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Abstract 
This paper proposes a trajectory planning and tracking approach 

for cylindrical heat exchanger process that is considered, under 

some assumptions, as a bilinear system. The proposed technique 

is based on orthogonal functions and especially the use of 

operational integration and product matrices. These operational 

tools allow the conversion of a bilinear differential state equation 

into an algebraic one depending on initial and final conditions. 

Arranging and solving the obtained algebraic equation lead to an 

open loop control law that allows the planning of a system 

trajectory. The parameters setting of the tracking state feedback 

closed loop control is yielded by considering a reference model 

characterizing the desired performances. A high gain observer is 

associated to heat exchanger process in the planning trajectory 

step and tracking one. A planned open loop control and a state 

feedback control that ensures tracking of reference trajectory 

were applied to the system exchanger associated to observer 

which is subject to noise and disturbance. 

 

Keywords: Feedback control, Nonlinear systems, Orthogonal 

functions and polynomials, Observability, heat and mass transfer. 

 

1. Introduction 
 

Plan a trajectory is finding the open loop control 

which allows the system to reach a final state fx  set from 

a known initial state 0x  . Track a trajectory is to 

synthesize a closed loop control law that correct deviations 

between the real system trajectory and the planned one (so-

called reference) 0refx x x    . 

Both problems were addressed in the literature in 

several ways: for linear systems are mentioned the 

technique of spline functions [1], for non linear systems 

notion of flatness was used [2]. However, we have 

proposed a new approach based on orthogonal functions as 

a tool of approximation to solve the planning and tracking 

trajectory problem for time variant linear systems [3] and 

bilinear system  ([4],[5], [10],[11]). 

 

In what follows we propose to apply this technique in 

order to plan and track a trajectory of a cylindrical heat 

exchanger, which is basically a six order non linear system 

which can be assimilated to a bilinear one by considering 

some practical assumptions. Moreover, a high gain 

observer is going to be associated with the system for state 

estimation.  

2. Heat exchanger presentation and modeling 

We present in this section the heat exchanger model with 

its parameters. 

2.1 Process presentation and assumptions 

We consider a cylindrical heat exchanger composed by 

three compartments shown in figure1. 

 
Fig. 1  Process: Three compartments heat exchanger 

 

with: 

iD : volumetric flow 

eT ,
'

eT : entry temperatures 

S : section of inner cylinder 
'S : section of outer cylinder 
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s : heat exchange surface 

eT ,
'

eT temperatures are assumed to be homogeneous. 

Also, the following assumptions are considered: 

 There is no heat loss; 

 There's is heat exchange through the shell of the 

inner cylinder under the law of Fourier: 

( )

( )

inner cylinder outer cylinderh T T exchange flow

in watts

 

 with h  is the global heat transfer coefficient; 

 pC , 
'

pC : constant specific heats; 

 i i im V SL    and 
' ' ' ' '

i i im V S L     

2.2 Process Modeling 

The modeling of the heat exchanger is based on the 

following thermal balance law: 

p

d
mC T Entry flow Exit flow

dt
    (1) 

Applying equation of thermal balance (1) for three parts I, 

II and III of heat exchanger. 

Part I: 

'

1 1 1 3 1 1

' ' ' ' ' ' ' ' ' '

1 3 1 2 1 3 2 3

( )

( )

p p e p e

p p p

d
m C T D C T hs T T D C T

dt

d
m C T D C T hs T T D C T

dt

 

 


   


    

Part II: 

'

2 2 1 1 2 2 1 2

' ' ' ' ' ' ' ' ' '

2 2 2 1 2 2 2 2

( )

( )

p p p

p p p

d
m C T D C T hs T T D C T

dt

d
m C T D C T hs T T D C T

dt

 

 


   


    

Part III: 

'

3 3 1 2 1 3 1 3

' ' ' ' ' ' ' ' ' '

3 1 2 3 1 2 1

( )

( )

p p p

p p e p

d
m C T D C T hs T T D C T

dt

d
m C T D C T hs T T D C T

dt

 

 


   


    

Let us consider the state vector of the process as 

' ' '

1 2 3 1 2 3

T

x T T T T T T    , a control vector 

'

1 2e eu D T D T     and the output 

'

1 3

T

y T T    . 

Note that the heat exchanger is controlled in 

temperature and debit. 

The system evolution is described by the following 

state equation: 

( ) ( )x A u x B u

y Cx

 



                      (2) 

with: 

11 16

21 22 25

32 33 34

43 44

52 54 55

61 65 66

0 0 0 0

0 0 0

0 0 0
( )

0 0 0 0

0 0 0

0 0 0

a a

a a a

a a a
A u

a a

a a a

a a a

 
 
 
 

  
 
 
  
 

 

where: 

1
11

1 1p

Dhs
a

m C m


                                  16

1 p

hs
a

m C
  

1
21

2

D
a

m


                                      

1
22

2 2p

Dhs
a

m C m


   

25

2 p

hs
a

m C
          

1
32

3

D
a

m


  

1
33

3 3p

Dhs
a

m C m


                34

3 p

hs
a

m C
  

  43 ' '

3 p

hs
a

m C
                              

'

1
44 ' ' '

3 3p

Dhs
a

m C m


   

52 ' '

2 p

hs
a

m C
                                               

'

2
54 '

2

D
a

m


  

'

2
55 ' ' '

2 2p

Dhs
a

m C m


                              61 ' '

1 p

hs
a

m C
  

'

2
65 '

1

D
a

m


                                   

'

2
66 ' ' '

1 1p

Dhs
a

m C m


   

' '

1 2

'

1 3

( ) 0 0 0 0

T

e eD T D T
B u

m m

  
  
 

 

1 0 0 0 0 0

0 0 0 0 0 1
C

 
  
 

 

By considering hot and cold entry temperatures 
'( , )e eT T  constant, and controlling the heat exchanger by 

debits 1D   and 2D  we obtain, then, a bilinear model of 

the exchanger; since the fourth input vector  u  is reduced 
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to the second order vector  1 2u D D   and the state 

matrix  becomes: 0 1( )A u A Au  . 

It is proposed to apply the trajectory planning technique 

based on the use of orthogonal functions developed in 

([4],[6])  to the bilinear model of the heat exchanger.  

3. Trajectory planning 

The proposed approach to solve the problem of trajectory 

planning for the heat exchanger based on the use of 

orthogonal functions that offer the possibility of 

representing various systems algebraically. We first give a 

brief overview of the orthogonal functions. 

 

3.1 Orthogonal functions 
 

We consider a complete set of orthogonal 

functions  ( ),i t i  , defined on an 

interval  2( , )L a b . A projection of any function ( )f t  in 

a complete space of orthogonal functions    is given by: 

 
0

( ) ( ), ,i i

i

f t f t t a b




      (3) 

where if  are constant coefficients given by: 

1
( ) ( ) ( ) ,

b

i i
a

i

f x x f x dx i
r

      

To obtain a practical approximation of the function ( )f t , 

development (3) is truncated to N  order. We thus obtain: 
1

0

( ) ( ) ( )
N

T

i i N N

i

f t f t F t




      (4) 

Where:  0 1 1N NF f f f   is a constant 

coefficient vector and  0 1 1

T

N N      is 

an orthogonal function composed vector.  

 

An orthogonal functions development truncated at order 

N of a matrix function ( ) ( )ijA t a t     is given by: 

1

0

( ) ( )
N

Ni i

i

A t A t




   

With 
n m

NiA  ,  0,1, , 1i N   are constant 

coefficient matrix. 

 

Besides the approximation (4), the orthogonal functions 

provide useful tools such as: the operational matrix of 

integration, the operational matrix of product and the 

operational matrix of derivation, for solving differential 

equations. 

a) Operational matrix of integration: The integral of 

orthogonal functions basis vector ( )N t  can be 

approximated by a constant matrix 
N N

NP  which 

verifies: 
0

( ) ( )
t

N N Nd P t    . Form of the matrix 

NP  depends on the basis of orthogonal functions chosen. 

b) Operational matrix of product: The approximation 

of product of orthogonal basis vectors is given by the 

operational matrix of product iNM  satisfying the 

following relation: ( ) ( ) ( )i N iN Nt t M t     

 with 
0, 1,iN i N iM K K 

     and 

 0,1, , 1i N   , ( ) ( ) ( )T

i j ij Nt t K t     

Orthogonal functions also provide product property [7] for 

any constant vector 
nV  : 

( ) ( ) ( ) ( )T

N N N Nt t V M V t        (5) 

Where

0 1 ( 1)( ) ( ) ( ) ( )N N N N NM V M V M V M V
   

 

3.2 Proposed approach 

 

Consider a bilinear system described by a state 

equation. 

               
0

m

i i

i

x Ax Au x Bu


                   (6) 

its state variables projection on an orthogonal 

functions basis ( )N t  at truncation order N gives: 

( ) ( )N Nx t x t   

( ) ( )i iN Nu t u t   

( ) ( )N Nu t u t   

A state representation (6) approximation is given by: 

0

( ) ( ) ( ) ( )
m

N N N N i N iN N

i

x t Ax t Bu t A x u t


       

(7) 

integration of equation (7) between initial 0 0t   

instant  and instant t : 

0 0

0
0

( ) (0) ( ) ( )

( )

t t

N N N N

m t

i N iN N

i

x t x Ax d Bu d

A x u d

   

 


    

 

 

 
(8) 
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orthogonal basis projection of equation (8) and by 

replacing the initial state (0)x  (at the instant 0 0t  ) by 

its orthogonal basis projection: ,0(0) ( )N Nx x t   with 

 ,0 (0) 0 0Nx x  and the use of operational 

matrix of integration NP   and product proprieties (5), one 

obtains: 

,0

0

( ) ( )

( ) ( )

N N N N N N N N

m

i N N iN N N

i

x x Ax P t Bu P t

A x M u P t


    

 
 (9) 

Using Vec  operator and its main property [6]: 

( ) ( ) ( )TVec ABC C A Vec B   equation (9) gives the 

following relation: 

,0

0

( ) ( ) ( ) ( )

( ) ( ) ( ( ) ) ( )

T

N N N N

m
T T T

N N N N iN i N

i

Vec x Vec x P A Vec x

P B Vec u P M u A Vec x


   

  

thus  we have: 

0

1

,0

( ) ( ( ( ) ) ( )

( )) (( ) ( ) ( ))

m
T T

N nN N N iN i N

i

T T

N N N N

Vec x I P M u A Vec x

P A P B Vec u Vec x





  

   



      (10) 

integrating equation (7) between instant t  and final time 

( fint T ): 

0

( ) ( ) ( ) ( )

( )

T T

N N N N
t t

m T

i N iN N
t

i

x T x t Ax d Bu d

A x u d

   

 


    

 

 

 
 

      (11) 

and replace ( )x T  by its orthogonal functions projection: 

,( ) ( )N T Nx T x T  and  , ( ) 0 0N Tx x T  

using the fact that the orthogonal basis vector at final time 

T  verifies: ( ) ( )N N NT K t     

one obtains:  

,

0

( ) ( )

( ) ( )

N T N N N N N N N N N

m

i N N iN N N N

i

x x Ax P K I Bu P K I

A x M u P K I


    

 
 

let us pose ( )N N N NP K I    and apply Vec operator, 

we obtain: 

 

,

0

( ) ( ) ( ) ( )

( ) ( ) ( ( ) ) ( )

T

N T N N N

m
T T T

N N N N iN i N

i

Vec x Vec x A Vec x

B Vec u M u A Vec x


    

    

this equation yields to: 

0

1

,

( ) ( ( ( ) ) ( )

( )) ( ( ) ( ) ( ))

m
T T

N nN N N iN i N

i

T T

N N T N N

Vec x I M u A Vec x

A Vec x B Vec u





   

     



      (12) 

by equalizing (10) and (12) one obtains the following 

relation:  
1

,0

1

,

( ( ) ( ) ( ))

( ( ) ( ) ( ))

T

N N N N

T

N N T N N

H Vec x P B Vec u

G Vec x B Vec u





  

  
 

where: 

( )N N N nN uH H u I R    

0

( ) ( ( ) )
m

T T T

u N N N iN i

i

R P A P M u A


     

0

( ) ( ( ) )
m

T T T

N nN N N N iN i

i

G I A M u A


        

substituting  N by its expression ( )N N N NP K I    , 

thus we have: ( )T

N N N N uG H K I R    

relation (12) becomes: 

,0 ,( ) ( ) ( , )T

N N N N N TK I Z u x x               (13) 

 with: 
1

,0( ) ( )(( ) ( ) ( ))T

N N N N N NZ u H u P B Vec u Vec x    

,0 , ,0 ,( , ) ( ) ( ) ( )T

N N T N Nn N N Tx x K I Vec x Vec x     

Open loop planning control is obtained by minimizing, 

with respect of Nu , the norm of the difference between the 

two parts of equality (13): 

        
,0 ,( ) ( ) ( , )T

N N N N N TK I Z u x x              (14) 

The minimization can be led by using the tools provided 

by Matlab optimization toolbox as the "fmincon" function. 

 

3.3 Trajectory planning of the heat exchanger 
 

Applying the method previously developed for the bilinear 

model of the heat exchanger (6), using Legendre modified 

polynomials as a tool for the approximation [7] and a 

truncation order 16N  . 

  

a) Numeric data : 

 are given below the parameter values of the heat 

exchanger. 
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31000 /kg m  volumetric density of the exchanger 

inner part. 
' 31000 /kg m   volumetric density of the exchanger 

outer  part. 

4183 /pC J kgK  mass heat of inner  part. 

' 4183 /pC J kgK  mass heat of outer part. 

1L m length of heat exchanger. 

1 2 3 / 3L L L L   length of respectively exchanger 

part I, part II and part III. 

0.03id m  inner diameter of the exchanger. 

0.05ed m  outer diameter of the exchanger. 

2
2

4

e
e

d
s m


 section of the inner tube. 

2
2

4

i
e

d
s m


  flow section of the fluid in the outer tube. 

1 1im s L , 2 2im s L , 3 3im s L   masses of 

inner three parts of exchanger. 
' '

1 1em s L , 
' '

2 2em s L , 
' '

3 3em s L  masses of 

outer three parts of exchanger. 

is d L exchange surface. 

25f eT T C  cold temperature. 

' 45c eT T C  hot temperature. 

3
34010

/
3600

fD m s


  cold flow. 

3
316510

/
3600

cD m s


  hot flow. 

21150 /h sw m K  

 

b) Matlab simulation:  

 

The proposed method was implemented in Matlab, for 

the exchanger model (2) based on previous numeric data. 

An open loop planning control pu   was calculated for the 

process reaches the final temperatures 

30 35 40 45 40 35
T

fx C C C C C C   

 with 20fint T s  from initial state 

0 15 15 15 25 25 25
T

x C C C C C C    . 

The solution of equation (14) allowing the calculation of 

the control pu was led by the Matlab function "fmincon" 

with an initial debit control   0 2c cu D D , a 

minimum level control 
min f fu D D     and an upper 

level control max 04u u . Modified Legendre 

polynomials have been used as an approximation tool with 

a truncation order 16N  . 

The figure (Fig.2) show that the open loop generated 

trajectory allows the bilinear model of the heat exchanger 

to reach desired temperatures from chosen 

temperatures.

 
Fig. 2  Exchanger planned trajectory 

 

4. Trajectory tracking 

In this section we propose to present a method that permit 

to find a close loop control that ensures the planned 

trajectory. 

 

4.1 Proposed approach 

 
We consider the following difference variables between a system 

(6) trajectory ( ( ), ( ))x t u t  and its planned one 

( ( ), ( ))p px t u t :  

( ) ( )

( ) ( )

p

p

x x t x t

u u t u t





 


 
                       (15) 

the planned trajectory variables verifies: 

 

0

m

p p i i p p p

i

x Ax Au x Bu


    

the state equation of difference system is given by: 

0 0 0

( ) ( ) ( ) ( )
m m m

i i p i p i i

i i i

x A Au x t B A x u t A x u    
  

      

      (16)  
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neglecting the term ix u    front  x  and u , the state 

equation (16) can be simplified to a state representation of 

a linear time variant system [3]: 

     ( ) ( ) ( ) ( )x A t x t B t u t                                         (17) 

with: 

0

( )
m

i i p

i

A t A Au


   

0

( )
m

i p

i

B t B A x


   

Our objective is to characterize a state feedback 

control law ( ) ( )u t k x t    that gives the controlled 

time variant linear system (17) the desired performances 

which are defined by a suitably chosen linear model: 

           ( )x E x t                                                (18) 

the projection of time variant matrices ( )A t , ( )B t and 

the vector ( )x t  in orthogonal functions basis is given 

by: 
1

0

( ) ( )
N

Ni i

i

A t A t





1

0

( ) ( )
N

Ni i

i

B t B t






( ) ( )N Nx t x t    

yields the following differential equation: 
1 1

0 0

( ) ( ) ( )
N N

Ni i Ni i N N

i i

x A t k B t x t   
 

 

      (19) 

integrating the previous relation and using operational 

matrix of product and of integration with the use of 

Vec operator, we obtain: 
1

,0

0

1

0

( ) ( ) ( )

( ( ) ) ( )

N
T

N N iN N Ni

i

N
T

iN N Ni N

i

Vec x Vec x M P A

k M P B Vec x

 











  

 





             (20) 

a  similar development for the reference model (18) gives: 

, ,0( ) ( ) ( ) ( )T

N r N N NVec x Vec x P E Vec x                (21) 

Equalization between ( )NVec x  obtained from (20) and 

,( )N rVec x  obtained from (21) provides the following 

linear algebraic equation whose unknown is the state 

feedback control gain k : 

                              k                                           (22) 

with: 
1

0

( )
N

T

iN N Ni

i

M P B




   

 
1

0

( ) ( )
N

T T

iN N Ni N

i

M P A P E




     

Solving the equation (22) using the least squares method 

leads to a state feedback control law 

( ) ( )x t k u t   that tracks the bilinear system (6) 

trajectory. 

It should be noted that the development (17) to (22) can be 

extended to synthesize a time variant state feedback 

control law in which the time variant control gain ( )k t  

can be determined by a projection in an orthogonal 

functions base: 

1

0

( ) ( )
N

Ni i

i

k t K t




 . 

4.2 Heat exchanger trajectory tracking 

 
The developed method has been applied to track the 

planned trajectory of the heat exchanger bilinear model (6), 

using as reference linear model: ( )x E x t   with 

6E I  . 

To simulate the system provided with the obtained control 

law, we have introduced a perturbation on the exchanger 

planned trajectory at instant 8t s , then we applied the 

closed loop control law for the disturbed trajectory. The 

simulation results are presented in the figure (Fig.3). 

 
Fig. 3 Evolution of perturbed outputs of heat exchanger 

 

Note that the closed loop system trajectory tracks the 

planned trajectory despite the disturbance injected into the 

system. The synthesized control allows the system to reach 

the reference trajectory (obtained in open loop) with 

performances defined by the choice of the linear reference 

model. These performances can be adjusted by changing 

the reference model. 

5. State observer 

5.1 State observer presentation 
The implementation of the synthesized control and planned 

law needs the measure or the estimation of all the state 

variables. Since the temperatures 
'

1T  , 2T , 
'

2T and 3T  are 

not measurable, it is required to reconstruct them using a 

state observer. For this goal we propose to apply a high 
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gain state observer ([8], [9]) described by the following 

equation: 

1ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( )

T

T T

x A u x t B u S C Cx t Cx t

S t S t A u S t S t A u C C

    


    
(23) 

with: 

 : tuning parameter (observer gain) 

S I : at the first iteration. 

In the next we propose to associate this state observer to 

the heat exchanger first in trajectory generation step, 

second in trajectory tracking phase. 

 

5.2 Use of state observer in open loop step 
 

a) Simulation without noise:  

Simulating on MATLAB exchanger system (2) 

associated to the state observer (23) knowing that the 

initial state of the observer is 

0 10 10 10 20 20 20
T

x C C C C C C     

and the observer gain 4   , the heat exchanger is 

simulated under the same conditions chosen for trajectory 

planning.  Results are shown in figure (Fig.4). 

 
Fig. 4 Evolution of exchanger observed states without noise. 

 

Note that starting from a state 

0 10 10 10 20 20 20
T

x C C C C C C   
different from the initial state 

0 15 15 15 25 25 25
T

x C C C C C C     

chosen for the heat exchanger, the observer converges 

quickly to the measured output. The observer time 

convergence depends on the tuning parameter  ; the 

higher this parameter more rapid the convergence is. 

 

 

b) Simulation with noise:  

Injecting a Gaussian white noise of amplitude 3%   on the 

exchanger output and simulating the system exchanger 

associated with state high gain observer response, one 

obtains the results illustrated on the curves of figure (Fig.5). 

 
Fig. 5 Evolution of exchanger observed states with noise. 

 

 

Note that despite the presence of noise on the output, the 

observer converges to the exchanger measured output. 

 

5.3 Feedback control using state observer 

 
We apply the trajectory tracking approach [11] for the 

system using the state observer (23) in the presence of 

noise by injecting at time 8t s  a perturbation; the results 

obtained are given by figure (Fig.6).  

 
Fig. 6 Evolution of exchanger observed and controlled states with noise. 
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It appears that the system (exchanger+state observer + 

feedback control) succeed to track the planned trajectory in 

spite of perturbations injected. 

5. Conclusion 

A trajectory planning and tracking approach based on the 

use of orthogonal functions has been proposed and applied 

to a bilinear model of cylindrical heat exchanger. 

This approach allowed finding an open loop planning 

control ensuring for system to evolve from a fixed initial 

state to a known final state. It should be noted that the 

considered control is a debit heat exchanger control that 

has achieved the desired temperatures for external and 

internal parts of the cylindrical tube. 

The planned trajectory was generated in the first. Second, a 

tracking trajectory approach based on the use of 

orthogonal functions and a reference model was applied to 

the exchanger bilinear model. Then, a control state 

feedback law was synthesized allowing controlled system 

to stay in a neighborhood of the reference trajectory 

despite disturbances that may occur. 

Moreover, a high gain state observer of the heat exchanger 

has been integrated in the control loop which has permitted 

the tracking of the planned trajectory despite of the non 

measurability of the system state variables and the noise 

which may occur on the process. 
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