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Résumé. 2014 Nous calculons les zones de stabilité des phases de microémulsions sphériques, cylin-
driques et lamellaires en théorie de champ moyen. Dans la phase cylindrique, les fluctuations ther-
miques déterminent une longueur de persistance dépendant de la température. A une échelle inférieure
à cette longueur les cylindres sont rigides (bâtonnets), tandis qu’à plus grande échelle, les cylindres sont
flexibles (comme des polymères). La longueur de ces cylindres flexibles dépend de la concentration
et de la température. Nous calculons également leur rayon de giration.

Abstract 2014 The regions of stability of spherical, cylindrical, and lamellar phases of microemulsions
are calculated within mean-field theory. In the cylindrical phase, thermal fluctuations determine a
temperature dependent persistence length below which the cylinders are rigid (rod-like) and above
which the cylinders are flexible (polymer-like). The length of the polymer-like chains depends on
concentration and temperature. The radii of gyration of these flexible microemulsions are also cal-
culated.
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Three-component microemulsions (liquid mixures of water, oil, and surfactant) are characte-
rized by domains or globules of water in oil (or oil in water) with surfactant at the interfaces fl].
The large energies associated with the water/oil repulsion and the surfactant-tail hydrophobic
and the surfactant-polar-head hydrophilic interactions constrain the surfactant to the interface [2].
The physics of these systems thus differs from general three component fluids. On the other hand,
the phase diagrams of the systems are richer than those of suspensions of rigid colloidal par-
ticles [3] (e.g. polystyrene spheres in water) due to the internal degrees of freedom of the globules.
The sizes and shapes [2] of the microemulsion globules can be varied by changing the concentra-
tion, temperature T, or salinity [4, 5]. Although most phase behaviour studies have modelled
microemulsions as spherical globules [5-7] (e.g. water-in-oil spheres), recent theories have also
considered disordered [8], lamellar-like structures. These lamellae are flat on length scales smaller
than a persistence length [4, 9] ~; for larger length scales, the interfaces are wrinkled, with disor-
dered domains of the characteristic size Çl.

This paper introduces the possibility of a new cylindrical microemulsion phase. Within mean-
field theory, we analyse the bending free energy and obtain stability regions [10] of the spherical
cylindrical and lamellar phases as a function of the concentrations and the spontaneous curvature.
We then focus on the properties of the cylindrical phase. We find that the cylinders are rigid over a
persistence length ~~ oc 1/T, which also scales with the cylinder radius and hence is a function of
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the concentrations. (For lamellae, ~~ depends exponentially on 1/T due to the larger phase-space
for two-dimensional fluctuations [4] at length scales larger than ~, the cylinders from polymer-
like chains.) Pursing the polymer analogy, we study the radius of gyration [11, 12] Rg, of these
chains on the surfactant, water and oil concentrations. The unusual dependence of Rg on the
surfactant, water, and oil concentrations should enable detection of these cylindrical polymer-
like phases by scattering probes.
We assume that all water/oil interfaces are saturated [4, 13], i.e. all the surfactant resides at the

interfaces. In addition, we assume incompressibility of the surfactant molecules compared with
their resistance to orientational distortions (bending of the surfactant layer). Thus, the area per
surfactant (as well as the volume per water or oil molecule) is taken to be constant [2, 4, 6, 8].
Finally, we focus on the dilute limit (microemulsion volume fraction x ~  1) where the micro-
emulsion can be pictured as a collection of non-interacting globules of oil in water (or water in oil)
with the surfactant at the interfaces. The remaining degrees of freedom involve only the orienta-
tional interactions of the surfactants along the interface and result in a form for the bending
energy of a single globule given by [2, 4, 14]

where R1 (r) and R2(r) are the local radii of curvature of the interfaces. The surface area element
is dS. The spontaneous radius of curvature po represents the tendency of the interface to bend
either towards the water (po &#x3E; 0) or towards the oil (po  0) regions. We apply a similar conven-
tion to define positive radii of curvature R1,2 &#x3E; 0 for local bending towards the water (applicable
for water drops in oil) and negative radii of curvature R1,2  0 for local bending towards the oil
(applicable for oil drops in water). The first term in equation (1) is the usual [15] bending’energy
of a general interface with spontaneous radius of curvature po. The second term in equation (1)
represents the energy to distort the surface to a saddle shape [14, 15]. The energies K and K are
related_to the elastic constants and kc discussed by Helfrich [14] in his treatment of vesicles
(kc oc K and kc oc K + K). For cylindrically symmetric molecules, which - in the absence of
concentration constraints - should pack on the surface of a water in oil sphere of radius po,
both K and K are positive [15, 16]. A recent theory [15] for the elastic constants K and K in terms
of molecular properties (e.g. areas per head and tail) estimates K  K.
The bending free energy per unit volume is F = nFb, where n is the number of globules per unit

volume. We assume K, K &#x3E; T, so that the entropy of mixing can be neglected to a first approxi-
mation [6]. F is minimized subject to the constraints of constant total surface area and constant
volume [2]. These constraints arise from the incompressibility of the components as discussed
above. Thus, nS~ = v. and nV = x, where S and V are the droplet surface area and volume
respectively, and where 6 is a typical surfactant molecular length. For example, for water globules
in oil, defining vw as the water volume fraction and vs as the surfactant volume fraction, the volume
fraction of globules is x = vw + 2 vs [17].
We have used (1) to calculate the bending energy for spheres, finite cylinders (with spherical

caps), and lamellae. Since the term proportional to nS in (1) is shape independent (by the con-
straints discussed above) we defme a dimensionless free energy

Here we consider the case po &#x3E; 0 only.
For infinite lamellae P = 0. For spheres of radius p = 3 6xlv,,



L-71CYLINDRICAL MICROEMULSIONS

where ro = po/p. The energy of the infinite cylinder phase (radius b = 2 p/3) is

where k = K/K. Finally, for cylinders of length L and radius b where e = b/L,

The second term in (5) is the energy due to the spherical end caps in the limit of small a.
For p &#x3E; po, the free energy is minimized by a phase of spherical globules with p = po coexisiting

with excess water (emulsification failure [6]). As the ratio xlvs is decreased, there exist first-order
transitions between spherical cylindrical and lamellar phases, as shown in figure 1. For all values
of po and k &#x3E; 0 where the cylindrical phase is lower energy than the lamellar or spherical phases,
infinite cylinders are of lower energy than finite cylinders. The introduction of the saddle splay
energy - which favours R1 - R2 (i.e. sphere or lamellae) - reduces the range of stability of the
cylindrical phase and for k &#x3E; 1 /3 eliminate it altogether. As k is decreased, below k 1/3, an
increasingly larger region of the parameter space (k, po) has the infinite cylindrical phase as the
lowest energy state. At k = 0, the cylindrical phase is the lowest free energy state for 3/8  p/po 
7/8, where p = 3 bx/vS. The physical origin of this stability is the ability of the cylinder to acco-
modate the constraints in this concentration range and still maintain a radius of curvature close

to po.
The quasi-one-dimensional structure of these cylinders suggests that thermal fluctuations can

substantially perturb the-mean-field (zero-temperature) structure. The effects of thermal fluctua-
tions are calculated by considering the free energy of a cylinder with a circular cross-section whose
axis is permitted to wander through space [18-20]. The position of the cylinder axis is given by

Fig. 1. - The region of stability of the spherical cylindrical, and lamellar phases of microemulsions as a
function of the ratio of p/po and KIK. K is the saddle-splay energy and K is the splay energy. The ratio of
the microemulsion volume fraction x to the surfactant volume fraction vs defines the characteristic radius p ;
po is the spontaneous radius of curvature of the surfactant molecules.
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R = X(z) fc + Y(z) y + zz, where the cylinder is not permitted to double back on itself The
radii of curvature are given by R1 = b and R2 = (bK cos 6 2013 1)/K cos 0, where 0 is the polar
angle in the plane perpendicular to the cylinder axis. The cylinder radius b, is given by b = 2 p/3 =
= 2 5~. The curvature of the axis x N (X’)2 + {Y’)2~1/2 where the prime denotes differen-
tiation with respect to z. We use (1) and (5) subject to the constraints of constant total volume
and surface area, and find

Here Xq and Yq are the Fourier transforms of the functions X and Y, q is the wavevector in the z

direction, and A = g 1 xr3. Using equipartition,n’ 12R ~ ~ 0* g q p n’

The divergence of these modes at small q results from the translational symmetry of the cylinder
axis.
The persistence length Çc is that length over which the axis of the cylinder is constant in direction.

We define A(z) = ( [i(z) - t(o)]2 ~, where t(z) is a unit vector along the cylinder axis. We thus
find A ~ 12 Tzf(n2 Kb) for large z. The persistence length ~~ is defined [4] by A(z) ~ 1 so that

2 i~
C;c 7E K b. Unlike the lamellar case [4], oc KIT due to the stronger nature of the one-dimen-12 T l T [ h ~~ / g .
sional fluctuations. For length scales shorter than ~~, the cylinders are rigid (rod-like), for length
scales longer than ’c’ the cylinder axis wanders randomly in space. ,

The random walk of the cylindrical axis suggests a polymer-like description for length scales
larger than ~~. However, for real polymers, the chain length N is fixed by the polymerization
process; for cylindrical microemulsions, the number N of persistence lengths per chain must be
determined self-consistently by minimizing the total free energy. The « polymerization » is thus
self-organizing [21]. The relevant free energy FN, consists of the entropy of mixing [12, 21] of the
finite length chains with N persistence lengths per chain, and the (N dependent) energy of the end
caps (see Eq. (5)).

where v = x / N and K’ = -~-(14 2013 10 k - 32/3 r o) K. For values of k and po where the cylin-
drical phase is lower energy than the spherical or lamellar phase (see Fig. 1), K  K’  3 K.
The entropy of mixing favours short chains, while the energy term favours long chains (fewer
end caps). Weak interactions between segments tend to renormalize K’. Stong, attractive inter-
actions could lead to deformations of the cylindrical segments, but a detailed treatment is beyond
the scope of this work. Minimizing FN with respect to v, we find [22] that N = x e~ with j8 = K’/
T + 1. Typical values of KI T - 6 and x ~ 0.1, yields a chain length, N ~ 150. For KI T 7  1,
the chains are short (N -~ 1) and the microemulsions are rod-like. In this limit, fór high enough
density, the cylindrical globules should align in a nematic phase [23-27]. In the limit K/ T &#x3E; 1,
the chains form flexible polymer-like chains, with N persistence lengths per chain.
For N ~&#x3E; 1, the polymer analogy predicts the radius of gyration Rg of these chains to be a

function of the volume fraction x of microemulsion and of the cylinder radius b oc x/vg. By ana-
logy with the theory of semi-flexible polymers [12], we find [28] that for noninteracting chains,
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For the case of interacting chains, we augment (8) by a term T xx(1 - x), which represents the
mean-field interaction between segments [11, 21].
We first discuss the case where the interaction between segments (of one persistence length)

is strongly repulsive (X  0) so that deformations of the chains are energetically unfavourable
(excluded volume interaction &#x3E; K). By analogy to the theory of dilute solutions of polymers with
strong excluded volume interactions [11, 21] we find [28],

where r oc (~ 2013 X). Thus, a characteristic dependence of ~Rg on the microemulsion volume
fraction is predicted [29].
For the case of attractive interactions (X &#x3E; 0), the chains tend to collapse instead of stretching.

For sufficiently large attractions (X &#x3E; 2), the solution of chains separates into a high density
phase and a low density phase [28, 30]. In the low density phase, x  e - ~, forcing N = 1, while
the high density phase may still have N ~ 1. For x N 2 the two phases have volume fractions
x ~ e-~ ; the critical point for this phase separation thus occurs at very low concentrations.
This phase separation differs from the usual polymer case [11, 21] due to the concentration
dependence of N in this self-organizing system.

In this paper, we have explored the stability range for microemulsions of various shapes, and
have noted the possibility of a cylindrical phase. Depending on the concentrations and the inter-
actions, this cylindrical phase can manifest itself as short, rigid rods or as long, wandering chains.
These ideas may be of use in interpreting the recent observations of cylindrical micelles [26, 27],
and of birefringent microemulsions [31]. The polymer-like phase should be recognizable through
the concentration dependence of the radius of gyration as well as through peculiar rehological
properties characteristic of polymers.
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