig. 4, they look virtually identical.
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Figure B1. Comparison of lognormal PDF model from equation (B1) with

measured log-variance as given in Table 1 for fixed depth d = 150 Mpc/h
and varying radius against the measured PDF for dark matter. This plot is

the analogue of Fig. 1 for the lognormal reconstruction.
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