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ABSTRACT

Given a set of r-variale integral polynomials, a cylindrical algebraic decom­
position (cad) of euclidean r-space E T partitions ET into connected subsets
compatible with the zeros of the polynomials. Collins (1975) gave an algo­
rithm for cad construction as part of a new decision procedure for real
closed fields. This algorithm has since been implemented and applied to
diverse problems (optimization, curve display). New applications of it have
been proposed (program verification, motion planrnng), Part I of the
present paper has several purposes, FirsL, it provides an exposition of the
essential aspects of the algorithm. Second, it corrects mi.p.or errors in the
1975 paper, and develops certain concepts introduced there. Third. it pro­
vides a framework fOI" the adjacency algorithm presented in Part n. ]n addi­
tion. it surveys the applications of cad's und provides a detailed example of
the operation of the algorithm.

Key\'iO,'ds: polynomial zeros, computer ..... lgebru. computational geometry,
semi-algebraic geometry. real closed fields, decision procedures, real alge­
braic geometry.
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1. Introduction. Given a set of r-variate integral polynomials, a cylindrical

algebraic decomposition (cad) of euclidean r-space gr partitions E T into

connected subsets compatible with the zeros of the polynomials (Section 2

below gives a precise definition). For example, consider the bivariate poly-

nomial

y4 _ 2y 3 + y2 _3x2y + 2x4.

lts zeros comprise the curve shown in Figure 1. Figure 2 shows a cad of the

plane compatible with its zeros,

Cad's were introduced by Collins in 1973 (see [C0175]) as part of a new

quantifier elimination, and hence decision. method for elementary algebra

and geometry. He gave an algorithm for cad construction, and proved that

for any fixed number of variables, its computing time is a polynomial fWlc-

tion of the remaining parameters of input size. As can be seen from the

Figure 1

.-.-.--
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Figure 2

example above. cad's are closely related to the classical simplicial and Ci'f­

complexes of algebraic topology. In fact, the essential strategy of Collins'

cad algorithm, induction on dimension, can be found in van der Waerden's

1929 argument ([WAE29], pp. 360-361) that real algebraic varieties are tri-

·angulable.

Collins' cad-based decision procedure for elementary algebra and

geometry is the best known (see [FER79]; very little besides a cad is needed

for the decision procedure). J. Schwartz and M. Sharir used the cad algo-

rithm to solve a motion planning problem ([SCH82]). D. Lankford [LAN7B]

and N. Dershowitz [DER79] pointed out that a decision procedure for ele-

mentary algebra and geometry could be used to test the termination of

term-rewriting systems. P. Kahn used cad's to solve a problem on rigid

frulneworks in algebruic topology ([K..'-\H79]). Kahn also observed ([K4H78])

thut a cad algorithm prOVides a basis for a constructive proof that real
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algebraic varieties are triangulable, and thus for computing the homology

groups of a real algebraic variety.

Implementation of Collins' cad algorithm began soon after its introduc-

tioD, culminating in the first complete program in 1981 [ARN81a). The pro-

gram has begun to find use; in May, 1982 the termination of a term-rewriting

system for group theory (given by Lankford [1..4N78J) I was verified using it.

It has also been utilized for display of algebraic curves [ARNBlb]. In 1977,

Milller implemented certain subalgorithms of the cad algorithm and used

them to solve algebraic optimization problems [MUE77).

Part I of the present paper has several purposes. One is to provide an

exposition of the essential aspects of Collins' cad algorithm that is as simple

and accessible as possible, while still being complete. Minor errors in

[COL75], [COL76], [ARN79], and [ARNBla] are corrected in our new exposi-

tion. A second purpose is to provide a framework for the adjacency algo-

rithm presented in Part JI. We also give a detailed example of the cad

algorithm's operation.

In Part I we have given, simplicity and clarity priority over efficiency, so

the reader may well notice ways in which the efficiency of the algorithm we

present here could be improved. A forthcoming Part JII of the present paper

will discuss efIicient ways to implment the algorithms of Parts I and n, and

report on experience ·with computer programs for these algorithms.

Part I is organized as follows: In Section 2 we give a rigorous definition

of cad and establish notation for later sections. Sections 3, 4, and 5 present

the cad algorithm. Section 6 traces the algorithm on an example.

~~

L.L
CO
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2. Definition of cylindrical algebraic decomposition. The many ingredients

of a precise definition of cad lead us to devote this entire section to that

definition.

Connectivity plays an important role in the theory of cad's. It is con-

venient to have a term for a nonempty connected subset of E T
; we will call

such sets regions. For a region R, the cylinder over R. written Z(R). is

RxE. Aseetion of Z(R) is a set s of points < 0:./(0:». where 0: ranges over

R. and I is a continuous, real-valued function on R. s. in other words, is

the graphs of f. We say such ans is the I-section of Z(R). A sector of Z(R)

is a set s of all points < 0:, b >, where 0: ranges over R and I 1(0:) < b < J z(a)

for (continuous, real-valued) functions 11 < 12. The constant functions

11= - 0;0, and f z = + 00, are allowed. Such an s is the (j lJ z)-sector of

Z(R). Clearly sections and sectors of cylinders are regions. Note that if

r = 0 and R ;;: EO = a point, then Z(R) ;;: E 1 , any point of E 1 is a section of

Z(R), and any open interval in E1 is a sector of Z(R).

For any subset X of E T
, a decomposition of X is a finite collection of dis-

joint regions whose union is X. Continuous, real-valued functions

Il < 12 < .. < I/:-. k == O. defined on R, naturally determine a decom-

position of Z(R) consisting of the following regions: (1) the (liJi+l)-sectors

of Z(R) for O::::;i::S:k.. where 10= -co and 1k+1= +0;0, and (2) the Ie

sections of Z(R) for 1 === i::s: le. We call such a decomposition a sta.cle over R

(determined by f l' ...• t.).

A decomposition D of E T is cylindrical if either (1) r = 1 and D is a

stack over E C
, or (2) ;. > 1, and there is a cylindrical decomposition D' of

1?-l such lhat for each region R of D', some subset of D is a stack over R.
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It is clear that D' is unique for D, and thus associated with any cylindrical

decomposition D of E T are unique induced cylindrical decompositions of E i

for i = r -1, r-2.... ,1. Conversely, given a cad f5 of Ei.. i < r, a cad D of E T

is an extension of f5 if D induces D.

For o::s; i S" r. an i-cell in E T is a subset of E T which is homeomorphic to

Ei.. It is not difficult to see that if c is an i-cell, then any section of Z(c) is

an i~cell. and any sector of Z(c) is an (i+1)-cell (these observations are due

to P. Kahn [KAH78]). It follows by induction that every element of a cylindri-

cal decomposition is an i-cell for some i.

A subset of E T is semi-algebraic if it can be constructed by the opera-

tions of finite union. finile intersection. and complementation applied to sets

of the form

Ix EE" I F(x )"O},

where F is an element of Z [Xl' ...• xT ], the ring of integral polynomials in r

variables. We write IT to denote Z [Xl' ... '%r]. As we shall now see, a

dillerent definition of semi-algebraic set is possible, from which one obtains

a useful characterization df such sets. By a formula we will mean a well-

formed formula of the first order theory of real closed fields. (The "first

order theory of real closed fields" is a precise name for what we referred to

above as "elementary algebra and geometry"; see [KRE6?]). The.formulas

of the theory of real closed fields involve elements of JT • A definable set in

E': is a set S such that for some formula ~(x 1, ... ,x/:), S is the set of points

in E'; satisfying~. ~ is a defining formula for S. (We follow the convention

that qJ(x!, ... ,x/:) denotes 0. formula If in which all occurrences of

Xl' ... ,x/c are free. each Xi mayor may not occur in rp, and no variables
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besides x I' ... ,x~ occur free in 'P') A definable set is semi-algebraic if it has

a defining formula which is quantifier-free. It is well-known that there exists

a quantifier elimination method for reat closed fields ([TAR4B]). Hence a

subset of E T is semi-algebraic if and only if it is definable.

A decomposition is algebraic if each of its regions is a semi-algebraic

set. A cylindrical algebraic decomposition of £T is a decomposition which is

both cylindrical and algebraic.

Let X be a subset of g;r, and let F be an element of IT' F is mvariant on

X (and X is F-invariant), if one of the follOWing three conditions holds:

(1) F(o:) > 0 lor all "in X.

(2) F(o:) = 0 lor all 0: in X.

(3) F(o:) < 0 lor all 0: in X.

("F has positive sign on X").
("F has zero sign on X").

("F has negative sign on X").

Let A = IA i , ' .. ,An.I. be a subset of IT ("subset of IT" will always mean "finite

SUbset"). X is A-invuriunt if each ~ is invariant on X. A collection of sub~ets

of W is A-invariant if each element of the collection is.

This completes the definition of "A-invariant cylindrical algebraic

decomposition". The cad shown in Section 1 is an A-invariant cad of E 2 for

A = !y4 - 2y 3 + y2 -3x 2y +- 2x 'leJ. Note that an A-invariant cad is not unique.

Since any subset of an A-invariant region is A-invariant, we can always find a

way to subdivide one or more regions of an A-invariant cad to obtain

another, "finer", one.

3. The cylinili'iccl algebraic decomposition algorithm: first phase The cad

algorithm we present can be divided into three phases. In this and the next

two sections 'we describe each phase in turn. Before taking up the first

phase. we give general specifications for a "cad algorithm", and a synopsis of
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the particular cad algorithm we wiH be occupied with in this and the next

two sections.

A "cad construction algorithm", or "cad algorithm" for short, has the

follOWing specifications. ;ts input is a set A C Ir , T ~ 1. lts output is a

description of an A-invariant cad D of ET. This description should inform

one of the number and arrangement of the cells in the cad, and the sign of

each element of A on each cell. As will be seen (Section 4), the cad algo-

rithrn we give meets the first of these requirements by producing a list of

cell indices of the cells in the cad that the algorithm determines. lt meets

the second requirement by constructing, for each cell of the cad, an. exact

description of a particular point (a sample point) belonging to that cell. The

sign of any ~ E.A on a particular cell can then be determined by evaluating

~ (exactly) at the sample point for the cell.

Let us turn now to the algorithm we will present in tWs paper. For

T ~ 2, its strategy is to construct from the input set A, a set PROJ(A) c Ir- 1,

such that for any PROJ(A)-invariant cad D' of gr-1, there is an A-invariant

.cad D of Er which induces D'. ("PRO!" stands for "projection".). The algo-. ,

rithm calls itself recursively on PROJ(A) to get D', then extends D' to D.

When T ;;;; 1. the algorithm constructs an A-invariant cad of E 1 directly.

Thus for r ~ 2, if we were to trace the algorithm from its initiation we

would see it compute PROJ(A), then PROJ(PROJ(A)) = PROJ'(A), and so

on, until PRO;r-1(A) has been computed. These computations we call the

first, or "projection", phase of the algorithm. The construction of a

PROJr - 1(J.)-invariant cad of E 1 we call the second, or "base", phase. The

succe8sive extensions of the cad of E 1 to a cad of E 2, the cad of E 2 to to. cad
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of E3, and so on, until anA-invariant cad of E T is obtained, we call the third,

or "extension", phase of the algorithm.

1n light of developments of recent years, only the first phase needs

extensive description and justification. The second and third phases consist

of algorithms which by now are standard and well-documented. Thus this

section is much longer than the two that follow, and in fact is the heart of

the paper.

Our agenda for this section is to define the map PROI from subsets of

IT to subsets of IT-I, and to prove that it has the desired property. This pro­

perty was stated above as: any PROJ(A)-invariant cad of ET - 1 is induced by

some A-invariant cad of E T
• To establish this, clearly it suffices to show that

over any PROJ(A)-invariant region in ET- I there exists an A-invariant alge­

braic stack. and that is what we will do.

For FElT' r =:: 1, let V(F) denote the real variety of F, i.e. the set of all

< Xl' ... 'XT > EET such that F(xl' ... ,xT ) = O. Let R be a region in E T - 1 •

F is delinea.ble on R if V(F) n Z(R) consists of k disjoint sections of Z(R),

for some k =:: O. When F is delineable on R, it gives rise to a stack over R,

namely the stack determined by the continuous functions whose graphs

make up V(F) n Z(R). We write S(F,R) to denote this stack, and speak of

the F-5ections of Z(R). One easily sees that S(F,R) is F-invariant. Vie now

show that if R is semh~t.lgebraic, then S(F,R) is an algebraic stack.

THEORE:1i 3.1. Let FElT' r =:: 2, be de line able on a semi-algebraic regi!m

R C ET - 1 . Then S (F ,R.) is a.lgebraic.

Proof· Let. rp be a defining forwwil for R. Let the sections of V(F) n Z(R)

be Sl < 52 < ... < sk' k =:: 1, and let Si be an fcsection. By our remarks in

r-­
L~.,
"
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Section 2, to show that S(F,R) is algebraic, it suffices to show that each

region of S(F,R) is definable. Let x denote the (r -1)-tuple

<Xl" _, ,Xr_1 >, and let Y stand for X r - Then for 2:::=j :::=k-l, we can

define si as the set of all poinls <x ,y > satisfying a formula which asserts

that "x ER and y is the jcn real root of F(x ,y)". The folloWing is such a for-

mula:

~(x) & (~y,)(~y,), , ' (~Yj_')[ Y, < Y, < . " < Yj-l < Y

&F(x,y,) = 0 &F(x,y,) = 0 & '" &F(x'Yj_,) = 0 &F(x,y) = 0

& ('vYj+l)! (Yj+1 ¢ YI &Yi+1 ¢ Y2 & .. , &Yi+l =/; Yj-l &

Yj+'" Y & F(x,Yj+') = 0) => Yj+' > Y J ].

Defining formulas for 51 and 5k can be obtained by obvious modifications to

the above formula. For 1:::= j:::= k, let 'Pj denote the defining formula for Sj_

For 2:::= j:::= k, we can define the Uj_l,fj)-sector of S(F,R) as the set of all

points <x ,y > satisfying a formula which asserts that "x ER and y is between

the (j -l)st and jtk real roots of F(x ,y)". The following is such a formula:

Defining formulas for the (-oo,f I)-sector and the U ... ,oo)-sector of S(F,R)

can be obtained by straightforward modifications to the formula just give,n,

Thus S(F,R) is algebraic.•

Principal subresultant coefficients (psc's), which we now introduce, are

a vital and characteristic feature of the cad ~gorithmwe are presenting, As

will be seen, lhey are the chief means by which the geometric idea of induc-

tion on dimension is translated into an algorithm, For they are eminently

computable. being determinants of certain matrices of polynomials,
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Let J be a unique factorization domain. Let F and G be nonzero ele-

ments of J[x]. If deg(F) '" deg(G), let F, = F and F, = G, else let F, = G

and F 2 = F. Let F 1,F2 • ... ,Fr.. k ::: 2, be a polynomial remainder sequence

as defined in [BRT7!]. Let 'T4 ;;; deg (Fi.). 1 ~ i ~ k. Then nl,n2, ... ,n,J: is

the degree sequence of F and G. Let n = min (deg (F),deg(G)). Por

O~j <n, we write Sj(F,G) to denote the jth. subresultant of F and G

'[BRT71]. For a~ j < n, the jth. principal subresultant coefficient of F and

G. ",'Tiltenpscj(F,G), is the coefficient of xi in Sj(F,G). We define pscn(F,G)

lobe lEJ.

The following theorem states the properties of psc's that are important

for us.

THEOREM 3.2. Let F and G be nonzero elements of J[z], J a unique faciori-

zatiDn domain. Let n 1,n2' ... ,nk' k ~ 2, be the degree sequence of Fand G.

Then

(1) n. = deg (god( F, G) ), and

(2) FaT any j , O.:s: j .:s: n2' pscj(F. G):;!O if and only if j ;;;; ~ for some i,

2.:s: i .:s: k.

Proof. Let F 1,F2, ... ,Fk be a polynomial remainder sequence whose first

two terms are F and G: thus ~ = deg (Fi ), 2.:s: i:= k. As pointed out on p.

506 of [BRT71], F. - god (F, G), where denotes similarity. Hence

'hI; ;:; deg (gcd (F,G». Suppose for some j, 0:= j === n2. that PSCj (F, G):r:O. Jf

j ;;; n2 we are done. so suppo::.e. j < n2. Then by the Fundamental Thoerem

of polynomial remainder sequences [BRT71]. either j ;;; ~ for some i,

3:::= i === k, or j ;;; n m - 1 ~ 1, for some m. 3.:s: m :::; Ie. If j ;;;; 7i;, we are done, so

suppose j ;;;; 7lm-J -1. Then 7l.m-l - 1 === n m · Suppose 7lm-l -1> nm.. By the
C,
lr



Arnon, Collins, McCallum: Cylindrical.algebraic decomposition] 12

fundamental theorem of p.r.s., Sn _l(F,G) '" Sn (F,G), so
m-I m

deg(Sn _r(F,G)) ~ deg (Sn (F,G)) ~ n m < nm-r - 1 ~ j.
m-l m

Eence pscj(F,G) = 0, a contradiction. So j = n m - 1 -1 = nm.' and we are

done. Suppose conversely that j = ~ for some i, 2 === i === k. ]I i = 2, then

psc"../F,G) = 1;:0. ]f i =:: 3. then by the fundamental theorem of p.r.s.,

S",(F,G) -F" hence deg(Sn,(F,G)) ~ deg(F,) ~"', hence pscn,(F,G);'O. 0

An immediate consequence of this theorem is:

COROLLARY 3.3. Let F a.nd G be as in Theorem 3.2. Then deg (g~d(F,G) = k

'if a.nd only if Ie is the lerLSt j such that pscj(F,G)"#O.

We will put Corollary 3.3 to work in the ne"..t Lemma, for which we need

some definitions. Let F be an element of IT' The derivative of F, written F',

-is the partial derivative of F with respect to 3;-. We view IT as IT-1[xT], and

hence by the degree of F, written deg(F), mean the degree of Fin xT • The

zero polynomicl ha~ degree - co. Let R be a region in ET-I. For Q'..ER, we

LEMMA 3.4. Let FElT' r~2, and let R be a region 1:-11. ET - 1• Suppose that

deg (Fa) is consta.nt and nonnegative jor O'.ER, and that if it is positive, then

the lea.st Ie such that pscdFa,F 'a)#:O is constant fOT CJ..ER. Then th~ number

oj d:i.stinct. rooia of F (l, is consta.nt. for ctER.

P,'OOj". Let n be the cons'Luul degree of F (l, for O:ER. II n = 0, then F (l, has no

r:JGi.~ [or evc~y o:ER, so suppo~e n === 1. Let m be the nonnegative integer

~uch thu.L for all o.:E:R. m i3 the i~ast lc such that pSCj (F""F '",) is nonzero.

'i'L.8U by Corollury 3.3, der;(gcd(f'a,F',,)) = :in is constant for aER. Let Po.

be i..ile number of disLincL roots of F c.' for aE.R. Then by standard algebra,
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Po. = n - m, for any aER. Hence Po. is constant for aER. g

Let P (x) be a univariate polynomial with complex coefficients. We let

sep (P) denote the mInimum dIstance in the complex plane between any two

distinct roots of p (x). A complex number is strictly complex if it is non-

real.

LEMMA 3.5. Suppose that FElT' T:=: 2, that R is a region in gr-1, that

d£g (F.,) ~ consta.nt a.nd nonnega.tive fOT 7'ER, and tha.t the number of dis­

tinct Toots of F7 is consta.nt for 7'ER. Let aER. Let 0 < c < sep (Fa )/ 2, a.nd

let Zl' ... ,zp be the distinct Toots of Fa. Suppose that zl' ... ,zk a.re real

and zk+1 • ... ,zp are slrictly complex. Letei:=: 1 be the multiplicity of Zi

for 1:::: i '5. P Lei Cl , ... ,Cp be disjoint cirdes of Ta.dius E: in the complex

pLa.ne, such that Ci. is centered at Zi. Then there is a. neighborhood IJ of a in

R such tha.t for all (3€.M a.ndfor ea.ch Ci , F p has exa,ctly one root Vi, of multi-

plicity ei, in Ct.. FUrthermore, Vi is real faT 1 '5. i '5. k and strictly complex

jork+l::::i'5.p.

Proof. By Theorem (1,4) of [MAR66], there is a neighborhood M in R of 0::

such that for all {3EM. and for 1::;: i '5. p. F p has ei roots, multiplicities

counted, in Ci . Consider any particular (3EM. Since Fp and Fa each have p

distinct roots, and since the interiors of the Ci's are disjoint, for 1'5. i '5.p,

F p has exactly one root, of multiplicity ei, in Cr.. Consider any Cj, for

1::;: i ::;: k. Cr. is centered on the real axis in the complex plane, hence for

every st.rictly complex point in Ci • its complex conjugate is also in Ci. Also,

recall Lhat the complex roots of a polynomial with real coefficients occur in

conjugate pairs. Hence since Ci contains only one root of F p, that root is

real. No'w consider any Ci for Ie +1:::: i '5. p. Since the strictly complex roots
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of Fa occur in conjugate pairs, and since the radius of Ci is less than

sep (F0.)/2, Ci contains no real points. Hence the root of Fp in Ci is strictly

complex. II

THEOREM 3.6. Let FElT' r=:='2, and let R be a region in E T- 1. Suppose that

dey (F0) is constant and nonnegative fOT Ci.ER, and thai if positive, then the

least k such that psc/: (Fa,F '0.)¢0 is constant for aE.R. Then F is delineable

onR.

Proof· By Lemmas 3.4 and 3.5, the number of distinct of real roots of Fa is

constant for aER; suppose Fo. has k =:=. 0 real roots for all Ci.. For 1 :==:i::Sk,

and for aE.R, define fi.(a.) to be the ilk real root of Fa. From Lemmas 3.?

and 3.5 it is easily seen that Ii. is continuous for 1::S i ::= k .. Hence F is

delineable on R. II

Let R be a region in E T
• r =:=. 1, and let aER. An open neighborhood of Ci.

in R is M n R for some set JJ 'which is open in the usual topology on E T • and

which contains a. Let T be a function defined on R. T is locally constant on

R if for every aER, there is an open neighborhood JJ of a in R such that

T({3) ;;;; T(a) [or all (JEU. From the connectivity of R one easily sees that if

T is locally constant on R, then T is constant on R.

THEOREM 3.7. Let A c IT' r =:=. 2, and let R be !l region in E r- 1. Suppose that

jor every FE:.J1, deg (Fa) is co'nstant and nonnegative for CY.ER, and that if

positive, then lhe least k such that PSCk (F""F '0.)"=0 is constant for aER.

Suppose also that jor every F,GEA. E:f:.G, the least k such that

psc/;(F""G",)¢O is constanl fOT aER. Then where H;;;; TIll, His del'i.nealJle

onR.
~.

~ ....:
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Proof. By Theorem 3.6, every FEA is delineable on R. Hence VeE) n Z(E)

is the union of certain sections of Z(R). If every pair of these sections is

either disjoint or identical, then Ii is delineable on R. Hence it suflices to

show that if an F-section and a G-section meet, for any F,GEA, F::I-G, then

they are identical.

To establish this last proposition, it suffices to show that (the truth

value of) the predicate "sF and sa meet over I'ER" is locally constant on R.

For if it is locally constant on R, then it is constant on R, which means that

if SF and Sc meet over one point of R, tl:;len they meet everywhere over R,

i.e. they are identical. Establishing the following two assertions will show

that this predicate is locally constant: (1) for any (3ER over which SF and Sc

do not meet. there exists an open neighborhood of (3 in R over which SF and

'sa do not meet (at all): and (2) for any aER over which SF and sa do meet,

there exists an open neighborhood M of a in R over which SF and Sc do meet

(over every point of M). (1) is an immediate consequence of the fact that

sections are graphs of continuous functions. The remainder of this proof will

be devoted to establishing (2).

For any I'ER, let 9'"f = gcd{F'"f,G'"f)' Since the least k such that

psc}; (F''"f'G'"f)=# 0 is constant. for 'rER, by Corollary 3.3, deg (9'"f) is constant for

')IER. We no'w proceed to shm\' that ii SF and Sc meet at < a, Z ~ > , i.e. meet

over 0.:, then there exists a neighborhood f,J of a in R. such that for any (3 in

J.1 over which S1" and Sc do not meet, deg (gp) ..... <..... deg(ga). Since deg (gp) =

dey (g a) for all {iEU. we ,,;ill have est(1.blished (2).

Consider any CJ.ER such that SF and Sc meet at < a,z ~ >. Let J( = FG.

r'or some positive E:. < sep ([(0;)/2, consider the circles of radius E:. in the (Y

C
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complex plane centered aL Lhe rools of i(r;:' Since the ieust ic such t.hat

psc/: (F-y,F '-y);!:O is constant for {'ER. Lemmas 3.4 and 3.5 applied to F imply

that there is an Opr:oll neighborhoc.d J.'1p of a in R, such th2.t for every circle

C.·if the root of J(a ut the center of C is a root of Fa of multiplicity E< === :.

theli for illl {JE.fFip • Ji'p has exactly one root in C. and this root has multiplicity

e. Also. if the root of Ku. at the center of C is not a rool of Fa' but only a

root of Ga. then F p has no roots in C for all (1EUp. since every root of F p is

contained in some other circle. By an identical argument for G in place of

F, 'we obtain an open neighborhood Me of a in R. Let Jrl ;::: Up n I.1c. I.1 is an

open neighborhood of a in R.

Let CI • ... , C';; be all the circles S'uch that the root of K a at the center

is a common root of Fa and Go.. i.e. a root of 9 a' Note that z ~ is the center of

one of the Ci'~, call it C·, For l.:s: i.:s: k, let Ei be the minimum of: the multi-

plicity of the center of Ci. as a root of Fa. and its multiplicity as a root of Ga ,

By our remarks above, for any (1 EM. and any Ci , 9 {J either has one root of

multiplicity ei in Ci or no roots in Ci, depending on 'whether the root of F {J in

Ci is equal to lhe ro?t of G{3 in Ci· lliso by our remarks above .. for all {JE.Jd.

C I • ...• q~ are Lhe Olily circles ",.hich could possibly contain roots of g p.

Hecall thaL the degree of a polynomial in one vt.:.riable is equal to the SWll of

the ll1ultiplicilie~ l.·f iLs distim:~ rooLs. Eer:ce if there e:C:lsLs [3EM and u C(

such that the roo::. ui P p in Ci is not equ.d t.o the root of Gp in C(, thea

dr:.:g (g p) lS ic;:~~ Lhan r,;,82 (9 ~), ",rlich is impc;;sible. Hence for ail fJEM. and for

every Ci , Li1e rooL ul' PrJ in ('~'i:; c;:qut:.llo lh.e root of Gp in Li. This hold::; in

particulElr Ior C~, aw..i so Sp E:.l1Q Sc rneet (everywhere) O'-'E;:i' M. This com-

ple~E:s the proof 01' (~). "

c.c
0:'
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Suppose F is an element of IT' r === 2, which is delineable on a region R

in £,r-l. Suppose s is a subset of V(F), and also a section of Z(R). Then

since s is contained. in a section of S(F,R), and since it is itself a section of

Z(R), it must belong to S(F,R). Hence it is a section of S(F,R). This e1e-

mentary observaLion will be useful in the following theorem.

THEORE:M 3.8. Let A cIT' r 2: 2 a.nd let R be a region in zr-l. Suppose that

each FEA u,' delineable on R, and that H = TIA is delineable on R. Then

S (H ,R) is A-invariant.

Proof. For each F~A, Y(F) c V(H), hence by our observation above. every

section of S(F,R) is u. section of S(H,R). Hence S(H,R) is a refinement of

S(F,R) for every FEA, in the sense that each element of S(F,R) is the

urJ.on of certain elements of S(H.R). Hence since each S(F,R) is F­

in·,~rlant, so is S (li .R). Hence S(H ,R) is A-invariant. "

T!i.th the above theorems, we are now ready to define PROJ. For any

nonzero FElT = IT-I, ldcf(F~ denotes the leading coefficient of F. The lead­

·in.g lerm of P. vlriLten ldl (F), is

Ide! (F)"X,,,,g[F).

The reduclum of P, written red (F), is F -ldt (F). ]f F = 0, ·we define

Teri(F) = o. For any };;2:0, the kih 7'eductum of 1", written red1;(F), is defined

by induction on I::

Fur Lllly FelT' ~ilC:: TE~·<i.ciaSEl of F, \'irilLen RED(F), is
L'".

c:
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Ired" (F) IO"'k "'deg (F) & redk (F);'OJ,

Let F and G be nonzero elements of Ir[x]. Let

n ; min (deg (F),deg (G)), The pse set of F and G, written PSC(F,G), is

Ipse;(F,G)[O"'i"'n & pse;(F,G);'OJ

If either F ::= 0 or G = D. then PSC(F.G) is defined to be the empty set. Let

A ::= !A I , ... ,AnI. n~l, be a set of polynomials in Jr' r==:2. The projection of

A, written PROJ(A). is a set of polynomials in Ir - l defined as follows. For

each 1:;S i ::s n, let Ri = RED(A;,). Let

n
PROJ.(A) ; U U ({tdef (Go)1 U PSC(G"G',))

i=l CjER,

PROJ2(A); U U P$C(G"G;)
l=:oi<:j=:on ~ER, k GiERi

Then PROJ(A) is the union of PROJ 1(A) and PROJ2(A),

The following simple observation is needed for the theorem which fol-

lows. Suppose F and G are nonzero elements of Ir , and suppose that for

some crEW-I, deg(F);deg(F.)"O, and deg(G);deg(G.)"O, Let

.n = min(deg(F),deg.(G)). Then for every j, O::j ::n, it is the case that

(pscj(F,G))a =pscj(Fa,Ga). We see this as follows. For j <n, since

deg (F) = deg (F0) and deg (G) = deg (Ga), the matrix obtained by evaluating

the entries of the Sylvesttlr matrix of F and G at a is just lhe Sylvester

matrix of Fc. and Ga , hence if j < n then (Sj(F.G))a. is equal to Sj(Fa,Ga),

and so (pscj(F,G))a = pscj(Fa,Ga). Jf j = n, then (pscj(F,G))a = pscj(Fa,Go,)

=1.

For FElr and X c £r-1, F is identically zero on. X if F 0. = 0 for all aEX.

Let A be u subset of Ir,r ;::: 2, and let Xc ET - 1. The nonzero product oJ A on
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X. written Ax ' is the product of all the elements of A which are not identi-

cally zero on X. ]£ there are no such elements, then Ax is the constant poly-

nomial 1E:Ir .

TH~O~E:!.I 3.9. For Ii C 11"' T~2, if R is a; PROJ(A)-invariant regi!Jn -in E T - 1,

every ele:ment of A is eilh~T delinea.ble or identica.lly zero on R, and AR is

delineable on R.

Proof. Consider any FEA. If F = 0, then F is identically zero on R. Suppose

F;=O. By definition, PROJ(A) includes every nonzero coetIicient of F, so

each coefficient of F either vanishes every>vhere or nowhere on R. Hence

deg (FoJ is constant for C'J.ER. For any KElT for which deg (Ko,) is constant for

C'J.ER, let deYR(K) denote ihis constant value. ]f deYR(F) = - lXI, then F is

identically zero on R. ]f degR(F) = 0, then obviously F is de lineable on R.

Suppose deYR(F) ~ 1. Then there is a Wlique reductum Q of A such that

deg(Q) = degR(Q) = degR(F). Then Fa = Qo. for all C'J.ER, hence if Q is deline­

able on H, then F is dellneable on R. Since PSC(Q,Q') c PROJ(A), the least

k such that (psc/; (Q,q '))",?O is constant for cx.ER. Hence by our observation

above, the least lc such thatpsc/;.(Qo"Q'a.);;fO is constant for aER. Hence by

Theorem 3.6, Q is clelineable on lI., hence F is de line able on R. Thus every

ele;;menl of A is <::llber idenLically ::;ero or delineable on R.

LeL B be Llle sei or elernenL~ or A which. are delineable on R. No\": by an

urgwl18nt simiiul' ~(; the above, u~ing Theorem 3.'? applied Lo B in p,0.ce of

Theorem ::';,(; ;;'.ppjted to j~, iL iulloy,'s tbut rIB is ci.elinea.ble on R. Dul

­,
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'W'e complete our agendc:, [or this section ...."ith the follovling

COROl.LA!tY 8.10. FoT iJ. c Jr , '1'22, ij R is IT. PROJ(A)-invr1.riant Tr3gum in

E r - 1, ihen thEn: (';~dsts an f2l:'F:1iITG:i,':~, il-invu:ria.nt staci; over R.

Fruuf. From Theorems 3.8, 3.n, a.ud 3.l.. lhree assertions follow: (1) every

element of A is eit.her delilleable or identically zero on R, (2) AJ( is delinable

au R, and (3) S(An.R) is an algebraic stack over R, which is F-invariant for

every FEA which is delineabLe on R. Since obviously S(Ap',R) is F-invariant

for any FEA which is identicu.lly zero on R, S(AR.R) is A-invariant. II

4. Tuc cyliu~i"iccl algt,;;:b.n:J.c ci.ecompoGition algorithm: second phase.

Recall that the input to the cad algorithm is a set A c IT' In the first phase

of the algoriLlJlll ,~'e computec..l PROJ(A). PROJ2(A). and finally

PROJr-l(A) c 11, Let K = PROJT-1(A). It is the task of the second phase to

construct a J(-in<lariant cad D- o[ E l , that is, to construct cell indices and

st:.mple points [or the cells of such a cad. Let us now define cell indices.

Consider first a cad of E 1. We define the index of the leftmost 1-cell, i.e.

that ~-ceIl1'1ThichviE;wed as <.;.il open intervz.l in the x-axis has a 18ft endpoint

of - co. to be (!-I. The index of the O-cell (if any) immediately to its right is

definel.l La be (~), Lhe tnde}: of the 1-cell to the right of that O-cell (if any) is

deemed to be t.;:;}, etc. ~'~or,' supr,ose thLLt cell indices nave been defined for

Cud'5' of ZT-l, ,.," ~ 2, and con::.;iLer a cad D ci E T • D induces (:, co.d D' or E T -'.

AllY cell d ui JJ I::; an dem8ul of a stc.cl: S(c) over a cell c of D '. Let

j!h cell o[ lh8 ::;~ilcl-: by thi:; nUi.iiiJerill~. Llwn its cell index is defined to be
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It is interesting to note that the sum of the parities of the components

of a cell index is equal to the dimension of the cell (where even parity::; 0

and odd parity::; 1). In a cad of E 2, for example, a cell with index (2,4-) is a

O-cell. (2.5) is a l-cell. (3,2) is a 1-cell, and (1,5) is a 2-cell.

We begin cad construction in El by constructing the set of all distinct

(Le. relatively prime) irreducible factors of the various elements of K (see

[KAL82] for information on polynomial factorization algorithms). Let

U = !U I' ... ,Mk ! c J I be the set of. these factors. The real roots

al < ... < an, n ~ 0, of TIM will be the O-cells of n· (if n = 0 then n· con­

sists of the single 1-cell E I ). We determine the a;'s by isolating the real

roots of each Mi.' lligorithms for this task are described in [CL062]. Note

"that by their relative primeness, no two elements of ffl have a common root.

Hence by refining the isolating intervals for the at's we obtain a collection of

disjoint left-open and right-closed intervals (TI,Sl]' (T2,S2] ' .. " (TJpSn ] with

rational endpoints, each containing exactly one aj' and with

As soon as we know n, we can "WI"ite down the indices of the 2n +1 cells

of D·. Thus constructing cell indices in El is straightforward. In the third

phase of the cad algorilhm there 'will be rooL isolation steps folloyting which

it will similarly be slraightforward lo "[rile down lhe indices for the cells in

cerlain slacks that will be part of cad's of E i , i == 2. Thus we will nol discuss

cell index determination further in detail, but simply assume that it can be

done.
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We now construct sample points for the cells of n·. For the i-cells of

D· we can use appropriately chosen endpoints from the isolating intervals

above, giving us a rational sample point for each i-cell (if D· = {Ell, we arbi­

trarily pick some rational element of E). Obviously the only point in a O-cell

is the cell itself, Its value may be an irrational algebraic number. The use

to be made of sample points in the third phase of the cad algorithm leads us

to adopt a particular representation for them that we now describe.

This representation is applicable to algebraic points in any E(, that is,

points each of whose coordinates is a real algebraic number. Laos

([LOOB2a]. Section 1) describes the representation for a real algebraic

number r by its minimal polynomial J.1(x) and an isolating interval [or a par­

ticular root of JJ (x). 'Yith r so represented. and setting m to be the degree

of M(x), one can represent an element of Q(r) as an element of Q[x] of

degree S m - 1 (as Loos describes). For any algebraic point, there exists <:l

real algebraic r such that each coordinaLe of the point is in Q(..,.); r is a

primitive element for the point. Our representation [or an algebraic point

in Jgi is: a primiLi~e element 'Y and an i-tuple of elements of Q(1). all

represented as described by Loos. It is straightforward to express our

above-specified sample points for n· in this representation, and we hen-

ceforth assume that this has been done,

5. The cylindriccl clgcbraic u.ccomposition algorithm: third phase. Let us

begin by examining the extension of the cad D· of £1 to a cad of E 2. In

phase one, we computed a seL J = PROJT-:?(A) C 12 , where A c IT is the set

of input polynomials. Consider any cell c of n·, J c is clelineable on c,

S(Jc ,c) is a J -invuriant stuck over C "lhich is a subset of the cad of £2 that co:(0:
O·
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we want. Let a be the sample point for c. Clearly Jc is the product of all

elements G of J for ,·,chich G(a,x2)~O. Using the algorithms for arithmetic m

Qlo.:) described in [L0082a], we construct Jr;. A.s described in Section 2 of

[LO.o82a], we can isc:luLe tIle real roots of Je (a.x2)EQ(U)[X:::J, and thereby

determine the number of sections in S(je'c), If (3 is a root of Je (a,x2)' then

< a.li > is a sample point for a section of S(Je ,c). Using the representation

for a, Lhe isolating interval for (3. and the algorithms NORfv~A.L and SIMPLE of

[L0082a], we construct a primiLive elemenl r for Q(a.,{j), and use it to con-

slruct the represenlation we require (or < a,(3 >. Sector sample poinls for

S(Je,C) can be obtained from a and the (rational) endpoints of the isolating

intervals for the roots of Jc (o.:,x 2), much as was clone ubove [or E 1. Thus sec-

tor sample points are of the form < o:.,r >, r raLional, so we can Lake 7' = a.

After processing each cell c of D~ in this fashion, we have determined a cad

of E 2 and construcLed u sample point for each celL

Extension from gi.-l to Ei for 3:f: i ::= T is essentially the same as

exLending E 1 to g2. A sample point in E i - 1 has i - 1 coordinates, as con-

irasLed with the sinele coordinate of a poinL in E1. 'ifhere 0:. i£ the primitive

element of a sample point in E i - 1 and F = F(x 1, ... ,;:;J is an element of h,

we use i.ll'ithmclic in Q(a) Lo ExplicLly uetcrmine the;; unival'itd..e polynorni~l

over Q(a) thtll r8:::dLs frOIl! sub:sdLuLing the coortlilJ.<;'l.t:s < ~l' ... ,a;~_l >

The followin~ u0strucL alGorithm summar'izes ow' discus:::ion of Lhe cad.

[Cylindrical algebraic decomposiLion. _~ is a list of 71.;;::0 integral polynomials
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ir.. r vm'iables. r=:::!.. ! is a list of Lhe indices of the cells comprising an A-

invariant cad D of gr. S is a list of sample points for D, such that thc i''''
element of S is a sa.mple point for tile cell 'whose index is the if" element of

J J

(:) f'f' = 1.J H r > 1 Lhen go to 8. Set 1 <- the empty list. Set S <- the empty

list. Set H(:;;)<- the product of the nonzero elements of A. Isolate

the reLll rooLs of H(x) to determine the O-cells o[ D. ConstrucL the

indices of Lhe cells 01 D and add them to I. Corntruct sample

points for the cells of j) and add them to S. Exit.

(2) [r > 1.] Set P<-PROJ(A). Call CAD recursively "'i\'ith inputs r-l and P to

obtb.in oUL?uts f' and S' that specify a cad D' of V-l. Set I (- the

empty lisL. Set S E- the empty list. For each cell c of D', lel i

denote the inde}: of c, leL 0: denote the sample point for c, and

carry out Lhe following [oW' steps: first, set h(xr)E- TI!Ai(o:,xr ) i

~EA & A.(a,xr)T=Oj, second, isolate the real roots of h(xr ), third,

use i, a, and the isolating intervals for the roots of h to construct

cell indices and sample points for the sections and sectors of S(c),

fourth, add the new indices to I and the new sample points to S.

Exit·

G. In CA"r.1J..:.C. '~'c now shm~- ,;~-hat ulgorithm C"::J) does for u particular

, 'x "j - :LL7i~ ~ ,....r;",2~, _ C1.".~,.l, "iO'x 2 ,.l, "'Ox - 9""11\ ,:,;, - ~ __ .;; '''V-~!J ' ... ~~ , _ '-' .• w,

,. (" y" - ,2 .... Gx-; ~. ~_s -'- a_c·_1;; - I ( J - '-:" , :,..,.~, ..... ,

l:olupuLe Pii:CJ("i). 1,'o!i(.o"'i"iinr::. tb'J del1flition iu Section 3, "ie r,eL
;- .

c
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Ide! (A,) = 1~,

pseo(A"A;) = - 580608(x' - 15x' - lOx + 14) = -580608 PI(X),

pse,(A"A;) = 1,

Ide! (red(A , )) = 96x' = 96[P,(x)]',

psco(red(A,),[red(A ,)]') = 1,

Ide! (red'(A , )) = 9x' + 105x' + 70x - 98,

lde! (A,) = x,

pSCo(A2.A2J ;; 4x s,

pSC 1(A2,A~) ;; 1,

lde!(red(A,» = 6x,

pseo(red(A,).[red(A,)]') = 1.

lde! (red'(A,» = x (x' + 9).

pseo(A,.A,) = x' p,(x) =

x 2(81,x8 + 3330xo + 1260x5 - 37395x4 - 457BOx 3 - 32096x2 + 167720x + 1435204),

psc,(A,.A,) = 96x(x' - 9),

psc,(A,.A,) = 1,

psco(red(At ),A2) = x (Blxa + 5922x 6 + 1260x 5 + 31725x4

- 25620x 3 + 4076Bx 2 - 13720x + 9604),

pse l(red(A,),A,) = 1.

psco(A"red(A,)) = -36x(3x' - 33x' -70x - 226),

psc ,(A"red (A,» = 1.

psco(red(A,),red(A,) = 1.

By techniques described in [C0175] and [ARN81]. it can be determined that

if we retain only Pl(X)=x4 -15:cl: w 10x + 14, P2(X)=X, and

Ps(x) = 81x EI + 3330xo + 1260xu - 37395x';' - 45700x s -
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32096x' -i- 167720x -;- 1435204. in PROJ(A). this smaller PROJ(A) will still

suiIice for the construction of an A-invariant cad of E 2 . It turns out that

P3(Z) has no real roots. and so has no effect on the cad. Hence let us set

PROJ(A) = Ip,(x). p,(x)}.

PI and P2 are bot.h irreducible. so we have U 1 ;;: PI and M 2 ;;: P2 in the

notation of Section 5. J.J 1 has four real roots with approximate values -3.26.

-1.51, 0.7, and 4.06; /.12 has the unique root z = a. The follOWing collection of

isolating intervals for these roots satisfies the conditions set out in Section

5:

1(-4,-3], (-2,-1]. (-1.0], ("2'1], (4.8].

Since there are five a-cells. the cell indices for the cad are (1), (2), ... , (11).

We now construct representations for the saniple points of the induced

cad of E 1. Each I-cell will have a rational sample point, hence any rational y

'will be a primitive element. We arbitrarily choose r;;: O. (-.:..,0] is an isolat-

ing interval [or l' as a root of its mimimal polynomial. lVe may take the 1­

cell sample points t~ be -4, -2, -1, ~ ,4, and 9.

The four irrational a-cells have as their primitive elements the four

roots of l.d1(x). The representation for the leftmost a-cell. ror example. con-

sists of N1(x). the isolating interval (-';'.3]' and the l-tuple <X>, where x

corresponds to lhe element r of Q(I')' The a-cell X ;;: a is represented in the

samE. fashion as the rulionall-cell s;;.mple points.

We now come to the extension phase of the algorithm. Let c be the Left­

most I-cell of the cad j)' of E 1
. A 1(-4.y):;!:a and A2(-~.y):;::a. hence

N
r­
o
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A" (-4.y) = 2', (y' + 5y + 25) (24y' + 255y + 601).

y2 + 6y + 24 has no real roots, but 24y 2 + 256y + 601 has two real roots,

which can be isolated by the intervals (-8,-7] and (-4,-2]. Thus the stack

S(c) has two sections and three sectors; the indices for these cells are (1,1),

(1,2), ..:, (1,5). From the endpoinLs of the isolating intervals we obtain sector

sample points of <-4,-B>, <-4,-4>, and <-4,-1> (which will be

represented in the customary fashion). The two roots 1'1 and 7'2 of

24y 2 + 256y + 601 are boLh y-coordinates for the section sample points and

primitive elements for these sample poi~ts. Thus the (representations for

the) section sample points are

124y' + 255y + 501, (-6,-7] ,<-4.y>j

and

!24y' + 256y.;- 501, (-4,-2] ,<-4,y>j.

Now let c be. the leftmost O-cell of D '; let 0: also denote tbis point.

A1(cx,y):;i:0 and A2 (a,y):;l:O, so again Ac = A 1A 2 . We find that, up to constant

factor,

A" (a,y) = (y'.;- 5y + a'.;- 9)(y + ta')'·

y2 + 6y + 0:2 + 9EQ(0:)[Y J has no real roots, but obvously

exactly one; (-B,B] is an isolating interval for it. Hence S(c) has one section

and two sectors; the illuices or these cells are (2,1), (2,2). and (2.3). The

appropriate representations for < - O:,-B> and < - 0:.9> are the sector

sample points. Since.1I -;- b~ is linear in y, its root is an element of Q(a).

Hence r.J
r--­
o
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1iJ..\(x), (-~,3], <x, - -=-x2 >}
3

is the representation of the section so.m.ple point.

Thus in this particular c<::.se iL was not necessary to apply the NOR;.rIJ1.L

and SlII':PLE algoritil:I1S of [L0062r..:.] t.o fInd primilive elements for the sec-

tions or S (c ), and it is also not necessary for the other sC!.ffiple points oi tbis

eXi.1mple. In generd, however, for u. O-cell lX, AI; (a,y) will have nonlinear fae-

lors with real root2, £:.Od it will be necessary to apply NORMAL and Sl1·:PLE.

Saying this another 'Nay, where a is a a-cell of D' and < fJ.,(3 > is a section

sample point of D, we had in our example above Q(cx.,(3) = Q(cx.), but in gen-

era!, Q(cx.) will be a proper subfield of Q(cx..{3).

The steps we have gone through above for a 1-ce11 and a O-cell are car-

ried out for the rema~ning cells of D' to complete the determination of the

Although information of the sort we have described is all that would

actually be produced by C.AD, it may be useful to show a picture of the

decoIllposition of the plane La which the information corresponds. The

'~urve defined by A'J~x,y)::;: a has Lhree connected components which are

easily identified in Figm'c 3 beloY,-. Thc curve defined by Az(x ,y) ;;;; 0 is just

the y-o.xis, Le. the :Same curve: as de:Dned by x ;;;; a. The A-invariant cad of

E? which CAD deLermines is shown in Figure 3. We remark that the curve

A1lZ ,y) is from ([HIL32]. p. 329).

[~·!.l,:,n.:;~J !'~l'n(,n r:..:, ~·.:cCdtc.i.~; ;::; C)'lindrical algebrcic cJecomposiliC'n by
C:l!..",nij:'l':I' ·~l;['!j!,~L!.(;!~• .! ....~'c. E:urfJJ.xan C':Jmp7.:.f.~T ;j~Dr=OT[1; .k,'e.din[}
;'EUjiL'C->~_,_ ',--,:::j, .;:1::.1 :.:,~.!.l:,:, Fn~Ecc, ;~pril 1fJE.:~;;, l.,::;cture Notc;s ia
CompuLc:!" :Science, :.:::(" ~pring:er-YGrlug, pp. 21[j~222.

--:.
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