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Lee W. Casperson
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(Received 13 January 1972; revision received 15 July 1972)

A general class of cylindrical laser resonators is described in which the radiation propagates partially in the

radial direction. There is a strong focusing of energy at the axis of such resonators. The low-loss cavity
modes are related to ordinary gaussian beam modes. Two limiting forms are the disk laser and the tube
laser, and some applications are considered.

Index Headings: Resonant modes; Laser.

Conventional laser resonators generally consist of a
pair of mirrors between which electromagnetic radiation
may be made to propagate. Within this optical cavity
is placed an amplifying medium and perhaps a variety
of other optical elements, as well. Elementary matrix
techniques may be employed to derive the important
Laguerre-gaussian and Hermite-gaussian modes of such
resonators as long as each optical element can be
characterized by a 2X2 beam matrix.' The subject of
this work is a class of laser resonators in which the
radiation propagates partially in the radial direction
toward and away from the axis of symmetry. The sim-
plest cylindrical resonator consists of one wrap-around
mirror, as indicated in Fig. 1. The mirror shown has a
slight curvature in the z direction, which would be useful
for reducing diffraction losses in resonators with no
other focusing elements. In high-gain lasers, however,
diffraction would be unimportant.

More-general resonator configurations are sketched
in Fig. 2. For simplicity only a vertical cross section
through the center of these resonators is drawn. The
dashed lines indicate possible mode profiles, the shaded
area indicates the amplifying medium, and the arrows
show the direction of the output beams (assuming that
the resonator mirrors are partially transmitting). The
disk resonator of Fig. 2(a) is the same as that shown in
Fig. 1 except that an additional concentric mirror has
been added so that the laser output may be taken from
the center of the resonator as well as through the out-

z

side mirror. Figure 2(b) shows a cone resonator with an
angle 0 between the cone surface and the z =0 plane.
Figure 2(c) shows a tube resonator. The disk and tube
resonators are limiting forms of the cone resonator. The
modes of all of these resonators are determined by the
same basic parameters as the modes in conventional
lasers.

THEORY

In this section, the low-loss electromagnetic modes of
the cylindrical resonators are derived from the wave
equation. For harmonically varying electric and mag-
netic fields in an isotropic homogeneous medium, the
wave equation is

(VXVX-k2) - =0, (1)

where k =w(lte) 1 is the complex propagation constant.
The complex permittivity e is related to the conduc-
tivity, the background polarizability, and the resonant
susceptibility X =X'-ix". The real and imaginary parts
of X determine, respectively, the dispersion and gain
due to the laser transition. In some laser media, the
spatial variations of the permittivity are sufficient to
affect significantly the resonator modes. Then, more-
general methods must be employed, such as those
developed by Kurtz and Streifer for wave guiding in
radially inhomogeneous media.'

In cylindrical coordinates, the scalar wave equation
for a Cartesian component of the electric or magnetic
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FIG. 1. Cylindrical laser resonator.
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FIG. 2. Vertical cross section through the disk (a), cone (b), and
tube (c) configurations of the general cylindrical resonator.
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field is

O2,P 1 aPf 1 a 2, 0a2,

+ - _+ - + _+k=O. (2)
Or2 r Or r2 09,2 0z2

The .0 dependence can be separated out by means of the
substitution

(3)

with the results

d2 4b
_+m 21 =0, (4)

d42

a
2F 1 OF m2F 02 F

-_+ - - I -+k2F =0, (5)
Or2  r Or r2  Oz2

where m is a separation constant. The solutions of Eq.
(4) are given, except for multiplicative constants, by

sin
( =i mO.

cos
(6)

If the fields are periodic about the z axis, then m must
be an integer.

In solving Eq. (5) it is helpful to assume first that the
outward-propagating wave modes will be given approxi-
mately by the cylindrical wave functions

F(r,z) = G(r,z)Hm(2)[(k2- h2) lr]e-ihz, (7)

where G(r,z) is a slowly varying function and Hm(2) is
a Hankel function of the second kind. The Hankel func-
tions are governed by Bessel's equation

021H 1OH m2
I- + k2 -h 2 -- H=0.

Or2 r r
(8)

Substitution of Eq. (7) into Eq. (5) shows that G(r,z) is
governed by

02 G / 2 OHm(2) 1 OG 02 G aG+ +- -+--2ih-=0. (9)
ar 2  Hm(2) Or r Or 0Z2  Oz

The solutions of Eq. (9) are most easily obtained at
distances r>>m/k, where the Hankel functions can be
replaced by their asymptotic value'

lim Hm(2) [(k 2 -h 2 )ir] =V2/7rr(k2 - h2)i]
rToo

Xexp-i (k2_h2)ir- -
- 2 4-

With this approximation, Eq. (9) simplifies to

0
2 G OG 02 G OG

O--2i(k2 Oh2) r 1 -2ih =0.
Or2 Or OZ2 az

(10)

We are interested here in the situation in which the
radiation is confined to a region near the conical surface
that makes an angle 0=tan-'h/(k 2-h 2 )j] with the
z=0 plane. Accordingly, a useful change of variables is

r'=r cosO+z sinO, (12)

z'=-r sinO+z cosO.

This transformation, in effect, rotates the coordinate
system so that the radiation propagates primarily along
the surface z'=0. Substitution of Eqs. (12) into Eq. (11)
leads to

02G OG 02 G-- 2ik-+-=O.
ar' 2 Or' OZ'2

(13)

We assume that G varies so slowly in the direction of
propagation that the first term in Eq. (13) can be
neglected, leaving

0 2G OG--2ik-=0.
Oz'2 Or'

(14)

Equation (14) can be solved by assuming the gaussian
form

G(r',z') = exp-i[P(r')+ 2] (15)

and equating equal powers of z'. The results are

dQQ+k-=0,
dr'

dP -iQ
dr' 2k

(16)

(17)

Q is the familiar complex beam parameter, which is
related to the spot size w and the radius of curvature of
the phase fronts R (in the z' direction) by

Q 1 1 i2

k q R kw2'

where q is the complex beam radius.
Eq. (16) may be written

7rw
2  F /r' \21

X L \ro/J

R r[+ (r' )2]

(18)

The solutions of

(19)

(20)

where ro=7rwo2/X is the Rayleigh length. These expres-
sions are essentially the same as the results for conven-
tional beams. From Eq. (17), the amplitude of the

(11) cylindrical waves is proportional to (wo/w)l, and the
real part of the phase is given by Pr= -2 tan'-(r'/ro).
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Higher-order modes can also be found,' and then the
right-hand side of Eq. (15) is multiplied by the Hermite
polynomial Hn(V2z'/w) and P= -(n+2) tan-1(r'/ro).

If Eqs. (3), (6), (7), (15), and (18) are combined, the
outward-propagating cylindrical-beam modes are

sin
'= { }mHm(2 )[(k 2

kh
2 )ir]e-ihz

lCos

XHn(V)e-ikz'2l2Re-z'2lw2e-ip, (21)

with a similar expression involving H.U) for inward-
propagating waves. The variables r' and z' may be ex-
pressed in terms of r and z by means of the transfor-
mation given in Eqs. (12). From the approximation
made in obtaining Eq. (11), it is clear that these solu-
tions are valid as long as the Hankel functions may be
replaced by their large-radius (r>>m/k) asymptotic
form. They are valid for small radii, as well, if the spot
size is much greater than m/k.

The cylindrical modes given in Eq. (21) are the solu-
tions of the scalar wave equation. If these represent the
z components of the electric or magnetic fields, then the
other components may be derived by use of the relations4

i rdEZ au dz-Er - + - (22)
k2-kL ar r d+-

i rh aE aHlz
E+=- -W -- (23)

k2-h 2L r a ay-

i r E aE Az aHl
Hr= __ -_ +h (24)

k2- 2 r +h ]r

i r E Az h aH=)
Ho= -~ E- e +- . (25)

k2_h2 ar r aq5

Two special cases of these solutions are considered in
detail in the following sections.

THE DISK LASER

In the preceding section, a class of cylindrical laser
modes was derived. These modes have, in general, both
a z component and a radial component of propagation.
Here we consider an important special case of those
results in which the radiation propagates only in the
radial direction in a disk-shaped region of space.5 These
disk lasers are not to be confused with other conven-
tional lasers that have radiation propagating across the
plane of a disk-shaped amplifying medium. An import-
ant feature of the disk lasers is the high energy density
that is obtained at the axis. Some applications are
considered.

In the limit of no propagation in the z direction (h = 0)
the results of the previous section simplify. In particularr

z' is replaced by z and r' is replaced by r so that the scalar
wave function given in Eq. (21) reduces to

1 sin m )
V/ = I nH. (2) (kr)

cos J

X H.( V)e-ikz212Rez2Iw2e-ip (26)

A useful relation for evaluating the field components is3

dCm(lr) m
=-ICm+il(lr)+-Cm(lr),

dr r
(27)

where Cm is any linear combination of the Bessel func-
tions Jm, Yim Hm('), and Hm(2), and I is the appropriate
propagation constant. Then from Eqs. (22)-(26) the
nonzero components of the electric and magnetic fields
for z-polarized modes are

Ez= { m}5Hm(2)(kr) {
cosl I

. si

H. =-{ mo -kHm+1 (2)(kr)

+-H (2)(kr)]
r I

i m coss4
H r,=-- jmnHi( 2) (kr) I

A r -sinJ

}

(28)

(29)

(30)

where the empty brackets refer to the slowly varying
bracketed quantity in Eq. (26). Similar equations hold
for the incoming Hm(') Hankel-function modes. For
distances r>>m/k, the magnetic field has only a simple
Hm.+,(2) component. Also, from Eqs. (22)-(26) we
find that the nonzero field components of the modes
with E.=0 are

Hz={ } mr Hm(2)(kr){ I
i sin

.o = - m4I kH.m+i(2 )(kr)
cos I

m
+-Hm(2 ) (kr)

r I

(31)

I

-i m cos
E=-o . moH-(2) (kr)

WoE r - sin

(32)

(33)

As indicated previously, one aspect of these results
is the large energy density near the axis of the resonator.
Because of the complicated form of the fields, only the
lowest-order m=0 mode is considered here. Then, from
Eqs. (28)-(30), the fundamental standing-wave z-polar-
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distance from the focal plane of a cylindrical lens.
Equations (36) and (39) are plotted in Fig. 3. Values of
the minimum spot size w0 of less than about X/2 are not
possible with a conventional cylindrical lens. Focusing
in the z direction could also be produced by appropriate
choice of the z curvature of the disk resonator mirror.

The cavity-mode frequencies can be found from the
requirement that the total round-trip phase delay be an
integral multiple p of 27r. With Eq. (37), this require-
ment is

me ir r
kr---- - (,+ 2) tan- - = P1r

2 4 ro

Therefore, the resonant frequencies are

c m 1 rnv 1- +p+-(n+ 2) tanl-l-
2r -2 7 Ar rob

(40)

(41)
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0 2 4 6 8 0 Thus, the radial mode spacing associated with the inte-
ger p is c/2r. The azimuthal mode spacing associated

3. Normalized energy density near the focus of a disk reso- with the integer m is c/4r. Two modes having the same
nator and a cylindrical lens with wo=X/2 and WO=X. value of p+m/2 are degenerate in frequency. If the

resonator is confocal (r=ro), then the transverse mode

i mode has the form spacing associated with the index n of the Hermite
2 polynomial is c/8r. A disk laser can be smaller for a given

E,=-Jo(kr), (34) power output than a conventional laser, so the mode
'I spacings are correspondingly greater. As in ordinary

lasers, it should be possible to phase lock the radial
i2 and transverse modes. Besides the standing-wave sinus-

Hq,,=-Ji(kr), (35) oidal azimuthal modes, traveling-wave azimuthal
/1 modes are also possible with a phase velocity rw/m about

ere the transverse structure of the beam has been the z axis.
uumed to be unimportant and the normalization has Another property of the disk resonator is the unifor-
en changed. The average energy density is mity of illumination. An object placed at the focus of an

ordinary laser beam is illuminated from only one side,
u(r) =(eE-E*+pH-H*) whereas an object at the axis of a disk resonator would

=Jo'(kr)+J12 (kr). (36) be illuminated about its entire circumference. Thus, the
region near the axis might be useful in applications in-

nce J0 (0) =1 and JI(O) = 0, the energy density at the volving the excitation, vaporization, ionization, or
s is unity with this choice of normalization. At large fusion of samples. For example, the active medium in
tances, the asymptotic form of the Bessel function the cylindrical resonator could be a nitrogen discharge

with an ultraviolet output, so that an appropriate dye
7 mr cell at the axis of the resonator would have gain for

li2 Jm(kr) = (2brkr)c (37) visible radiation propagating along the z axis. The

result would be an efficiently coupled dye laser.

erefore, the energy density at large distances is There are also various possible ways of combining
cylindrical resonators to achieve higher energy densities.

2 2/ r\/. 2r 2 For example, a disk laser could be cut in half, and a
I21(r) =-Cos' kr-- +sin' kr-- =-. (38) number of such half-resonators could be assembled

together (like assembling an orange from its segments).

e corresponding expression for the energy density in a Alternatively, conical resonators like that shown in
am focused by a cylindrical lens is Fig. 2(b) having differing cone angles could be nested

together.
- kX2 )2

u(r) = 1+ rW0)- (39)

This result follows from Eq. (19). Here r measures the

THE TUBE LASER

In this section, another limit of the general cylindri-
cal laser modes is considered. Here the conical surface of

Vol. 63
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propagation is reduced to a tubular region in which the
radiation propagates only in the z direction. The modes
are determined by multiplying Eq. (21) by the constant
factor m![(kI-hk)lrg/2]-m and then taking the limit
h -* k for propagation in the z direction. Since the Bessel
functions for small arguments are given by3

J.E(kl-h2) Wr]-E[(k2 - hl) l2r/]m !,

the Bessel-function part of the modes is now replaced
by (r/rt)m. This factor is essentially unity for thin tubu-
lar modes. It is also useful to take the limits z-*oo,
ho-* k in such a way that the term z cosO=rt in the
second of Eqs. (12) remains constant. Then we find the
transformation r' -* z, z' -* rt-r, and the tubular modes
are

I sin [ (r-rt)1
i/'= knb, m Ie

cos w

X etikze~ik (-rt)2/2Re-(r-rt)2/IW2e-ip (42)

These modes can also be derived directly from the wave
equation. This form for the modes is valid as long as the
mode thickness is much less than the radius rt. A com-
plete set of fields is obtained by regarding the wave
function ip as either the x or y component of linearly
polarized electric or magnetic fields. Alternatively, 1'
may be interpreted as the amplitude of a field having
only an r or 0 component.

The modes described by Eq. (42) are in agreement
with the ring modes, which are sometimes observed in
ion lasers. 6-8 The ring modes may also be obtained from
disk lasers by either of the coupling schemes shown in
Fig. 4. The arrangement shown in Fig. 4(b) could be
reversed so that the output of any tubular laser (or
conventional laser) would be focused to the axis of a
wrap-around mirror yielding a large energy density at
the axis.

The tubular geometry might have an advantage in
some lasers involving pumping by tungsten lamps or
flashlamps. The lamp could be placed at the axis of a
tubular laser medium the outside surface of which was
reflecting. This simple arrangement would not provide
as high a pumping level as is possible with a high-

(a)

, , I ',0

(b)

FIG. 4. Schemes for coupling disk modes to
ring modes and vice versa.

quality elliptical pump cavity, but for some
cations it should be adequate.

appli-

CONCLUSION

A new class of cylindrical laser resonators has been
considered, in which the radiation propagates partially
in the radial direction. The electromagnetic modes of
these cavities have been derived from the wave equation.
Two limiting resonator configurations are the disk
laser and the tube laser. An important feature of the
disk laser is the high field strength at the resonator axis.
The propagation characteristics of all of these beam
modes are governed by essentially the same complex
parameters that arise in the study of conventional laser
resonators. Similar methods could be employed for
investigating the modes of elliptic cylindrical resonators,
but the resulting wave functions are less familiar and
lack obvious practical applications. Experiments are
in progress to verify the results described here.

REFERENCES

* Work supported in part by the National Science Foundation.
1H. Kogelnik and T. Li, Appl. Optics 5, 1550 (1966), and

references therein.
2 C. N. Kurtz and W. Streifer, IEEE Trans. MTT-17, 11 (1969);

MTT-17, 250 (1969); MTT-17, 360 (1969).
3 Handbook of Mathemnatical Functions, Natl. Bur. Std. (U.S.)

Appl. Math. Ser. 55, edited by M. Abramowitz and I. A. Stegun
(U. S. Government Printing Office, Washington, D. C., 1964;
Dover, New York, 1965), Ch. 9.

4 S. Ramo, J. R. Whinnery, and J. Van Duzer, Fields and Waves
in Communication Electronics (Wiley, New York, 1965), p. 415.

5 L. W. Casperson, Ph.D. thesis, California Institute of Tech-
nology, Pasadena, California (1971), Sec. 5.10 (University
Microfilms, Ann Arbor, Mich., order No. 72-469).

6 A. L. Bloom, W. E. Bell, and F. 0. Lopez, Phys. Rev. 135,
A578 (1964).

7 P. K. Cheo and H. G. Cooper, Appl. Phys. Letters 6, 177
(1965)

8 I. Gorog and F. W. Spong, Appl. Phys. Letters 9, 61 (1966).

January 1973 29


	Cylindrical laser resonators
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1373475965.pdf.ncnAh

