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ABSTRACT

Given a set of 7-variate integral polynomials, a cylindrical algebraic decom-
position (cad) of euclidean 7-space ET partitions E7 into connected subsets
compatible with the zeros of the polynomials. Collins (1975) gave an algo-
rithm for cad construction as part of a new decision procedure for real
closed fields. This algorithm has since been implemented and applied to
diverse problems (optimization. curve display). New applications of it have
been proposed {program verification, motion planning). Part I of the
present paper has several purposes. Firsl, it provides an exposition of the
essential aspects of the algorithm. Second, it corrects minor errors in the
1975 poper, and develops certain concepts introduced there. Third, it pro-
vides a [ramework for the adjacency algorithm presented in Part 1. in addi-
tion, il surveys the applications of cad’s and prowdes a detailed example of
the operation of the algorlthm

RKevwords: polynornial zeros, computer algebra, computational geometry,
semni-algebraic geometry. real closed fields, decision procedures, real alge-
braic geometry.
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1. Introduction. Given a set of r-variate integral polynomials, a cyl*indfr:i;:at
elgebraic decomposition (cad) of euclidean 7-space ET partitions E7 into
connected subsets compatible with the zeros of the polynomials (Section 2
below gives a precise definition}. For example, consider the bivariate poly-
nemial

y*-2yS + y2 -8z% + Rat
Its zeros comprise the curve shown in Figure 1. Figure 2 shows a cad of the

plane compatibie with its zeros.

Cad's were introduced by Collins in 1973 (see [COL72]) as part of a new
quantifier elimination, and hence decision, method for elementary algebra
and geometry. He gave an algorithm for cad construction, and proved that
for any fixed number of variables, its compuiting time is a polynomial func-

tion of the remaining parameters of input size. As can be seen from the

Figure 1

o f']

.
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Figure @

example above, cad's are closely related teo the classical simplicial and CV-
complexes of algebraic topelogy. In fact, the essential strategy of Collins'
cad algorithm, induction on dimension, can be found in van der Waerden's
1929 argument ([WAER9], pp. 360-361) that real algebraic varieties are tri-

-angulable.

Collins’ cad-based decision procedure for elementary algebra and
geometry is the best known {see [FER79]; very little besides a cad is needed
for the decision procedure). J. Schwartz and M. Sharir used the cad alge-
rithm to solve a motion planning problem ([SCHBR]). D. Lankford {LAN78]
and N. Dershowitz [DER79] pointed out that a decision procedure for ele-
mentary algebra and geomelry could be used to test the termination of
term-rewriting systerns. P. Kahn used cad's to solve a problem on rigid
frameworks in algebraic topology ([KAH79]). Kahn also observed ([KAH78])

that a cad algorithm provides a basis for a constructive proof that real
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algebraic varieties are triangulable, and thus for computing the homology

groups of a real algebraic variety.

Implementation of Collins' cad algorithm began scon after its introduc-
tion, culminating in the first complete program in 1981 [ARNS1a). The pro-
gram has begun to find use; in May, 1982 the termination of a term-rewriting
system for group theory (given by Lankford [LAN78]), was verified using it.
It has also beern utilized for display of algebraic curves [ARN8ib]. In 1977,
Muller implemented certain subalgorithms of the cad aigorithm and used

them to solve algebraic optimization problems [MUE77].

Part | of the present paper has several purposes. One is to provide an
exposition of the essential aspects of Collins' cad algorithm that is as simple
and accessible as possible, while still being complete. Minor errors in
[COL75], [COL76], [ARN79], and [ARNBia] are corrected in our new exposi-
tion. A second purpose is to provide a framework for the adjacency algo-
rithm presented in Part II. We also give a detailed example of the cad

algorithm's operation.

In Part I we have given simplicity and clarity priority over efiiciency, so
the reader may well notice ways in which the efficiency of the algorithm we
present here could be improved. A fortheoming Part Il of the present paper
will discuss efficient ways to implment the algorithms of Parts I and II, and

report on experience with compuler programs {or these algorithms.

Part | is organized as follows: In Section 2 we give z rigorous definition
of cad and establish notation for later sections. Sections 3, 4, and 5 present

the cad algerithm. Section 6 traces the algorithm on an example.

™
L.
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2. Definition of cylindrical algebraic decompeoesition. The many ingredients
of a precise definition of cad lead us to devote this entire section to that

definition.

Connectivity plays an important role in the theory of cad's, It is con-
venient Lo have a term for a nonempty connected subéet of E7; we will call
such sets regions. For a region R, the cylinder ower R, written Z(R), is
RxE. A section of Z(R)is a set s of points <o, f (a)>, where a ranges over
f£. and f is a continuous, real-valued function on /. s, in other words, is
the graphs of f. We say such an s is the f-section of Z(R). A sector of Z(R)
is a set § of all points < a, bS. where a ranges over R and f,{a) < & < f{a)
for (continuous, real-valued) functions f; < f;. The constant functions
f1= -», and fz= + », are allowed. Such an § is the (f,.fz)—secfor of
- Z(R). Clearly sections and sectors of cylinders are regions. Note that if
7 =0 and # = E° = a point, then Z(R) = £!, any point of £! is a section of

Z(E), and any open interval in £' is a sector of Z(R).

For any suhset X of £7, a decomposition of X is a finite collection of dis-
joint regions whose wunion is X. Continuous, real-valued functions
J1 < fa2 < -+ < fr, =0, defined on &/, naturally determine 2 decom-
position of Z(F) consisting of the following regions: (1) the (f;,fi+1)—sectors
of Z(R) for 0=i=k, where fo= -« and fp, = + =, and (2) the f;-
sections of Z(R) for 1= < k. We call such a decomposition a stack over R
(determined by F.. . ... %)

A ciecomposition D of E7 is cylindrical if either (1) 7 =1 and D is a
stack over EC, or (2) r > 1, and there is a cylindrical decornposition D' of

E77Y such Lhat for each region R of D', some subset of D is a stack over £.

oh2
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It is clear that D' is unique for 22, and thus associated with any cylindrical
decomposition D of E7 are unique induced cylindrical decompositions of &*
for i = r—1,7—2,....1. Conversely, given a cad Dof Bt i< r.,acad D of E7

is an exfension of ﬁ if D induces ﬁ

For 0=+ =, ani-cell in E7 is a subset of £7 which is homeomorphic to
E*. 1t is not difficult to see that if ¢ is an i-cell, then any section of Z{c) is
an i-cell, and any sector of Z{c) is an {i+1)-cell (these observations are due
to P. Kahn [KAH78]). It follows by induction that every element of a cylindri-

cal decomposition is an ¢-cell for some 2. .

A subset of £ is semi-algebraic if it can be constiructed by the opera-
tions of finite union, finile intersection, and complemmentation applied to sets

of the form
{z€ET | F(z)=0},

where F is an element of Z [z, . . ., z,], the ring of integral polynomials in
variables. We write /. to denote Z {z,,....2z,.]. As we shall now see, a
different definition of semi-algebraic set is possible, from which one obtains
-a useful characteriz:dtion of such sets. By a formule we will rﬁeﬁn a well-
formed fermula of the first order theory of real closed fields. (The “first
order theory of real closed fields" is a precise name for what we referred to
above as "elementary algebra and geometry"; see [KRE67]} ). The formulas
of the theoery of real clesed fields inveolve elernents of f.. A defincble sef in
E* is a set S such that for some formula ¥(x,, . .. ,z;), 3 is the set of points
in % satisfying ¥. ¥ is a defining formula for S. (We [ollow the convention
that ¢{z, ...,z) denotes a formula ¢ in which all occurrences of

Zy. ... .%; are [ree, each x; may or may not occur in ¢, and no variables

8hd
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besides z,, . . . ,z; occur free in ¢.) A definable set is semi-algebraic if it has
a defining formuia which is quantifier-free. It is well-known that there exists
a quantifier elimination method for real closed fields {[TAR48]}). Hence a

subsel of £7 is semi-algebraic il and only if it is definable,

A decomposition is elgebraic if each of its regions is a semi-aigebraic
set. A cylindrical algebraic decomposition of £7 is a decomposition which is

.both cylindrical and algebraic.

Let X be a subset of £7, and let F be an element of I.. F is tnvariant on

X (and X is /~invariant), if one of the following three conditions holds:

{1) F(a)>CforalleinX. ("F has positive sign on X").
() F(a)=0forallainX. ("F haszerosignonX").
(3) F(a)<OforallainX. ("F has negative sign on X").

- Let 4 = {4y, ... 4}, be a subset of /. ("subset of " will always mean "finite
subset”). Xis A<nvariant if each 4; is invariant on X. A collection of subsets

of &£ is A-invariant if each element of the collection is.

This completes the definition of "A-invariant cylindrical algebraic
decomposition”. The cad shown in Section 1 is an A-invariant cad of E? for
A= {y?-2y® + y® -32% + 2z%]. Note that an A-invariant cad is not unique.
Since any subset of an A-invariant region is A-invariant, we can always find a
way Lo subdivide one or more regions of an A-invariant cad te obtain

another, "finer"”, one.

3. The cylingrical algebraic decomposition algorithm: first pbase The cad
algorithm we present can be divided into three phases. In this and the next
two sections we describe each phase in turn. Before taking up the first

phase, we give general specifications for a "cad algorithm", and a synopsis of
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the particular cad algorithm we will be occupied with in this and the next

two sections.

A "cad construction algorithm”, or "cad algorithm" for short, has the
following specifications. its input is a set A C/f,, » = 1. Its output is a
deseription of an A-invariant cad D of £™. This description should inform
one of the number and arrangement of the cells in the cad, and the sign of
each element of 4 on each cell. As will be seen (Section 4), the cad algo-
rithm we give meets the first of these requirentrents by producing a list of
cell indices of the cells in the cad that the algorithm determines. 1t meets
the second requirement by constructing, for each cell of the cad, an. exact
description of a particular point (a sample point) belonging to that cell. The
sign of any 4;€4 on a particular cell can then be determined by evaluating

A; (exactly) at the sample point for the cell.

Let us turn now te the algorithm e will present in this paper. For
r = R, its strategy is to construct from the input set A, a set PROJ(4) C 7_;,
such that for any FR0J(A)-invariant cad D’ of ET~1, there is an A-invariant
.cad D of E™ which inlduces‘D . {("PKOJ" stands for "projection"). The algo-
rithm calls itself recursively on PROJ{4) to get D', then extends D' to D.

When 7 = 1, the algorithm constructs an A-invariant cad of £! directly.

Thus for 7 = 2, if we were Lo trace the algorithm from its initiation we
would see it compute PROJ(4), then PROJ(PROJ{A)) = PROJ¥A), and so
on, until PROJST7H{A) has been computed. These computations we call the
first, or "projection", phase ‘of the algorithm. The construction of a
PROJT1{A)-invariant cad of £! we call the second, or "base", phase. The

successive extensions ol the cad of £! to a cad of £%, the cad of £2 to & cad

855
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of 5%, and so on, until an A-invariant cad of ET is obtained, we call the third,

or "extension", phase of the algorithm.

In light of developments of recent years, only the first phase peeds
extensive description and justification. The second and third phases consist
of algorithms which by now are standard and well-documented. Thus this
section is much longer than the two that follow, and in fact is the heart of
.the paper.

Our agenda for this secltion is to define the map PROJ from subsets of
I, to subsets of [._;, and to prove that it has the desired pfoperty, This pro-
perty was stated above as: any PROJ(4)-invariant cad of £7! is induced by
some A-invariant cad of E7. To establish this, clearly it sufifices Lo show that
over any PROJ(A)-invariant region in E7~! there exists an A-invariant alge-
braic stack, and that is what we will do.

For Fel.,r = 1, let V(F) denote the real variety of I/, i.e. the set of all
<z, . Z. > €L7 such that (z,,...,2,) = 0. Let R be a region in E771,
F is delineable on K if V(F) (N Z{/) consists of £ disjoint sections of Z(R),
-ior some k = 0. When F is delineable on R, it gives rise to a stack over K,

narmnely the stack determined by the continucus functions whose graphs

make up V(FF) N Z(R)}. We write S(F K) to denote this stack, and speak of
the F-sections of Z(R). One easily sees that S{F,R) is F-invariant. We now
show that if 7 is semi-algebraic, then S{F /) is an algebraic stack.

THEOREM 3.1. lel #El., r =22, be delineable on o semi-glgebraic region

P c E77', Then S(F,.It)is ulgebraic.

Proof. Let ¢ be a defining formula for R. Let the sections of V{(F) N Z(K)

bes, <sp< '+ <5, k=1, and let 5; be an f;-section. By our remarks in
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Section 2, to show that S(F,R) is algebraic, it sufifices to show that BE"lCh.
region of S(F,B) is definable. Let =z denote the (r—1)-tuple
<Zy ... ,Zey >, and let ¥ stand for z,.. Then for B=j7 <k—1, we can
define s; as the set of all poinls <z ,y> salisfying a formula which asserts
that "z €R and ¥ is the 7** real root of F(z,y)". The [ollowing is such a for-

mula:

p(z) & (Qy)(Byz) > - Oy ¥1<y2< - - <y; <y
&F(zy,)=0&F(lzy)=0& -+ &Flzy;,)=0&F(zy)=0
& (VY (¥ 2 Y1 &Y 2 Y2 & 0 &Y FY5a &

Y 2Y EF(Zy4)=0)=>yna>y ) 1

Defining formulas for s; and s, can be obtained by obvious modifications to
the above formula. For 1 =j =k, let ¢; denote the defining formula for s;.
For 2= j =k, we can define the (f;.;.f;)-sector of S(F .2} as the set of all
points <z ,y> satisfying a formula which asserts that "z €X' and ¥y is between

the (7 —1)° and 7% real roots of F(z,y)". The following is such a formula;

p(z) & (By;-D0CY Y1 <y <y; & ¢51(z.y5-1) &95(z.9;) 1.
Defining formulas for the (—e,f;}-sector and the (f;.«)-sector of S(F R)

can be obtained by straightforward modifications to the formula just given.

Thus S (F',R) is algebraic. «

Principal subresultant coeflicients (psc's), which we now intreduce, are
a vital and characteristic feature of the cad algorithm we are presenting. As
will be seen, they are the chiel means by which the geometric idea of indue-
tion on dimension is translated into an algorithm. TFor they are eminently

computable, being determinants of certain malrices of polynomials.

858
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Let J be a unique factorization domain. Let F and G be nonzero ele-
ments of J[z]. If deg(F)=deg(G), let F; = F and Fp = G, else let 7/, = G
and Fg = . Let F'),J'a, ..., Fr.k = 2, be a polynomial remainder sequence
as defined in [BRT71]. Let n; =deg(F;),1=i<k. Then n,mp ...,n. is
the degree sequence of I' and G. Let n = min{deg(F).deg(G)). For
0=<j <n, we write S;(#.G) to denote the j* subresuitant of I and G
[BRT?1]. For 0<j <m, the 7% principal subresultant coefficient of F and
G. written psc;(F,G), is the coeflicient of z7 in S;(F.,G). We define psc, (F.G)

to be 1€J.
The following theorem states the properties of pse’s that are important

for us.

THEOREM 3.2. Let FF and G be nonzero elements of J[z], J a unique foctori-

zaiion domain, lel n,n, ... .,n, k 22, be the degree sequence of Fand G -

Then
(1) ng = deg- (ged(F, G)), and

(R) For eny j . 0<j =< mn, psc;(F, G)#0 if and only if j = n; for some i,
e=i=k.
Froof. Let F|,Fs, ... [, be a polynomial remainder sequence whose first
two terms are F' and G; thus n; = deg (F;), 2=<1i=/k. As pointed out on p.
506 of [BRT71i}, F. ~ged(F,G), where ~ denotes similarity. Hence
1y, = deg(ged(F,G)). Suppose for some j, 0 <7 < n,, that pse; (F,.G)5#0. It
j = ng we are done, so suppose 7 < ng. Then by the Fundamental Thoerem
ol polynomial remainder sequences [BRT?71], either j =n; for some %,
3=i=k, orj =np_,-1,forscmem,.3=m =k. Ifj =n we are done, so

suppose 7 = i,y 1. Then n,_;~1=n,. Suppose n,_,-1>n,. By the

'y

f',.



Arnon, Collins, McCallum: Cylindrical algebraic decomposition ] 12

fundamental theorem of p.r.s.. Sp__ -1(F.G) ~ S, (F.G), so

deg {Sn iI(F7,G)) = deg (Snm(F-G)) =T <My -1 =74

m—i"
Fence psc;(F,G) = 0, a contradiction. So j =n,_;-1=n,, and we are
done. Suppose conversely that 7 = n; for some i, B=i=k. Ifi = 2, then
psc, (F.G) = 1#0. If =3, then by the fundamental theorem of pr.s.,
-S,.H(F,G) ~ F;, hence deg (S, (F.G)) = deg(F}) = n;, hence psc, (F,G)#0. =

An immediate consequence of this theorem is:

COROLLARY 3.3. Lef Fand G be as in Theorem 3.2 Then deg (yed(F,G)) = k

if and only if k is the least j such that psc;(F,G)#0.

We will put Corollary 3.3 to work in the next Lemma, for which we need
sorae definitions. Let 7 be an element of /.. The deriveiive of F, written /',
is the partial derivative of /* with respect to z.. We view 7, as Jr_,[%,], and
hence by the degree of f7, written deg (F), mean the degree of / in z,. The

zero polynomiel has degree -=. Let K be a region in ™!, For aER, we
write f7o(z,.)} or F, to denote F{o.x,.).

-LEMM.& 3.4. Let F'el, r=2, ond let B be o region in LE7~'. Suppose that
deg {I'y} is constont and nonnegative for c€R, and that if it is positive, then
the least k such that psc, (F,,F',)#0 is constant for aeR. Then the number
of dvistinel roois of /'y is consionl for aell.

Frooj. Let n be the constantl degree of Iy for aeff. 1If»n =0, then I, has no
rocis for every c€fl, so suppose 7t = 1. Lel m be the nonnegative integer
such thel for all a€R, m is the lJeast k such that pse; (F,.F',) is nonzero.
Then by Corollury 3.8, deg (ged (F,,F'.)) = m is constant for «€R. Let p,

be lhe number of dislinci roets of ', for c€/”. Then by standard algebra,

AERN
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Pa =7 -m, for any «€ff. Hence p, is constant for X, o

Let p{z)} be a univariate polynomial with complex coefficients. We let
sep (p) denote the minimum distance in the complex plane between any two

distinct roots of p(z}. A complex number is sirictly complez if it is non-
real.

LEMMA 3.5. Suppose that Fel., r =2, that R is a region in ET~', that
deg (F,} is constent and nonnegative for yeR, and that the number of dis-

tinct Tools of F, is constant for yeR. Let a€R. Let 0 < & < sep(F,)/ 2. and

let z\, ..., 2, be the distinct roots of F,. Suppose that z,, ..., 2, ore recl
and Zgyy, . . .. 2p are sirictly complez. Let e; = 1 be the multiplicity of z;
Jor i=i=<p Lei Cy,...,C, be disjoint circles of radius € in the complex

plane, such that C,; is centered af z;. Then there is o neighborhood M of ain
K such that for all BeM and for each (i, F'p has ezactly one roof vy, of multi-
plicity e;, in (;. Furthermore, v; is real for 1 <1 <k and strictly complex

Jork+l=i=p.

Proof. By Theorem (i,4) of [MAR66], there is a heighborhood M in & of a
"such that for all ﬁ.S'EM. and for 1=<1i<p, Fg has e; roots, rﬁu.ltiplicities
counted, in ¢;. Consider any particular §e¥. Since Fig and 7, each have p
distinet reots, and since the interiors of the (;'s are disjeint, for 1 <4 < p,
Fs has exactly one root, of multiplicity e;, in . Consider any (; for
i=i=k. ( is centered on the real axis in the complex plane, hence for
every siriclly complex point in £, its complex conjugate is also in . Also,
recall Lhat the complex roots of a polynomiél with real coefiicients ocecur in
copjugate pairs. Hence since {; contains only one root of Fg that root is

real. Now consider any (; [or k+1 =41 < p. Since the strictly complex roots
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of Iy occur in conjugate pairs, and since the radius of C; is less than

sep(F,)/ B, C; contains no real points. Hence the root of fgin (; is strictly
complex, =

THEOREM 3.8. Let Fel., r22, and let K be a region in E™". Suppose that
deg (F,) is constent and nonnegative for ae€lRl, and that if positive, then the
least k such that psc), (F, F',)#0 is constant for a€R. Then F is delineable

on I¢.

Proof. By Lemmas 3.4 and 3.5, the number of distinet of real roots of 7, is
constant for aeR; suppose F, has &k = 0 real roots for all . Tor 1 =i <k,
and for a€R, define f;(c) to be the i** real root of F,. From Lemmas 3.4
and 3.5 it is easily seen that f; is continuous for 1 =i =<k. Hence F is

delineable on /. o

Let /# be aregion in £7. 7 2 1, and let a€X. An open neighborhood of a
in K is M (N K for some set # which is open in the usual topology on ET, and
which contains . Let 7 be a function defined on #. T is locully consiont on
R if for every ac€k, there is an open neighborhood M of & in R such that

T(#8) = T{a) [or all BEM. From the connectivity of /2 one easily sees that if
T is locally constant on /, then T is constant on X.

THEOREM 3.7. Lef A C ., v =22, andlet B be uregion in E7~!, Suppose that
Jor every ['CA, deg(F,) is constant and nonnegolive jor a€R, and that if
positive, lhen Lhe least k such thatf pse,(F,.F',)#0 is constent jor o€k,
Suppoese also thal jor every F,GeA, F#G, the least k such that
pse, (g, G, )#0 is constunl for a€R. Then where H = Hzl. H 1is delineable

on It.

8672
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Proaof. By Thecrem 3.8, every I'€4 is delineable on £. Hence V(H) N Z(R)
is the union of certain sections of Z{k). If every pair of these sections is
either disjeint or identical, then A is delineable on K. Hence it suffices to
show that if an f-section and a (-section meet, for any F,Ged, FF#G, then

they are identical.

To establish this laét proposition, it suffices to show that (the truth
-value of) the ﬁredicate "sp and s; meet over yeR" is locally constant on F.
For if it is locally constant on #, then it is constant on &, which means that
if sp and s, meet over cne point of &, then they meet everywhere over F,
i.e. they are identical. Establishing the following two assertions will show
that this predicate is locally constant: (1) for any fER over which sp and sg
do not meet, there exists an open neighborhood of § in ¥ over which sp and
's¢ do not meet (at all); and {B) for any a€R over which sz and s¢ do meet,
there exists an open neighborheod M of & in X/ over which sp and s, do meet

(over évery point of #). {1} is an immediate consequence of the fact that

sections are graphs of continuous functions. The remainder of this proof will

be devoted to establishing {2).

For any p€R, let g, = ged(F,G,), Since the least k& such that
psc, {F,,G,)#0 is constant for pef2, by Corollary 3.3, deg (g) is constant for
yeli. We now proceed to show that if sp and sg; meet at < o, z° >, i.e. meet
over o, then there exists a neighborhood /7 of @ in R, such that for any # in
M over which sp and s¢ do not meet, deg(g,) ~<~ deg{g,). Since degigs) =

deg (g o) for all e, we will have established (2).

Consider any a€ff such thai sp and sg meet at <ea,z”>. Let ¥ = FG.

For some positive &£ < sep(Kf,)/ 2, consider the circles of radius ¢ in the
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complex plane centered al Lhe rools of ;. Since the least & such i;.hat
psc, (I, F)#0 is constant for yelX, Lemmas 3.4 and 3.5 applied to I imply
that there is an open neiglhiborheod 47 of o in /¢, such that for every circle
C,-if the root of K, ut the cenier of € is a root of F, of multiplicity e = 2,
then for all fEHME, F'y has exactly one root in €, and this root has multiplicity
e. Also, if the root of K, at the center of C is not a root of f; but only a
rookt of Gq, then Fp has no roots in € for all f€Mp, since every root of Fg is
contained in some other circle. By an identical argument for G in place of
F', we obtain an open neighborhoecd Mg ol ain K. Let M =M N Mg, M isan

open heighborheood of o in /.

Let Cy, ..., C. be all the circles such that the root of X, at the center
is a commeon root of /7, and G,. i.e. a root of g,. Nole that z° is the center of
one of the C;'s, call it €°, For 1 €4 =k, let g; be the minimum of: the multi-
plicity of the center of (§ as a rool of Ff, and its multiplicity as a root of G,.
By our remarks above, for any f€# and any (;, gg either has one root of
multiplicily e; in {; or ne roots in (;, depending on whether the root of 5 in
. & Is equal to ihe ro_ot of &g in (. Also by our remarks above, for all feidi,
€1 ..., 0 are Lhe ouly circlies which could possibly conlain roots of gg.
Recell thal the degree of a polynomial in one variable is equal to the sum of
the multiplicities of ils distinet roois. Hence if there exists feX and o G
such that the root of # in (; is not equel to the root of Gy in (), then
deg {gp) 15 tess Lhan ceg (g}, wineh is inpossible. Hence for all fe/7, and [or
every (;, the rooi of /7y in (i is equel Lo Lthe root of Gy in C:. This heoids in
particular for °, aud zo sp end sp meet {everywhere) over #. This com-

pletes the proof of {2). v
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Suppose I is an element of /., 7 = 2, which is delineable on a region &
in 5771, Suppose s iz a subset of V(F), and also a section of Z{&k). Then
since § is contained in a section of S{F ,R), and since it is itself a section of
Z(12), it must belong te S(F,it). Hence it is a section of S{F,22). This ele-
mentary observalion will be useful in the [ollowing theorem.

_THEOREM 3.8. Let AcC /., 7 =R and let R be a region in £7~1. Suppose that
each FEA is delineable on K, and that H = HA is delineable on . Then
S{H R) is A-inuvarignt.

Froof. For each FeA, ¥(F) c V(H), hence by our observation above, every
section of §(/",R) is 2 section of ${H K). Hence S(H,R) is a refinement of
S{(F.R) lor every F'€A, in lhe sense that each element of S(F,K) is the
union of certain elements of S(H.R). Hence since each S(F,R) is F-

-in'car'iant. so is S{H.R). Hence S{H,R) is A-invariant. »

Vith the above theorems, we are now ready te define PROJ. For any

nonzero el = I._,, ldef(F) denotes the leading coeflicient of F. The lead-

Cing lerm of £, wriltten 1dt (F), is

idef (F)-z, %)
The reducium of &, written red(F}, is F-Udi(F). 1If F = 0, we define
ved{F) = 0. TFer any k=0, the ki recuctum of I, written red” (I), is defined

by induction on iz

red®{(F) = F.

et Y i) = red (red” (I7)).

'L Ly FGI‘.’" e fevucio sel of I wrillen .Q.ED(F). is
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[red®(F) |0k <deg{F) & red®(F)#0j.
let¢ F and & ©be nonzero elements of [ [z]. Let

n = min(deg (F),deg (&)). The pse set of F and G, written PSC(F,G), is
{psc; (F,G)[0si=n & psc;(F.G)#0}

If either F = 0 or &G = 0, then PSC(F,G) is defined to be the empty set. Let
A = {4, ..., 4} n=1, be a set of polynomials in /., 7=2. The projection of
A, written PROJ(A), is a set of polynomials in .., defined as follows. For
eachl=<i<sn, letk; = RED(4;). Let

PROJ,(A) = lf) U ({def (G} U PSC(G.G))

PROJ,(A) = U U PSCG.G)
lgicjan GER & GiER;

Then PROJ(A) is the union of PROJ,(A) and PROJ,(A).

The following simple observaticn is needed for the thecorem which fol-
lows. Suppoese F' and G are nonzero elements of /., and suppose that for
some aEET), deg(F) =deg(F,) =0, and deg(G)=deg(G,) =0 Let
- n = min(deg (F),deg (G)). Then for every 7, 0<j <m, it is the case that
(sc;(F.G))a = psc; (F,.G,). We see this as follows. For j <, since
deg (F") = deg (I";) and deg(G) = deg (G,), the matrix obtained by evaluating
the entries of the Sylvester matrix of F and G at « is just the Sylvester

matrix of Fy and G, hence if j < n then (S5(F.G))q is equal to S;(Fy G,).
and so {psc; (F,G))a = psc;{FaGa). 1f 7 =, then (psc; (F.G)), = psc; (Fy.Go)
= 1.

For FFel, and X C £77}, F is identically zero on X if £, = 0 for all ¢cX.

Let 4 be a subset of [,,r = £, and let X © £77!. The nonzero produci of 4 on

r"‘\.
r"') r

80
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X, written Ay , is the product of all the elements of A which are not identi-

cally zerc on X. 1f there are no such elements, then 4y is the constant poly-
neitial 1€,

THEOREM 5.9. For A C [, 722, if R is ¢ PROJ(A)-“invariant region in E7 %,
every elemment of A is eilher delinecble or idenlically zero on K, and Ap is

_delineable on K.

Proof. Consider any 'ed. If 7 = 0, then F is identically zero on R. Suppose
F#0. By definition, PROJ(A)} includes every nonzero coefficient of I, so
each coeflicieni of # either vanishes everywhere or nownere on R. Hence
deg (I,) is constant for aeR. For any K€/, for which deg (X,) is constant for
aER, let degp{K) denote Lhis constant value. If degp(Ff) = -, then F is
identically zero on R. If deggp{F"} = 0, then obviously F is delineable on R.
Suppose degp(Ff) = t. Then there is a unique reductum @ of 4 such that
deg (@) = degp(@) = degp(F). Then F, = @, [or all aclt, hence if § is deline-
able on R, then F is delineable on R, Since PSC(@.Q') c PROJ(A). the least
e such that (pscy, (&,Q ))s#0 is constant for c€F. Hence by our observation
above, the least & such that psc, (@, @ '4)#0 is constant for ¢€X. Hence by
Thecorem 3.6, & is delineable on K, hence /' is delineable on R. Thus every
element of A is eilhier ideniically zero or delineable on R,

Lel I be the sel of clements of 4 which are delineable on #. Now by an
arg unent similar (o the above, using Theorem 3.7 applied Lo B in pace ol
Theorem 3.6 appiied lo 4, it jvliows that [[B is delinecble on K. But

i1 = A, Lence fp is delineablc on R e

7
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We compleie our agends for this section with the following

COROLLARY 8.10. For A C I, v=B, if R ic c PROJ{A)4nveriont region in
BTl ihen there exists en olyeirei, A-invuriant stacl: over 7.

_F"rc;of. From 'heorems 3.9, 3.0, and 8.1, Lthree assertions [ollow: {1} every
elemenl of 4 is ¢ither delineable or identically zero on /, {B) 4 is delinable
on 7, and (3) S{4p ) is an algebraic stack over ¥, which is F-invariant for
every F'E€4 which is delinsable on K. Since obviously S{4p,R) is F-invariant

for any Fe€A which is identically zero on ®, S{4g.f} is A-invariant. =

4. The cylincrical alfgebraic cecomposition algerithma: second phase.

Recell that the input to the cad algorithm is a set 4 C {r. In the first phase
of lhe =algorithrm we computed PROJ{A}), PROJ*A), and finally
PROJTYAY 1, Let X = PRCGJTY(A). 1t is the task of the second phase to

construct a K-invartant cad D° of £!, that is, to construct cell indices and

sample points [or the celis of such a cad. Let us now define cell indices.

Consider first a cad of £!. We define the index of the leftmost 1-cell, i.e,
_that i-cell which viewed as &n open interval in the z-axis has & left endpoint
of -, to be {1}, Th;a index of the O-cell (if any) immediately to its right is
defined Lo be (&}, Lhe indey ol the 1-cell to the right of that 0-cell (if any) is
defined to be {I), cte. Now suppose that cell indices have been defined for
cad's of £771 7 = 2, and consider a cad 2 of £7. D induces @ cad D' of £77L
tuy cell d ol O is an elemenl of a stecl: 5{(c) over a cell ¢ of D', Let
iy o .%oy} e Lhe index ol 2. The celis GI S(c; may be numbered irom
pulioln Lo top, with the beluwsianiust secicr being called cell i, the seclion
sbove iL {if ) celdl B, the coclos above ot Gf anyy cell &, eie, i £ is the

4 cell of Lhe siuek by thiz nuiubering. Lhen its cell index is defined to be
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(PP SR )

It is interesting to note that the sum of the parities of the components
of a cell index is equal to the dimension of the cell (where even parity = 0
and odd parity = 1). In a cad of £2, for example, a cell with index {2,4) is a

C-cell, (2,5) is a t-cell, (3,2) is a i-cell, and (1,5) is a 2-cell.

We begin cad construction in E* by constructing the set of aﬂldistinct
(i. el. relatively -pri.me) irreducible factors of the various elements of X {see
[KALBR] for information on polynomial factorization algorithms). Let
M=[{My,... M}Cl, be the set of these [actors. The real roots
;< '+ <oy, m=0, of [[M will be the O-cells of D° (if n = 0 then D° con-
sists of the single i-cell £!). We determine the o;'s by isolating the real
roots of each M;. Algorithms for this task are described in [CLOB82]. Note
. that by their relative primeness, no two elements of # have a commeon root.
Hence by refining the isolating intervals for the a;'s we obtain a collection of
disjoinf left-open and right-closed intervals (7,,5;], (T2.5z] ... (75.5,] with

rational endpoints, each containing exactly one o; and with
--rl <E;=Tp< '

As soon as we know n, we can write down the indices of the 2n+1 cells
of D°. Thus construeting cell indices in £’ is straightforward. In the third
phase of the cad algorithm there will be rool isolation steps [ollowing which
it will similarly be straight{orward te write down the indices for the cells in
certain stacks that will be part of cad's of £, i = 2. Thus we will not discuss
cell index determination furiher in detail, but simply assume that it can be

done.

06 ¢
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We now construct sample points for the cells of D°. For the 1-cells of
D® we can use approprie.ltely chosen endpoints [rom the isclating intervals
above, giving us a rational sample point for each t-cell (if D = { &'}, we arbi-
trarily pick sorme rational element of £). Obviously the only point in a 0-cell
is the cell itself. Its value may be an irrationzl algebraic number. The use
to be made of sample points in the third phase of the cad algorithm leads us

to adopt a particular representation for them that we now describe.

This representation is applicable to algebraic points in any E*, that is,
points each of whose coordinates is a real algebraic number. Loos
_ ({LOOBRa], Section 1) describes the representation for a real algebraic
number 7y by its minimal polynomial #{x) and an isolating interval for a par-
ticular root of J{(z). With  so represented, and setting m to be the degree
of M(z), one can represent an element of @{y) E;S an element of @[z of
degree =m -1 (as Loos describes). I'or any algebraic point, there exists a
real algebraic p such that each coordinale of the point is in @(y); 7 is a
primilive element [or the point. Our representation for an algebraic point
in E' is: a primilive element p and an i-tuple of elements of @(7), all
represented as desc.ribed:by Loos. It is straightforward to express our
above-specified sample points for P° in this representation, and we hen-

ceforih assume that this has been done.

5. The cylindrical zlgcbraic decemposition aigorithm: third pb.asé. Let us
bezin by examining the extension of the cad D° of E! to & cad of £2 In
phase one, we computed a sel J = PROJ™ () C fa, where A € L. is the set
of input polynomials. Censider any cell ¢ of D’. J, is delineable on c.

S(J;.e) is a J-invariant stack over ¢ which is a subset of the cad of £2 that

068
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we want. Let o be the sammple point oy ¢. Clearly J. is the product of all
elements G of J for which G{a.z4)=0. Using the algorithms for arithmetic 1n
@(a) described in [LO082a], we construct J;. As described in Section 2 of
[LOOBRa)], we can isclule the real roots oi J,(a,zp)e@{u)[z,], end thereby
determine the number of sections in S{J;,¢). If 8is a root of J_ {,z5), then

< a,f > is a sample point {or a section of S{J..c). Using the representation
for «, Lhe isolating interval [or 8, and the ajgorithms NORMAL and SIMPLE of
[LO08Ra], we construct a primitive element y for @{c,), and use it to con-
struct the representation we require for < a,f > . Seclor sample points for
S{J..c) can be obtained frem a and the (rational} endpoints of the isolating
intervals for the roois of J, {e.,z,), much as was done above [or F!. Thus sec-
tor sample points are of the lorm < o,7r>, r ralional, so we can take ¥ = a.
After processing each cell ¢ of D7 in this [ashion, we have determined a ced
of £* and construcled a sample point for each cell.

Extension from E™™! to E' for 3=4i =7 is essentially the same as

extending E! to £° A sample point in &7 has i - 1 coordinates, as con-~
_irasied with the single coordinate of a point in Bl Yhere a is the primitive
element of a sainple .point in Ei-Yand 7= F{z,, ..., z:) is an element of 7,
vie use arithmetic in @(e) Lo expliclly determine the univariaie polvnornial
over @(a) thal recalie from subsiiluling the coordinetes <oy, ..., G0 >

Tor <%y, -..,%-; > in k.

The following abstraci algorithm summarizes owr discussion of e cad
aclpoerdlhom,
CilimaLE

[Cylindrical algebraic decomposition. A is a list of n=0 integral polynomials

(i



Arnon, Collins, McCallum: Cylindrical algebraie decomposition ] 24

ir © variables, r=1i. [ is a list of ihe indices of the cells comprising an A-
invariant cad D of £7. S is a list of sample points for D, such that the i%

element ol 5 is a sample point {for the cell whose index is the i*F element of

() I# =3131ir > 1 lhen goto & Setl « the empty list. Set S « the empty
list. Set H{z)e the product of the nonzero elements of 4. Isolate
the recl roois of H{2} Lo determine the O-cells of 2. Consirucl the
indices of Lhe celis of £ and add them to 7. Construct sample
points for the cells of ¥ and add them to 5. Exit.

(2) [r >1i.] Set P«PROJ(A). Call CAD rebursively with inputs »—1 and P to
obtain cuilputs /' and 5' that speciiv a cad D of £77). Set ] « the
empty list. Set S ¢ the empty list. Tor each cell ¢ of D', lel %
denote the index of ¢, lel o denote the sample peoint for ¢, and
carry out the [ollowing four steps: first, set A(z.)e[[{4:i(onz)]|
A€A & A(a,z,)#0), second, isolate the real roots of A(z,), third,
use i, o, and the isolating intervals for the roots of 2 to construct
cell indices and sample points for the sections and sectors of S(c ),
fourth, add the new indices to [ and the new sample points to S,

Exit e

G. fm cumemp:e. Ve now show what aigorithm CAD does for o particular

example in £%. Let

Aylx,y) = i4eyt & COxfy + Ot 4 10527 = TOx - 98,
An(z w) = my® + Gy + 29 + 8z,
A = 1ALtz Vihen CAD e colied with inpul A4, ite drst action wili be to

celnpuie A0 {4). Foliowing ti:e delinition in Section 3, we getl
) 5\ & =

e
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tdef (A,) = 144,
psco(dyA;) = -580608(z*- 1522 - 10z + 14) = —580608 p,(z),
pse(414,) = 1,
ldef (red{4,)) = 9622 = 98[py(z) ]2
psco(red {4 ).[red{4,)]") = 1,
ldef (réda(Al)) = 9r* + 105z% + 70z - 98,
ldef (Ag) = =,
psco(dz.dg) = 42,
pscI(Az.Aé)_: 1,
tdef (red{4z)) = 6z,
psco(red(4z).[red{4:}]) = 1,
idef (red?(4,)) = z(x? + 9),
psco(4rds) = =8 pa(z) =
z%(B1z® + 33302 + 1260z% - 37395z - 45780z - 320962 + 167720z + 1435204),
psc (A, 4g) = 96z (z? - 9),
pscg(dyde) = 1,
pscg(red(4,).As) = 2 (Biz® + 59222° + 1260z° + 31725z
- 256203 + 4076Bz” - 13720z + 9604),
pscy(red(4,).4z) = 1,
psop{d, red(4g)) = —36z (3z% - 33z - 70z - 226),
psc (4, 7ed (4z)) = 1.

pscol{red(4,) red(4g)) = 1.

By techniques described in [COL75] and [ARNBi], it can be determined that
if we vretain only p,{x)==z%*-i5z%-10z + 14, j@u(z)==z, and

pa(z) = 81z + 3330z° + 1260z% - 37395z % - £5780z " -
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3209622 + 187720z + 1435204, in PROJ(A), this smaller PROJ(A) will still
suffice for the construction of an A-invariant cad of £2. It turns out that
pg(z) has no real rools, and so has no efiect on the cad. Hence let us set
PROJ(4) = [py(z). p2(z)}.

P, and pg are boih irreducible, so we have ¥, = p; and #p = pe in the
notation of Section 5. /4, has [our real roots with approximate values -3.26,
-1.51, 0.7, and 4£.08; #z has the unigue root z = 0. The {ollowing collection of
isolating intervals for these roots satisfies the conditions set out in Section

B:

(-4,-8], (~2,-1], (-1,0], (=11, (48]

Since there are five O-cells, the cell indices for the cad are (1), (2), ..., (11).

We now construct representations for the sample points of the induced
cad of F1. Each 1-cell will have a rational sample point, hence any rational
will be a primitive element. We arbitrarily choose p = 0. {—3,0] is an isolat-
ing interval for 7y as a reot of its mimimal polynomial. We may take the 1-

cell sample points to be -4, -2, -1, -é— 4, ang 9.

The [our irrational O-L:ells have as their primitive eiements the four
roots of #,(x). The representation for the leftmost O-cell, for example, con-
sists of M {z). the isolating interval {~4£,3], and the i-tuple <z>, where =
corresponds to Lhe element ¢ of @(y). The O-cell z = 0 is represented in the
same fashion es Lthe ralional 1-cell sample points.

We now come to the exiension phase of the algorithm. Let ¢ be the left-
most 1-cell of the cad D' of £l Ay(—-4y)#0 and As{—<¢.y)#0. hence

4. = A1As. Ve have
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A (~4y) = 24 (y* + 6y + B5) (R4y? + 256y + 601).

2% + By + R4 has no real roots, but 24y® + 256y + 601 has two real roots,
which ecan be isolated by the intervals (—8,—7] and (—4,~2]. Thus the stack
S(c) has two sections and three sectors; the indices for these cells are (1,1},
(1,2),.... (1,5). From the endpoints of the isclating intervals we obtain sector
sample points of <—4-B8> <—4,—4>, and <-4,-1> (which wil be
'represented in the customary fashion), The two roots ¥, and 7z of
24y® + 256y + 601 are bolh y-coordinates for the section sample points and
primitive elements for these sample points. Thus the (representations for
the) section sample points are

fRay® + 206y + 601, (—8,~7] <—4y>]
and

{Ray? + 256y + 601, (—4,~R] <—4,y>{.

Now let ¢ be. the leftmost C-cell of D' let a also dencote this point.

Al(a.yj#O and Az(a.y)#0, so again 4, = A;4;. We find that, up to constant

factor,

Acloy) = (% + By +o° + 9)(y + 5o

y? + By + of + 9€Q(e)[y] has po real roots, but obvously y - L2

3 has

exactly one; (—8,8] is an isolating interval for it. Hence S{c) has one section
and two sectors; the indices of these cells are {2,1), (2.2} and {2,3). The

appropriate representaltions for < -a,—8> and < -o0,9> are the sector
sample points. Since y -+ -é—o:2 is linear in ¥, its root is an element of {a).

Hence
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=t

(M (x), (—&.2), <=z,-==x%>}

s the representation of the section sarmple peint.

Thus in this particular czse il was not necessary to apply the NORMAL
and SIKPLE algorithms of [LOUEGZ:] Lo find primilive elements for the sec-
ticns of S{c ), and it is also not necessary for the other sample points of this
example. In generel, however, for a O-cell a, 4 (a,y) will have nonlinear [ac-
{ors with real roote, cnd it will be necessary to apply NORMAL and SIMNPLE.
Saying this ancther way, where o is a O-cell of D' and < o.f > is a seclion
sample point of D, we had in our example above &(a,8) = @{a), but in gen-

eral, @(e) will be a proper subfield of &(w.B).

The steps we have gone through above for a 1-cell and a 0-cell are car-
ried out [or the remaining cells of D' to complete the determination of the
A-invariant cad D of £2.

Although information of the sort we have described is all that would

actually be produced by CAD, it may be useful to show a picture of the

decomposition of the plane Lo which the information corresponds. The

-1

‘curve defined by A){z.y) = 0 has thiree connected commponents which are
easily identified in Figwre 3 below, The curve defined by Az{z ,y) = 0 is just
Lhe ¥-axis, i.e. Lhe samme curve as defined by z = 0. The A-invariani cad of
£? which CAD determines is shown in Figure 3. We remark that the curve

A(z.y) is from ([HILSZ], p. 329).
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