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ABSTRACT

In this thesis the various possibilities of implementing microwave sensors for
measureing materials flowing in pipes are studied, with special emphasis on full-bore
resonator sensors. With such resonator sensors a method to confine the electro-
magnetic energy in the sensor must be used. Two main principles are studied in detail,
the principle of resonance below cut-off, and the design using end grids. The first
principle is shown to allow sensors with fairly open, or even completely nonintrusive
structures to be designed. The second often involves sectorial or semisectorial
structures. The waveguide modes in sectorial and semisectorial waveguides are
therefore analyzed.

From the analysis of the sectorial waveguides came the idea for a new type of
resonator sensor based on the principle of resonance below cut-off, the cylindrical fin
resonator sensor (CFR). Various design aspects of this sensor are studied based on
calculations, measurements, and simulations using the Hewlett-Packard HFSS
software. A sensor suitable for measuring the composition of mixtures of hydro-
carbons and water is developed based on the discussion. The sensor has a simple
mechanical structure and is less expensive to manufacture than the end grid sensors.

Various designs of end grids are compared based on theoretical considerations,
simulations, and measurements, and recommendations for optimized designs are
given. The ring grid with eight sectors and a ratio of radii of roughly 40% is shown to
provide the best isolation for a given thickness of the grid.

A new type of resonator sensor based on semisectorial resonance modes, is
developed for measuring the mixture ratio of oil and water in an oil well deep in the
ground, where the temperature and pressure are high. The sensor is designed for
installation in the annulus (i.e. the annular space between the casing or liner and the
production tubing in a well), where it can be used for measuring the inflow from a
specific zone in a smart well. The emphasis is on matching the spatial constraints and
achieving the desired frequency response, which is analyzed theoretically, simulated
with the HFSS, and finally measured.

A humidity sensor for harsh environments is developed. The emphasis is on
the choice of resonance mode to achieve the best immunity to contamination, and on
the design of the end grids. Both calculations and field tests are presented.

Predicting the height of the resonance peak under changing measurement
conditions is treated also on a general level in the thesis. This issue is important, when
the coupling probes are designed based on results from simulations with HFSS.

The accuracy of the results obtained with HFSS is studied based on
observations of scatter in the results, the dependence of the results on the convergence
parameter ∆S, and by comparing the calculated and measured results. It is shown that
the cut-off frequency and the resonant frequency are predicted with a higher accuracy
than the quality factor.
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1 INTRODUCTION

1.1  Scope and Background

The measurement of material composition is a widely encountered problem in the
industry. Often the material to be measured is flowing in a pipe, either as a liquid or as
solid particles in pneumatic or liquid assisted transportation. In such cases microwave
sensors provide an attractive solution, because microwaves penetrate most materials
allowing the measurement to be representative for the cross section of the pipe. For
example, in the petroleum industry the problem is often to measure the mixing ratio of
oil, water, gas, and sometimes also the speed of flow. Two particular problems,
representing the extremes in complexity, are the measurement of the watercut, i.e. the
water content of an oil/water mixture (or the liquid part if gas is present) expressed in
% by volume, and the so-called multi-phase measurement of the production rates of
oil, water, and gas expressed in m3/h. The present commercial sensors for measuring
fluids in the petroleum industry are based on various techniques (either single or a
combination of several): Capacitive sensors, dual-energy gamma sensors, separation
with measurement of the flow of the phases, venturi meters, and microwave sensors.

The scope of this thesis is microwave sensors for measuring materials flowing
in metal pipes, in particular microwave resonator sensors. The emphasis is on the
principles how to design the sensors to achieve desired characteristics. Some realized
sensors, mainly from the petroleum industry, will be described. Of central importance
are sensor applications based on sectorial and semisectorial waveguides, and these
will be analyzed in detail by the author.

The author has been involved in developing microwave sensors, both during
the years 1980-1995 with the Radio Laboratory at Helsinki University of Technology,
and since 1995 with Multi-Fluid and Roxar in Stavanger, Norway. Multi-Fluid is the
company that made sensors for measuring fluids in the petroleum industry, and that in
1999 merged with Smedvig Technologies and became Roxar. The work described in
the thesis has mainly been conducted at Multi-Fluid/Roxar, while some of the
underlying principles have been developed at the Radio Laboratory.

1.2 Objectives

The desired characteristics of a microwave sensor for measuring materials flowing in
a pipe vary, dependent of the application. They are related to flow characteristics,
measurement characteristics, and frequency response characteristics affecting the
measurement electronics, mechanical characteristics, and manufacturing cost. A
desired feature is to have as few intrusive parts hindering the flow as possible, and the
sensor spool piece should be as short as possible. A simple mechanical structure with
low manufacturing cost, is an advantage. The space constraints can be extraordinary,
as in the downhole sensor described in Ch. 7. A clean frequency response with no
confusing peaks is necessary, when measuring resonator sensors, with for example
simple feedback self-oscillating amplifier (FSA) electronics.

The objective of the work has been to develop general principles for
implementing microwave resonator sensors in pipes, analyze the waveguide modes in
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sectorial and semisectorial waveguides as building blocks in such sensors, and to
develop sensors with optimal characteristics for a few particular applications, with
different demands on the characteristics.

In the cylindrical fin resonator sensor for water content of oil, the objective has
been to develop a simple mechanical structure, with low intrusiveness, and a clean
frequency response for low-cost applications.

In the development of the end grid sensor for water content of oil, the
objective has been to optimize the end grids with respect to high isolation, cleanliness
of the frequency response (a high cut-off frequency results in a cleaner frequency
response), ease of manufacturing, and short length resulting in low manufacturing
costs for the spool piece.

In the downhole sensor the objective has been to develop a design that matches
the physical constraints of measuring in the annulus between two pipes, has a clean
frequency response that can be measured with the FSA method, minimizes the
pressure drop, and matches the design criteria of the downhole environment related to
temperature, pressure, and corrosion.

The most important objectives in developing the sensor for measuring
humidity in air, has been to achieve a high quality factor, high stability, and low
sensitivity to contamination.

1.3 Contents of the Thesis

The structure of the thesis is the following: Chapter 2 gives an overview of the various
groups of microwave sensors, particularly for measurement in pipes. Chapter 3
describes the general characteristics of microwave resonator sensors. Chapter 4
discusses the various principles of implementing microwave resonator sensors in
pipes. Chapter 5 describes the waveguide modes of sectorial and semisectorial
waveguides. Chapter 6 describes the cylindrical fin resonator sensor as an application
of sectorial waveguides. The application as a low-cost watercut sensor is also
described. Chapter 7 describes resonator sensors implemented using end grids. First
the full-bore high-accuracy watercut sensors, then the downhole watercut sensor, also
as an application of semisectorial waveguide, and last the humidity sensor. Chapter 8
gives an account of the accuracy of the simulations performed with HFSS. Chapter 9
summarizes the needs for further studies.
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2 MICROWAVE SENSORS

2.1 Basics of Microwave Sensors

The general demand for sensors has grown with the automatization of industrial
processes. Many of the new measurement problems have been solved by various kinds
of microwave sensors [Nyfors and Vainikainen, 1989a]. Microwave sensors have
therefore become more and more common in different areas of the industry.

For the sake of clarity, the word "microwave" must be defined here. It has not
been defined exactly in the literature like for example the acronym VHF, which
denotes frequencies in the range 30 - 300 MHz. It is generally agreed that the
wavelength is more significant than the frequency in relation to the word. The
American Heritage Dictionary [The American Heritage Dictionary, 1985] says
"microwave n. An electromagnetic wave having a wavelength in the approximate
range from one millimetre to one metre, the region between infrared and short-wave
radio wavelengths". In the sensors described in this thesis the wavelength is always of
the same order of magnitude as the sensor. When for example in certain types of
sensors a high content of water results in a low measurement frequency, the
wavelength stays constant. Because there is also a need for a collective name for the
sensors, they will all be called microwave sensors

Microwave sensors are based on the interaction of microwaves with matter.
This interaction may be in the form of reflection, refraction, scattering, emission,
absorption, or change of speed and phase. Depending on how the measurement is
arranged and which phenomenon the sensor is based on, microwave sensors are
divided into groups [Nyfors and Vainikainen, 1989a]. The most important groups are
resonators, transmission sensors, reflection and radar sensors, radiometers,
holographic and tomographic sensors, and special sensors. Microwave sensors are
used to measure a wide range of quantities like distance, movement, shape, and
particle size, but the largest group of applications are related to measurement of
material properties.

Material measurements with microwaves are based on the fact that the
interaction between microwaves and the medium of propagation is completely
determined by the relative permittivity and permeability
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of the medium. For most practical materials that are the subject of measurement with
microwave sensors µr = 1. In this thesis only the permittivity will therefore be
considered to affect the interaction, unless otherwise stated. Different materials have
different permittivity, and the permittivity of a mixture depends on the permittivity of
the components, the composition (the relative abundance of the components), and the
structure [von Hippel, 1954], [Becher, 1965], [Hasted, 1973]. By measuring the
permittivity of the mixture, one therefore gets information about the composition. In a
simple case of two components, the sum of which is 100%, there is only one unknown
if the structure, and the permittivity of the components are assumed to be known (e.g.
oil drops in water or water drops in oil), making it possible to deduce the composition
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from one  measurement of e.g. resonant frequency. Generally the permittivity is,
however, also influenced by factors like temperature and density (actually density is a
special case of composition mainly involving the relative amount of air), and structure
(e.g. the shape of the inclusions in a host material). There may also be more than two
components in the mixture (e.g. oil, water, and gas) adding to the total amount of
unknowns. In such cases multiparameter microwave measurements (e.g. resonant
frequency and quality factor or, insertion loss and phase) or several types of sensors
are often used. For a discussion on microwave multiparameter measurements see
[Nyfors and Vainikainen, 1989a]. The most common additional sensors measure
density and temperature.

2.2 Advantages and Disadvantages of Microwave Sensors

The possibilities and challenges, when designing sensors based on depend to a large
degree on the specific application, but some general remarks can be given. Below is a
list that summerizes the most important features of microwave sensors for material
measurements. It should be noted that all statements do not apply to all existing
sensors (it is for example in many cases possible to design microwave sensors for
non-contact measurements, if desired, but most sensors are in practice designed for
being in contact with the object).

•  Microwave sensors do not need mechanical contact with the object.
Therefore, performing on-line measurements from a distance is usually
possible, without interference to the process.

•  Microwaves penetrate all materials except for metals. The measured result
therefore represents a volume of the material, not only the surface.

•  Microwave sensors see a very good contrast between water and most other
materials, making them well suited for water content measurements.

•  Microwave resonator sensors are inherently stable because the resonant
frequency is related to the physical dimensions.

•  Microwave sensors are insensitive to environmental conditions, such as
water vapour and dust (contrary to infrared sensors), and high temperatures
(contrary to semiconductor sensors).

•  Microwave sensors are generally less sensitive to material build-up than
capacitive sensors.

•  At low frequencies (capacitive and resistive sensors), the dc conductivity
often dominates the electrical properties of a material. The dc conductivity
depends strongly on temperature and ion content. At microwave
frequencies, the influence of the dc conductivity often disappears.

•  At the power levels used for measurements with microwave sensors,
microwaves (nonionizing radiation) are safe (contrary to radioactive
[ionizing] radiation).

•  Microwave sensors are fast (contrary to radioactive sensors, where because
of the statistical nature of the signal the accuracy depends on the
measurement time, the absorption, and the activity of the source).

•  The microwaves do not affect the material under test in any way.
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However, there may be some disadvantages:

•  The higher is the frequency, the more expensive are the electronic
components.

•  Microwave sensors must be calibrated separately for different materials.
•  The sensors are often adapted to a specific application, resulting in low

universal applicability.
•  The sensors are sensitive to more than one variable. Additional sensors are

therefore in some cases necessary for compensation.
•  Because of the relatively long wavelengths, the achievable spatial

resolution is limited.

2.3 On-Line Microwave Sensors for Pipes

There are several possible ways to arrange a microwave sensor measurement in a pipe.
They all have different characteristics, which make them suitable for different
applications. Because the new sensors described in this thesis are all for measuring in
pipes, a brief overview of the main groups with a few examples will be given here.

2.3.1 Free-Space Transmission Sensors

The basic geometrical configuration is to have two dielectric windows on opposite
sides of the pipe with a transmitting antenna on one side and a receiving antenna on
the other side (Fig. 2.1). On the way between the antennas the microwave signal
penetrates the material flowing in the pipe, also called MUT (material under test). The
permittivity of the MUT affects both the phase and the amplitude of the signal. The
advantage with this configuration is the simplicity, and the main problem is the
sensitivity to reflections in various parts of the system, like the dielectric windows and
interfaces inside the material dependent on the flow regime. The reflections in the
system cause ripples on the frequency response, and the amplitude is much more

Figure 2.1 The basic geometrical configuration of a free-space transmission sensor in a pipe.

Flow
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affected than the phase. If the sensor is based on measuring only one microwave
parameter, a higher accuracy is therefore achieved by measuring the phase than by
measuring the attenuation [Klein, 1981]. For an analysis on the effect of internal
reflections in transmission sensors, see [Nyfors and Vainikainen, 1989a].

If the MUT flowing in the pipe has small losses, the waveguide modes that
will be excited in the pipe, or the reflections from the pipe walls, will also strongly
affect the transmission properties [Brodwin and Benway, 1980]. Especially if the
measurement is done on a fixed frequency, the errors will be large, when the changing
permittivity of the flow moves the cut-off frequencies relative to the measurement
frequency. By performing a frequency sweep and averaging, the error can be
decreased. When using a frequency that is much higher than the lowest cut-off
frequency, the conditions resemble more closely free-space conditions, but there is
still the problem with reflections from the walls.  For a lossy MUT the influence of
the pipe is smaller. In many cases the best solution is to use the FMCW (Frequency-
Modulated Continuous Wave) technique, which is often used in radars. The FMCW
technique discriminates signals in time, thus being able to exclude the reflections that
arrive slightly later than the main signal. The FMCW technique measures the signal
delay, which is closely related to phase measurement in sensors, but lacking the 2π
ambiguity in phase. Both the phase and the signal delay depend on the speed of
propagation, which depends on the permittivity.

A good example of a successful application is the microwave consistency
analyzer (MCA) produced by Valmet Automation [Jakkula, 1998], for measuring the
consistency of pulp in the paper industry. It is based on the FMCW technique to
measure the signal delay. The frequency sweep is from 2 - 3 GHz. The MCA comes in
two versions, one measuring across the pipe like in Fig. 2.1, and an insert version
shown in Fig. 2.2. The insert version is used for big pipes, where the attenuation
would be too high across the pipe, whereas the other version is used for smaller pipe
diameters. The insert version is only used for consistency up to 15 %, because of the

Figure 2.2 The principal design of the insert version of the Valmet Automation MCA for
measuring consistency in pulp.
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risk of clogging. The version measuring across the pipe utilizes patch antennas instead
of horns, probably for better impedance matching.

2.3.2 Special Transmission Sensors

A transmission sensor needs a reference channel for making phase measurements.
Normally the reference channel is external to the sensor. If it is also directed through
the sample, but in a different way than the main channel, special features can be
achieved. An example is the MFI MultiPhase Meter made by Roxar
(www.roxar.com), which is used for measuring flow rates of oil, water, and gas. It has
one transmitting antenna and two receiving antennas at different distances on the
circumference. With this configuration the channels are more alike, which cancels
some error sources like the frequency response of the antennas. The MultiPhase Meter
also measures on varying frequency to avoid errors caused by the waveguide modes in
the pipe. In addition the meter has another set of three antennas separated a certain
distance in the direction of the flow. By performing the same measurements on both
sets and cross-correlating the results, the speed is derived.

2.3.3 Guided Wave Transmission Sensors

Instead of letting the microwaves propagate freely from the transmitter to the receiver
through the MUT, they can be guided in, for example, a stripline, coaxial cable, or
dielectric waveguide. The MUT is brought in contact with the electric field on a
section of the line, thus affecting the propagation factor (phase and attenuation). The
advantages with guided wave sensors are better control of impedance matching and
less influence from the pipe. A disadvantage is that the electric field that senses the
permittivity of the MUT, is only the fringing field. The sensitivity is therefore smaller
and the sensor measures only a small fraction of the total amount flowing in the pipe.
The sensor is also sensitive to contamination on the surface from which the fringing
field protrudes, much like capacitive sensors. For homogeneous mixtures without risk
of contamination, a guided wave transmission sensor may be a good alternative.

One design, which is mainly intended for liquids, is shown in Figure 2.3
[Jakkula, 1988]. It consists of a dielectric ring immersed in a groove that has been cut
in the wall on the inside of the pipe. The microwaves propagate in the ring as in a
dielectric waveguide. For low permittivity in the liquid the microwaves propagate
through total reflection with little loss. The evanescent field on the outside of the
waveguide is in contact with the liquid and affects the propagation constant. When the
permittivity rises above a limit, the waveguide becomes leaky and the attenuation
increases even without an increase of the dielectric loss. The sensor thus behaves
differently for different mixing ratios. By the right choice of design parameters, high
sensitivity can be achieved in a specific range of mixing ratio. This sensor only
measures the liquid flowing along the wall. It has found successful applications in the
chemical industry but it was found to give wrong results for pulp, where the fibres and
the water separate close to the wall because of the speed gradient [Jakkula, 1998]. Of
the same reason, the guided wave transmission sensors are generally not suited for
applications in the petroleum industry, except for emulsions of oil and water with very
small drop size.
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Figure 2.3 Dielectric waveguide transmission sensor for measureming the water content in a
liquid in a process pipe [Jakkula, 1988].

2.3.4 Reflection Sensors

A reflection sensor is based on measuring the reflection coefficient for a wave
reflected from the end of a transmission line. The design is made such that the
fringing field at the end is in contact with the MUT, which thus affects the phase and
magnitude of the reflection coefficient. A typical example is the open-ended coaxial
sensor, which is a convenient device for measuring permittivity over a broad
frequency range [Stuchly and Stuchly, 1980], [Nyfors and Vainikainen, 1989a],
[Hewlett-Packard Application Note 1217-1], [Colpitts, Pelletier, and Cogswell, 1992],
[Bramanti and Bramanti, 1995]. This sensor is widely used in permittivity
measurements in the laboratory and is available as optional equipment for network
analyzers. The advantages are the broad frequency range, typically two decades, and
the minimal need for sample preparation – the sample must have a minimum size not
to perturb the fringing field, and a plane surface of the size of the sensor. A
disadvantage is the sensitivity to an air gap, e.g. as a result of surface roughness,
between the sensor and the sample. For soft samples or liquids the problem does not
exist. Because of the small volume of sample affecting one measurement,
inhomogeneous mixtures cause a lot of scatter between individual measurements.
Proper averaging may remove the problem.

The open-ended coaxial sensor can be used for on-line measurements in a
pipe, as schematically shown in Figure 2.4. Because it measures with the fringing field
at the front surface of the sensor, it only measures a small fraction of the mass flowing
in the pipe and it is sensitive to contamination. It is suitable for measuring
homogeneous mixtures without risk of contamination. For these it provides a simple
sensor solution that can be used for performing broadband measurements. If different
phenomena affect the permittivity in different parts of the microwave spectrum, like
ion conductivity and Debye relaxation losses, independent information is retrieved

Short circuit

Dielectric ring
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Figure 2.4 The principle of an open-ended coaxial cable as a reflection sensor mounted for
measuring on-line  in a pipe. The material flowing in the pipe affects the fringing field
at the front surface of the sensor thus affecting the measured reflection coefficient.

from different parts of the spectrum. Such broadband measurement is a special case of
multiparameter measurement.Because of the small volume affecting the measurement,
the open-ended coaxial sensor is generally not suited for applications in the petroleum
industry, except for emulsions of oil and water with very small drop size.

2.3.5 Tomographic Sensors

Tomographic sensors produce an image of the interior of an object, typically from a
cross section. The term is best known from medicine, where various magnetic
resonance and x-ray methods are used for studying the interior of patients. In
microwave tomography a transmitter is transmitting a wave that penetrates the MUT.
On the other side of the sample of the MUT is an array of receivers measuring the
phase and amplitude of the wave front at different locations. Various geometrical
configurations have been used for the location of the receivers. In a pipe they would
typically be distributed along the circumference. From the measured wave front the
distribution of the permittivity in the intervening space can be calculated. The
achievable resolution is about half a wavelength in the sample. The method is limited
to cases without multiple internal reflections, i.e. cases with low or moderate contrast
in permittivity between components. For a general description of the basic principles
of imaging microwave sensors, se for example Ch. 8 in [Nyfors and Vainikainen,
1989a]. A more detailed description of microwave tomography has been given in
[Bramanti and Salerno, 1992].

Microwave tomography is an advanced technique for studying the structure of
the flow in a pipe. Especially in cases with mixtures of liquid and gas the phases
separate producing various flow regimes, like annular flow, bubble flow, mist flow,
churn flow, and slug flow. The occurrence of the various flow regimes depends on
several parameters, of which the most important are mixing ratio, viscosity of
components, speed of flow, orientation of pipe, and pressure. Several flow regimes
may appear in the same application at different times. Because all microwave sensors

Γ
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are to some degree affected by the flow regime, the tomographic technique may be a
good supplement, giving additional information about the flow regime. Another
sensor may then have different calibrations for different flow regimes or the
tomographic sensor may be used directly to deduce the mixing ratio of gas and liquid
from the microwave image of the cross section of the flow. For each image of the
cross section of the flow regime a large number of measurements is needed, and the
calculations needed to produce the image are complicated. The speed of measurement
and calculation will therefore limit the time resolution of the changes in the flow
regime. Typically it will be possible to distinguish large slugs but not individual
bubbles or drops. Microwave tomography requires complicated electronics and the
array of sensors with cables may be difficult to implement in applications, where the
pressure is high.

2.3.6 Resonator Sensors

Microwave resonators can be implemented in many different ways for measuring in
pipes. These resonator sensors can be divided in two different classes: Those, which
are filled with the MUT, and those with a considerable part of the field outside the
MUT. The former group is limited to measuring materials with low losses. If the
losses become too high, the resonance disappears. In the petroleum industry this
typically means oil-continuous fluids (water drops in oil). An example is the MFI
WaterCut Meter made by Roxar, where a cavity resonator has been implemented by
isolating a section of the pipe with end grids. The latter group can be made to tolerate
very lossy materials, but their characteristics are more difficult to handle theoretically
leading to more cumbersome calibration processes. An example is the MFI FullCut
Meter made by Roxar, which is a coaxial resonator with a part of the field inside the
dielectric material that covers the centre conductor. The FullCut sensor is able also to
measure water-continuous mixtures (oil drops in water).

The new sensors described later in this thesis are all microwave resonators.
Separate chapters will therefore be devoted to the theory of the microwave resonator
as a sensor (Ch. 3) and a review of the principles of implementing resonators in pipes,
with some examples (Ch. 4).

2.4 Summary

It has been shown that microwave sensors have several potential advantages as on-line
sensors for material measurements in pipes. There are also many ways of
implementing the sensors with different measurement properties as a result. Various
kinds of fringing-field sensors (guided wave transmission sensors, reflection sensors)
can be used with homogeneous mixtures. Resonator sensors or free-space
transmission sensors can be used, when a measurement over the whole cross section
of the pipe is desired. Tomographic sensors can be used for collecting more
information giving a picture of the flow regime. All the kinds of sensors mentioned
can be implemented with completely nonintrusive structures, if desired.
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3 MICROWAVE RESONATORS

3.1 Introduction

This chapter describes the general characteristics of microwave resonators from the
sensor point of view. It is intended to give the reader some of the background
information necessary to understand the following chapters. The approach is slightly
different from most textbooks that treat resonators generally or as a filter application.
The text is partly based on the presentation given by the author in Chapter 3 of
[Nyfors and Vainikainen, 1989a].

3.2 The Resonance Phenomenon

A resonator is a structure that has at least one natural frequency of oscillation, a
resonant frequency. When the resonator oscillates, energy is converted from one kind
to another and back. If more energy is fed to the resonator at the same frequency and
in phase with the on-going oscillations, energy will be absorbed and stored in the
oscillator. A resonator is therefore a structure that can store energy such that it is
continuously converted with a specific speed between two kinds of energy.

Different types of resonators are for example acoustic, mechanical, and
electromagnetic resonators. In an acoustic resonator the air molecules move in waves
such that kinetic energy alternates with pressure. In a mechanical resonator
deformation of a body causes a stress force that causes movement that causes stress
and so forth. The size, shape, density, and the modulus of elasticity determine the
speed of the process, i.e. the resonant frequency. In electromagnetic resonators electric
and magnetic energy alternate. In a simple LC circuit (a loop with an inductor L and a
capacitor C) charge in the capacitor (electric energy) causes a current, which causes a
magnetic field (magnetic energy) in the inductor, which keeps the current going until
the capacitor is reversely charged, and so forth. The speed of the process, i.e. the
resonant frequency, is determined by the values of capacitance and inductance. In a
microwave resonator electromagnetic waves travel back and forth between reflecting
points resulting in a standing wave pattern, where the energy pulsates between electric
and magnetic energy. The size and shape of the structure and the dielectric and
magnetic properties of the medium, where the microwaves propagate, determine the
resonant frequency.

Microwave resonators generally have many resonant frequencies. The
frequency of the excitation (source of energy to be stored) determines the frequency of
oscillation, but considerable build up of energy in the resonator takes place only, when
the frequency of excitation is close to a resonant frequency.

The conversion of energy from one kind to another normally involves losses.
In a microwave resonator the losses may be caused by radiation, finite conductivity in
the metal parts, or dielectric or magnetic loss. Energy also escapes to the measurement
circuit. If energy is continuously fed into a resonator, the amount of energy stored will
grow until energy is dissipated with the same speed as new energy is stored. If the
excitation of a resonator stops, the amplitude of oscillation will decrease exponentially
with a speed determined by the quality factor. If a resonator is excited by an impulse
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(a tap on a tuning fork or an electromagnetic impulse in a microwave resonator) it will
”ring” for some time on the resonant frequency till the energy has been dissipated.

3.3 The Resonance Condition

All microwave resonators that are normally used as sensors, can be thought of as
formed by a section of transmission line bounded by impedance discontinuities in
both ends. The transmission line can be made of any kind of structure supporting
electromagnetic waves, such as hollow waveguide, coaxial line, slotline, stripline,
dielectric waveguide, or two-conductor line. The role of the impedance discontinuities
is to cause the propagating wave to be reflected. Where the transmission line is open-
circuited, the reflection coefficient is Γ = +1 (i.e. the phase angle φ = 0), and where the
line is short-circuited, Γ = −1 (φ = π). If the impedance discontinuity differs from
those mentioned, or purely reactive terminations (Γ = 1, φ ≠ 0 & π), the reflection
will be partial (0 ≤ Γ    ≤ 1) and the resonator leaky.

The field in the resonator is excited by the external circuit through some kind
of coupling, which may be for example an aperture (small hole), coupling loop,
coupling probe, or coupling through the leaky ends. The coupling device radiates a
wave into the resonator. The wave propagates along the transmission line and is
reflected in alternating directions at the discontinuities.

Resonance occurs, i.e. the resonance condition is fulfilled, if the exciting field
is in phase with the reflected components. Hence, they will interfere constructively
and destructively to give a standing wave pattern. This will happen only at certain
frequencies (resonant frequencies). A standing wave with a strong field will build up,
thus storing a great amount of energy. Equilibrium is reached at the level where the
loss power in the resonator (in the metal or dielectric, by radiation, or by escaping
through the couplings) equals the excitation power. At resonance, the energy
alternates between the electric field and the magnetic field, which contain the same
amount of energy.

The resonance condition is fulfilled, when the mode wavelength compared to
the dimensions of the resonator take on specific values. These values depend on the
kind of termination, which bounds the resonator. The reflected wave components are
in phase with the exciting field if the total phase change experienced by the wave on
its way back and forth along the transmission line, is a multiple of 2π:
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where L is the length of the transmission line, φ1 and φ2 are the phase angles of the
reflection coefficients, and n is an integer. The first term on the left in (3.1) is the
phase change of the wave on its way back and forth. Equation (3.1) can be written in
the form
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If the resonator is open-circuited at both ends, φ1 = φ2 = 0, and (3.2) gives for the
length:
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If the resonator is short-circuited at both ends, φ1 = φ2 = π, and the same result as
above is obtained:
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If the resonator is short-circuited at one end and open-circuited at the other, φ1 = π and
φ2 = 0, and (3.2) gives
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For each situation, there is an infinite number of solutions satisfying the resonance
condition. Therefore, each resonator has an infinite number of resonant frequencies
for each wave mode. The lowest resonance is at the frequency for which the
wavelength is two or four times the length of the resonator, depending on the
terminations.

For the exact calculation of the resonant frequency, the relation between
wavelength and frequency must be known. For TEM waves (in coaxial or other line
with minimum two conductors) the relation is very simple. Because they have no cut-
off frequency, the wavelength in the transmission line is the same as that of a plane
wave in the same dielectric medium. In hollow waveguides the relation is slightly
more complicated, because the wavelength of the waveguide mode is always longer
than that of the corresponding plane wave:

2

1 





−

=

f

f c

pw
wg

λ
λ (3.6)

where λwg is the wavelength in the waveguide, λpw is the wavelength of the
corresponding plane wave, and fc is the cut-off frequency of the wave mode in the
waveguide. In the case of waveguides with a cut-off frequency, the wavelength λwg

should be used in (3.1) – (3.5).
Equation (3.6) shows that λwg becomes infinite at the cut-off frequency. In this

situation also n = 0 is a possible solution of (3.1), if the structure can support the wave
mode in question. If a section of hollow waveguide is short-circuited in both ends, it
can support TM modes. The resonant frequency is fr = fc in such cases, independent of
the length of the resonator. The field pattern then lacks structure in the axial direction
of the resonator. TE waves can not exist with n = 0, when the ends are short-circuited,
because the transverse electric field must be zero at the ends. If the ends are open-
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circuited, the structure can support TE modes with n = 0, but not TM modes, because
they have an axial electric field, which must terminate at a metal surface. Because an
open circuit in a hollow waveguide is not as exact in location as a metal wall, there
will be ”end-effects” with fringing fields, but in practice the resonant frequency of
such TE modes is close to the cut-off frequency. The principle behind the use of such
resonators as sensors will be treated in Ch. 4, and the fin resonator as a practical
application in Ch. 6.

3.4 Resonant Frequency and Quality Factor as a Function of Permittivity,

Resonator Filled with a Dielectric Material

3.4.1 Resonant Frequency

In the previous section it was shown that the resonance condition (3.1) requires that
the size of the resonator measured in wavelengths be constant, for example λ/4 or λ/2
for the first resonance. Because an electromagnetic wave travels slower through a
dielectric medium (dielectric for short) than in vacuum, the wavelength at a specific
frequency will be shorter in the dielectric. Therefore, if a resonator (the space where
the electromagnetic field is located) is filled with a dielectric, the resonance condition
will be met at a lower frequency than for the empty resonator. The wavelength as a
function of the material constants is can be derived from the basic representation of
the electric field of a plane wave travelling in the x direction:
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where µ is the magnetic permeability and ε is the permittivity of the medium. From
here on values relative to the values in vacuum (ε0, µ0) will be used and denoted with
the subscript r, and the relative permeability will be assumed to be µr = 1. Because the
speed of light in vacuum is given by
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Equation (3.7) can be rewritten
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Combining (3.9) with the requirement that the wavelength be constant gives the
change in resonant frequency caused by the dielectric εr compared to vacuum:
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where fr0 is the resonant frequency of the empty resonator and fr that of the filled
resonator. For the case of rr εε ′′>>′ (3.10) becomes
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Equation (3.11) is valid in most cases of dry or moderately moist dielectrics and for
example an oil-continuous mixture of oil and water. It is not valid, especially at low
frequencies, when the bulk ion conductivity is considerable, as for example in a water-
continuous mixture of oil and water, when the water contains salts. Because the
resonance phenomenon disappears when the dielectric is very lossy, cases when (3.11)
is not valid are of little interest in this study. However, it must be remembered that
(3.11) is not exact in cases of lossy dielectrics, i.e. when the resonance peak is broad.

Because rε ′  is always larger than 1 (except for plasma), the resonant frequency
can only become lower, when the resonator is filled with a dielectric. As was shown,
obtaining the real part of the permittivity with a resonator is very simple: First the
resonant frequency is measured with the empty resonator, and then with the resonator
filled with the dielectric material to be measured. Equation (3.11) then gives the
permittivity. If the permittivity varies with the frequency, it must be remembered that
the obtained value is valid only at the frequency fr.

3.4.2 Quality Factor

A resonance has two main characteristics, the resonant frequency and the quality
factor Q. The latter tells how lossy the resonator is, i.e. the speed with which the
stored energy is dissipated. The quality factor is defined as
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The loss power can be separated into different parts, depending on the source of the
loss. Taking the reciprocal of (3.12), the Q-factor can be written as a sum:
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where Qu is the unloaded Q-factor, Qd takes into account only the loss in the
dielectric, Qm accounts for the loss in the metal parts, and Qrad accounts for the loss
through radiation. Qu is the ”real” Q-factor of the resonator, but it is impossible to
measure directly. To make it possible to measure the resonant frequency and quality
factor, the resonator must be coupled to the measurement circuit through some
coupling devices, e.g. loops, probes, or holes. This will ”load” the resonator, which
means that part of the stored energy escapes through the coupling devices.
Consequently the measured Q-factor will be the loaded Q-factor, Ql. Therefore the
reciprocal of the external Q-factor, 1/Qext, must be added to (3.13) to obtain Ql:
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If there are two coupling devices of different size, or if they are located in places with
different field strength, one will have a stronger coupling to the resonant mode than
the other. In that case two separate external quality factors (Qe1 and Qe2) can be used.
As mentioned above, the resonator can be regarded as part of a transmission line
bounded by two discontinuities. An equation was given in [Nyfors and Vainikainen,
1989a, Eq. (3.19)] expressing Qu in terms of the transmission line parameters: The
propagation factor γ = α + jβ, and the reflection coefficients Γ1  and Γ2. However, the
given equation appears to be in error for waveguides with a cut-off frequency. The
correct equation will therefore be derived here.

If first only the loss factor α is taken into account (assuming complete
reflections) and assuming that the excitation power equals the loss power (steady state
oscillations), the power of the waves being reflected back and forth is constant P0. If
the distance between the reflecting points (i.e. the length of the resonator) is L, the
group velocity is vg, and the time it takes for the waves to return to a starting point
after being reflected from both ends is T, the total stored energy is
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The power of a wave propagating along a transmission line with the loss factor α is

zePP α2
0

−= (3.16)

where z is the co-ordinate in the direction of propagation. The excitation power
needed to keep the power constant, and therefore also the loss power in the resonator,
is then
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The energy dissipated during one cycle is then
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The definition of the quality factor in (3.12) now gives
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In a hollow waveguide the phase velocity vp is larger than v, the velocity of a plane
wave in the same dielectric medium as the waveguide is filled with. The group
velocity vg, with which the power travels, is lower than v. They are known to be
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From (3.19) and (3.20):
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The effect of the reflection coefficients can now be easily added by comparing the
effect of the loss factor and the reflections, on the total loss. The power of a wave after
one journey back and forth with complete reflections, and with incomplete reflections
are:
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Equations (3.21) and (3.22) now give
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which is the correct equation for the unloaded quality factor (or the loaded quality
factor if the leaky ends are used for coupling) of a resonator expressed in terms of the
transmission line parameters. Equations for calculating α are given in many books on
microwave engineering. In [Nyfors and Vainikainen, 1989a] equations for coaxial
cable, two-conductor line, rectangular, and circular waveguides are given. The
reflection coefficients can be obtained by using known models for the discontinuities
(e.g. [Saad, 1971]), simulating with software based on the finite element method, or
measuring.
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Equation (3.23) can not be used in the case of cavities based on waveguide
resonance modes with fr = fc, mentioned in Sec. 3.3. The leakage through the ends in
these resonators must be treated as loss by radiation. The metal quality factor Qm, can
be calculated using methods described e.g. in [Collin, 1966] or [Ramo et al., 1984].

3.5 Frequency Response of a Single Resonance − Measuring fr and Q

The resonant frequency and the quality factor can be measured in two different ways,
by the method of reflection coefficient or transmission coefficient. The former method
requires only one coupling and the latter two. They have different advantages  [Nyfors
and Vainikainen, 1989a], [Vainikainen, 1991] depending on the application.

3.5.1 Method of Reflection Coefficient

The method of reflection coefficient means that a wave is transmitted along the cable
toward the resonator and the reflected power is measured. The ratio between the
reflected and incident power is the reflection coefficient Γ 2. Based on an equivalent
circuit, see e.g. [Sucher and Fox, 1963], the magnitude and phase of the reflection
coefficient can be approximated in the vicinity of the resonant frequency by the
following equations:



























−+−







−⋅





−

−=







−+







−

−=Γ

2

2

0

2

2

2

12

12

arctan

1

14

1

f

f

f

f
Q

Q

Q

Q

Q

f

f

f

f
Q

f

f

f

f
Q

Q

Q

Q

Q

r

r
l

u

l

u

lr

r
l

r

r
l

u

l

u

l

φφ
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where φ is the phase of the power reflection coefficient and φ0 is a constant that
depends on the way of coupling. For coupling loops, apertures and other short-circuit-
like devices (inductive coupling) φ0 ≅  π, and for coupling probes (capacitive coupling)
φ0 ≅  0, in the undercoupled case (Qext > Qu), which is usual for measurement
resonators. For overcoupled resonators (Qext < Qu), π should be added to the values
given above. At the resonant frequency, the reflection coefficient has a minimum
value because of the loss in the resonator. At other frequencies, the field, and therefore
the loss power, in the resonator will be small. The loaded Q-factor determines the
sharpness of the resonance. The higher is the loss, the broader is the resonance peak.
Very high loss smears it out completely. Figure 3.1 shows an example of the reflection
coefficient as a function of frequency. The minimum gives fr, and together with the
half-power width Bhp they give Ql:
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Figure 3.1 The magnitude and phase of the power reflection coefficient for a resonator with fr =
1500 MHz, Ql = 200, and Qu = 260. The width of the peak (Bhp) is measured half way
down the dip.

hp

r
l B

f
Q = (3.25)

where Bhp is measured halfway down the dip of the reflection response in (3.24). The
unloaded quality factor can be calculated from the loaded quality factor and the power

reflection coefficient at the resonant frequency 
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3.5.2 Method of Transmission Coefficient

The method of transmission coefficient means that the field in the resonator is excited
through one coupling, and measured through another coupling. The ratio between the
received power and the incident power is the power transmission coefficient a. It
depends on Ql and the strength of the coupling, i.e. the size of the loops or probes and
their location relative to the field pattern. Based on an equivalent circuit, see e.g.
[Sucher and Fox, 1963], approximate equations can be derived for the magnitude and
phase of the power transmission coefficient in the vicinity of the resonant frequency.
If both probes couple with equal strength, the equations are:
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If the couplings are different, the equation for a must be rewritten in a form containing
the two separate external quality factors, Qe1 and Qe2:
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The constant φ0 is either 0, ±π/2, or π, depending on the locations and types of
coupling. There is a phase difference of π between adjacent lobes in a standing wave
pattern, so if only one type of coupling is used, only 0 and π are possible. If the types
are mixed, probes couple to the electric field, but loops couple to the magnetic field,
which is ±π/2 out of phase compared to the local electric field. This results in φ0 =
±π/2. Furthermore, turning the loop by π causes a phase shift of π. The graphs of
(3.27) are shown in Figure 3.2. Only at frequencies close to the resonant frequency
will any significant field build up in the resonator. Therefore, no signal is transmitted
(a ≈ 0) far from the resonant frequency. It should, however, be reminded that
Equations (3.24) and (3.27) only describe the shape of a resonance peak close to the
resonant frequency. A microwave resonator has an infinite number of resonances, and
far from any resonance the capacitive or inductive direct coupling between the
coupling probes or loops dominates. The frequency response of a resonator measured
over a broad frequency band will therefore be more complex than described by these
simple models.

The loaded quality factor can again be calculated from the measurements of
resonant frequency and peak width:
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where Bhp is the width of the resonance curve (3.27) at the level where the power
transmission is half of the maximum value.

If the probes have equally strong coupling, the unloaded quality factor can be
directly calculated from Ql and the transmission coefficient at the resonant frequency,
ar. From (3.27a):
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Figure 3.2 The magnitude and phase of the power transmission coefficient for a resonator with fr

= 1500 MHz, Ql = 200, and Qu = 260. The width of the peak (Bhp) is measured at half
power (-3 dB) compared to maximum power transmission.
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If the probes have unequally strong coupling, the ratio of the separate external quality
factors must be known, before the unloaded quality factor can be calculated from a
power transmission measurement. Because the relative strengths of coupling are
determined by the relative field strengths of the resonance mode at the locations of the
probes, the ratio of the external quality factors will be approximately constant for a
sensor. It is therefore enough to measure the ratio once. To obtain the ratio, the
reflection coefficient must be measured from both sides. If the other port is short-
circuited while the reflection coefficient is measured from the other port, (3.25) gives
Qln and (3.26) gives Qu, and Qen is then given by

ulnen QQQ

111 −= (3.30)

Now the ratio is
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When Re is known, the unloaded quality factor can be calculated from the loaded
quality factor and the transmission coefficient at the resonant frequency:
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Depending on which method is used, the resonant frequency, the width of the peak,
and the minimum reflection coefficient or the maximum transmission coefficient are
needed for calculating Ql using (3.25) and (3.26), or (3.28) and (3.29) or (3.32).

3.6 Calculation of the Complex Permittivity of a Dielectric Material Measured

with a Resonator

When a resonator is used as a sensor for measuring the complex permittivity of a
material on-line in the industry or of samples in the laboratory, the quantities to be
measured are the resonant frequency, the loaded quality factor, and the reflection
coefficient or the transmission coefficient at the resonant frequency. In addition the
same quantities are supposed to have been measured for the empty resonator as a basic
calibration.

The real part of the permittivity ( rε ′ ) can be directly calculated from the
measured resonant frequency of the empty and the filled resonator, by using Eq.
(3.11), as shown above. In the case of very lossy samples, it should be remembered
that (3.11) is an approximation of (3.10) and the accuracy should therefore be
checked, when the imaginary part ( rε ′′ ) has been calculated.

The imaginary part of the permittivity of the sample causes losses in the
resonator. The losses of the sample are accounted for by the dielectric quality factor
Qd. To obtain rε ′′  from the measurements, Qd must first be deduced. Eq. (3.14) shows
that the measured Ql in addition to the dielectric losses also depends on losses in the
metal parts (Qm), losses by radiation (Qrad), and coupling losses caused by the
measurement circuit (Qext). These other losses must first be evaluated and eliminated
before Qd can be obtained.

The coupling losses can be eliminated by calculating the unloaded quality
factor Qu using Eq. (3.26) in the case of reflection measurements or,  Eq. (3.29) in the
case of transmission coefficient measurements, if the coupling coefficients are equal.
If the couplings are unequal, Eq. (3.32) should be used.

Still Qm and Qrad need to be evaluated. The loss by radiation is highly
dependent on the resonator. ”Closed” resonators, like cavity resonators with solid
walls, do not radiate at all, and many ”open” ones, like some stripline resonators
[Fischer, 1995], [Fischer et al., 1988, 1989, 1990a, 1990b, 1991, 1995], [Nyfors et al.,
1984, 1988a, 1988b, 1989a, 1989b, 1989c, 1993], [Vainikainen et al., 1985, 1986,
1987a, 1987b], [Tiuri et al., 1987], radiate very little. In these cases the approximation
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Qrad ≈ ∞ can be used. Otherwise, Qrad must usually be calibrated as a function of
frequency and loaded quality factor, e.g. by measuring a series of samples with known
εr, because calculation is difficult and the accuracy would be poor in most cases. For
the accurate measurement of rε ′′  of low loss samples, only nonradiating resonators
should be used.

The metal quality factor can be calculated at the frequency of the empty
resonator, fr0, from the measurements of the empty resonator. From (3.14):
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where the subscript 0 refers to the empty resonator. If Qrad ≈ ∞, the calculated
unloaded quality factor is directly the metal quality factor. In other cases, Qrad,0 can be
measured by building an identical resonator using another metal with different
conductivity. 1/Qrad is then
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where σ1 and σ2 are the conductivities of the two metals [Nyfors and Vainikainen,
1989a]. To achieve a good accuracy with this method the difference between the two
conductivities should be considerable. The loss in the metal parts, however, is
frequency dependent. Therefore Qm0 must be reduced from the resonant frequency of
the empty resonator, fr0, to the resonant frequency of the filled resonator, fr. The
equation for doing the reduction can be derived from the definition of the quality
factor (3.12), by studying the dependence of the loss power and the stored energy on
the magnetic field. As a result of the resonance condition the field pattern of a certain
resonance mode in the resonator is constant, independent of the resonant frequency.
Because the electric field energy equals the magnetic field energy, and the local
magnetic field energy content is proportional to the square of the field strength, the
total stored energy is proportional to the volume integral of the square of the magnetic
field:

V
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∫∝ H (3.35)

The loss in the metal parts is proportional to the surface integral of the surface
resistance times the square of the surface current density. It has been shown [Collin,
1966, pp. 324-325] that
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From (3.12), (3.35), and (3.36):
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Because the field pattern is constant, also the ratio of the integrals in (3.37) is constant
leading to

ω∝mQ (3.38)

which means that the metal loss will increase, when the resonant frequency is lowered
by filling the resonator with a dielectric. This is important to note because erroneous
expressions are found in some textbooks, e.g. [Gardiol, 1984], as also pointed out by
[Sihvola, 1985]. The equation for reducing the metal quality factor, which was
measured with the empty resonator, to the resonant frequency of the resonator filled
with the sample is now:
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The dielectric quality factor Qd can now be calculated.
To get the relation between Qd and rε ′′ , consider a resonator with perfectly

conducting walls and no other loss than the dielectric loss [Collin, 1966, p. 325]. The
quality factor given by (3.12) is then the dielectric quality factor. If the sample in the
resonator is homogeneous, the total stored energy is
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The imaginary part of the permittivity can be written as an effective conductivity:
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Because a volume current is proportional to the conductivity and the electric field

EJ σ= (3.42)

the loss power in the dielectric is
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Hence the dielectric quality factor is
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Collecting the results into one equation:
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If the resonator does not radiate, or if Qrad is very high (3.45) reduces to
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where Qu and Qu0 are calculated from (3.26), (3.29) or (3.32), depending on the
measurement method. If the dielectric loss is high, the metal loss (and often also the
radiation loss) can be neglected, leading to the approximate equation:

u
rr Q

1⋅′≈′′ εε (3.47)

It was here assumed that the resonator is filled with the material to be measured,
called the sample, or that the field does not extend beyond the sample. For these cases,
the equations give accurate results for the complex permittivity. If the assumption is
not fulfilled, the equations can still be used in many cases. The values given for εr by
the equations will be smaller than the real values. They are often called effective
values. The relation between the effective and the real values of the sample depend on
the type of resonator, resonant wave mode, and location, size, and shape of the
sample. This relation can be calculated exactly in some special cases, or if the sample
causes only a very small change in resonant frequency, approximately using the
perturbation method, see e.g. [Nyfors and Vainikainen, 1989a], [Harrington, 1961], or
[Waldron, 1960]. Otherwise the resonator sensor must be empirically calibrated using
samples of known εr. In the new sensors and applications described later in this thesis,
the sensors are completely filled with the sample. The case of a partially filled
resonator will therefore not be dealt with here any further.

3.7 Cavity Resonator

The new resonator sensors, which are described later in this thesis, are cavity
resonators. Cavities will therefore be briefly treated here on a general basis.

A resonator made of a piece of hollow waveguide is a cavity resonator. It is
usually short-circuited in both ends either with solid metal walls, as in a laboratory
sensor for measuring isolated samples, or with some kind of end grids to allow the
material to flow through in on-line industrial sensors. In some cases the ends may be
open, as briefly mentioned in Sec. 3.3. The various end structures will be treated in
detail in Chs. 4, 6, and 7.
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Any wave mode that can propagate in a waveguide and be reflected at the
impedance discontinuities (i.e. the end structures), has resonances in the cavity. In
hollow waveguides the wave modes are called TEnm and TMnm modes. The resonances
for a mode occur at the frequencies, where the length of the cavity is a multiple of the
half-wavelength of that mode. The resonant modes are called TEnml or TMnml, where
the integers n, m, and l refer to the number of electric field maxima in the standing
wave pattern along the x, y, and z directions for rectangular waveguides, or ϕ, ρ, and z
directions for circular waveguides. In the non-standard case of a cavity with one open-
ended and one short-circuited end, the index l would, however, not be an integer but
an integer + ½. As mentioned in Sec. 3.3, some modes can also be supported with l =
0. This happens for TM modes, when the ends are short-circuited, and for TE modes,
when the ends are open-circuited. These modes have no field maximum but a constant
field in the z direction. In the case of cavities based on sectorial or semisectorial
waveguides, which are described in Ch. 5, the index n may obtain non-integer real
values. Every cavity has an infinite number of resonances.

The resonant frequency for a mode in a waveguide is
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where kc is the cut-off wavenumber of the waveguide mode and L is the length of the
resonator. For a rectangular cavity resonator this gives
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where A and B are the width and height of the waveguide. For a circularly cylindrical
resonator the resonant frequency of a TEnml mode is
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For TMnml modes nmp′ should be replaced by pnm. For a definition of the p values, see

Ch. 5. In some cases more than one mode will have the same resonant frequency.
They are called degenerate modes.

Because of the large number of resonances the cavity resonator sensor,
including the type and location of the coupling devices, must be designed in such a
way as to avoid the interference from other modes. This is not a big problem for
cavities completely filled with an isotropic and homogeneous dielectric, because all
resonant frequencies are shifted in the same way as a function of the permittivity. In
partly filled resonators the frequency shift of each mode depends on the location of the
sample with respect to the electric field of that mode. The order of the resonance
modes in the frequency response may therefore change, when the sample is inserted
or, when the permittivity of the sample changes. The potentially interfering modes can
be easily identified by studying the electric field patterns (see e.g. Fig. 3.12 in [Nyfors
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and Vainikainen, 1989a]) with respect to the location of the sample. The dimensions
of the cavity should be chosen so that the distance in frequency is as large as possible
between the mode, which is used for measurement purposes, and the other modes,
especially those identified as potentially interfering modes. A chart showing the order
of the resonances in a circularly cylindrical cavity resonator is shown in Fig. 3.3. It has
been calculated using (3.50) and the p values given in Table 5.2.

The fields of the resonance modes can be calculated from the fields of two
wave components travelling in opposite directions in a waveguide. When the
boundary conditions at the ends are known, the fields can be solved. The fields of the
modes in standard rectangular and circularly cylindrical cavities are given in e.g.
[Nyfors and Vainikainen, 1989a].

3.7.1 Using TE011  in Laboratory Measurements

The mode TE011 is a particularly interesting mode for laboratory measurements of the
permittivity of individual samples. The metal loss is low giving a high quality factor
for the empty resonator, which makes possible the measurement of low-loss samples,
like dry snow [Nyfors, 1982], [Sihvola et al., 1985], [Tiuri et al., 1984].

Figure 3.3 The chart shows the order of the resonances as a function of the radius (a) to length
(L) ratio of a circularly cylindrical cavity resonator, with short-circuited ends. The
chart has been calculated using Eq. (3.50) and the p values given in Table 5.2. An
individual resonator would be represented by a vertical line at the location of the
squared ratio (a/L)2 of that resonator. In a short cavity the mode with the lowest
resonant frequency is TM010. Note that the frequency scale is quadratic.
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The surface current on the walls on the inside of a cavity resonator is related to
the magnetic field at the wall. The direction of the current is always perpendicular to
the magnetic field. For a perfectly conductive wall, and in practice for normal metal
walls, the surface current [A/m] is

ts HnJ ×= ˆ (3.51)

where tH is the tangential magnetic field and n̂  is the normal vector at the wall.

Because the magnetic field of the TE011 mode is axial at the cylindrical walls, and
radial at the ends, the currents run along the circumference on the cylindrical walls
and in concentric circles at the ends. No currents run across the joints between the
cylindrical part and the end plates. As a consequence, the resonance mode is not
sensitive to the quality of the contact between these parts. A practical resonator
therefore uses one end plate as a lid allowing the insertion of the sample. The lid does
not have to be fastened with a large number of screws for each measurement to get a
good contact allowing the currents to pass undisturbed, as is the case with other
modes. Holding the lid in place, such that there will be no radiating gap, is enough.

The modes TE011 and TM111 are degenerate modes, as is evident from Fig. 3.3.
When using TE011 for measurements, the coupling loops must be located such that the
coupling to TM111 is minimized. The loops can for example be located midway
between the ends, where the magnetic field of TM111 is zero.

3.7.2 Using TM010 in Cavity Resonator Sensors

If the sensor is short, the lowest mode is TM010, with a relatively long distance to the
next mode. This is practical in industrial sensors, when the peak is low and broad
(lossy sample) and in the presence of ripple, which is never completely avoided in a
practical system. A long distance to the next peak then minimizes the risk of
confusion of peaks. Sensors based on the TM010 mode will be treated in greater detail
in Ch. 7.

3.7.3 Coupling Devices

To be able to perform measurements with a resonator, it must be coupled to some
external electronics through coupling devices. If the method of reflection coefficient is
used, only one coupling device is needed, and two in the case of the method of
transmission coefficient. The possible choices for coupling devices are, however, the
same for both measurement methods. In this section the most often used devices are
described. The discussion is more or less restricted to qualitative matters, because the
exact calculation of the coupling properties and the resulting external quality factor is
generally not possible in practice. These matters are studied in more detail in Ch. 6
based on simulations.

A coupling device generates an electromagnetic field that in many cases can be
approximately modelled by an electric or magnetic dipole moment, which couples to
the corresponding field of the resonance mode. The excited field is directly
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proportional to the dipole moment, which means that, for example, the power
transmission coefficient depends on the fourth power of the dipole moment, if the
probes are identical. For a theoretical discussion on excitation of cavities, see Sec. 7.8
in [Collin, 1966], or Ch. 7 in [Collin, 1991].

Coupling Probe

If the centre conductor of the feeding coaxial cable is extended a small distance into
the resonator, it forms a coupling probe (Fig. 3.4a). The length of the probe is small
compared to the wavelength, and the input impedance is therefore nearly equivalent to
that of an open circuit. The current in the probe is small, but the voltage creates an
electric field between the probe and the adjacent wall of the resonator. The field
radiates energy into the resonator like a small monopole antenna. The dipole moment
is approximately proportional to the square of the length of the probe, but depends
also on the thickness of the probe, the diameter of the outer conductor, and the
permittivity of the insulator.

Figure 3.4 The most frequently used devices for coupling the measurement signal to a cavity
resonator sensor: (a) Probe, (b) Loop, (c) Electric aperture, (d) Magnetic aperture.
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The probe couples to the electric field that is perpendicular to the wall at the
location of the probe. The coupling is stronger the closer to a field maximum the
probe is located. Coupling to unwanted modes can be avoided by locating at least one
of the probes in a place, where the electric field of such a mode is zero.

An advantage of the coupling probe is that of easy tuning. The probe can
initially be made longer than necessary, and then trimmed until the desired coupling is
obtained.

Coupling Loop

If the centre conductor of the feeding coaxial cable is extended a small distance into
the resonator and then bent and grounded to the wall, it forms a coupling loop (Fig.
3.4b). The size of the loop is usually much smaller than the wavelength. Therefore the
voltage is nearly zero but the current is large, and the input impedance is nearly
equivalent to that of a short circuit. The current generates a magnetic field that
radiates like a magnetic dipole tangential to the wall. The dipole moment is
proportional to the loop area. The radiation couples to the magnetic field of a
resonance mode that is tangential to the wall and perpendicular to the plane of the
loop. Therefore the orientation of the loop is also important. The closer to a magnetic
field maximum of a mode the probe is located and the larger is the loop area, the
stronger is the coupling to the mode. Coupling to unwanted modes can be avoided by
locating at least one of the probes in a place, where the magnetic field of such a mode
is zero, or by orienting the loop such that the magnetic field of the unwanted mode is
parallel to the plane of the loop.

A small advantage with a coupling loop is that it is more rugged than a thin or
long coupling probe. A disadvantage is the more difficult tuning. In practice it is also
more difficult to design a simple loop structure that is tight (for the measurement of
liquids under high pressure) and is easy to assemble.

Coupling Aperture

If a waveguide is used as the feeding transmission line, the aperture (Fig. 3.4.c&d) is
the natural coupling device. It is usually a small circular hole in the waveguide wall or
the shorted end. Depending on the location of the aperture in the waveguide, the
tangential magnetic field or normal electric field will penetrate the aperture and
couple to the resonance mode. The strength of the coupling (the electric or magnetic
dipole moment) is proportional to the third power of the radius of the aperture. The
coupling depends, of course, on the location of the aperture with respect to the field of
the resonance mode and the direction of the field lines in the case of magnetic
coupling.

Other Methods of Coupling, and Practical Considerations

Resonators can also be excited through capacitive coupling or free-space coupling.
The most frequently used type of capacitive coupling is an air gap, e.g. in the case of
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microstrip resonators. Free-space coupling can be used in the case of open resonators,
but for cavity resonators the probe, the loop, or the aperture usually provides the best
solution.

In addition to the strength of the coupling to the desired mode, the frequency
response around the resonance peak may also be important. The proximity to other
modes compared to the range of variation of the resonant frequency determines the
risk of confusion of modes. The direct coupling (capacitive between probes or
inductive between loops) determines the height of a ”continuum” level around the
peak, and may make the identification of a low peak difficult. To minimize the direct
coupling the probes should be located as far apart and have as small intrusive
structures as possible. To minimize the risk of confusion of modes the probes should
be located (and oriented in the case of loops or apertures) such that coupling to the
adjacent modes is avoided.

3.8 Some General Aspects of Using Microwave Resonators as Sensors

3.8.1 Two-Parameter Measurements with Resonator Sensors

A wide area of applications of microwave resonator sensors involves measuring the
composition of a material stream or of isolated samples. Using microwave resonators
for performing material measurements is based on measuring the permittivity, which
depends on the composition, via the interaction of microwaves with the material, as
described above. Because the permittivity is complex and both the real and the
imaginary part can be deduced from measurements of the resonant frequency and the
quality factor, microwave resonators can be used for performing two-parameter
measurements on a single frequency. In terms of the interaction between the
microwaves and the material, both the speed of propagation and the rate of attenuation
(absorption of power) are then measured. Based on these measurements, e.g. the
moisture and the density of the material can be deduced (e.g. [Kent and Kress-Rogers,
1986], [Nakayama, 1987]).

Generally, to be able to solve the unknowns of a system of n unknowns, n
equations are needed. Each measurement gives one equation. A microwave resonator
sensor can provide two equations. In systems with more than two unknowns,
additional measurements are needed. Frequently encountered supplementary
measurements include temperature, pressure, and radioactive density sensors.

In many cases only one parameter, usually the resonant frequency, is measured
with the resonator sensor. A reason may be that there is only one unknown, but more
often the reason is that the quality factor depends on several parameters like ion
conductivity and relaxation loss, which are associated with dissolved substances (e.g.
salts) and polar molecules respectively. Measuring the quality factor therefore also
introduces new unknowns, which may be of little interest. A more detailed account of
microwave multiparameter measurements has been given by the author in Ch. 2 of
[Nyfors and Vainikainen, 1989a].
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3.8.2 Measuring Speed of Flow

Resonators with a sufficiently open structure can be used for measuring on a
continuous flow of material. In addition to the composition measurement, the speed of
flow is often also of interest in such cases, thus making possible the calculation of the
flow rates of the individual components. The speed of flow can be measured with
microwave resonators using various correlation techniques based on one sensor with
multiple field maxima (e.g. [Kobayashi and Miyahara, 1985] or [Montreuil and
Nachman, 1992]) or two separate consecutive sensors. Regardless of the technique, a
condition for good speed measurements is that the variations in the stream are large
enough to be detected with high speed.

When two consecutive sensors are used, the same variations are seen by both
sensors but with a delay in the sensor located downstream. When coincident time
serieses of measurements from the two sensors are cross correlated, the delay ∆tcc is
given by the relative shift of the serieses that gives the highest correlation. From the
time delay and the known distance dcc between the sensors, the speed of flow vf is
easily calculated:

cc

cc
f t

d
v

∆
= (3.52)

When only one sensor is used, it must have an electric field pattern with at
least two field maxima in the direction of the flow. If the flow is in the direction of the
length axis of the transmission line, which forms the resonator, possible resonance
modes are those with index l ≥ 2. When the inhomogeneities of the flow (e.g. larger
drops of water) flow through the sensor, they cause a change in the resonant frequency
and quality factor twice, each time they pass a field maximum. By calculating the
autocorrelation of the measurement signal, the time delay is found, and the speed can
be calculated from (3.52) in the same way as with two sensors, but now dcc is replaced
by dac, which is the distance between the consecutive field maxima.

3.8.3 Loss Limitations

The basic condition for performing measurements with a resonator sensor is that the
resonance peak can be found and measured with enough accuracy. If the used peak is
close to other resonances or the frequency response of the measurement system
contains ripple, the detection and correct identification of the peak requires a higher
quality factor, than if the peak is isolated and clean. From the characteristics of the
measurement system, and the accuracy requirements of the application, a lower limit
may be defined for Ql. When measuring lossy samples, the other sources of loss in
(3.14) are small compared to the dielectric loss in the sample. A limit for the
conductivity and other losses in the measured material can therefore be found from
(3.44) and (3.41).

The limitation discussed above concerns the permittivity of the measured
sample, i.e. the mixture. It must be pointed out that depending on the structure of the
mixture, the conductivity of one of the components in the mixture may me much
higher than the limit found for the mixture. For example, in an oil-continuous mixture
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of oil and water (the oil is the continuous phase and the water exists as isolated drops)
the dielectric quality factor Qd reaches a minimum for a water conductivity of roughly
σw ≈ 5 S/m. For higher or lower conductivity the mixture is less lossy. In practice an
oil-continuous mixture of oil and water is always measurable (i.e. the quality of the
peak is high enough that the peak can be identified) with a resonator, while water-
continuous mixtures are measurable only in the case of nearly fresh water. This
situation is correctly predicted with most models that describe the permittivity of a
mixture as a function of the permittivity of the components, i.e. so-called mixing
formulas (see Ch. 2 in [Nyfors and Vainikainen, 1989a]), when the host component
(continuous phase) is considered nonconductive and the inclusions conductive, and
vice versa.
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4 PRINCIPLES FOR IMPLEMENTING RESONATOR SENSORS

IN PIPES

4.1 Introduction

In the industry there is often a need to measure various parameters of materials
flowing in pipes. The material may be a mixture of liquids, liquids and gases, or solid
particles in pneumatic or liquid assisted transportation. Often the flow speed is one of
the unknowns wanted to be measured, in addition to some material parameters. When
the material properties, which are subject to measurement, affect the complex
permittivity of the material or mixture, microwave sensors can often be used. Typical
applications are the measurement of the water content of oil, consistency in pulp, and
the moisture and instantaneous density of a flow of wooden chips, grain, coal, or
limestone, to name a few. The permittivity of water is high compared to most other
materials, which makes the microwave sensors particularly well suited for various
applications involving the measurement of water content. Because of the complex
nature of the permittivity, the sensors may be used for performing two-parameter
measurements, thus providing a means for example to compensate for density
variations while performing moisture measurements. For a good collection of
examples of microwave sensors for performing material measurements involving
water, see [Kraszewski, A., Ed., 1996].

The above-described measurements may be conveniently performed on-line,
while the material is being transported in a pipe. Microwave techniques provide a
variety of possibilities for implementing sensors for such applications. Some of the
solutions were presented in Chapter 2. The general principles, how to implement
microwave resonator sensors in pipes, will be described in this chapter.

4.2 Resonator Sensors Operating below the Cut-Off Frequency of the Pipe

A sensor that is designed for measuring material in movement must have a relatively
open structure to allow the material flow to pass unhindered. Especially if the material
stream consists of solid particles, the sensor should have as little intrusive parts as
possible not to cause congestion. At the same time it is desirable that the sensor
measures the whole flow. On the other hand, the more open the sensor structure is, the
more prone it is to radiate.

One way to achieve open resonator structures that do not radiate, is to use
frequencies that are low enough. If the sensor is designed so as to have a resonant
frequency, which is below the lowest cut-off frequency in the pipe, the energy can not
radiate out into the pipe even from an open sensor structure, because it cannot
propagate in the pipe. Therefore the sensor will not radiate and a quality factor is
achieved, which is as high as for a completely closed structure. This basic principle
was developed by the author and his colleagues at the Radio Laboratory of Helsinki
University of Technology and patented in Finland [Tiuri et al., 1986]. Structures based
on this principle may be very open in the pipe, allowing the flow to pass more or less
without any mechanical interference from the sensor.
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4.2.1 Isolation Provided by a Pipe below Cut-Off

Electromagnetic energy on a frequency below the cut-off frequency does not
propagate in the pipe. It does, however, penetrate into the pipe from the location of
excitation as an exponentially decaying evanescent or fringing mode. The fields
pulsate in every location with the same phase. The fact that the fields penetrate into
the pipe means that a certain length of pipe is needed on each side of the resonator to
provide enough isolation. This length depends on the relative distance in frequency
between fr and fc, and on the required limit for the radiation losses represented by Qrad.
Normally this is no problem, because the pipe continues for a long distance both
upstream and downstream. However, any changes of diameter, intrusive thermowells,
bends, or valves within the length of pipe that is required for sufficient isolation,
disturb the resonator. The value of Qrad is also of importance when testing and
calibrating the sensor before installation.

The isolation provided by a section of waveguide below cut-off can be
calculated from the propagation factor in a hollow waveguide
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where kc is the cut-off wave number of the lowest mode in the pipe, and λpw is the
wavelength given by (3.9) of a plane wave at frequency f in the medium, with which
the pipe is filled, i.e. the MUT. When f < fc, β becomes imaginary:
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describing an exponentially decaying field. This decay is not caused by absorption but
by reflection, much in the same way as outside the passband of a lossless filter.
Taking the negative solution of the square root, as being the physical one, the decay of
the power as a function of the distance z is given by

( )
z

f

f

zj

c

pw

ePePzP
⋅














−





−

− ==
1

2
2

0
2

0

2

λ
π

β (4.3)

Here the loss in the imperfectly conducting metal walls has been omitted, because it is
insignificant compared to the exponential decay below cut-off. At the frequency f the
power reflection coefficient from a pipe of length d is then
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Equation (3.23) can now be used for calculating the radiation quality factor Qrad,
assuming that the pipe can radiate freely from the ends at the distance d from the
sensor. Even if the pipe continues such that it can not radiate, the calculation is useful
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for choosing the minimum distance to any potentially disturbing object or
discontinuity in the pipe. If the Qrad, which is calculated for a pipe length equal to the
distance to a discontinuity, is above the limit specified for the design, the discontinuity
can be assumed not to disturb the sensor. The loss factor α in (3.23) contains the
losses from the metal walls and the MUT inside the sensor and can be taken into
account separately in Qm and Qd. If α is therefore omitted here, (3.23) gives the
radiation quality factor:
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where fr is the resonant frequency, βs is the propagation factor in the sensor at fr, and
fcs is the cut-off frequency in the sensor.

Resonator and Pipe Completely Filled by the MUT

If the resonator and the pipe are completely filled with the MUT, the ratios fc/fr and
fcs/fr will stay constant although fr, fcs, and fc will change, when the permittivity of the
MUT changes. The wavelength λpw and the factor βs will also stay constant because of
the resonance condition that requires that the length of the resonator expressed in
wavelengths is constant. Thus the length d that is needed to achieve a certain Qrad is
independent of the permittivity of the MUT. Because the ratio fcs/fr and the factor βs

are always constant in cases, when the resonator sensor is filled by the MUT, a
constant k1 may be defined, which is constant for the sensor:
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Now (4.5) can be written as
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Figure 4.1 shows graphs of Qrad⋅k1 as a function of d/λpw for various values of fc/fr. If
the resonant frequency is close to the cut-off frequency, a large value of d is needed.
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Figure 4.1 The diagram shows graphs calculated with Eq. (4.7), illustrating the minimum length
of pipe needed on both sides of a below-cut-off resonator sensor to achieve a desired
isolation. (See text for explanation of the symbols.)

Resonator Partly Filled and Pipe Completely Filled by the MUT

If the pipe is completely filled but the sensor is not, the ratio fcs/fr will change with the
permittivity, but more significant changes will happen in fc/fr and λpw. The relative
decrease in fc for an increase in permittivity will be larger than in fr, resulting in a
larger value of d corresponding to a given value of Qrad. For example, if only a small
fraction of the sensor is filled by the MUT, the relative changes in the resonant
frequency will be small and the ratio fcs/fr will be almost unchanged, but λpw and fc in
the pipe will change according to
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Here it was assumed that rr εε ′<<′′ , because the below-cut-off decay has a meaning
only as long as the dielectric loss in the pipe is small. At the limit, when the sensor
contains only a very small amount of the MUT and the change in fr caused by a large
change in the permittivity is negligible, (4.5) changes to
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All factors in (4.9) are nearly constant, except for the permittivity under the square
root. Eq. (4.9) gives the worst case for the increase in the length of pipe d needed to
achieve a given Qrad, when the permittivity increases.

Practical Considerations

The loss in the MUT usually increases with increasing permittivity, which causes the
decrease in resonant frequency. From (3.13) it is seen that the unloaded quality factor
will then be dominated by the dielectric loss and not the radiation loss, when the
permittivity of the MUT is high. If the MUT may have low losses also for a high
permittivity, this must be taken into account in choosing the value of d for a sensor.
Before choosing the value of d for a sensor, the worst case must be identified and used
as a basis for the calculations.

The radiation quality factor calculated with (4.7) or (4.9) must be considered
as a minimum value, because the derivation of the equations was based on the
assumption that the concept of reflection coefficient is relevant, i.e. that the resonant
mode is the same as the lowest mode in the pipe. In practice the efficiency, with which
the resonant mode launches the lowest mode into the pipe, depends on the structure of
the resonator and the electromagnetic field configuration at the ends of the resonator.
Especially sensors, where the MUT fills only a small fraction of the resonator, tend to
have structures that do not couple efficiently to the modes in the pipe. However, the
relative dependence of Qrad on d/λpw is expected to be accurately given by (4.7) and
(4.9).

In the case of sensors, where the length-related third index of the used
resonance mode is l = 0 (fr = fcs), Eq. (3.23) can not be used directly, as mentioned
before. Hence also (4.7) applies only to modes with l ≠ 0. However, the calculation of
the isolation provided by a section of pipe below cut-off is clearly significant also for
resonators with l = 0.

In the case of sensors for which the above used concept of reflection
coefficient is not relevant, the attenuation in the pipe below cut-off may be considered
as a reduction of radiation. For example sensors that are large compared to the
diameter of the pipe, or sensors with l = 0, may have a considerable radiation quality
factor already for zero length of the pipe (d = 0). In many cases the radiation from
such a resonator without the pipe can be approximately calculated using methods from
the field of antenna engineering, considering the holes as aperture antennas. When the
radiated power relative to the stored energy has been calculated for d = 0, the effect of
the pipe can be taken into account using (4.3) and the definition of the quality factor in
(3.12):
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where Prad0 is the radiated power and W0 is the stored energy, when d = 0. The
exponent of the exponential function will be small for any practical length of the pipe.
Considering that

1     when  ,)1(log <<≈−− xxxe (4.11)

it can be seen from (4.7) that

rad0
1

1
Q
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However, in the case of sensors that are not completely filled with the MUT, k1 and
Qrad0 will change with the permittivity, but again the largest change will be in the
exponent.

4.2.2 Examples of Sensors with a Resonant Frequency below the Cut-Off of the Pipe

Nonintrusive Cavity Sensor

In cavity resonators with the same relative dimensions, the resonant frequency is
inversely proportional to the size. Because larger cavities have lower resonant
frequencies, the resonant frequency of the used mode can be made lower than the cut-
off frequency of the pipe by making the cavity sensor large compared to the pipe.
Figure 4.2 shows one example of how this idea can be realized as it was suggested by
the author and his colleagues in the Finnish patent [Tiuri et al., 1986]. The cavity is
formed by a section of pipe with larger diameter than the rest of the pipe. The
cylindrical cavity has holes in the end plates, where the pipe is connected. The size of
the holes is the same as the inner diameter of the pipe, and inside the cavity is a
dielectric sleeve, such that the MUT can flow in a pipe of unchanged diameter. The
advantage with this type of sensor is that it is completely nonintrusive, whereas the
large size of the sensor may be a disadvantage.

The resonator is only partly filled with the MUT, which means that the shift in
the resonant frequency as a function of the permittivity is smaller than for a
completely filled resonator, and is therefore not given by the simple formula derived
in Ch. 3, Eq. (3.11). The holes in the end plates will also affect the fields of the
resonant mode in the cavity, such that the field distribution is only approximately
given by the field equations of the mode in an ideal cylindrical cavity. The
permittivity of the MUT will also affect the field distribution. If the pipe is very small
compared to the size of the sensor, the field distribution will be close to that of the
undisturbed mode, and the frequency shift can be approximately calculated using the
perturbation method (see e.g. [Nyfors and Vainikainen, 1989a], [Harrington, 1961], or
[Waldron, 1960]). However, in most practical cases the size of the pipe is so large that
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Figure 4.2 Nonintrusive cylindrical cavity resonator sensor for measuring materials flowing in a
pipe. The resonant frequency is below the cut-off frequency of the pipe, which
therefore prevents escape of energy by radiation into the pipe [Tiuri et al., 1986].

the accuracy of the perturbation method is poor. The best solution is then to simulate
the frequency shift and the change in the quality factor with dedicated software, and to
build a mathematical model based on the simulations. The model can then be checked
and refined by comparison to measurements of materials of known permittivity.
Alternatively the model can be based entirely on measurements, but then a larger
number of measurements is needed.

Because this nonintrusive sensor is only partly filled with the MUT, it is less
sensitive and the dielectric loss in the MUT effects Qd less than in completely filled
sensors. It can therefore be used for measuring materials with higher losses than if it
was completely filled. The sensitivity can be further reduced by a proper choice of the
resonant mode.

The choice of resonant mode is important for achieving the desired
characteristics of the sensor. If it is desirable to have as much sensitivity as possible, a
mode with the electric field maximum in the centre should be chosen, like e.g. TE111,
or TM010. If low sensitivity is desirable, a mode like TE011, with an electric field
minimum at the centre axis, may be a good choice. It should be remembered though
that the holes in the sensor may affect various modes differently, especially if the
diameter of the holes is large compared to the length or the diameter of the sensor. It
should also be remembered that because the various modes have different sensitivity,
adjacent modes may come close to the used mode and cause interference, or the order
of the modes may even change, as the permittivity of the MUT changes. To avoid the
risk of confusion of modes, the resonant mode and the dimensions of the resonator
should be chosen with care. A first design may be based on qualitative sensitivity
estimates made from pictures of the modes (see e.g. [Nyfors and Vainikainen, 1989a],

Coupling loop

Dielectric sleeve

Flow of
MUT
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[Ramo et al., 1984], or [Saad, 1971] ) and identification of potentially interfering
modes from the diagram in Fig. 3.3.

An example of a commercial sensor based on this principle is the nonintrusive
version of the MFI WaterCut Meter made by Roxar, which is used in applications
where the flow contains solid particles that may cause a risk for clogging in a normal
WaterCut sensor with end grids (see Ch. 7). One such application is the measurement
of rubber slurry in the rubber industry.

Coaxial Resonator Sensor

By mounting a metal rod with dielectric supports axially at the centre of a pipe, the
section with the rod turns into a coaxial transmission line (Fig. 4.3). This can be used
as a sensor for materials under flow, as suggested by the author and his colleagues in
[Tiuri et al., 1986]. Because the rod is held in place by dielectric supports such that
the ends are electrically open, the resonance condition in (3.3) gives that the first
resonance occurs, when the rod is half a wavelength long. By making the rod long
enough, the resonant frequency will be lower than the cut-off frequency of the pipe. In
a cylindrical pipe the mode with the lowest cut-off frequency is TE11 (see Ch. 5). The
corresponding free-space cut-off wavelength is

pc D
p

a ⋅=
′

= 71.1
2

11
pipe,

πλ (4.13)

Figure 4.3 A coaxial sensor for measuring materials flowing in a pipe [Tiuri et al., 1986]. A rod
acting as the centre conductor is mounted in the centre with dielectric supports. The
resonant frequency is below the cut-off frequency of the pipe, which therefore
prevents the escape of energy by radiation into the pipe.

Flow of
MUT

Dielectric
support
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where Dp is the inner diameter of the pipe. Making the rod longer than 0.85⋅Dp

therefore assures that the resonant frequency is below the cut-off of the pipe. The
circularly symmetrical TEM field in the coaxial sensor will not couple efficiently to
the TE11 mode, which does not have circular symmetry. Achieving good isolation is
therefore possible with relatively short sections of pipe outside the ends of the rod.

For the frequency response to be clean in the neighbourhood of the resonance
peak, the resonant frequency should also be well below the cut-off frequency of the
lowest waveguide mode of the coaxial section. This mode is also called TE11, but
should not be confused with the modes with the same name in hollow waveguides.
The free-space cut-off wavelength of the coaxial TE11 mode is

( )bac +=
2

873.1coax,

πλ (4.14)

where a and b are the outer and inner radii of the coaxial structure (see e.g. [Saad,
1971], or [Marcuvitz, 1951]). If for example a = 3b:

pc D96.1coax, =λ (4.15)

which is a lower frequency than the cut-off frequency of the pipe, given by (4.13). The
TE11 mode will not be in resonance at the same frequency as the normal TEM mode
even above the cut-off frequency, because the wavelength of the waveguide mode is
longer, as given by (3.6). To avoid confusion of modes, it is usually desirable to have
an as long distance in frequency from the used mode to the other modes as possible.
Given by (3.3) the next resonance of the TEM mode is, when the rod is one
wavelength long, i.e. the second resonance is one octave higher than the first one. The
largest distance is therefore achieved, when the first resonance of the TE11 mode is
also at least twice the first resonant frequency of the TEM mode. With the example
above (a = 3b) this is achieved, when the length of the rod is L > 2.61Di.

In practice the effective length of the rod will be slightly longer than the
physical length, because of the fringing fields at the ends. Because the electric field
maxima are located at the open ends of the rod, while the magnetic field maximum is
located midway between the ends, only the electric field fringes at the ends. The
fringing field therefore acts like load capacitors, which shift the relative phase
between the electric field and the magnetic field at the ends, making the transmission
line look slightly longer.

An advantage with this type of sensor is that the outer diameter is small. A
disadvantage is that the rod and the dielectric supports block a part of the cross section
of the pipe. It is therefore best suited for liquids, or a flow containing also solid
particles if the diameter of the pipe is large, such that the relative blockage can be
made small.

An example of a commercial sensor based on this principle is the FullCut
version of the MFI WaterCut Meter made by Roxar, which is used for measuring
mixtures of oil and water.
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Transversal Stripline Resonators in Rectangular Pipes

If a metal strip is mounted transversally in a rectangular pipe with one end shorted to
the wall of the pipe and the other end open, or if it is shorted in both ends, it will form
some kind of a quasi-TEM line structure with the pipe. In the patent [Tiuri et al.,
1986] the author and his colleagues have suggested two such sensor structures, which
are based on the principle of resonance below the cut-off frequency of the pipe.

Figure 4.4 shows a rectangular pipe with a metal strip attached perpendicularly
to the wall such that the attached end is shorted and the other end is open. The strip
reaches across the pipe to a point past the centreline. The strip and the pipe together
form a parallel-plate TEM line structure, i.e. a stripline across the pipe. According to
the resonance condition in Eq. (3.5) the stripline is in resonance, when it is a quarter
of a wavelength long. Because the cut-off wavelength of the TE10 mode (which is the
lowest mode in a rectangular waveguide) in the rectangular pipe is twice as long as the
width of the broader wall, the resonance will be below cut-off, when the strip reaches
past the centreline. However, because of the fringing field in the open end of the strip,
and the relatively large distance between the walls compared to the length of the strip,
the resonant frequency is only approximately given by the length of the strip. It should
also be noted that this structure bears a resemblance to the sectorial waveguide (Ch. 5)
with a sector angle of 2π, and the cylindrical fin resonator sensor based on this
waveguide. The cylindrical fin resonator sensor will be described later in Ch. 6. Based
on this resemblance it can be expected that waveguide modes, which are related to the
sectorial waveguide modes in cylindrical pipes (Ch.5), can exist in the rectangular
pipe with a fin. That means that if one starts with a cylindrical fin resonator and
changes the shape of the outer conductor from cylindrical to rectangular in a

Figure 4.4 A stripline resonator sensor in a rectangular pipe, formed by a strip attached
perpendicularly to the wall of the pipe [Tiuri et al., 1986]. The resonant frequency
will be below the cut-off frequency of the pipe, when the strip is longer than
approximately half of the width of the broad wall.
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continuous process, there should be a continuous transition from e.g. the TE½10 mode
to a related mode in the stripline resonator in Fig. 4.4. To study the existence of such
modes, and to get the cut-off frequency and the corresponding resonant frequency
more accurately, simulations were performed with the Hewlett-Packard HFSS (High
Frequency Structure Simulator) software version 5.1 for PC, which uses the finite
element method.

A waveguide with a rectangular cross section of 37.5 mm x 75 mm is known
to have a cut-off frequency of 2 GHz (TE10). Such a waveguide with a fin attached to
the narrow wall, also called a ridged waveguide, was simulated with HFSS. Figure 4.5
shows the waveguide and the electric field pattern resulting from the simulations.
Comparing this field pattern to that of the TE½1 mode in Fig. 5.3 shows that they are
clearly related. The results for the cut-off frequency as a function of the height of the
fin are shown in Fig. 4.6.

Next a resonator was simulated. The height of the fin was 45 mm and the
length (in the axial direction of the waveguide) was 10 mm. Assuming that the first
resonance should be a mode with the third index l = 0 (see Sec. 3.3), as in the
cylindrical fin resonator, the resonant frequency should be approximately equal to the
cut-off frequency. The simulation gave a resonant frequency of fr = 1.367 GHz,
whereas the cut-off frequency for the waveguide with the same height of the fin was
1.392 GHz. The difference is only 1.8%, which confirms the assumption of the
resonant mode. Figure 4.6 also shows the resonant frequency calculated assuming that
the structure is a λ/4 long stripline resonator, without any correction for the fringing
field at the end of the fin. I.e. the length of the resonator was taken equal to the length
of the strip. The stripline model gives a resonant frequency that is between 17% and
34% higher than the simulated resonant frequency, which is probably close to the real
resonant frequency.

The advantage with the sensor in Figure 4.4 is the simple structure. The
sensor can be made as an insert sensor, with the strip and the coupling loops attached
to a flange. The disadvantage is the uneven distribution of the sensitivity over the
cross section of the pipe. The electric field strength is highest on the surface of the
strip in the region of the open end.

Only solid particles, like for example wooden chips, are likely to be
transported in rectangular pipes. If the particles are sticky, they may to some degree
accumulate on the strip (and the walls), which would cause a shift of the zero point
calibration. Accumulation of material can in many cases be avoided, e.g. by coating
the strip with a material preventing accumulation.

If the pipe is mounted vertically and the flow of particles is evenly distributed
over the cross section of the pipe, the sensor can be used for measuring the
instantaneous mean density of particles in the MUT in the pipe. If the mean size of the
particles is constant, and if they are dropped through the pipe from a fixed height, the
speed of the flow is likely to be relatively constant. In that case, the mean density and
the speed of the flow give the mass flow of the particles. If both the resonant
frequency and the quality factor are measured, e.g. both the mass flow and the
moisture of the particles can be measured.

The speed of the flow can also be measured with the cross correlation method,
which was briefly described in Ch. 3. Two strips are then mounted in the pipe with a
certain distance between them in the direction of the flow. For example, if the MUT is
fed by a screw conveyor to the top of the pipe, from where it is dropped past the
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Figure 4.5 A cross section of the waveguide that was simulated with HFSS. The size of the
waveguide is 37.5 mm x 75 mm, and the height of the fin as shown is 45 mm. The
electrical field pattern is also indicated as resulting from the simulator. The mode is
clearly related to the TE½1 mode in a sectorial waveguide, shown in Fig. 5.3.

Figure 4.6 The cut-off frequency of the waveguide shown in Fig. 4.5 as simulated with HFSS.
For a fin height ≤ 28 mm the TE10 mode, which can also exist because the electric
field is perpendicular to the fin, is the lowest mode with a cut-off frequency of 2 GHz.
The resonant frequency estimated based on a λ/4 stripline structure is also shown.
This frequency is 17…34% higher than the cut-off frequency resulting from the
simulations.
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Figure 4.7 A resonator sensor in a rectangular pipe formed by a strip attached diagonally
between corners of the pipe [Tiuri et al., 1986]. The resonant frequency is below the
cut-off frequency of the pipe, because the strip is longer than the width of the broader
wall.

sensors, the density of the flow will be modulated by the revolutions of the screw.
This modulation provides variations in the measured signal, which helps finding the
time delay accurately from the calculated cross correlation. However, the periodicity
of the variations causes ambiguity in the cross correlation. If the time it takes for the
flow to travel the distance between the strips is ∆t and the period of the modulations is
T, peaks will be found in the cross correlation at ∆t, ∆t ± T, ∆t ± 2T,… . To avoid
confusion between peaks, the distance between the strips should, if possible, be
chosen so that ∆t << T.

Figure 4.7 shows a sensor formed by a strip that is shorted in both ends. The
strip will therefore be half a wavelength long at the first resonance. It may be just
mounted diagonally between two opposite corners of the pipe, or the other point of
attachment may in addition be displaced in the direction of the flow to make the strip
even longer, as shown in Fig. 4.7. Because the cut-off wavelength of the rectangular
pipe is twice the width of the broad wall, and the strip is always longer than the broad
wall, the resonant frequency is below the cut-off.

The strip resonator in Fig. 4.7 has a more even distribution of sensitivity in the
cross section of the pipe than the sensor in Figs. 4.4 and 4.5, which has a more
profound field maximum at the end of the strip.

Helical Resonator Sensor

If the centre conductor of a coaxial line is a helix instead of straight wire, the waves
will travel slower in the line. When the turns of the helix are loose enough to keep
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Flow of
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Figure 4.8 A helical resonator sensor that has been made in an enlargement of the pipe. This
type of sensor has an exceptionally low first resonant frequency compared to the
outer dimensions, and several harmonic resonances can be used for measuring the
permittivity of the MUT as a function of frequency.

the capacitive coupling between the turns low, the current runs along the helical wire.
The length of the wire will therefore determine the phase shift. A resonator made of a
helix inside a cavity such that one end is shorted and the other end is open, as shown
in Figure 4.8, will have a low first resonant frequency compared to the size. Such a
sensor may in practice have up to ten usable harmonic resonances below the
frequency, where it starts to leak. These frequencies provide the possibility of
measuring the permittivity of the MUT as a function of frequency. The helical
resonator has an even field distribution inside the helix, where the MUT is flowing.
For more details see [Meyer, 1981], or [Nyfors and Vainikainen, 1989a].

Resonator Sensors Based on Waveguide with Low Cut-Off Frequency

If a section of the pipe has a lower cut-off frequency than the rest of the pipe, this
section may serve as a resonator below cut-off. The nonintrusive sensor, which was
described above, actually falls into this category, but there are also waveguide
structures with the same outer diameter as the pipe, but which still have a lower cut-
off frequency. Especially TEnml resonance modes with l = 0 (fr = fc) are favourable,
because they can exist in open-ended structures.

The best known waveguide type, which has a lower cut-off frequency than the
basic rectangular or cylindrical waveguide, is the ridged waveguide. As discussed

Dielectric pipe

Flow of
MUT
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above, the stripline resonator in a rectangular pipe can be regarded as belonging to this
group. Another case is the sectorial waveguide with a sector angle of 2π, which is
described in Ch. 5. Sensors based on these are studied in more detail in Ch. 6.

4.3 Resonator Sensors with End Grids

Instead of designing the resonator sensor to operate below the cut-off frequency of the
pipe so that the pipe confines the energy of the sensor, a section of the pipe can be
turned into a cavity resonator by isolating the section with end grids, which will act as
shorts. The basic principle is shown in Fig. 4.9. A cavity with shorted ends can
support all TEnml and TMnml modes with l ≥ 1, but only TMnml modes with l = 0 (fr =
fc). From Eq. (3.48) it is clear that the resonant frequency of any mode with l ≥ 1 is
higher than the cut-off frequency of the corresponding waveguide mode. Because the
lowest cut-off frequency in a rectangular waveguide is that of the TE10 mode and in a
circular waveguide that of the TE11 mode, the resonant frequency of any mode, the
lowest TMnm0 mode included, will be higher than the lowest cut-off frequency of the
pipe. The pipe will therefore provide no isolation,  and the end grids must provide all
the isolation needed to achieve an acceptable radiation quality factor.

Regardless of the exact design of the end grids, they consist of holes of various
cross sections. Because the grids have a finite length in the axial direction, the holes
can be regarded as waveguides below cut-off. The improvement of the isolation as a
function of the length of the grids (length of the waveguides) can therefore be directly

Figure 4.9 A section of the pipe is isolated into a cavity resonator by shorting end grids that stop
the microwaves from escaping but allow the flow of MUT to pass relatively
unhindered.
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calculated from Eq. (4.10), when the cut-off frequency of the holes is known. To
achieve a given Qrad with loose grids (large holes) therefore requires longer grids than
if dense grids are used. The end grids should preferably be as dense as possible to
distort the used resonance mode as little as possible. At the same time they should
obstruct the flow as little as possible not to cause a too high pressure drop or a risk of
congestion. To minimize the production cost of the sensor, the end grids should also
be as short as possible. The problem of optimizing the design will be studied in detail
in Ch. 7, where also some realized examples will be presented.

The MFI WaterCut sensor made by Roxar is an example of a commercial
resonator sensor based on end grids [Gaisford et al., 1992].

4.4 Fringing Field Resonator Sensors

The resonator sensors that operate below the cut-off frequency, or are confined
between end grids, typically measure the whole flow of the MUT. If the flow is
homogeneous enough such that measuring the whole flow is not necessary, fringing
field resonator sensors can also be used. In these sensors the radiation leakage is kept
low enough by designing the structure such that only a fringing field protrudes into the
pipe to be influenced by the permittivity of the MUT. Consequently most of the
energy is outside the MUT.

Several types of designs are possible for realizing fringing field resonator
sensors. For example the open-ended coaxial structure in Fig. 2.4 turns into a
resonator, when a short or open circuit (e.g. a gap in the centre conductor providing at
the same time the open circuit and capacitive coupling for measuring the reflection
coefficient) is applied at some distance behind the open end. The dielectric ring in Fig.
2.3 can also be used as a resonator, if the couplings are made loose enough. Other
possibilities are cavity or coaxial resonators on the outside of the pipe. In these one or
several slots in the common wall allow the field to fringe into the pipe. The slots must
have dielectric windows that prevent the MUT from entering into the resonator.

Because only a small part of the energy in a fringing field resonator sensor is
in contact with the MUT, the sensitivity is lower than in sensors that are filled with
the MUT. Because of the low sensitivity, they can tolerate higher losses in the MUT,
but they are less well suited for detecting very small changes in the permittivity of the
MUT.

4.5 Summary

When a resonator sensor is implemented in a pipe, the structure must allow the flow
to pass relatively unhindered, and at the same time prevent the energy from escaping.
These features can be achieved based on mainly three different principles. The first
principle is to use a resonant frequency that is below the cut-off frequency of the pipe,
in which case the pipe prevents the energy from escaping. The second principle is to
isolate a section of the pipe with grids, in which case the holes in the grids are
waveguides below cut-off. The third principle is to have a basically non-radiating
resonator structure outside the pipe, and allow only a small part of the energy to fringe
into the pipe, e.g. through a slot.
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5 SECTORIAL AND SEMISECTORIAL WAVEGUIDES

5.1 Introduction

If a resonator cavity in a pipe is isolated with end grids made of radial plates, the holes
in the grids are sectors. For example if the number of plates is four, the sector angle is
π/2 (see Fig. 7.1). If a smaller pipe is mounted in the centre so that the plates are
between the outer surface of the smaller pipe and the inner surface of the larger pipe,
the holes are what will here be called semisectors. A semisector is therefore the part of
a sector between two circles of different radius.

To provide enough isolation, an end grid must in practice have a finite
thickness, i.e. length of plates. The holes then form pieces of sectorial, or
semisectorial and circular waveguides. The thickness of the grid, i.e. length of the
waveguides, affects the attenuation below cut-off.

To be able to design the end grids (length, sector angle, ratio of radii for
semisectorial grids), and the CFR sensor (Ch. 6) and the downhole watercut sensor
(Ch. 7), which are also based on sectorial and semisectorial waveguides, one must
know the wave modes in such waveguides. The circular waveguide in the centre of the
semisectorial grid is well known. The semisectorial waveguides have been briefly
described by F. Lin and A.S. Omar, who present two sets of graphs for the lowest TE
mode, and the same for the lowest TM mode [Lin and Omar, 1989]. One set gives the
cut-off wavenumber as a function of the sector angle for various ratios of radii, and
the other as a function of the ratio of radii for various sector angles. A theoretical
derivation of the mode functions is given  in [Felsen and Marcuvitz, 1994]. For the
work in this thesis more detailed information is needed, and also knowledge about the
higher modes. The waveguide modes in sectorial and semisectorial waveguides are
therefore derived and analyzed here. The derivation follows the same pattern as
presented for ordinary circularly cylindrical waveguides in the textbooks, e.g. [Collin,
1966], [Ramo et al., 1984], and [Pozar, 1998], but with other boundary conditions.

5.2 Sectorial Waveguides

For the derivation of the waveguide modes cylindrical co-ordinates (ρ, ϕ, z) will be
used as shown in Fig. 5.1. The angle of the sector is ϕ0 and the radius of the sector is
a. Metal walls are where ρ = a (for all ϕ), ϕ = 0 (for all ρ), and ϕ = ϕ0 (for all ρ).

5.2.1 TM Modes in Sectorial Waveguides

For TM modes the axial magnetic field is zero (Hz = 0). The waveguide modes can be
derived from the transversal Helmoltz’s equation for the axial electric field Ez:

( ) ( ) 0,, 22
T =+∇ ϕρϕρ zcz EkE (5.1)

where ∇ T is the transversal Laplacean operator and kc is the cut-off wave number. Eq.
(5.1) can be solved by separating
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Figure 5.1 The sectorial waveguide in cylindrical co-ordinates.

( ) ( ) ( )ϕρϕρ Φ= PE z , (5.2)

which leads to two differential equations:
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The solutions to (5.3) are known to be
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where Jν and Yν are Bessel functions of the first and second kind and order ν. This is
the standard solution for a circularly cylindrical waveguide, see e.g. p.108 in [Collin,
1966]. Because the functions must always obtain finite values, it follows that D = 0,
because ( ) −∞ → →0xxYν . If the boundary condition of the sectorial waveguide that

Ez = 0 on all metal walls is now applied, the flat walls give
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where n is an integer: n = 1, 2, 3, ... . Also n = 0 fulfils the boundary condition, but
leads to zero fields and is therefore an unphysical solution. Now ν is not necessarily
an integer, as one is used to from the solutions of wave modes in ordinary circular
waveguides. On the curved wall the boundary condition gives
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where pνm is the m:th zero of the Bessel function (i.e. m is an integer, m = 1, 2, 3, ...)
of the first kind and order ν. The cut-off wave number is now

a

p
k m

mc
ν

ν =, (5.7)

and the cut-off frequency is

a

pc
f m

mc π
ν

ν 2, = (5.8)

The field equations for the TMνm modes in a sectorial waveguide have the same shape
as in an ordinary circular waveguide, but with the values for ν and pνm from above:
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5.2.2 TE Modes in Sectorial Waveguides

For TE modes the axial electric field is zero (Ez = 0). The waveguide modes can be
derived from the transversal Helmoltz’s equation for the axial magnetic field Hz:
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( ) ( ) 0,, 22
T =+∇ ϕρϕρ zcz HkH (5.11)

This is the same differential equation for Hz as Eq. (5.1) for Ez. The solutions are
therefore also the same:

( ) ( )
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The boundary condition is that the tangential electric field is zero on the metal walls.
Before it can be applied, the transverse electric field must be calculated:

( )ϕρ ,ˆ T zzT HE ∇×= u (5.13)
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The transverse electric field is now
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Again D = 0 because the fields must receive finite values. Applying the boundary
condition on the flat walls, i.e. Eρ = 0, (ϕ = 0, ϕ = ϕ0), gives
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where n is an integer: n = 0, 1, 2, 3, … . This time n = 0 is also a possible solution.
Again ν does not have to be an integer. On the curved wall the boundary condition
gives
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where mpν′ is the m:th zero of the derivative of the Bessel function (i.e. m is an integer,

m = 1, 2, 3, ...) of the first kind and order ν. The cut-off frequency for the TEνm mode
in a sectorial waveguide is now

a

pc
f m

c π
ν

2

′
= (5.18)

The field equations for the TEνm modes in a sectorial waveguide have the same shape
as in an ordinary circular waveguide, but with the values for ν and mpν′ from above:
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The values for k and Zw are given by Eq. (5.10).

5.2.3 Values of mpν and mpν′  for Waveguide Modes in Sectorial Waveguides

Because ν depends on the sector angle ϕ0 for all n ≠ 0, the values of mpν and mpν′ will

also depend on the sector angle. No comprehensive table of values can therefore be
given, but typical and useful examples. Table 5.1 gives mpν and mpν′  values for ν
values corresponding to cases, where the sector angle is an even fraction of 2π (i.e. the
cylinder has been divided into an even number of sectors) and n = 1, or an arbitrary
sector when n = 0. For n ≥ 2, ν can be calculated from Eq. (5.5) or (5.16) and mpν and

mpν′  looked up in Table 5.1 ignoring the two first columns, or approximately from the

graphs in Figure 5.2, or calculated using the approximate polynomials given by Eq.
(5.21) and Table 5.3. Table 5.2 gives the values for ordinary circular waveguides for
comparison. It is interesting to note that for a sector with ϕ0 = 2π, which is a
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Table 5.1 Values of mpν and mpν′ in sectorial waveguides for various values of ν. The given ϕ0

and corresponding number of sectors in a circle are valid only if n = 1, see Eqs. (5.5)
and (5.16). The values were calculated with Matlab and checked using tables in
[Abramowitz and Stegun, 1972].

mνTM mνTENo. of sectors
in a circle
when n = 1

ϕ0 ν
1νp 2νp 3νp 1νp′ 2νp′ 3νp′

Any (n = 0) Any 0 - - - 3.832 7.016 10.174
1 2π 0.5 π 2π 3π 1.1656 4.604 7.790
2 π 1 3.832 7.016 10.174 1.8412 5.331 8.536
4 π/2 2 5.135 8.417 11.620 3.054 6.706 9.970
6 π/3 3 6.380 9.761 13.015 4.201 8.015 11.346
8 π/4 4 7.588 11.065 14.372 5.318 9.282 12.682

Table 5.2 Values for nmp  and nmp′  for ordinary circular waveguide, e.g. [Collin, 1966].

nmTM nmTE
n

1np 2np 3np 1np′ 2np′ 3np′

0 2.405 5.520 8.654 3.832 7.016 10.174
1 3.832 7.016 10.174 1.8412 5.331 8.536
2 5.135 8.417 11.620 3.054 6.706 9.970

Figure 5.2 Values of mpν and mpν′ in sectorial waveguides for arbitrary values of ν. The values

with first index “0” correspond to n = 0. The graphs are based on Table 5.1.
Approximations for the graphs are given by Eq. (5.21) and Table 5.3.
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Figure 5.3 A qualitative representation of the electric field of three special cases of the same
mode ( )1,1 =′ npν  for ϕ0 = 2π, π, and π/2.

cylindrical waveguide with a fin stretching from the wall to the centre of the
waveguide, the lowest cut-off frequency is lower than in the waveguide without the
fin. The cut-off frequency of TE½1 in the waveguide with the fin is 63.3 % of the cut-
off frequency of TE11 in the ordinary waveguide. For a sector with ϕ0 = π, i.e.
semicircularly cylindrical waveguide, the cut-off frequency is the same as in the full
waveguide and the lowest mode is TE11 in both cases. The mode in the semicircular
waveguide is half of the mode in the circular waveguide cut along the symmetry plane
perpendicular to the electric field. One can think of TE½1 in the waveguide with the
fin as being formed from TE11 in the semicircular waveguide by stretching it over 2π,
indeed any mode with 1νp′  stretched or squeezed to occupy ϕ0. Because there is a

stepless transition, when ϕ0 is changed, modes with the same n and m values should
be regarded as the same mode even though the index ν changes with ϕ0. Figure 5.3
shows qualitatively the shape of the electric field of TE½1 in a waveguide with a fin,
TE11 in a semicircular waveguide and TE21 in a π/2 sector, all which are special cases
of the same mode for different ϕ0.

Approximate polynomials of the form

2νν cbap ++= (5.21)

have been fitted to the values in Table 5.1 using the command polyfit in the program
Matlab. The values for a, b, and c are given in Table 5.3. The largest deviations

Table 5.3 The constants for the polynomials of the form given by Eq. (5.21) approximating the
p values in sectorial waveguide. The polynomials are valid up to ν = 4.

a b c

1νp 2.4579 1.3936 -0.0280

2νp 5.5508 1.4868 -0.0272

3νp 8.6732 1.5211 -0.0242

1νp′ 0.5218 1.3330 -0.0339

2νp′ 3.8811 1.4732 -0.0309

3νp′ 7.0415 1.5170 -0.0269

TE½1 TE11 TE21
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between the polynomials and the values in Table 5.1 is 1.22 % (for 12
1p′ ) and 1.1 %

(for 11p′ ). The mean deviation (i.e. the arithmetic mean of the deviations) is 0.15 %.

5.3 Semisectorial Waveguides

For the derivation of the waveguide modes in semisectorial waveguides the same
cylindrical co-ordinates (ρ, ϕ, z) will be used as for sectorial waveguides. A picture of
a semisectorial waveguide is shown in Fig. 5.4. The sector angle is ϕ0, the outer
(larger) radius is a, and the inner (smaller) radius is b. Metal walls are where ρ = a
(for all ϕ), ρ = b (for all ϕ), ϕ = 0 (for all ρ), and ϕ = ϕ0 (for all ρ).

Figure 5.4 A semisectorial waveguide in cylindrical co-ordinates.

5.3.1 TM Modes in Semisectorial Waveguides

Solving the wave modes in semisectorial waveguides follows the same path as for
sectorial waveguides. The difference comes in, when applying the boundary
conditions. The general solution given in Eqs.(5.2) and (5.4) for the axial electric field
Ez therefore applies also to semisectorial waveguides:

( ) ( ) ( )ϕρϕρ Φ= PE z , (5.22)

( )
( ) ( ) ( )ρρρ

νϕνϕϕ

νν cc kYDkJCP

BA

+=
+=Φ sincos

(5.23)

In this case, however, D ≠ 0 because the waveguide does not extend to ρ = 0. The fact
that Yν approaches infinity, when the argument approaches zero, is therefore no
problem for the semisectorial waveguides, as it was for the sectorial waveguides. The
boundary condition for the semisectorial waveguide is that Ez = 0 on all metal walls.
Applied on the flat walls it gives exactly as for sectorial waveguide that

b

aϕ

z
ρϕ0
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where n is an integer: n = 1, 2, 3, ... . Also n = 0 fulfils the boundary condition, but
leads to zero fields and is therefore an unphysical solution. Again ν is not necessarily
an integer. On the curved walls the boundary condition is

( ) 0, == baEz ρ (5.25)

which leads to

( ) ( )
( ) ( ) 0

0

=+
=+

bkYDbkJC

akYDakJC

cc

cc

νν

νν (5.26)

This system of equations can not be solved in closed form, except in the special case,
when ν = ½ (see Sec. 5.3.3). By slight manipulation (5.26) turns into

( )
( )

( )
( ) 01 =−⋅

akY

bkY

bkJ

akJ

c

c

c

c

ν

ν

ν

ν (5.27)

which can be solved numerically. Again there is an infinite number of solutions pνm =
kca for any ratio of the radii r = b/a. This time pνm denotes the m:th solution to (5.27)
and is generally not equal to a zero of any specific Bessel function. From (5.26):

( )
( )m

m
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C

D
s
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νν−== (5.28)

The field equations for the TMνm modes in semisectorial waveguides are now
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The values of βνm, k, Ze,νm, and Zw are given by Eq. (5.10).

5.3.2 TE Modes in Semisectorial Waveguides

Solving the TE modes in semisectorial waveguides follows the same path as for
sectorial waveguides. The solution for ET is given by Eqs. (5.14) and (5.15):

( ) ( ) ( )[ ]

( )( )νϕννϕνρ
ϕ

ρρϕ
ρ

ϕρρ

νν

ρϕ

cossin
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ˆˆ
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(5.30)

The boundary condition on the flat walls is Eρ(ϕ = 0, ϕ = ϕ0) = 0, which gives

( )
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nE
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=⇒=⇒=⇒==
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(5.31)

where n is an integer: n = 0, 1, 2, 3, ... . This time n = 0 is also a solution,
corresponding to modes with fields without dependence on ϕ. Because always ν = 0
when n = 0, independent of ϕ0, the wave mode solution, including the cut-off
frequency, is also independent of the sector angle ϕ0.

On the curved walls the boundary condition is

( ) 0, == baE ρϕ (5.32)

which applied on (5.30) gives

( ) ( )
( ) ( ) 0

0

=′+′
=′+′

bkYDbkJC
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νν

νν (5.33)

Eq. (5.33) can not be solved in closed form. By slight manipulation it turns into
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which can be solved numerically. Again there is an infinite number of solutions
akp cm =′ν  for any ratio of the radii r = b/a. This time mpν′  denotes the m:th solution to

(5.34) and is generally not equal to a zero of a derivative of any specific Bessel
function. When the solution mpν′  has been found, s = D/C is found by solving (5.33):
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The field equations for the TEνm modes in semisectorial waveguides are now:

{ }

{ }

{ }

ρνϕ

ϕνρ

ν
ν

ν
ν

ν
ν

ν
ϕ

ν
ν

ν
ν

ν
ν

νν
ρ

ν
ν

ν
ν

ν

βνϕρρ
ρ
νβ

βνϕρρβ

βνϕρρ

HZE

HZE

E

zj
a

p
sY

a

p
JH

k

j
H

zj
a

p
Ys

a

p
JH

ak

pj
H

zj
a

p
sY

a

p
JHH

mh

mh

z

m
mm

mc

m

m
mm

mc

mm

m
mm

z

,

,

02
,

02
,

0

0

expsin

expcos

expcos

−=

=
=

−⋅⋅












 ′

+




 ′

=

−⋅⋅












 ′

′+




 ′

′
′−

=

−⋅⋅












 ′

+




 ′

=

(5.36)

where k and Zw are given by Eq. (5.10), and βνm and Zh,νm are given by Eq. (5.20).

5.3.3 Values for mpν and mpν′ for Waveguide Modes in Semisectorial Waveguides

As for sectorial waveguides, mpν and mpν′ depend on the sector angle ϕ0, for all n ≠ 0.

For semisectorial waveguides they also depend on the ratio of radii r = b/a, i.e. the
problem has got one more dimension. Actually sectorial waveguides are a special case
of semisectorial waveguides with r = 0. No comprehensive table of values can be
given, but typical and useful examples. The tables below give mpν and mpν′  values for

different values of r. Each table is for one value of ν, corresponding to one line in
Table 5.1. The first line (r = 0) in each table is therefore the same as one line in Table
5.1. For n = 0 (only TE modes) the values are valid for any ϕ0. For n = 1, the ν values
correspond to cases, where the sector angle is an even fraction of 2π (i.e. the cylinder
has been divided into an even number of sectors: 1, 2, 4, 6, or 8). For modes with n ≥
2, ν can be calculated from (5.24) or (5.31) and mpν and mpν′  looked up in Tables 5.4-

5.9, or approximately from the graphs in Figs. 5.5 - 5.10, or calculated using the
approximate polynomials given by (5.41) and Table 5.10. It is also possible to solve
(5.27) or (5.34) using a mathematical computer program, as was done in this work.

For some special cases of ν = l + ½, where l is an integer, there may be exact
solutions to (5.27). For example from Ch. 11 in [Arfken, 1970]:

( ) ( )
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where j and y are so called spherical Bessel functions of the first and second kind. For
integer order they have exact representations given by trigonometric functions. For
example for l = 0 [Arfken, 1970]:

( )

( )
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x
xy
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x
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cos

sin

0

0

−=

=
(5.38)

If Eqs. (5.37) and (5.38) are substituted into Eq. (5.27), the result is

01
tan

tan
=−

bk

ak

c

c (5.39)

The solutions to this equation are

r

m

ba

am
akp cm −

=
−

==
12

1

ππ
(5.40)

For j and y for higher values of l, see e.g. [Arfken, 1970]. Exact solutions to (5.27)
may be found also for these special cases, which correspond to ν = integer + ½.

It is worth noting that because sectorial waveguides are special cases of
semisectorial waveguides, when r → 0, the mpν and mpν′  values approach those given

for sectorial waveguides. Because these are the zeros of νJ  and νJ ′ , also s → 0. This

means that there is a stepless transition from sectorial to semisectorial modes. In the
discussion on sectorial waveguides, all modes with the same n and m values were
called the same mode, because of the stepless transition with changing ϕ0. Because the
transition now is stepless both as a function of ϕ0 and r, all sectorial and semisectorial
modes with the same n and m values can be regarded as the same mode.

The mpν and mpν′  values for the semisectorial waveguides have been solved

numerically from (5.27) and (5.34) in the program Maple V using the command
fsolve. As a check about 20 % of the values have also been solved by numerical
iteration in Matlab, which gave exactly the same results.

To help obtaining approximate p values as a function of r for the values of ν
and m used in Tables 5.4 – 5.9, polynomials of the 5th degree have been fitted to the
calculated points. The graphs in Figs. 5.5 – 5.10 are given by these polynomials. As
can be seen, the fit is not perfect, but good enough for many purposes. Especially a
hump that is not real can be seen for low values of r, and ν = 2, 3, and 4. The largest
deviations between the polynomials and the solved points are seen in 43p′ , where three

points deviate by 1.5 %, 1.2 %, and 1.1 %, and in 33p′ , where one point deviates by

1.3 %. All other points deviate <1 %.
If p values are needed for other values of ν than 0, ½, 1, 2, 3, and 4, they can

be approximately interpolated from Figs. 5.5 – 5.10 or Tables 5.4 – 5.9, or they can be
solved numerically from Eqs. (5.27) or (5.34).



74

Table 5.4 Values of p ′  for TE modes in semisectorial waveguides for ν = 0 (n = 0). The sector

angle ϕ0 may obtain any value. The values were calculated with Maple.

m0TE
r

01p′ 02p′ 03p′

0.00 3.832 7.016 10.174
0.10 3.941 7.331 10.748
0.20 4.236 8.055 11.926
0.30 4.706 9.104 13.553
0.40 5.391 10.558 15.766
0.50 6.393 12.625 18.889
0.60 7.930 15.747 23.588
0.70 10.522 20.969 31.433
0.80 15.737 31.431 47.134

Figure 5.5 Values of p ′  for TE modes in semisectorial waveguides for ν = 0 (n = 0, the sector

angle ϕ0 may obtain any value) from Table 5.4. The graphs are given by the
polynomials in Eq. (5.41) and Table 5.10. The asterisk denotes solved values.
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Table 5.5 Values of p and p ′  for TM and TE modes in semisectorial waveguides for ν = 0.5.

The values for the TE modes were calculated with Maple, and the values for the TM
modes from Eq. (5.40).

m2
1TM m2

1TE
r

12
1p 22

1p 32
1p 12

1p′ 22
1p′ 32

1p′

0.00 π 2π 3π 1.1656 4.604 7.790
0.10 3.491 6.981 10.472 1.0140 4.316 7.557
0.20 3.927 7.854 11.781 0.8973 4.429 8.149
0.30 4.488 8.976 13.464 0.8074 4.816 9.155
0.40 5.236 10.472 15.708 0.7366 5.459 10.589
0.50 6.283 12.566 18.850 0.6792 6.436 12.645
0.60 7.854 15.708 23.562 0.6316 7.958 15.761
0.70 10.472 20.944 31.416 0.5913 10.539 20.978
0.80 15.708 31.416 47.124 0.5567 15.748 31.436
0.90 0.5266
0.99 0.5025

Figure 5.6 Values of p and p ′  for ν = ½ from Table 5.5 for TM and TE modes in semisectorial

waveguides. The graphs for the TE modes are given by the polynomials in Eq. (5.41)
and Table 5.10, and the graphs for the TM modes are given by the exact equation
(5.40). The asterisks denote solved values.
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Table 5.6 Values of p and p ′  for TM and TE modes in semisectorial waveguides for ν = 1.

The values were calculated with Maple.

m1TM m1TE
r

11p 12p 13p 11p′ 12p′ 13p′

0.00 3.832 7.016 10.174 1.8412 5.331 8.536
0.10 3.941 7.331 10.748 1.8035 5.137 8.199
0.20 4.236 8.055 11.926 1.7051 4.961 8.433
0.30 4.706 9.104 13.553 1.5821 5.137 9.308
0.40 5.391 10.558 15.766 1.4618 5.659 10.683
0.50 6.393 12.625 18.889 1.3547 6.565 12.706
0.60 7.930 15.747 23.588 1.2621 8.041 15.801
0.70 10.522 20.969 31.433 1.1824 10.592 21.004
0.80 15.737 31.431 47.134 1.1134 15.778 31.451
0.90 1.0531
0.99 1.0050

Figure 5.7 Values of p and p ′  for ν = 1 from Table 5.6 for TM and TE modes in semisectorial

waveguides. The graphs are given by the polynomials in Eq. (5.41) and Table 5.10.
The asterisks and the rings denote solved values.
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Table 5.7 Values of p and p ′  for TM and TE modes in semisectorial waveguides for ν = 2.

The values were calculated with Maple.

m2TM m2TE
r

21p 22p 23p 21p′ 22p′ 23p′

0.00 5.135 8.417 11.620 3.054 6.706 9.970
0.10 5.142 8.457 11.738 3.053 6.687 9.887
0.20 5.222 8.804 12.494 3.035 6.495 9.549
0.30 5.470 9.600 13.905 2.968 6.274 9.918
0.40 5.966 10.894 15.999 2.842 6.416 11.056
0.50 6.814 12.856 19.046 2.681 7.063 12.949
0.60 8.227 15.904 23.694 2.516 8.367 15.961
0.70 10.720 21.071 31.501 2.363 10.799 21.106
0.80 15.855 31.490 47.174 2.226 15.898 31.510
0.90 2.106
0.99 2.010

Figure 5.8 Values of p and p ′  for ν = 2 from Table 5.7 for TM and TE modes in semisectorial

waveguides. The graphs are given by the polynomials in Eq. (5.41) and Table 5.10.
The asterisks and the rings denote solved values.
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Table 5.8 Values of p and p ′  for TM and TE modes in semisectorial waveguides for ν = 3.

The values were calculated with Maple.

m3TM m3TE
r

31p 32p 33p 31p′ 32p′ 33p ′

0.00 6.380 9.761 13.015 4.201 8.015 11.346
0.10 6.380 9.764 13.030 4.201 8.014 11.338
0.20 6.394 9.874 13.381 4.199 7.964 11.106
0.30 6.494 10.371 14.477 4.180 7.721 10.920
0.40 6.780 11.435 16.380 4.108 7.535 11.666
0.50 7.458 13.232 19.304 3.958 7.840 13.347
0.60 8.699 16.161 23.868 3.754 8.889 16.226
0.70 11.041 21.239 31.614 3.540 11.136 21.276
0.80 16.050 31.589 47.240 3.339 16.096 31.610
0.90 3.159
0.99 3.015

Figure 5.9 Values of p and p ′  for ν = 3 from Table 5.8 for TM and TE modes in semisectorial

waveguides. The graphs are given by the polynomials in Eq. (5.41) and Table 5.10.
The asterisks and the rings denote solved values.
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Table 5.9 Values of p and p ′  for TM and TE modes in semisectorial waveguides for ν = 4. 

The values were calculated with Maple.

m4TM m4TE
r

41p 42p 43p 41p′ 42p′ 43p′

0.00 7.588 11.065 14.372 5.318 9.282 12.682
0.10 7.588 11.065 14.374 5.317 9.282 12.681
0.20 7.590 11.091 14.497 5.317 9.273 12.610
0.30 7.623 11.348 15.245 5.313 9.152 12.241
0.40 7.790 12.152 16.901 5.282 8.852 12.501
0.50 8.267 13.742 19.662 5.175 8.836 13.892
0.60 9.317 16.515 24.110 4.970 9.582 16.590
0.70 11.476 21.472 31.771 4.711 11.594 21.512
0.80 16.318 31.727 47.332 4.451 16.369 31.748
0.90 4.212
0.99 4.020

Figure 5.10 Values of p and p ′  for ν = 4 from Table 5.9 for TM and TE modes in semisectorial

waveguides. The graphs are given by the polynomials in Eq. (5.41) and Table 5.10.
The asterisks and the rings denote solved values.
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The fitted polynomials are of the form

5432 rfrerdrcrbap +++++= (5.41)

The values of the constants are given in Table 5.10 together with information on the
largest and the mean deviation between the polynomials and the solved points. The
polynomials are valid within the range of r values in Tables 5.4 – 5.9, i.e. 0 ≤ r ≤ 1 for

Table 5.10a The values of the constants for the polynomials given by Eq. (5.41) approximating

the mpν′ values as a function of r for the TEνm modes in semisectorial waveguides.

dev is the mean deviation between the polynomial and the solved points in %, and DE
is the maximum deviation in %. See the limitations of validity in the text.

ν m a b c d e f dev DE
0 1 3.8258 2.2190 -18.4344 124.7267 -235.4021 166.2821 0.37 0.69
0 2 7.0031 5.0608 -31.5679 232.0675 -449.9913 323.6859 0.40 0.77
0 3 10.1542 8.6492 -46.9061 341.2466 -663.9598 480.0321 0.41 0.80
½ 1 1.1657 -1.7351 2.3644 -2.1955 1.1584 -0.2579 0.01 0.03
½ 2 4.5971 -3.3865 1.9980 83.7038 -193.5305 149.4963 0.32 0.67
½ 3 7.7734 -3.5513 11.2061 128.5329 -331.8755 272.9520 0.40 0.94
1 1 1.8412 0.1122 -5.9066 11.4074 -9.3110 2.8576 0.03 0.08
1 2 5.3289 0.5806 -42.7088 214.3737 -352.0887 219.0243 0.17 0.42
1 3 8.5283 -3.3756 -15.4337 226.6582 -465.2449 335.7024 0.27 0.55
2 1 3.0527 -0.0135 1.5285 -12.6944 16.9224 -6.8010 0.11 0.26
2 2 6.6935 5.2107 -66.6865 229.7466 -325.1189 193.0019 0.43 0.89
2 3 9.9667 7.2979 -125.9934 546.1984 -850.4198 503.5797 0.13 0.32
3 1 4.2036 -0.5705 6.5129 -22.0742 22.3624 -7.4328 0.12 0.22
3 2 8.0027 2.6295 -26.0537 69.0398 -101.5909 88.2372 0.48 0.96
3 3 11.3242 10.5995 -140.4011 528.0736 -772.4738 450.6731 0.49 1.30
4 1 5.3224 -0.6332 5.8051 -14.9819 9.8821 -1.3839 0.18 0.31
4 2 9.2774 -0.0716 5.8720 -33.6643 16.7978 41.9231 0.28 0.71
4 3 12.6503 9.0704 -104.9654 358.7643 -509.5047 317.3718 0.65 1.49

Table 5.10b The values of the constants for the polynomials given by Eq. (5.41) approximating
the mpν values as a function of r for the TMνm modes in semisectorial waveguides.

ν m a b c d e f dev DE
½ m Equation (5.40)
1 1 3.8258 2.2190 -18.4344 124.7267 -235.4021 166.2821 0.37 0.69
1 2 7.0031 5.0608 -31.5679 232.0675 -449.9913 323.6859 0.40 0.77
1 3 10.1542 8.6492 -46.9061 341.2466 -663.9598 480.0321 0.41 0.81
2 1 5.1292 2.2059 -31.7659 158.9642 -271.7745 180.7051 0.30 0.54
2 2 8.4066 3.2939 -48.2309 294.5516 -531.1946 360.3205 0.32 0.54
2 3 11.6034 3.8866 -49.7598 377.7850 -722.7681 509.3590 0.35 0.60
3 1 6.3726 2.5746 -34.8753 152.3067 -253.3392 170.0321 0.33 0.67
3 2 9.7499 4.9455 -73.5484 356.3934 -594.2279 384.1026 0.30 0.54
3 3 13.0016 5.5561 -89.0212 497.3303 -868.0012 572.6603 0.28 0.50
4 1 7.5814 2.2048 -29.2508 125.9388 -219.2279 155.6410 0.27 0.53
4 2 11.0507 5.7777 -80.1037 350.4768 -566.4190 365.8013 0.34 0.67
4 3 14.3560 7.9462 -119.2441 569.3872 -939.3969 598.6538 0.29 0.54
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1νp′ (ν ≠ 0), and 0 ≤ r ≤ 0.8 for all other wave modes. For large values of r, the limiting

values given in Sec. 5.4.2 can be used. It should also be mentioned that

mm pp 10 =′ (5.42)

Because the TE0m modes exist independent of ϕ0, they also exist at the values of ϕ0 for
which the TM1m modes exist. In these cases the TE0m and TM1m modes are degenerate
modes. Eq. (5.24) gives that ν = 1, i.e. the modes are degenerate, for ϕ0 = π & n = 1,
and ϕ0 = 2π & n = 2.

5.4 Discussion on Sectorial and Semisectorial Waveguides

5.4.1 Field Distribution and fc(r) of the Waveguide Modes

The distribution of the fields of the waveguide modes in sectorial waveguides shows
some interesting features. Intuitively one would expect the fields to occupy the wider
space closer to the periphery and escape from the tip, especially for narrow sector
angles. This is also the case for most of the modes, as can be seen by considering that
the narrower the sector becomes, the larger becomes ν. It is also large for large values
of n, which correspond to cases where the basic field pattern (of a wave mode with n
= 1) repeats n times over the sector, so that one pattern occupies only a narrow sector.
From Eqs. (5.9) and (5.19) it is seen that the field distribution along ρ is then

Figure 5.11 J½ and J4 from 0 to their first zero (p), normalized so that the maximum value is
1.The figure illustrates that modes with n ≠ 0 have little energy in the tip of the sector
in a narrow sectorial waveguide.
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described by Bessel functions of high order or their derivatives. The higher the order
of a Bessel function, the slower the function rises in the beginning. This also applies
to its derivative, which for a Bessel function of order ν is a linear combination of the
Bessel functions of order ν + 1 and ν − 1:

( )112
1

+− −=′ ννν JJJ  (5.43)

As an example Figure 5.11 shows J½ and J4 from 0 to their first zero, normalized so
that the maximum value is 1. J4 clearly rises slower than J½. This means that the larger
ν becomes, the more the fields are concentrated close to the periphery and the less in
the centre tip of the sector.

Because the wave modes have little energy in the tip of a narrow sector, it is
no surprise that cutting the tip off and turning the waveguide into a semisectorial
waveguide, has little effect on the cut-off frequencies of the modes as long as r is
small. This is seen in Fig. 5.10 (ν = 4), where the graphs have a longer horizontal part
in the beginning, than the graphs in Fig. 5.6 (ν = ½).

Taking a closer look at Eqs. (5.9) and (5.19), reveals that Eϕ and Hρ of the TM
modes and Hϕ and Eρ of the TE modes also depend on 1/ρ, which goes to infinity,
when ρ → 0. However, for ν > 1 (ϕ < π, n ≥ 1) Jν(ρ) decreases faster than 1/ρ
increases, when ρ → 0. Therefore the discussion above holds and all fields are zero in
the tip of a sector, when the sector angle is smaller than π. On the other hand, for large
sectors (ϕ > π) the field strength is theoretically infinite at the sector tip for modes
with n = 1.

There is one exception to the discussion above, the TE0m modes. These modes
have a field structure that is independent on ϕ, i.e. they have circular symmetry. They
also exist in circular waveguides. In a narrow sectorial waveguide the fields look like
a piece of cake cut out of the fields in a circular waveguide. The electric field lines
extend from one flat wall to the other, and the magnetic field lines are loops in the
axial/radial plane. The axial magnetic field Hz has a maximum in the tip of the sector.
Therefore these modes are affected by increasing r already from 0. In Fig. 5.5 there is
no horizontal part in the graphs at small values of r.

5.4.2 Limiting Values for Semisectorial Waveguide Modes

It was mentioned above that sectorial waveguides are special cases of semisectorial
waveguides (r = 0). Therefore the solutions of Eqs. (5.27) and (5.34) approach the
solutions of Eqs. (5.6) and (5.17), when r → 0.

When r → 1, the semisectorial waveguide turns into a low rectangular
waveguide that is bent. When the radius of curvature is large compared to the height
of this waveguide, the fact that the waveguide is bent has no effect on the cut-off
frequency. The cut-off frequency of a semisectorial waveguide is therefore expected to
approach that of a rectangular waveguide with the broad wall equal to the length of
the arc of the sector

aA 0ϕ= (5.44)
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 and the narrow wall equal to the difference in radii

baB −= (5.45)

The cut-off wave number in a rectangular waveguide is (both TE and TM modes):
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The lowest mode in a rectangular waveguide is TE10. For the rectangular waveguide
being the limit for a semisectorial waveguide with ϕ0 = 2π the limiting value

( )
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kcr 2
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TE
0

10 ==
ϕ
π

(5.47)

is obtained. From Tables 5.4 - 5.9 it can be seen that the lowest semisectorial mode is
TE½1, and from Table 5.5 that the limiting value is: 5.01

12
1 →′ →rp . This then gives

for kc
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2
1 =

′
= (5.48)

Equation (5.48) gave the same result as (5.47), as expected. It is, however, interesting
to note that the rectangular mode and the semisectorial mode have different m indexes
(m = 0 for the rectangular mode and m = 1 for the semisectorial mode). When looking
at Fig. 5.3, it is easy to understand that when r increases, the electrical field lines will
extend from the inner curved surface to the outer. At the limit the field will lack
structure in the radial direction and therefore naturally turn into the rectangular mode
with m = 0.

Studying Tables 5.4 -  5.9 again shows that generally for m = 1, ν ≠ 0:

νν →′ →1
1

rp (5.49)

thus giving

( )
a

n
k r

c
0

1
1TE

ϕ
π

ν → → (5.50)

which is the same as for the rectangular modes with m = 0. From Tables 5.5 – 5.9 it is
seen that the 1νp′  (ν ≠ 0) values are monotonously falling with increasing r. The

lowest cut-off frequency in a semisectorial waveguide is therefore lower than in the
sectorial waveguide with the same sector angle, except for narrow angles and small r,
when TE01 is the lowest mode and increasing with r. This will be studied further in
Ch. 7, when dealing with end grids of cavity resonators.
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The cut-off frequency of the semisectorial TE modes with m ≥ 2, or m = 1 and
ν = 0, and all TM modes goes to infinity at the limit, just as the rectangular modes
with m ≥ 1. A comparison of results given by Eq. (5.46) and the values in Tables 5.4 –
5.9 of the modes mentioned above shows that for large values of r, the semisectorial
modes approach the respective rectangular modes, as expected. The cut-off wave
numbers are then solely determined by m, r and a, independent on ν, but such that the
m value is higher by 1 for the semisectorial TE modes, except for modes with ν = 0.
The fact that the semisectorial TE modes have an m value higher by 1, can be
understood so that when r goes from 0 to 1, they loose one period of the structure of
the field in the direction of ρ, as was seen in the discussion of TE½1. This does not
apply to TE0m modes, because they have no electric field perpendicular to the curved
walls.
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6 CYLINDRICAL FIN RESONATOR SENSOR

6.1 Introduction

In Ch. 4 it was shown that a resonator sensor for measuring a flow of material (MUT)
in a pipe can be realized with an open structure and still be nonradiating, when the
resonant frequency is below the cut-off frequency of the pipe. In Ch.5 it was shown
that a sectorial waveguide with a sector angle of 2π, i.e. a cylindrical pipe with a fin
extending from the wall to the centreline, has a cut-off frequency, which is lower than
the cut-off frequency of the pipe without the fin. Mounting a fin to the wall of the pipe
therefore provides a simple and convenient means of implementing a microwave
sensor, which will here be called a cylindrical fin resonator (CFR) sensor, in a pipe.
The advantages are minimal obstruction to the flow and low manufacturing cost. The
CFR sensor was developed by the author at Roxar [Nyfors and Bringsvor, 1998]. This
chapter is devoted to the design of CFR sensors.

6.2 Resonance Modes in CFR Sensors

A CFR sensor, with the fin extending from the wall to the centre of the pipe, is a piece
of sectorial waveguide with a sector angle of 2π, and open ends. The resonance modes
are based on the waveguide modes. The cut-off frequencies in vacuum of the TMνm

and TEνm modes in a sectorial waveguide are given by Eqs. (5.8) and  (5.18):

TM:
a

pc
f m

mc π
ν

ν 2, = (6.1)

TE:
a

pc
f m

mc π
ν

ν 2,

′
= (6.2)

where c is the speed of light and a is the radius of the pipe. The p-values are given by
Table 5.1, and ν by Eq. (5.5) or (5.16):

0ϕ
πν n= (6.3)

Because ϕ0 = 2π in this case, and the possible values of n are n = 1, 2, 3, … for the
TM modes, and n = 0, 1, 2, … for the TE modes, possible values of ν are ν = ½, 1,
1½, … for the TM modes, and ν = 0, ½, 1, … for the TE modes. Eqs. (6.1) and (6.2)
also apply for the cut-off frequencies of the pipe outside the fin (ordinary cylindrical
waveguide), but with the values for nmp  or nmp′  from Table 5.2. The lowest mode in

the cylindrical waveguide is the TE11 mode with 841.111 =′p , which also exists in the
sectorial waveguide. Expressing the cut-off frequencies of the modes in the sectorial
waveguide (the pipe with the fin) relative to that of the TE11 mode gives:
TE½1(63.3%), TE11(100%), TE3/2,1(132.8%), TE21(165.9%), and TM½1(170.6%).
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The resonant frequency in the CFR sensor of a resonance mode that is based
on one of the waveguide modes, is given by Eq. (3.50):

2
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22
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L

l

a

pc
f mlr πν (6.4)

where p stands for mpν or mpν′ . Because of the open ends, TEνml modes with l ≥ 0 and

TMνml modes with l ≥ 1 are supported, as described in Sec. 3.3. The lowest resonance
mode is therefore TE½10, with a resonant frequency that is independent of the length of
the fin. Because of the fringing field in the open ends, the resonant frequency will,
however, be slightly dependent of the length of the fin. This will be treated in more
detail in Sec. 6.4.2. Figure 6.1 shows the order of the resonances as a function of the
length of the fin. The end effects have not been taken into account and the frequencies
are normalized to the cut-off frequency of the pipe without the fin (TE11). The modes
TE11 and TE21 also exist in the pipe without the fin. They are therefore not reflected
from the ends of the fin and have no resonance modes with l ≥ 1. All modes with a
relative resonant frequency fr > 1 (see Fig. 6.1) will have a poor quality factor, because
the pipe provides no isolation. The quality factor depends on how well the resonance
mode couples to modes in the pipe.

Figure 6.1 The order of the resonances in a CFR sensor as a function of the length of the fin. The
resonant frequencies are normalized to the cut-off frequency of the pipe without the
fin (TE11). The end effects have not been taken into account. Modes are shown up to
index l = 3.
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Figure 6.2 The electric field configuration of the lowest modes in a sectorial waveguide with a
sector angle of 2π. The modes TE11 and TE21 also exist in an ordinary cylindrical
waveguide without the fin.

The only mode that in practice can be used for measuring purposes is the
TE½10. To avoid confusion of modes and influence of other modes on TE½10, when the
MUT is lossy and the peaks broad, it is desirable to have an as large distance to the
next mode as possible. From Fig. 6.1 it can be seen that the fin should be shorter
than 1.1 inner diameters. The next resonance mode is then TE110, which sees both the
sensor and the pipe outside the fin as a single long resonator. It has a resonant
frequency 1.58 times the frequency of TE½10. Figure 6.2 shows qualitatively the cross
section of the electric field configuration of the modes TE½1, TE11, TE3/2,1, and TE21.

6.3 Type and Location of Coupling Probes

Two probes are used because the power transmission method of measuring the
resonant frequency of the sensor is preferred (see Sec. 3.5). This is because of the
broad bandwidth required with completely filled sensors, and the desire to be able to
use FSA electronics (see Sec. 6.8.2) in low-cost versions of the sensor.

TE21

TE½1 TE11

TE3/2,1
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Figure 6.3 A probe configuration that gives good coupling to the TE½10 mode, but prevents
coupling to the next two modes (TE110 and TE½11) in a CFR sensor. The resulting
frequency response has a good separation between the used mode and other modes.

The used resonance mode (TE½10) has an electric field with a strong radial
component at the wall. It is therefore convenient to use coupling probes of the electric
type (see Sec. 3.7.3), because they are mechanically easier to implement than coupling
loops, and also easier to simulate (with HFSS, see Sec. 6.4) for finding the optimal
design.

The field distribution of TE½10 is even along the length axis of the fin. The
coupling is therefore not critical to the axial location of the probes. Of the next two
modes, TE½11 has field maxima in both ends of the fin and a null in the middle.
Locating at least one of the probes in the null in the middle therefore avoids coupling
to TE½11. The other of the next two modes, TE110, also has an even distribution along
the length axis, but a null along a line opposite to the fin. Locating at least one of the
probes in the null that is opposite to the fin therefore avoids coupling to TE110.
Locating the probes as shown in Fig. 6.3 avoids coupling to both TE110 and TE½11,
and gives good coupling to TE½10. A disadvantage is that the probes have different
strength of coupling. Generally, in cases of very strong asymmetry of coupling, the
resonance peak becomes both broad and low. Broad because one probe leaks, and
low, because the other probe has loose coupling, as is seen from Eqs. (3.27b) and
(3.14) with a large Qe1 and a small Qe2. With the configuration of Fig. 6.3 the probe
opposite to the fin is located in the field maximum, whereas (5.19) gives the relative
field strength at the location of the other probe as sin(π/4) = 0.707. This difference is
so small that it has no effect on the performance of the sensor. It only makes the
analysis of the simulated result (see below) slightly more complicated.

6.4 The Size and Shape of the Fin

The waveguide modes can be exactly solved, when the fin extends from the wall to
the centreline of the pipe, but not for other heights of the fin. It is also difficult to
calculate the end effects at the open ends, the effect of other shapes than straight ends,
and the effect of the length and thickness of the fin. The effect of the shape of the
probes on the frequency response and the height of the resonance peak are also
difficult to calculate. These design parameters have therefore been simulated with the
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Hewlett-Packard HFSS (High Frequency Structure Simulator) software, version 5.1
for PC.

6.4.1 The Height of the Fin

To find out the cut-off frequency as a function of the height of the fin for the mode
that is called TE½1, when the fin extends to the centre of the pipe, a waveguide model
was simulated with HFSS. The waveguide model had an inner diameter of 50 mm and
a length of 150 mm. The cylindrical pipe was divided into segments of 15o. A fin was
attached to the wall and the height of the fin was varied in consecutive simulations.

The length of the waveguide model was also varied to check that the chosen
length did not influence the results. This check confirmed that the length had no
influence on the deduced cut-off frequency.

The results of the simulations are shown in Figure 6.4. The asterisks are
simulated points and the rings are exactly calculated results for the cylindrical
waveguide without the fin, and the TE½1 mode for a fin extending to the centre of the
pipe. It can be seen that there is a good agreement between the simulated and the
calculated results.

The results are in accordance with the general properties of standard ridged
waveguides, where the ridge (or two oppositely mounted ridges) is used to lower the
cut-off frequency and increase the bandwidth.

Figure 6.4 Simulations with HFSS and calculations of the cut-off frequency of a cylindrical
waveguide with a fin of varying height.
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It is often desirable to have as little intrusive parts in the sensor as possible. To
minimize the intrusivity of the fin, a low fin can be used. However, as is seen in Fig.
6.4, the cut-off frequency (and hence also the resonant frequency) increases fast as the
height of the fin is decreased from reaching to the centreline, while the cut-off
frequency of the pipe is unchanged. Even though a probe configuration is used that
does not couple to TE110, the frequency response will be poorer because of the closer
distance to the next peaks. Because of the lower isolation provided by the pipe outside
the fin, the sensor will also be more sensitive to things outside the section with the fin.
(Definition of terminology: The sensor consists of a piece of sensor pipe with a fin
mounted to the wall. The fin may be shorter than the sensor pipe. For measuring a
flow of MUT the sensor is mounted in series with, i.e. between flanged ends of, a
process pipe). For example, if a sensor is mounted on a process pipe with a diameter
slightly different from that of the sensor pipe, e.g. because of a different pressure
rating, this will slightly affect the resonant frequency. To keep this effect below a
limit, the sensor pipe has to be made longer with a lower fin, i.e. the total length of the
sensor will have to be increased.

Using a fin that extends past the centreline increases the distance to TE110, thus
improving the frequency response. The frequency also becomes lower, which may be
desirable. The main disadvantage is that the electric field energy becomes more
concentrated in the narrow gap between the edge of the fin and the wall of the sensor
pipe. The sensitivity therefore becomes more unevenly distributed over the cross
section of the sensor. For most applications a fin extending to the centreline seems to
be a good compromise.

6.4.2 The Length of the Fin

Based on the simple theory of a sensor with exactly located open ends, the resonant
frequency of the TE½10 mode is independent of the length of the fin. In practice the
fringing field at the ends of the fin can be expected to cause some change in the
resonant frequency, especially for short fins, when a substantial part of the energy is in
the fringing field. To study this effect, a sensor model, which consisted of an open-
ended sensor pipe section with probes and a fin, was simulated with HFSS. The length
of the pipe was 150 mm, and the diameter 50 mm. The pipe was divided in segments
of 15o. The probes were located as indicated in Fig. 6.3, and the open ends of the pipe
were defined as radiation boundaries. The fin extended to the centreline, and the
length was varied in consecutive simulations from 7.5 mm to 75 mm.

The results of the simulations are shown in Fig. 6.5. Compared to the distance
in cut-off frequency between the waveguide modes TE½1 (2.226 GHz) and TE11 (3.516
GHz), the effect of the length of the fin is small. Whereas the cut-off frequency of
TE½1 is 63.3% of the cut-off frequency of TE11, the resonant frequency is 68.5% for a
fin length of 7.5 mm, 64.5% for 50 mm, and 63.9% for 75 mm.

A sensor with a fin that is 25 mm high and 7.5 mm long resembles the sensor
in Fig. 4.4, except that the sensor pipe in Fig. 4.4. is rectangular. The field
configuration resulting from the simulation also strongly resembles that of a
transversal quasi-TEM mode. The electric field is similar to that shown in Fig. 6.2 for
TE½1, and the magnetic field lines are loops around the fin, similar to the magnetic
field around the centre conductor in a λ/4 coaxial resonator. As for the sensor in Fig.
4.4, the coaxial model does not give the resonant frequency accurately. A λ/4
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Figure 6.5 The resonant frequency of a CFR sensor as a function of the length of the fin. The
data are the results from simulations with HFSS. The diameter of the pipe is 50 mm
and the height of the fin is 25 mm.

resonator that is 25 mm long, would have a resonant frequency of 3 GHz, which is
32.3% higher than the 2.267 GHz resulting from the simulation.

Considering that the length of the fin has a relatively small effect on the
resonant frequency, mainly other factors than the resonant frequency determine the
choice of the length of the fin. As was mentioned in Sec. 6.2, the length should be
shorter than 1.1 pipe inner diameters in order to achieve the largest possible distance
to the other modes. The simulations show that this distance becomes slightly smaller
for even shorter fins, but more important, the sensor becomes shorter, such that the
instantaneous volume of MUT affecting the measurement result is smaller. A longer
fin results in averaging over a larger volume, making the sensor less sensitive to
inhomogeneities. It therefore seems that a fin length of 1 pipe diameter (50 mm in the
case of the simulations) is a good choice.

6.4.3 The Shape of the Ends of the Fin

In applications, where the MUT contains solid components, a slanting front edge of
the fin may be desirable. The slanting edge can to some extent prevent clogging by
guiding the solid particles past the fin. In other applications, where various kinds of
build-up is a problem, the pipe system is sometimes cleaned with piston like tools
called pigs. Such a pig can not pass a CFR sensor with fixed intrusive parts. Part of a
solution may be a retractable, spring-loaded fin with slanting ends.
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To study the effect on the resonant frequency of slanting fin ends, simulations
were performed with HFSS. The same model was used as for the study of the length
of the fin, but with variously shaped fins. The results are shown in Fig. 6.6. Generally,
slanting ends increase the resonant frequency. The increase is larger for short fins than
for long fins. For example, with a 20 mm long fin with straight ends, the resonant
frequency is 2.352 GHz. If both ends are extended 15 mm at the base, such that the
base is 50 mm long, the resonant frequency is 2.550 GHz (72.5% of TE11). If only one
end is slanting, the resonant frequency is 2.428 GHz. For a 50 mm long fin with
straight ends the resonant frequency is 2.267 GHz. If the base is extended between 5
… 25 mm in one end, the resonant frequency is 2.292 … 2.342 GHz. For an extension
of 30 mm, the frequency seems to have decreased again to 2.334 GHz. The results for
the 50 mm long fin are shown also in Fig. 6.7. The cornered shape of the graph is
probably caused by the limited accuracy of the simulated resonant frequency.

Slanting ends increase the mean length and decrease the mean height of the
fin. Increasing the length should decrease the frequency, whereas decreasing the
height should increase the frequency. The fin that is 20 mm at the top and 35 mm at
the base has a mean height of 19.6 mm, whereas the fin that is 50 mm at the base has a
mean height of 17.5 mm. From the data presented in Fig. 6.4, the corresponding
resonant frequencies (ignoring the effect of the length of the fin) should be 2.616 GHz
and 2.782 GHz. The actual simulated frequencies are much lower (2.428 GHz vs.
2.550 GHz). Clearly neither the change in the mean length nor the mean height of the
fin can directly explain the small changes in resonant frequency, which are predicted
by the simulations to result from the slanting ends. This indicates that the slanting
ends should only be regarded as affecting the fringing fields at the ends.

Figure 6.6 The increase in resonant frequency of a CFR sensor caused by slanting end(s) on the
fin, compared to the distance in cut-off frequency of the waveguide modes TE½1 and
TE11, and the increase in resonant frequency caused by the finite length of the fin.
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Figure 6.7 The increase in resonant frequency of a CFR sensor caused by one slanting end on the
fin. The data were simulated with HFSS

The increase in resonant frequency that is caused by one or two slanting ends
is small compared to the distance to TE11, especially for a fin that is 50 mm long at the
top. Using a fin with a slanting end facing the flow, which contains solid particles, or
with both ends slanting to let cleaning tools pass both ways, is therefore feasible in
applications, where this design is mechanically desirable.

A sensor with a fin with one slanting end was built. The inner diameter of the
sensor was Dp = 590.54 mm (Dp = 24”, with the pressure rating Sch. 20), the straight
part of the fin was L = 1Dp,  and the height of the fin and the length of the slanting
section were h = d = 0.5Dp. The theoretical cut-off frequency for the pipe with the fin
is 188.5 MHz. Taking into account that the finite length of the fin is predicted to cause
a 1.9% increase in the resonant frequency compared to the cut-off frequency (Fig.
6.5), and the slanting end a 3.3% increase (Fig. 6.7), the theoretical resonant frequency
is 198.4 MHz. The measured resonant frequency was 200.3 MHz, which confirms that
the simulation results are at least of the right order of magnitude.

6.4.4 The Thickness of the Fin, a Wedge-Shaped Fin, and a Pointed Fin Edge

So far the fin has been regarded as infinitely thin, but in reality it must have a finite
thickness. The optimal thickness is a compromise between high physical strength and
minimal obstruction to the flow. In designing a CFR sensor it is important to know the
influence of the thickness on the resonant frequency. This effect was therefore
simulated with HFSS. The model was a piece of waveguide with a fin extending to the
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Figure 6.8 The effect of the thickness of the fin on the cut-off frequency of a cylindrical
waveguide with a fin that extends to the centre. The graph is the result of simulations
with HFSS. One simulation with a wedge-shaped edge is also shown (α = 90o).

Figure 6.9 The effect of the wedge angle on the cut-off frequency, when the fin is wedge-shaped.
The waveguide is circularly cylindrical and the fin extends to the centreline.
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centre of the pipe. The ends were defined as ports and the cut-off frequency was
derived from S21. The results are shown in Fig. 6.8. It is seen that the cut-off frequency
first decreases with increasing thickness, and then increases again. This was expected
from the known general behaviour of ridged waveguides. The maximum effect is
4.1% of the cut-off frequency of a pipe with an infinitely thin fin, and occurs roughly
for a fin thickness of t = 0.19Dp.

If the fin is shaped like a wedge instead of having a uniform thickness, the
effect is that the sector angle becomes smaller, which should lead to a higher cut-off
frequency. Figure 6.9 shows that this is indeed the case. Both simulated and calculated
results are shown. The calculations were performed with (5.16)…(5.18). The
agreement is seen to be satisfactory for practical purposes.

The most practical shape is a fin with a uniform thickness and a wedge-shaped
edge. One such case was simulated, with a fin thickness of t = 0.06Dp (t = 3 mm, Dp =
50 mm) and a wedge angle of  α = 90o (see inset in Fig. 6.8). In this case the effects of
the wedge and the fin thickness nearly cancelled out each other, and resulted in fc =
0.9986fc0, where fc0 is the limiting cut-off frequency, when t → 0.

6.5 The Size and Shape of the Probes

The most important feature of the probes is their ability to couple power to the sensor,
i.e. the height of resonance peak obtained with a particular design. Of interest is also
the mechanical design, with emphasis on ruggedness, low intrusivity, and easy
assembly with no need for tuning.

As was concluded in Sec. 6.3, suitable probes for the CFR sensor are those of
the electric type because of the strong radial electric field at the wall, and because
magnetic coupling loops are mechanically more complicated. The electric type probes
have a coaxial structure, with the centre conductor protruding into the sensor like a
small monopole antenna (Figs. 3.4a and 6.10). Simulations with HFSS were carried

Figure 6.10 The coupling probes of the electric type (that couples to the electric field) have a
coaxial structure, with the centre conductor protruding into the resonator like a small
monopole antenna. The strength of the coupling depends on the intrusion lp, the
diameter of the pin dp, the diameter di and permittivity εri of the dielectric, and the
permittivity of the MUT εMUT. The internal structure of the probe has been simplified
in the figure.

dp

di
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εri

The inner wall fo the pipe

εMUT
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out to find out the dependence of the power coupling ability on the intrusion, the
diameter of the pin, the diameter and permittivity of the dielectric material, and the
permittivity of the MUT.

6.5.1 Predicting the Height of the Resonance Peak

The height of the resonance peak, i.e. the maximum power transmission coefficient,
depends in addition to the design of the probes, on the permittivity of the MUT and
the losses in the resonator. The height of the peak will therefore vary with the
measurement situation. It is important to be able to predict the height of the peak in
the specified range of measurement conditions for an application, but exact
calculation is difficult (see Ch. 7 in [Collin, 1991]). Simulations were therefore
performed with HFSS to get directly applicable results. The goal with the simulations
was to find out the approximate dependence of the coupling on the design parameters
to be able to approximately predict the height of the peak for given dielectric
properties of the MUT. It is also important to be able to predict the effect of a change
of an existing design, instead of using the trial and error method with prototypes. Such
a change may become necessary e.g., when a sensor is used in a new application with
a MUT with different dielectric properties.

If the two probes of a CFR sensor are identical, they will have unequal
coupling because the relative field strength of the resonance mode is different at the
locations of the probes, with the probe configuration shown in Fig. 6.3. This
asymmetry of coupling could be eliminated by designing the probes unequal. The
probe opposite to the fin could for example be made slightly shorter than the other
one. However, the asymmetry of coupling is so small that it does not affect the
performance of the sensor negatively, and based on manufacturing considerations it is
desirable to have identical parts in the probes. In the discussion below, the probes will
therefore be assumed to be identical.

Because of the asymmetry of coupling, two different external quality factors
must be used. From Eq. (3.27b) the power transmission coefficient at the resonant
frequency is then given by
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Assuming that the pipe (sensor + process pipe) continues far enough outside the fin in
both directions for the sensor to be practically non-radiating, Qrad ≈ ∞. From (3.14) the
loaded quality factor Ql is then:
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In practice the loss in the metal parts will also be negligible compared to the other
losses, when the sensor is filled with a MUT. The peak height ar will therefore only
depend on the dielectric loss in the MUT, represented by Qd, and the coupling losses
represented by Qe1 and Qe2. In interpreting the results from the simulations the focus
has therefore been on obtaining Qe1 and Qe2 as a function of the design parameters and
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the properties of the MUT. Figure 6.11 gives the peak height calculated from (6.5) and
(6.6) as a function of Qd, Qe1 and Qe2, assuming that Qe1 = Qe2. For cases when Qe1 ≠
Qe2, see Sec. 6.5.3 and Fig. 6.19 for a correction.

The Effect of the Real Part of the Permittivity of the MUT ( MUTε ′ ) on the Coupling

(Qext)

Generally the permittivity in various regions in a medium affects the distribution of
an applied electric field such that, qualitatively speaking, the field is attracted to
regions with a higher permittivity. It is therefore natural to expect that the fringing
field of an electric probe, with which the probe couples to the resonant modes in the
cavity, is affected by both the permittivity of the dielectric material of the probe (εri)
and the permittivity of the MUT (εMUT). More specifically, Qext can be expected to
decrease with increasing εMUT, and increase with increasing εri.

The dependence of Qext on εri and εMUT can be expected to be independent of
the design of the cavity. A simple rectangular cavity resonator model (Fig. 6.12) was
therefore simulated with the HFSS. The rectangular shape was chosen because of the
shorter simulation times than for cylindrical geometries. Two probes were used. They
were moved 15 mm towards opposite ends to reduce the direct coupling. The length
of the probe structure outside the sensor was 11.9 mm. The simulations were

Figure 6.11 The height of the resonance peak as a function of the dielectric loss in the MUT and
the loss due to coupling to the measurement circuit, assuming that the radiation and
metal losses are negligible. The graphs were calculated from Eqs. (6.5) and (6.6)
assuming that Qe1 = Qe2.
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Figure 6.12 The rectangular cavity resonator that was used in the simulations with HFSS to study
the effect of εri and εMUT on Qext as a function of lp.

performed with three different values for the intrusion (lp = 1, 2, and 3 mm) to study,
whether the influence of εri and εMUT on Qext depends on the relative dimensions of the
probes.

Simulations were performed with a matrix of permittivities: εri = 1, 3.25, and
4.8, and εMUT = 1, 2.18, 4.8, and 10. The values were chosen because the permittivity
of PEEK, which is a plastic material that is used as the dielectric material in MFI low-
pressure probes, is 3.25, the permittivity of the glass/ceramic material used in MFI
high-pressure probes is 4.8, and the permittivity of diesel fuel is 2.18. Because 12
different combinations of permittivities were simulated for 3 different intrusions, 36
simulations were performed.

From the S parameters (i.e. the scattering matrix) resulting from the
simulations fr and Qext were calculated with the method described in Sec. 6.5.2. While
performing these simulations it became evident that the accuracy of the simulated
resonant frequency is high already after a small number of iterations, while a larger
number of iterations is required to achieve the same accuracy for Qext. After studying
the converging of the results for Qext as a function of the number of iterations and the
convergence parameter ∆S (a parameter given by HFSS that is a measure of the
change in the results compared to the previous iteration) it was decided to use the
criteria ∆S < 0.005, or maximum 8 iterations, for all simulations with the rectangular
resonator. With these criteria the values for Qext are estimated to have converged to
within 1.5% of the final values. The accuracy of the simulated results is studied
further in Ch. 8.

The results for Qext as a function of εri, εMUT, and lp are shown in Fig. 6.13.
They confirm the general anticipations above: The coupling improves, when εMUT

increases. Also longer probes, and probes with a lower εri, give better coupling. It is
also seen that the relative dependence on εMUT is almost the same independent of lp.
Only a small “saturation” can be perceived for low values of Qext, and possibly also
for high values.
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From the slope of the graphs in Fig. 6.13, an approximate model can be made
for predicting Qext as a function of εMUT from one known value, which has e.g. been
measured or simulated for a sensor filled with oil with WC = 0%:

4.0

MUT1

MUT2
ext1ext2

−
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ε
ε

QQ (6.7)

The value of the exponent was derived by manually fitting the model to the results in
Fig. 6.13 to get a best fit ignoring the “saturation” at high and low values of Qext. The
quality of the fit is illustrated in Fig. 6.14, which shows the relative deviation between
the simulated values and values predicted with model (6.7) from the simulated values
for εMUT = 2.18. The deviation is generally less than 15% (less than 11% for εMUT >
2.18), except for two points (22.8% and 35.5%), which correspond to air-filled probes,
εMUT = 10, and lp = 3 mm and 2 mm respectively. Because air-filled probes are not
practical, the large deviation of these two points is not important. The maximum
effect on the power transmission coefficient of a 15% error in the predicted Qext is 1.4
dB, and 1.0 dB for 11%.

The dependence of Qext on εMUT was verified by measurement. A CFR sensor
(Dp = 50.8 mm, dp = 8 mm, di = 17.5 mm, lp = 7.5 mm, εri = 3.25) and an end cross
sensor (see Ch. 7) of the same size, with magnetic coupling loops in PEEK

Figure 6.13 The external quality factor as a function of the intrusion, the permittivity of the
dielectric material in the probes, and the permittivity of the MUT. The data were
simulated with HFSS for the model resonator in Fig. 6.12.
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enclosures, were measured in a test loop with crude oil with varying WC. For the CFR
sensor Qext was calculated from the measured ar, Ql and fr using (3.32) and (6.13),
assuming Re = 1.75. For the end cross sensor Qext was calculated from (3.29) and
(3.14). The results of two runs are shown in Fig. 6.15 together with model (6.7). In
one run the salinity of the water was S = 5%, and in the other freshwater was used.
The results for the CFR sensor from both runs obey model (6.7) for εMUT ≥ 2.18 (i.e.
WC ≥ 0%), even though the losses in the MUT were much higher for S = 5%. The
measurement in air (εMUT = 1), however, deviates considerably from model (6.7),
when compared to the other measurement points. The reason for the deviation could
not be found.

The results for the end cross sensor show that the coupling decreases with
increasing εMUT. This is probably a result of two factors: The coupling loops couple
via the magnetic field and are therefore not affected by the permittivities in the same
way as electric probes, and the loops are surrounded by a sheath of PEEK, which
creates a contrast towards the MUT at higher watercut. Also for the end cross sensor
the measurement in air does not seem to fit into the series of measurements in oil at
various watercut.

As a consequence of the different behaviour of Qext as a function of εMUT the
peak height decreases faster as a function of εMUT in end cross sensors than in CFR
sensors. Smaller variations in the peak height is an advantage, when simple
electronics is used for measuring the sensor. Figure 6.16 shows the measured peak
height from the loop tests. In the CFR sensor the peak height decreases only 0.7 dB in

Figure 6.14 The difference between the simulated values of Qext as a function of εMUT, and values
predicted by (6.7) from the simulated values for εMUT = 2.18
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Figure 6.15 Results from a loop test, where a CFR sensor and an end cross sensor were compared.
Crude oil and water with two different salinities (S) were used. The graphs show the
Qext values derived from the measurements.

Figure 6.16 The peak height (maximum power transmission coefficient) measured with a CFR
sensor and an end cross sensor in a test loop. The two isolated points on the y-axis are
measurements in air (CFR: -2.6 dB, end cross s.: -17.2 dB).
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the range WC = 0…25%, when S = 0%, whereas in the end cross sensor the decrease
is 6.3 dB. For S = 5%, the numbers are 10.6 dB and 17.2 dB respectively (WC =
0…20.5%). The peak heights measured with the empty sensors are also shown. For
the CFR sensor the relation between the peak heights in air and oil obey (6.5) and
(6.6), when Qd for the oil is added. In the end cross sensor the peak height in air is
anomalously low, and Ql actually increases from air to oil, even though Qext is roughly
unchanged, Qm has decreased according to (3.39), and Qd has been added.
Mathematically this is impossible. The reason for the anomaly is most probably an
interfering resonance internally in the probes, of which a distortion in the peak shape
also bears witness.

As a conclusion, for a CFR sensor Eq. (6.7) can be used to predict Qext as a
function of εMUT, from one known value. Care must be taken when εMUT < 2.18.

The Effect of the Imaginary Part of the Permittivity of the MUT ( MUTε ′′ ) on the

Coupling (Qext)

In the previous section it was qualitatively explained how the real part of the
permittivity of the MUT might affect the coupling, based on the boundary conditions
for the electric field at the interface between the MUT and the dielectric material in
the probes. Based on the same discussion the imaginary part is not expected to
considerably affect the coupling. A series of 24 simulations were performed for a

Figure 6.17 The external quality factor as a function of the permittivity of the MUT for various
values of the loss tangent. The values were simulated with HFSS for a CFR model
with Dp = 50.8 mm, dp = 8 mm, di = 17.5 mm, lp = 6 mm, and εri = 3.25.
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model of the CFR sensor with the purpose to verify this assumption. The results are
shown in Fig. 6.17, where ( ) MUTMUTMUT /tan εεδ ′′′= . They indicate that there is a

difference between the cases of small losses (equivalent to the losses of pure diesel
fuel) compared to no losses, but a further increase in the losses has only a minor effect
on the coupling. This situation seems fairly unlikely, especially as the no-loss graph
deviates from model (6.7). Looking at the graphs for freshwater and water with S =
5% in Fig. 6.15, does not reveal any difference in the coupling in the two cases, even
though there is a large difference in the loss factor. The simulations were performed
before the poor accuracy of the simulations of Qext for a small number of iterations
was detected. The results may therefore not have converged well enough. A series of
new simulations was therefore performed with the intention to achieve a higher
accuracy, but the problem tended to diverge after the 5th iteration in HFSS.

If tan(δMUT) has an effect on Qext, the phenomenon can be assumed to be
independent of the shape of the resonator. A series of 4 simulations was therefore
performed with the rectangular resonator shown in Fig. 6.12, using the same criteria
for high accuracy as above: ∆S < 0.005, or maximum 8 iterations. The conditions
were: εri = 3.25, 8.4MUT =′ε , and =MUTtanδ  0, 0.0096, 0.015, and 0.02. The results

were: Qext = 211.8, 223.3, 226.8, and 226.4 respectively, i.e. no dependence on the
losses was found. It therefore seems likely that the losses in the MUT has at most a
negligible effect on the coupling and can in practice be ignored, especially as
compared to the large effect on the peak height through Qd.

6.5.2 Deriving Qe1 and Qe2 from the Simulations

The HFSS produces the S parameters (i.e. the scattering matrix) for the simulated
object at a set of discrete frequencies defined by the user. To get the resonant
frequency and the set of quality factors, the theoretical resonance curve must be fitted
to the simulated points. Because separate values are needed for Qe1 and Qe2, and the
transmission curve (3.27) only contains information about their product, the reflection
curve (3.24) must be fitted separately to S11 and S22.

The results of a simulation consists of a 2x2 matrix of S parameters for each
frequency point. These matrices were exported to Matlab, where the fitting was done.
The backslash operator was used to fit a ”linear-in-the-parameters” regression model
to the simulated points. The inverse of the transmission coefficient for the probe
(transmission coefficient = 1 - reflection coefficient) was used as the regression
model, i.e. the real resonance curve (3.24) was fitted to the simulated points:
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where n is 1 or 2. Note that the unloaded quality factors are different when fitting S11

and S22, because Eq. (3.24) assumes that the resonator has only one coupling probe,
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whereas the simulations were done for a resonator with two probes. Therefore the
coupling loss due to the other probe is included in the unloaded quality factor.

The fitting was done iteratively such that the resonant frequency fr was given
manually before Matlab performed the fitting. The simulated points and the fitted
model were then plotted to show the quality of fit. This process was repeated until a
visually judged good fit was achieved. The obtained value for Qext was not very
sensitive to the used value for fr such that the fitting method being partly manual is not
expected to have contributed significantly to the error of Qext. Figure 6.13 shows a
typical example of the obtained plots. When the best fit had been obtained, Ql and Qun

were calculated from a0n and a1n. Note that both fittings give a value for Ql. Ideally the
values should be identical and they are therefore not denoted as separate below. In
practice the difference between the two values is almost always <3%, and usually
<1%. The largest relative errors seemed to occur, when measurement of high loss
samples was simulated, and the loaded quality factor was low. By solving from (6.8)
the equations for deriving Ql and Qun from the simulations are obtained:
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and from these Qe1, Qe2, and Qu are given by
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The resonance curves (3.24) and (3.27) are known to describe the resonance
peak accurately only close to the resonant frequency. Far from the resonance, at the
flanks of the peak, other effects like direct capacitive coupling between the probes,
and other resonance modes affect the frequency response of the resonator. It is
therefore important to choose the spacing between the frequency points for the
simulation such that at least three points are between approximately the –6 dB points.
This was also seen in practice. When a larger number of points was chosen such that
some lay farther from the resonant frequency than specified above, or the spacing
between the points was too lage, the quality of the fit became poor especially for the
points closest to the peak.
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Figure 6.13 An example of the plots produced by the fitting routine written for Matlab. The plots
show the simulated points (*) and the fitted curves (-). In the simulated situation the
sensor is filled with diesel fuel (assumption: 0096.0tan,18.2 MUTMUT ==′ δε ), di =

17.5 mm, dp = 8 mm, lp = 7.5 mm, and εri = 3.25. The sensor diameter is Dp = 50.8
mm, and the fin length and height are L = 50 mm and h = 25.4 mm.

6.5.3 The Ratio Qe1/Qe2

The ratio of the two external quality factors is primarily determined by the ratio of the
electric field of the resonance mode at the locations of the probes. From (5.36) the
ratio of the field strengths at the locations of the probes in Fig. 6.3 is:
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Because the voltage that the field of a resonance mode excites into a cable through a
probe must be directly proportional to the field strength at the location of the probe,
and the external quality factor is proportional to the power, the ratio can be expected
to be
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Because of the finite intrusion and diameter of the probes, and the distorting effect of
the holes in the metal wall, the effective ratio may be different and slightly dependent
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on the dimensions of the probes, especially the intrusion. The ratio can, however, be
expected to be constant enough that the exact ratio is not needed for prediction of the
peak height and width in practice. If that is true, the results from the simulations can
be reported in terms of only one external quality factor and the peak height predicted
from (3.27a) instead of (3.27b). Two different choices for the quality factor are
possible: From (6.5) and (3.27):
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or from (6.6):
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Here Qext is the real external quality factor, but Qe gives the product of Qe1 and Qe2

correctly. When using Qe in (6.6), Ql will be slightly in error, and therefore the peak
height calculated from (3.27a) will also be slightly in error. Of the same reason the
predicted peak width will also be in error. When using Qext in (6.6), Ql will be right,
and hence also the peak width, but when used in (3.27a) the peak height will be in
error.

The relative difference between the results of (6.13) and (6.14) is only a
function of the ratio Re:
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To be able to decide whether to use Qe, Qext, or Qe1 and Qe2, the errors that are
introduced by using one of the alternatives must first be studied in more detail.
Calculating the peak height from (3.27a) by using Qext, and comparing to the exact
result from (6.5), the relative error is seen to be

2

ext21

ext
ext ),(

)(






==

Q

Q

QQa

Qa
K e

eer

r (6.16)

In the same way the error in using Qe is easily shown to be
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From (6.17) and (6.16) it is seen that Ke is closer to 1 than Kext. For Qu << Qe&Qext, Ke

is close to 1, and for Qu >> Qe&Qext, Ke ≈ Kext. The error when using Qe is smaller
than when using Qext, but varying with Qu. On the other hand, from (6.15) and (6.16)
it is seen that Kext is only dependent on Re. If Re is reasonably constant for the sensor
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design, the error is constant and easily corrected. Because using Qext also gives the
right peak width, Qext is preferable to Qe.

The correction factor expressed in dB that should be added to a peak height
value that has been calculated from (3.27a) using Qext, is given by (6.15) and (6.16):















++⋅−=∆

e
er R

RA
1

2
4
1

log10 10 (6.18)

Figure 6.19 shows the correction factor ∆Ar as a function of Re. If the peak height has
been calculated from (3.27a) using Qext and converted to dB, and e.g. Re = 2 ⇒  0.51
dB should be subtracted from the calculated peak height to get the right value.

Expressing the results from the simulations in the form of Qext is practical only
if the ratio Re is constant enough that the same correction factor can be used for all
results. Studying the results shows that in a set of 76 simulations of probe coupling
that was performed, Re was in the range 1.30 < Re < 2.01, and the mean value was
1.63. In the last set of 42 simulations, where the probe dimensions were those chosen
for the prototype, the values were in the range 1.41 < Re < 1.97, with a mean of 1.75.
Eq. (6.18) gives ∆Ar = -0.074 dB for Re = 1.30, ∆Ar = -0.23 dB for Re = 1.7, and ∆Ar =
-0.52 dB for Re = 2.01. If ∆Ar = -0.3 dB is used, the maximum error will be 0.23 dB,
which is small for all practical purposes.

Figure 6.19 The correction factor ∆Ar as a function of Re, as given by Eq. (6.18), i.e. the
difference between the peak height predicted by Eq. (3.27b) and Eq. (3.27a), when
Qe1 ≠ Qe2.
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6.5.4 Simulation Results in Terms of Qext as a Function of the Shape of the Probes

Based on practical considerations and the results from the simulations of the effect of
the shape of the fin, the CFR sensor for the simulations of the shape of the probes was
chosen to have an inner diameter of 50.8 mm, and a fin that was 50 mm long and 25.4
mm high. The sensor model was 150 mm long and terminated with radiation surfaces.
The metal parts were defined to be perfect conductors. When the sensor was filled
with a lossless MUT, the radiation from the open ends gave the model sensor an
unloaded quality factor of roughly 600< Qu <1200, depending on the permittivity of
the MUT. High permittivity values correspond to low values of Qu.

Because of the large number of variables that affect the coupling, it is in
practice impossible to make simulations with a tight spacing of all possible
combinations of values. Likewise it is difficult to present the results in such a way that
the external quality factors could be readily obtained from one table or graph for any
situation of interest. The goal with the simulations was therefore first to find a design
that seemed to be at least acceptable for standard applications. Then a set of
simulations was performed to find out the sensitivity of the coupling to variation of
each parameter, so that some optimization could be performed. A summary of the
results is given below.

The Intrusion of the Probes

The intrusion (lp) of the probes is one of the most important factors that determine the
strength of the coupling (Qext). To determine the sensitivity of the coupling to the
intrusion, simulations were performed both for the rectangular resonator shown in Fig.
6.12, and for the CFR sensor. The results obtained for the rectangular resonator
(criteria: ∆S < 0.005, or maximum 8 iterations) are shown in Fig. 6.20. The relative
change in Qext caused by a change in lp (i.e. the slope of the graphs) is seen to be more
or less independent of εri and εMUT for all the plotted cases. The slope is also almost
independent of lp, except for a slight steepening for small values of lp.

For the CFR sensor simulations were performed with probes of various
diameters, with various dielectric materials in the probes, and with various properties
of the MUT. The results are summerized in Figure 6.21. Also here the slope steepens
for small values of lp, but it also seems to steepen for high values of Qext, such that the
slope is the same for a specific value of Qext for all simulated cases. No such
dependence of the slope on Qext is seen in Fig. 6.20. This contradiction may be caused
by the poorer accuracy of the simulations for the CFR sensor, because of fewer
iterations performed by HFSS, but it may also be caused by the different dimensions
of the probes.

The radiating properties of antennas in general are related to the size of the
radiating structures measured in wavelengths. The coupling provided by a probe can
therefore also be expected to be related to the size of the probe relative to the
wavelength. Fig. 6.22 shows the results for both the rectangular resonator and the
CFR sensor plotted with the intrusion given in wavelengths. The slope is indeed the
same in both sets of simulations, except for the steepening of the slope for high Qext

values for the CFR sensor. For practical sensor applications of measuring mixtures of
oil and water the range Qext < 1000 is the most interesting. In this range the slope can
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Figure 6.20 The dependence of the coupling on the intrusion of the probes in the rectangular
resonator in Fig. 6.12. The graphs are based on the same simulation results as Fig.
6.13.

be considered to be constant, leading to a model for predicting the effect on Qext of
changing lp:

( ) λ/4.22
1ext2ext

1210 pp llQQ −−⋅= (6.19)

where λ is the wavelength of a plane wave in the MUT (which is constant in a
completely filled resonator). The value of the constant (-22.4) was derived by
manually fitting the model to the data in Fig.6.22.

A CFR sensor (Dp = 50.8 mm, dp = 8 mm, di = 17.5 mm, εri = 3.25) was
measured with two sets of probes with different intrusion: lp1 = 6 mm and lp2 = 7.5
mm. The measurements were performed with the sensor filled both with air and
diesel. The measured external quality factors were Qext1 = 595.8 and Qext2 = 351.6 in
air, and Qext1 = 623.9 and Qext2 = 375.9 in diesel. The values are higher than the
simulated (graph D in Fig. 6.21) of reasons that are not completely known but
probably related to the poor convergence of the simulations, and the values in diesel
are not lower than the values in air as predicted by the simulations. The latter effect is
also seen in Fig. 6.15. The measurements give Qext1/Qext2 = 1.69 in air, and Qext1/Qext2

= 1.66 in diesel, while model (6.19) predicts Qext1/Qext2 = 1.82. The difference of 7.7%
or 9.6% respectively is satisfactory for practical purposes.
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Figure 6.21 The external quality factor Qext, as defined in (6.14), of a CFR sensor as a function of
the probe intrusion lp. The data are the results of simulations with HFSS. A: dp = 2
mm, di = 4.6 mm, εri = 1, B: dp = 4.34 mm, di = 10 mm, εri = 1, C: dp = 7.5 mm, di =
13.5 mm, εri = 3.25 (=PEEK), and D: dp = 8 mm, di = 17.5 mm, εri = 3.25, ε MUT  =
2.18, tan(δMUT) = 0.0096 (MUT = diesel fuel).

Figure 6.22 The data from Figs. 6.20 and 6.21 combined, with lp given in wavelengths.
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The Permittivity of the Dielectric Material in the Probes (εri)

The permittivity of the dielectric in the probes (εri) affects the coupling of the same
reasons as the permittivity of the MUT (see Sec. 6.5.1). This effect can be seen in Fig.
6.13, which shows the simulation results for the rectangular resonator shown in Fig.
6.12. A series of simulations was also performed for the CFR sensor with the purpose
of finding out how the choice of the dielectric material affects the coupling. The
results for both the rectangular resonator and the CFR sensor are summarized in Fig.
6.23, which shows that the local slope of the graphs is the same for both resonators,
but the slope changes with εri.

The most interesting materials for the sensors, which are made by Roxar, are
PEEK with εri = 3.25, and a ceramic reinforced glass with εri = 4.8. Figure 6.24 shows
the ratio of the simulation results for Qext for these two cases based on the data shown
in Fig. 6.23. No systematic dependence on εMUT, lp, or resonator type can be seen. The
arithmetic mean of the data points in Fig. 6.24 is Qext(4.8)/Qext(3.25) = 1.1824, which
can be used as a model. If other materials are used, an estimate of the effect on the
coupling of the choice of material can be derived from Fig. 6.23.

The permittivity of the MUT and the dielectric in the probes can be expected
to affect the coupling mainly because of the effect the contrast in permittivity has on
the fringing field. This is confirmed by the data for the rectangular resonator in Figs.
6.13 and 6.23, which show that e.g. the cases with εri = 1 & εMUT = 1, and εri = 4.8 &
εMUT = 4.8, have roughly the same Qext. Fig. 6.23 shows a larger deviation between

Figure 6.23 The external quality factor as a function of the permittivity of the dielectric in the
probes. The graphs are simulation results for the rectangular resonator (RR) shown in
Fig. 6.12, and the CFR sensor (Dp = 50.8 mm, dp = 8 mm, di = 17.5 mm, lp = 6 mm).
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Figure 6.24 The ratio of the external quality factor of sensors with εri = 4.8 to sensors with εri =
3.25. The graphs are based on the same data as Fig. 6.23.

Figure 6.25 The coupling as a function of the ratio of the permittivities of the dielectric material
in the probes and the MUT. For an explanation of the symbols, see Fig. 6.24.
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these cases for the CFR sensor, but this is probably caused by poorer accuracy. Fig.
6.25 shows the simulation data for the rectangular resonator plotted as a function of
the ratio

MUTε
ε

ε
rir = (6.20)

The figure shows that all data points for a specific value of lp fall roughly on the same
curve. The model that has been fitted to the points in the figure is

( )εrBAQQ lgtanh
ext1ext 10 ⋅⋅⋅= (6.21)

where A = 0.4, B = 1.2, and Qext1 is the value of Qext for rε = 1. The points deviate
from the model significantly only for the smallest values of Qext.

The Probe Diameters

Both the diameter of the centre pin (dp) and the diameter of the dielectric (di) affect
the coupling. Some examples of the effect of various diameters is seen in Fig. 6.21,
which shows the simulation data for the CFR sensor, but to get a better means to
predict the effect of the choice of the diameters, simulations were performed with the
rectangular resonator in Fig. 6.12, with lp = 3 mm, εri = 3.25, εMUT = 1, dp = 2, 3, and 4
mm, and dp/di = 0.4, 0.5, and 0.67. The results are shown in Fig. 6.26. Again the
graphs are almost straight lines, so that a simple model can be used in practice:
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= (6.22a)

where

i

p
d d

d
r = (6.22b)

The error of the model is expected to grow outside the range shown in Fig. 6.26. If the
same data is plotted against di, it appears that the diameter of the dielectric strongly
affects the coupling, while the diameter of the centre pin has no influence. This is
probably approximately true only for the narrow range of aspect ratios used in the
simulations, because from practice it is known not to be generally true. Because both
thin and long probes, and short and wide probes are of interest in various applications,
a new series of simulations was performed for a larger range of dp/di, and for other
aspect ratios of the probes (lp/di = 0.1, 0.5, and 2.0), varying the diameter of the centre
pin. The results are shown in Fig. 6.27. They confirm that there is an intermediate
range, where the coupling is not sensitive to the diameter of the centre pin, but they
also confirm the practical experience that very thin pins provide less coupling than
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Figure 6.26 The dependence of the coupling on the diameter of the centre pin and the dielectric in
the probes. The data are results of simulations with HFSS of the rectangular resonator
in Fig. 6.12, with lp = 3 mm.

Figure 6.27 The coupling as a function of the diameter of the centre pin for probes of various
aspect ratios. The data are the result of simulations of the rectangular resonator in Fig
6.12.
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slightly thicker ones, and the intuitive conclusion that the same applies to a narrow
gap around the centre pin. An exception is the long and thin probe, which seems to
provide more coupling the narrower it is. Based on experience the author would
regard this result as dubious, possibly caused by poor accuracy of the simulations as a
result of the small dimensions (dp ≥ 0.5 mm).

If models (6.19) and (6.22) are used to predict the simulation results for the
long (lp/di = 2) and the short (lp/di = 0.1) probes from the probes with lp/di = 0.5, the
models tend to underestimate Qext for the long probes, and overestimate for the short
probes. Care should therefore be taken, when using the models to estimate the
coupling provided by probes with extreme aspect ratios.

The results have also been influenced by impedance mismatch, because in
most of the cases the impedance of the probes differs from 50Ω, but this is also the
case in practice. With the used permittivity for the dielectric (εri = 3.25), the
impedance is 50Ω, when dp/di  = 0.222. As a consequence, however, the coupling is
also influenced by the length of the section inside the probe, with an impedance other
than 50Ω. In practice this section is kept as short as possible to avoid ripple in the
frequency response. In the simulated model this section was 11.9 mm long, which is
within practical limits.

It can be concluded that the intrusion of the centre pin and the diameter of the
dielectric are the design parameters that have the largest influence on the coupling.
For a fixed diameter of the dielectric, a centre pin with a diameter that is roughly half
of the diameter of the dielectric seems to give the optimal coupling.

6.5.5 Conclusions

The influence on the height of the resonance peak, i.e. the maximum of the power
transmission coefficient, of the various design parameters of the probes of a CFR
resonator sensor have been studied both by simulation using HFSS, and by
measurement of prototypes. Especially the intrusion, the diameter of the centre pin
and the dielectric, and the permittivity of the dielectric have been studied. Based on
the results it is recommended that the probes of a 2” sensor have the following
properties: dp = 8 mm, di = 17.5 mm, lp = 7.5 mm, and εri = 3.25…4.8. For sensors of
other sizes the dimensions of the probes should be directly scaled.

The whole frequency response was simulated for a sensor with the pipe
diameter Dp = 50.8 mm, length of fin L = 50 mm, height of fin h = 25.4 mm, dp = 8
mm, di = 17.5 mm, lp = 7.5 mm, and εri = 3.25. The metal parts were assumed to be
perfect conductors. Simulations were performed both for an empty sensor and a sensor
filled with diesel fuel ( 0096.0tan,18.2 ==′ δεr ). The empty sensor was also
simulated with lp = 6 mm. The results are shown in Fig. 6.28.

A sensor with the same dimensions as the simulated sensor was built and
measured in the laboratory. Two sets of probes were made, with lp = 6 mm and 7.5
mm respectively. The measured frequency responses of the sensor filled with diesel is
shown in Fig. 6.29.
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Figure 6.28 The simulated frequency response of a CFR sensor filled with diesel or air. See the
text for details.

Figure 6.29 The measured frequency response of the CFR sensor prototype filled with diesel. See
the text for details.
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6.6 The Length of the Sensor

A CFR sensor will have flanges at the ends and be installed as a part of the process
pipe. In practice there is then the possibility that the inner diameter of the process pipe
is slightly different from that of the sensor pipe, e.g. because of corrosion, different
pressure ratings, or the tolerances. In some instances it may even be desirable to
mount e.g. a 2” sensor on a 3” process pipe, or vice versa. Because the inner diameter
is the most important factor  determining the resonant frequency of a CFR sensor, and
the fringing field extends a distance outside the ends of the fin, the different diameter
of the process pipe can be expected affect the resonant frequency, if the distance from
the end of the fin to the start of the process pipe is short..

6.6.1 The Effect on the Resonant Frequency of a Process Pipe with a Different
Diameter than the Sensor Pipe

To investigate the effect on the resonant frequency of a difference in the diameter of
the process and the sensor pipes, a series of measurements were made. A CFR sensor
with an inner diameter of 52.5 mm, and a 50 mm long fin that extended to the centre
line of the pipe, was used. The sensor body was 60 mm long, i.e. the sensor pipe
extended only 5 mm outside the ends of the fin. The resonant frequency of the empty
sensor was fr0 = 2198.4 MHz, when mounted on a process pipe with the same inner
diameter.

In the first test flanged sections of pipe were mounted on both ends of the
sensor. The pipe sections were 100 mm long, i.e. long enough to be practically
nonradiating and therefore appear infinitely long. The inner diameter of the pipe
sections was 53.8 mm, i.e. the radius was 0.65 mm larger than in the sensor. When the
pipe sections were mounted concentrically with the sensor, the resonant frequency
was 2.3 MHz lower than fr0. When the pipe sections were mounted 0.65 mm off-
centred such that the pipe wall was continuous (without a step in radius) on one side,
and with a 1.3 mm step on the opposite side, the resonant frequency varied in the
range 0.88…3.66 MHz lower than fr0. The resonant frequency was highest, when the
step was on the side opposite to the fin, and lowest, when the step was on the side of
the attachment of the fin.

Larger changes in diameter were tested next. The results of the measurements
are shown in Figure 6.30. First one of the pipe sections was replaced by another
section, with an inner diameter of 77 mm (length = 195 mm). A varying number of 5
mm thick rings, with a hole equal to the inner diameter of the sensor pipe, were
inserted between the sensor and the pipe section so that the distance from the fin to the
location of the change in diameter, i.e. the length of the sensor, varied. The resonant
frequency was recorded as a function of the distance to the change of diameter in the
range 5 mm to 55 mm, in steps of 5 mm. The measurements were then repeated with
another pipe section, with an inner diameter of 41.3 mm. Finally the pipe sections on
both sides of the sensor were replaced by sections, with an inner diameter of 77 mm,
and an equal number of rings were inserted on both sides between the sensor and the
pipe sections.

From the results in Fig.6.30 one can conclude that an increase in diameter
causes a reduction in the resonant frequency, while a reduction in diameter causes an
increase in the resonant frequency. When similar changes in diameter occur on both
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Figure 6.30 The measured change in resonant frequency, when a CFR sensor of varying length is
mounted on a process pipe, with a diameter different from that of the sensor pipe.

sides of the sensor, the change in the resonant frequency is twise that of a change of
diameter on just one side of the sensor. The maximum effect that was measured was
2.9% of the frequency of the empty sensor (change to 77 mm on both sides of the
sensor at a distance of 5 mm). One can also conclude that when the distance from the
end of the fin to the start of the process pipe is larger than roughly 50 mm (≈ 1 inner
diameter), the diameter of the process pipe does not affect the resonant frequency.

The measurements were made with a Hewlett Packard 8753D network
analyzer. The frequency response was first measured up to 4 GHz and then zoomed in
on the resonance peak and Ql automatically displayed. The quality factor stayed
unchanged during the measurements, indicating that radiation from the pipe sections
was very low and did not affect the measurements. The frequency response was
essentially uninfluenced by the sections of larger or smaller diameter, with the
exception of a low extra peak that emerged at roughly 2.4 GHz, with the 77 mm
sections and a distance of 5…15 mm from the fin to the process pipe. This extra peak
was most probably the TE111 resonance in the 77 mm pipe sections. This peak was
always much lower than the TE½10 peak and would not complicate the use of the
sensor, regardless of the used measurement method.

6.6.2 The Effect of Nonconducting Gaskets

In conjunction with the measurements that were described in Sec. 6.6.1,
measurements were also made with electrically nonconducting fibre gaskets inserted
at various locations between the sensor, rings, and pipe sections. The insertion of the
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gaskets had no detectable effect on the frequency response, independent of the
location of the gaskets. A CFR sensor can therefore be made at least as short as the
one used in the measurements (1.2 inner diameters), without that special requirements
have to be put on the quality of the gaskets.

6.6.3 Radiation as a Function of the Length of the Sensor

If a CFR sensor is to be used without being mounted on a pipe, and for testing and
calibration purposes in the laboratory, low radiation from the ends of the sensor is
important. This matter was theoretically discussed in Sec. 4.2.1.

In conjunction with the measurements that were described in Secs. 6.6.1 and
6.6.2, the sensor was also measured without the other pipe section, i.e. with just the
rings at one end. From these data Qu was calculated using (3.32), assuming Re = 1.75.
From the measurements with the 77 mm pipe sections and the maximum number of
rings the metal quality factor was calculated using (3.33) (assuming Qrad = ∞), which
gave Qm = 652.2. Then Qrad was calculated from (3.13) (assuming Qd = ∞) for the
measurements without the other pipe section. The obtained values for Qrad were then
divided by 2 to correspond to a sensor that radiates equally from both ends. The
results are shown in Figure 6.31, which also shows simulations made with HFSS, and

Figure 6.31 The radiation quality factor Qrad of a CFR sensor with an inner diameter of 50 mm.
The rings are measurements, the asterisks are simulations with HFSS, and the graph is
calculated from Eq. (4.10) assuming Qrad0 = 28. The calculations fit the simulated
data assuming Qrad0 = 9.4.
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calculations based on Eq. (4.10). Equation (4.10) contains the unknown factor Qrad0.
The fit between the calculations and the measurements that is shown in Fig 6.31 was
obtained for Qrad0 = 28. To fit the simulations Qrad0 = 9.4 had to be assumed. The fact
that a lower value of Qrad0 fits the simulated data than the measured data is probably
partly explained by the fact that the model in the simulations was terminated by
radiation surfaces (i.e. absorbing boundary conditions), which do not reflect anything,
whereas an open waveguide end has a finite reflection coefficient. In practice it has
been observed that an absorbing body located at the open end of a sensor affects the
loaded quality factor and peak height (see Sec. 6.6.4). The lower value of Qrad0 in the
simulations is probably partly explained also by poor convergence of the simulations.
It has been observed that the peak gets narrower, and consequentially the quality
factors increase, when a larger number of iterations is used in HFSS to improve the
accuracy. Note that the slope is the same in all data, which confirms the validity of Eq.
(4.10).

6.6.4 The Distance to Resonating or Absorbing Structures in the Pipe

Above it was concluded that the size of the process pipe has no influence on the
resonant frequency, when the distance from the fin to the start of the process pipe is at
least 1Dp. However, resonating or absorbing structures may have some effect on the
quality factor even at the distance of 1Dp. This was realized, when a thermowell was
mounted on a 2” CFR sensor so that the distance from the nearest point of the
thermowell to the fin was 1Dp. While the thermowell was being screwed in place, the
resonance peak was at times slightly distorted (∆f < 0.2%, ∆A < a few dB). When the
thermowell was tightened, the interference disappeared and the resonant frequency
was exactly the same as before the thermowell was mounted. The thermowell
probably came into resonance close to the resonant frequency of the sensor for some
conditions of imperfect shorting through the threads.

A similar effect was experienced, when two CFR sensors (of different length)
were mounted together such that the distance between the nearest points of the fins
was 1.1Dp. A clear coupling between the resonance modes of the two sensors was
noted. Because the resonant frequencies were slightly different, the peaks appeared to
be double. When the sensors were turned so that the fins became orthogonal, the fields
also became orthogonal, and the interference disappeared.

When the 24” sensor with a slanting fin end that was described in Sec. 6.4.3
was measured with open ends in the laboratory, the peak height was notably sensitive
to an absorbing object held close to the open end. For example a persons leg caused a
change of the peak height of a few dB, while the resonant frequency was unaffected.

Based on earlier experience the results reported in this Section were not totally
unexpected, but may be difficult to deduce theoretically.

6.6.5 Conclusions

Because the frequency response was good in all the measured cases and the gaskets
had no effect on the performance of the sensor, it can be concluded that a CFR sensor
can be made at least as short as the sensor that was used in the measurements
described in Secs. 6.6.1 and 6.6.2 (1.2Dp), even if the diameter of the process pipe
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differs from that of the sensor pipe. The resonant frequency was, however, influenced
by the diameter of the process pipe and the precision of mounting, when the sensor
was short. A short sensor must therefore be calibrated on the site after installation, and
recalibrated after each time it has been demounted e.g. for the purpose of service.
Alternatively restrictions can be put on the diameter of the process pipe and the
precision of mounting, depending on the specified accuracy requirements for the
application.

If the length of the sensor pipe outside the fin is made at least equal to 1Dp, the
process pipe has no effect on the operation of the sensor and Qrad ≈ 4000, at least for
sensors with straight fin edges. It can then be calibrated before shipment and needs no
further calibration after installation. On the other hand a long sensor is more
expensive to produce and bulkier and heavier to handle during manufacturing and
calibration, but is easier to test and calibrate in the laboratory, because it requires no
extra end pieces to limit the radiation.

Short sensors (e.g. length of fin = 1Dp, length of sensor = 1.2Dp) seem to be
the right solution for applications, where the required accuracy is low and the price of
the meter is important, whereas long sensors (e.g. length of fin = 1Dp, length of sensor
= 3Dp) should be used in other cases.

6.7 Sensitivity to Contamination

In many applications of microwave resonator sensors some kind of contamination
may occur. For example, when the humidity sensor that is described in Ch. 7 is used
in a veneer dryer, vaporized resin may condence on the walls and mix with dust to
form a layer on the walls of the sensor. In the petroleum industry scale (mainly
calcium carbonate or barium sulphate) or wax may sometimes grow on the walls of
the pipes, including the sensors. In such cases the sensor should preferably be as little
sensitive to the contamination as possible. If thick layers of contamination build up,
any sensor will be affected. The question of minimizing the sensitivity to
contamination is a question of maximizing the cleaning interval.

In a microwave resonator sensor the electric field is affected by the
permittivity of the material in the sensor. The sensitivity distribution is therefore
identical to the distribution of the electric field. The TE011 mode (see Sec. 3.7.1) that
is used in the humidity sensor (Ch. 7) has zero electric field on all walls. This feature
makes it extra well suited for use where contamination may occur. The TM010 mode
(see Sec. 3.7.2) that is used in the so-called end grid sensor (Ch. 7) also has zero
electric field on the cylindrical walls, but the electric field lines terminate on the flat
ends. In the end grid sensor the flat ends have been replaced by grids to allow the flow
to pass. The exact design of the grids may vary between sensors (see Ch. 7), because
different features (e.g. short grids, loose grids, clean frequency response, ease of
production) have been given priority, but the grids are always designed to give
minimum blockage. They will therefore be composed of structures resembling knife
blades across the pipe. The electric field lines terminate on the edges of these blades,
where ”hot spots” are created. These sensors are therefore sensitive to contamination
on the end grids, but less sensitive to contamination on the walls. In the CFR sensor
the electric field lines emanate from the fin and terminate on the wall. The maximum
sensitivity is in the centre of the sensor, with a ”hot spot” on the edge of the fin. The
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CFR sensor is therefore sensitive to contamination on the fin, but also to some degree
to contamination on the wall.

6.7.1 The Relative Sensitivity to Contamination of a CFR Sensor and an End Grid
Sensor

The relative sensitivity to contamination of the end grid sensor and the CFR sensor is
of particular interest. Comparison is, however, made difficult because the
contamination is unlikely to form a uniform layer on all structures. Will there for
example be more build up on the walls or on the fin or the grid structures? It seems
unlikely that contamination will build up on the edge of the fin, but what about the
trailing edges of the grid structures? To get at least an indication of the relative
sensitivity a test was made with two sensors. One was a 2” end grid sensor, with end
grids designed as simple crosses. The other was a 2” CFR sensor. Both sensors were
first filled with motor oil. The sensors were then emptied and the resonant frequency
was measured with a network analyzer as a function of time, while the oil slowly ran
down the structures. The test was performed with the sensors first in a vertical
position and then repeated with the sensors in a horizontal position. The CFR sensor
was tested twice in the horizontal position, once with the fin standing upright, and
once with the fin hanging down from the top. The test with the sensors in a vertical
position was also performed with an emulsion containing 35% water (by weight). The
emulsion has a higher permittivity and a lower viscosity than pure motor oil, and
therefore had a larger effect that lasted longer. The results are shown in Fig. 6.32.

The Test Results

The results with the sensors in a horizontal position show that the CFR sensor is
sensitive to drops hanging from the edge of the fin, when the fin hangs from the top.
The steps in the graphs were caused by drops first accumulating on the edge of the fin
and then falling off. With the fin standing upright, the CFR sensor is first less affected
but eventually shows a larger effect than the end cross sensor. The larger effect in the
end is caused by the larger sensitivity to contamination on the walls, in this case
particularly the oil accumulating on the lower side of the sensor.

The tests with the sensors in a vertical position show a larger effect in the end
cross sensor than in the CFR sensor. The steps in the graph for the end cross sensor
are caused by drops accumulating on and falling off the edges of the upper end cross.
The graph for the CFR sensor also displays some small steps. They are caused by
drops hanging from the end of the fin, where the sensitivity is lower than on the axial
edge of the fin. Clearly the sensitivity to contamination on the edges of the crosses in
the end cross sensor caused a larger effect in this test than the sensitivity to
contamination on the wall in the CFR sensor.

6.7.2 Conclusions

The tests confirm that the end cross sensor is sensitive to contamination on the end
crosses but not on the wall, whereas the CFR sensor is sensitive on the edge of the fin
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Figure 6.32 Measurements illustrating the relative sensitivity to a layer of contamination that is
coating the metal parts of a sensor. The sensors were first filled with motor oil, and
after they were emptied, the resonant frequency was measured with a network
analyzer as a function of time. The sensors were held in a horizontal (a) and vertical
(b) position. εr is the effective permittivity: εr = (fr0/fr)
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and also to some degree on the wall. Which sensor is less affected in practice depends
on where the contamination builds up in the specific application. Intuitively it seems
more likely that the contamination builds up on the trailing edges of the end grids,
which are perpendicular to the flow, than on the axial edge of the fin, which is parallel
to the flow. It is, however, uncertain how well the tests reflect the relative importance
of contamination on the walls and the edges. There seem therefore not to be a clear
answer to the question, which type of sensor is less sensitive to contamination.

The error in e.g. the deduced watercut that is caused by contamination depends
on the relative permittivity of the contamination and the MUT. If the permittivities are
equal, the error is zero. If the permittivity of the contamination is higher than the
permittivity of the MUT, the watercut will be too high, and in the opposite situation,
too low.

6.8 Sensitivity to Corrosion and Erosion

If the dimensions of a sensor change as a consequence of corrosion or erosion, the
resonant frequency will also change. If the sensor is not recalibrated, the deduced
results (e.g. watercut) will be in error. It is impossible to know exactly how the
dimensions would change in practice, but an indication of the relative sensitivity to
such changes of dimensions in a CFR sensor and an end cross sensor can be gained by
assuming that all metal surfaces are eroded/corroded equally.

The sensitivity can be calculated from the results reported in Sec. 6.4. Here a
2” CFR, with a fin thickness of t = 3 mm, will be studied as an example. If it is
assumed that all metal surfaces are eroded/corroded by 0.5 mm, the diameter will
increase by 1mm. Eq. (6.4) then gives that the change of the resonant frequency is ∆fD

= –2%. From Fig. 6.4, a reduction of the fin height by 0.5 mm causes an increase of
the frequency of ∆fh = 1.65%. From Fig. (6.8), a reduction in the fin thickness from 3
mm to 2 mm causes an increase of the frequency of ∆ft = 0.8%. The sum of theses
effects gives: ∆fCFR = 0.45%. In an end cross sensor only the change in diameter
causes a change in frequency, hence ∆fEC = –2%. It is known that a 1% absolute
change in the watercut causes roughly a –1.5% change in the frequency. In the above
studied example the errors in the deduced watercut for the two sensors would
therefore be: ∆WCCFR = –0.3%wc (%wc stands for 1 %-unit of watercut) and ∆WCEC =
1.3%wc for a corrosion/erosion of 0.5 mm on all surfaces. If the axial edge of the fin in
a CFR sensor is wedge shaped, the thickness of the fin has practically no effect on the
frequency (see Fig. 6.8). In that case the error is ∆WCCFR = 0.23%wc (for 0.5mm). In
practice the truth is probably somewhere between these two values, which means that
a CFR sensor is less sensitive to erosion and corrosion than an end cross sensor.

6.9 The CFR Sensor as a Low-Cost Watercut Sensor

In the petroleum industry and related areas the measurement of the water content of
oil, i.e. the watercut, is an important measurement problem. In some cases a high
accuracy (≤ 0.1%wc) or resolution (≤ 0.01%wc) are needed, but in many cases a lower
price is more important than a high accuracy or resolution. Because of its simple
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mechanical structure the CFR sensor provides a good basis for developing a watercut
meter version that can be sold to a lower price than the standard version.

In a low-cost meter the manufacturing cost of every component is important.
Therefore the electronics must also be simple and not contain expensive parts. The
author and his team at Roxar have developed a low-cost watercut meter based on the
CFR sensor and the feedback self-oscillating amplifier method of measuring the
resonant frequency [Nyfors and Bringsvor, 1998]. Because the used method of
measuring the resonant frequency puts particular requirements on the frequency
response of the sensor, the low-cost watercut concept will be briefly discussed below,
even though matters related to a specific product and the methods of measuring the
resonant frequency are outside the scope of this thesis.

6.9.1 Low-Cost Sensor

The fin structure is simpler and less expensive to produce than the end grids of the end
grid sensor that is described in Ch. 7. It can also be produced with the wire cutting
technique without welding the fin. This method produces a high quality finish and
tight tolerances. Especially in the case of small sensors (up to about 4”) the sensor
body can be machined from one piece, in which case no welding is used in the
production of the sensor. This is a strong sales argument in the offshore business,
where all welding has to be performed in accordance with specific procedures, which
must be adjusted to the customer’s requirements and checked and approved by the
customer in a time-consuming and tedious process.

The electric type probes are also mechanically simpler than the magnetic type
loop probes that are used in the end grid sensor. Because of the lower accuracy
requirements for a low-cost meter, the sensor can be made short, despite of the
possible influence that a slightly different diameter of the pipe would have on the
resonant frequency (see Sec. 6.6.1). For example, a CFR sensor for a low-cost
watercut meter can be made 1.2 Dp long and without own flanges. Instead it is
squeezed between the flanges of the surrounding pipe with through bolts.

6.9.2 The Feedback Self-Oscillating Amplifier (FSA) Method of Measuring fr

Basics of the FSA Method

The most frequently used methods of measuring the resonant frequency of a resonator
sensor are based on performing a frequency sweep measuring the frequency response
that is shown in Fig. 3.1 (reflection coefficient) or 3.2 (transmission coefficient)
[Nyfors and Vainikainen, 1989a], [Vainikainen, 1991], [Okamura, Miyagaki, and Ma,
1998]. The signal is generated by a VCO (voltage controlled oscillator) and the
amplitude is measured and the frequency is counted in a number of points. The
resonant frequency is determined from a curve fitted to the measurement points. The
curve fitting may vary in complexity depending on the required accuracy. In the
simplest case only the –3 dB points are measured and the resonant frequency taken to
be the mean value. The sweep methods are limited in speed, because of the time it
takes to perform a frequency sweep and to count the frequency with the required
accuracy in the required number of points. The sweep methods are also limited in
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range by the frequency range of the used VCO, but they have the potentiality of
providing a high accuracy, only dependent on the number of measurement points and
the accuracy of the measurements of amplitude and frequency. The accuracy may be
limited by the time it takes to perform one measurement of resonant frequency
compared to the time scale of the changes in the resonant frequency.

The FSA method of measuring resonant frequency is a so-called active
method, where the resonator sensor is an active part of the measurement system. The
method has long been known as a fast and simple method of measuring the resonant
frequency in narrowband applications [Nyfors and Vainikainen, 1989a, p.171]. In this
thesis the use of the method in broadband applications is studied.

The FSA electronics consists of an amplifier, which may internally consist of a
chain of amplifiers, with feedback through the sensor (Fig. 6.33). If the gain of the
amplifier at a certain frequency is higher than the attenuation in the sensor and the
cables, there will be net amplification of a signal for each revolution in the circuit.
This condition leads to oscillation. The amplifier is driven further into saturation until
the gain balances the attenuation. The sensor acts like a filter such that the net gain
will normally be grater than 1 (unsaturated amplifier) only at the resonance peak.
However, just as described in Sec. 3.3 for microwave resonators, the phase condition
must also be fulfilled before the oscillation can start. The total phase change of a
signal during one revolution in the circuit must be

πφ 2⋅=∆ nt (6.23)

where n is an integer. This means that the circuit can oscillate only on certain discrete
frequencies. Generally it will not oscillate on the exact resonant frequency but on the
nearest frequency, where both the phase and the net gain conditions are fulfilled. The
distance between the frequencies, where the phase condition is fulfilled, determines
the resolution of the measurement of the resonant frequency. This distance depends on
n, i.e. the length of the cables. The longer the cables, the more closely spaced are these
frequencies.

Figure 6.33 The FSA method of measuring resonant frequency. A signal is amplified in the
amplifier and attenuated in the sensor. If the gain is larger than the attenuation at a
frequency, where also the phase condition is fulfilled, the circuit will start to oscillate.
The sensor acts like a filter such that oscillation is possible only close to the resonant
frequency.

Sensor

Amplifier
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Resolution

If only the phase shift in the cables is taken into account, the resolution, i.e. the
distance between the frequencies where the phase condition is fulfilled, is
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where rcε ′  is the permittivity of the insulation and l is the total length of the cables. If

10 m long cables with 2.2=′rcε  are used, the resolution is then ∆f = 10.1 MHz. The

sensitivity of a 2” CFR sensor has been measured to be roughly 15 MHz/%wc, where
%wc stands for 1 %-unit of watercut. The definition of watercut is [Handbook of
Multiphase Metering, 1995]
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where V stands for volume. The resolution is therefore in this case

wc
wc

WC %67.0
15MHz/%

MHz1.10 ==∆ (6.26)

So far only the phase shift in the cables was taken into account because it
dominates, when the cables are long, and therefore gives a good but conservative
estimate of the resolution. In reality the total phase shift is the sum of the phase shift
in the cables, the sensor, and the electronics. The phase shift in the electronics is
difficult to express accurately but in practice it is equivalent to a small extra length of
cable. Compared to the total length of 20 m in this example, the effect is small.

The phase shift in the sensor is +90o far below the resonant frequency, ±45o at
the –3 dB points, and –90o far above the resonant frequency. This phase shift in the
sensor effectively pushes the frequencies, where the phase condition is fulfilled, closer
together in the vicinity of the resonant frequency. The resolution is therefore slightly
better than estimated by (6.24), but depends on the width of the resonance peak. To
estimate the typical effect on the resolution of the phase shift in the sensor, the total
phase shift must be calculated. It is the sum of the phase shift in the cables and the
sensor:

sct φφφ ∆+∆=∆ (6.27)

where the phase shift in the cables is
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and the phase shift in the sensor is given by (3.27a):
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Figure 6.34 The phase shift in a 20 m long cable, and in the cable + sensor. The rings and the
asterisks mark frequencies, where the phase shift is n·2π. The phase shift in the sensor
improves the resolution of the FSA method from that given by (6.24). The chosen
values correspond to a watercut of 0%.
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The effect on the resolution of the phase shift in the sensor is illustrated in Fig. 6.34. If
the cables are 10 m long (total 20 m) and the peak narrow (WC = 0%), the resolution
improves from 10.1 MHz to 8.3 MHz. For a peak corresponding to WC = 30% the
resolution is 8.8 MHz. The corresponding resolution in WC is 0.55%wc and 0.59%wc

respectively, compared to the 0.67%wc for the cable alone. These calculated results
agree well with test results.

Implications of the Discrete Nature of the FSA Method

The fact that the FSA circuit can oscillate only on certain frequencies means that the
measured watercut will jump in steps, when the real change in watercut is continuous.
In the used example (2” sensor, 10 m cables) the step size is roughly 0.6%wc, which
means that the discretization error is ±0.3%wc.

In designing a system based on the FSA method care must also be taken to
match the frequency resolution ∆f to the width Bhp of the resonance peak. If the peak
is much narrower than ∆f, the insertion loss may be too high at the nearest frequency,
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where the phase condition is fulfilled, when the peak is in the middle between two
such frequencies. A practical condition is

l

r
hp Q

f
Bf =≤∆ (6.30)

which means that it is enough to have a gain margin of 3 dB, i.e. 3 dB more gain in
the amplifier than the insertion loss of the sensor+cables, over the whole measurement
range. Note that the gain margin changes with the watercut, because the peak height
and the frequency change and the gain depends on the frequency.

In a 2” CFR sensor the peak width is roughly in the range 13 … 30 MHz,
depending on the type of oil, the WC, and the strength of the coupling. This is more
than the resolution of 8.8 MHz that is achieved with 10 m long cables, which means
that condition (6.30) is fulfilled. Figure 6.35 shows the calculated situation
corresponding to WC = 0% and 20%. The horizontal  lines depict a gain margin of 3
dB at the resonant frequency, and the asterisks are frequencies, where the phase
condition is fulfilled. Oscillation is then possible at the frequencies marked with
asterisks that are above the horizontal line. In practice the circuit will oscillate at the
frequency with the highest gain margin.

Figure 6.35 The resonance peak for a watercut of 0% and 20%. The asterisks show the
frequencies, where the phase criterion for oscillation is fulfilled with 10 m long cables
(calculated). The horizontal line depicts a gain margin of 3 dB at the resonant
frequency. The resonant frequencies and peak widths correspond to measured values
for motor oil and fresh water.
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Matching the Frequency Responses of the Amplifier and the Sensor

Above it was assumed that the sensor has only one resonance peak, but in reality
every microwave resonator has an infinite number of resonances. The FSA circuit will
oscillate at the peak with the highest gain margin. It is therefore important to match
the frequency response of the amplifier to the frequency response of the sensor so that
this will always occur at the right peak. In a CFR sensor the used resonance is the one
with the lowest frequency, and the next two resonance peaks have been eliminated by
the choice of locations for the probes (see Sec. 6.3). By using an amplifier with a
falling frequency response (i.e. higher frequency → lower gain) the risk of the circuit
oscillating at the wrong frequency is therefore minimized. A falling frequency
response is also motivated by the fact that the height of the peak generally falls, when
the watercut increases and the resonant frequency decreases. On the other hand, a
falling frequency response slightly favours oscillation frequencies on the lower side of
the resonant frequency, leading to a small systematic error. In practice this error is
negligible compared to the discretization error. In a tested circuit, consisting of three
Hewlett-Packard MSA-0885 amplifiers in series, the gain dropped 20 dB/1 GHz,
which is equal to 0.6 dB/30 MHz. With a resolution of 8.8 MHz and a peak width of
30 MHz this gives a systematic error of 0.55 MHz, corresponding to 0.04%wc. If the
resolution is 30 MHz, the systematic error is 0.9 MHz (0.06%wc). With narrower
peaks the error is smaller.

The higher the gain margin is the more noise the circuit creates. This noise
easily leads to uncontrolled oscillations at low frequencies, where the gain is highest.
To prevent this from happening the lowest part of the frequency response (below the
lowest expected resonant frequency) of the electronics should be filtered out with a
highpass filter. Practical tests have shown that enough filtering to allow at least 30 dB
of gain margin is achieved by using small enough coupling capacitors between the
amplifier stages. In the present design of the electronics 10 pF capacitors have been
used.

6.10 Summary

A new type of microwave resonator sensor, the CFR sensor, has been developed for
measurements in pipes. The CFR sensor is an application of sectorial waveguides, and
is as a resonator based on the principle of isolation below cut-off. Various design
aspects have been studied both using simulation tools and by measurements. The
effects of the length, height, thickness, and shape of the fin have been studied. The
effect on the frequency response of the location of the probes, and the effect on the
coupling of the shape and size of the probes and the permittivity of the MUT and the
dielectric material in the probes have also been studied. Various aspects related to the
length of the sensor have been studied and recommendations given for alternative
designs depending on the specifications. The sensitivity to contamination (scale and
wax) has been studied in practical tests, and the sensitivity to corrosion and erosion
has been studied theoretically. Here CFR sensors and end cross sensors were
compared. A low-cost watercut meter for applications in the petroleum industry has
been developed. It is based on a CFR sensor and simple FSA electronics. The
advantages are low manufacturing cost, no welding needed, and minimal obstruction
to the flow.
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7 RESONATOR SENSORS WITH END GRIDS

7.1 Introduction

The method of implementing microwave cavity resonator sensors in pipes by isolating
a section of the pipe with grids (see Fig. 4.9), has been widely used for measuring the
material properties of materials flowing in pipes. The method was briefly discussed in
Sec. 4.3. Three cases of end grid sensors are discussed in this chapter.

The first case is the MFI WaterCut sensor made by Roxar. A new type of end
grid that was developed by the author is presented. Various design aspects of the end
grids are discussed based on the theory presented in Ch. 4, and on measurements.

The second case is the MFI downhole watercut meter that is being developed
at Roxar. The sensor for this meter was designed by the author. The design of the end
grids and the sensor to match the spatial requirements in the annulus of an oil well are
discussed, as well as the size, shape, and location of the probes from the point of view
of creating a frequency response that is suitable for the FSA method of measuring
resonant frequency.

The third case is a humidity sensor with a broad measurement range. It was
designed to be used inside a veneer sheet dryer, where the temperature is high and the
air contains dust and vaporized resin. It could also be used in other similar harsh
environments. A general description of the design is given. This sensor was developed
by the author and his collegues at the Radio Laboratory of the Helsinki University of
Technology. It was successfully tested but never commercialized.

7.2 The MFI WaterCut Sensor

7.2.1 Basic Design

The WaterCut sensor is based on using the TM010 mode (see Sec. 3.7.2) in a cavity
that is isolated by end grids in a cylindrical pipe. The length of the cavity is shorter
than or equal to the radius of the pipe, which means that the used mode is the lowest
one, with a relatively long distance to the next one (see Fig. 3.3). The sensor is always
completely filled with the MUT, which means that all modes are moved by the same
relative amount, when the watercut and thereby the permittivity of the MUT changes.
Generally, when the watercut is high, the resonance peaks are low and broad and the
right one may be difficult to identify if there are other peaks close to the used one, and
especially in the presence of ripple. The long distance to the next mode therefore
reduces the risk of confusion between peaks in the WaterCut sensor.

The end grids in the small dimensions (up to 4” in diameter) of the WaterCut
sensor all used to be simple cross grids, i.e. made of two crossed plates, as shown in
Fig. 7.1. The length of the grids (dg) was designed to be equal to the inner diameter
(Dp) of the pipe. Tests had shown this to be enough. Because there is a grid in both
ends, the grids add totally 2Dp to the length of the sensor. In the small sensors this is
of little importance, but in the large sensors the long grids add significantly to the
manufacturing cost of the sensor. Star grids, consisting of four crossed plates (Fig
7.1), were therefore used in the larger dimensions. Because the holes in the star grids
are smaller than in the cross grids, they were supposed to provide better isolation
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Figure 7.1 The basic design of the cross and star grids used in MFI WaterCut sensors.

allowing the star grids to be made shorter than the cross grids. They were designed to
be half as long as the cross grids, i.e. dg = 0.5Dp. In practice this length also turned out
to be more or less enough, even though the frequency response did not quite seem to
reflect the supposedly increased cut-off frequency of the grid.

It was not known how much more isolation could be achieved by further
increasing the number of plates. The desire was, however, to make the grids as short
as possible in order to minimize the manufacturing costs and the space taken by the
sensor. The author’s task became to study the existing design, if possible improve it,
and to specify the length for each design to be used with the various dimensions of the
WaterCut sensor. Because the relative isolation provided by different designs of grids
was not known, the HFSS software had not yet been acquired, and building and
measuring prototypes is expensive and gives only limited answers, the author started
by analyzing the waveguide modes in the holes of the existing end grids. This resulted
in the solutions for sectorial waveguides. Also semisectorial waveguides were studied,
when the existing design was improved (see below). As a spin-off effect the author
invented the CFR sensor. The waveguide mode solutions were presented in Ch. 5 and
the CFR sensor in Ch. 6. The results for the end grids of the WaterCut sensor are
presented below.

CROSS GRID STAR GRID

END VIEW
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DpCAVITYEND GRID END GRID
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7.2.2 Relative Isolation Provided by Cross and Star Grids

The Theoretical Effect of the Length of the Grids

The holes in a cross grid are sectorial waveguides, with a sector angle ϕ0 = π/2. From
Eqs. (5.8) and (5.18), and Tab. 5.1, the lowest cut-off frequency in these waveguides
is seen to be that of the mode TE21. In this case the ratio between the cut-off frequency
in the holes and the resonant frequency of the TM010 mode is given by the ratio of
(5.18) to (3.50) with l = 0:
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Because the ratio is low, the grids have to be long to provide the necessary isolation.
This had also been seen in practice and the grids were designed to be one inner
diameter long. Equation (4.10) gives Qrad = 1866⋅Qrad0 for dg = Dp.

In sensors larger than 4” star grids were used. Because the holes are smaller
than in the cross grids, the cut-off frequency was assumed to be higher and they were
designed to have a length of dg = 0.5Dp. Because they are made with 4 crossed plates
(8 sectors), the sector angle is ϕ0 = π/4. The mode that was the lowest in the cross
grids and called TE21 (in a sector with ϕ0 = π/2), is called TE41 when ϕ0 = π/4. It has

318.541 =′p  and is not the lowest mode in a star grid. The lowest mode is the sectorial

mode TE01, with 832.301 =′p , independent of the sector angle. It also exists in

ordinary cylindrical waveguides. The electric field of this mode is tangential, i.e.
perpendicular to the sector walls, which is the reason that the plates in a star or cross
grid do not affect this mode. TE01 gives the ratio

593.1
405.2
832.3 ==

r

c

f

f
(7.2)

In fact already a grid with 6 sectors would have the same cut-off frequency as the grid
with 8 sectors (see Tab. 5.1).

The relative length of two grid types with different fc/fr ratio that give the same
isolation can be calculated from (4.10). Assuming that Qrad0 is the same for both grid
types, (4.10) gives
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From the fc/fr ratios calculated above, (7.3) gives that a star grid needs to be 0.716
times the length of a cross grid to provide the same isolation.
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The surface currents are radial in the flat ends of a TM010 resonator. The radial
structure of the cross and star grids should therefore provide a good short to the mode,
leading to a high Qrad0. The higher the number of legs in the star is, the higher can
Qrad0 be expected to be. Taking this into account, the real length of a star grid that
provides the same isolation as a cross grid is probably shorter than 0.716 times the
length of the cross grid.

From (5.18) and Tab. 5.1 it can be concluded that the cut-off frequency of a star
grid increases with the number of sectors only up to 6 sectors. Based on this
information it does not seem possible to make significantly shorter grids by increasing
the number of sectors in the grids past 6.

Measured Cut-Off Frequency of Cross and Star Grids

The author performed a series of simple tests to check the calculations and to find out
the real cut-off frequency of the cross and star grids. The tests were performed with a
network analyzer (NA) such that the microwave signal was fed into the sensor through
one of the two probes. The signal was received in free space on the outside of the
sensor with a short monopole antenna mounted on the cable connected to the input of
the NA. The leakage was measured as a function of frequency with the antenna in
various positions and at various distances from the sensor. A subjective estimate of
the cut-off frequency was made from the printouts.

The first test was made with a 3” sensor (Dp = 97.5 mm) with cross grids. The
calculated theoretical resonant frequency for a sensor with this diameter, perfect ends,
and no influence from the probes, is frt = 2.356 GHz, whereas the measured resonant
frequency was 2.160 GHz. The measured cut-off frequency of the grids was
approximately 3.000 GHz. This gives the ratio fc/frt = 1.273, which is close to the
expected ratio of 1.27.

Another test was made with a 15” sensor (Dp = 381 mm, nominally a 16”
sensor, with a high pressure rating) with star grids. The length of the grids was dg =
203 mm. The calculated theoretical resonant frequency for a sensor with this diameter,
perfect ends, and no influence from the probes, is frt = 603 MHz, whereas the
measured resonant frequency was 550 MHz. The measured cut-off frequency was
approximately 860 MHz, where a prominent peak in the leakage was observed. This
gives the ratio fc/frt = 1.43, which is somewhat lower than the expected ratio of 1.593,
which would have given fc = 960 MHz.

A qualitative explanation for the unexpectedly low cut-off frequency of the
star grids and the observed peak can be obtained by considering transversal quasi-
TEM modes in the grids. If two adjacent sectors are studied, the common wall forms
the centre conductor of the TEM structure, and the other walls form the outer
conductor. The TEM structure is shorted in one end by the sensor wall and in the other
end by the welding in the centre of the star. A TEM structure that is shorted in both
ends has a first resonance, when the structure is half a wavelength long. Because of
the finite thickness of the plates in the grids and the welding in the centre point, the
radius of the sectors was a = 170 mm. The approximate resonant frequency of this
TEM structure is
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which is close to the observed cut-off frequency and peak of the star grids.
When a resonance is present in an end grid, energy can easily be conveyed

through the grid by coupling to the resonance mode from the inside and escaping by
radiation at the outside.

Simulated Isolation of Cross and Star Grids

The cut-off frequency of cross and star grids was calculated based on the assumption
that the cut-off frequency of a grid is equal to the cut-off frequency of the holes in the
grid. The discussion above, however, indicates that adjacent holes might together
support resonant modes with a resonant frequency that is slightly lower than the cut-
off frequency of the holes. To test the general efficiency of the grids and the
explanation given above, the leakage through both a cross grid and a star grid was
simulated with HFSS. The models for the grids consisted of a cylindrical waveguide
with input and output ports at the ends, and with a single grid in the middle. The
dimensions were: Dp = 50 mm, dg = 50 mm, length of model = 150 mm, and thickness
of the plates = 2 mm.

The result for the cross grid is shown in Fig. 7.2 together with the calculated
below cut-off attenuation. The cut-off frequency was calculated assuming a = 24 mm

Figure 7.2 The isolation provided by a cross grid (4 sectors) with the dimensions dg = Dp = 50
mm. The thickness of the plates = 2 mm. A: The attenuation below cut-off as
calculated from (4.3). B: The result from the simulation with HFSS.
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to compensate for the plate thickness, giving fc = 6.08 GHz. The attenuation was
calculated from (4.3).

The cross grid is seen to perform well compared to the calculated result. The
simulated isolation is slightly better than the calculated because of the inefficiency in
coupling from the waveguide to the holes in the grid. This is the phenomenon
accounted for by Qrad0. The effect of the cut-off frequency of the pipe at 3.52 GHz is
also seen, giving extra attenuation on frequencies lower than that.

The result of the simulation of the star grid is shown in Fig. 7.3. The calculated
cut-off frequency is 7.32 GHz. The star grid is seen to perform well at the resonant
frequency of the sensor, providing considerably more isolation than calculated with
(4.3). This fact is probably due to the higher Qrad0, as explained above.

The isolation resulting from the simulations at the theoretical resonant
frequency (4.593 GHz) is -79.7 dB for the star grid, and -42.5 dB for the cross grid.
The isolation provided by the star grid is roughly double (in dB), which explains why
the star grids can be made only half as long as the cross grids despite of the relatively
small difference in cut-off frequency.

A strong resonance-like feature is seen at 7.1 GHz, corresponding to the ratio
fc/frt = 1.54, which is somewhat lower than the calculated ratio of 1.593 for TE01, and
higher than the measured ratio of 1.43, or the predicted ratio of 1.46 for the quasi-
TEM resonance. The electric field configuration that was displayed by the HFSS for
the simulation at 7.1 GHz resembles that of TE01, not the TEM mode. The exact

Figure 7.3 The isolation provided by a star grid (8 sectors) with the dimensions dg = Dp = 50
mm. The thickness of the plates = 2 mm. A: The attenuation below cut-off as
calculated from (4.3). B: The result from the simulation with HFSS.
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nature of the resonance phenomenon and the possible existence of the TEM mode
therefore remain obscure.

To avoid interference from things outside the sensor, e.g. caused by reflections
from the thermowell, it is desirable to have a high cut-off frequency in the grids in
addition to a high isolation at the resonant frequency. Otherwise extra peaks might
appear inside the sweep window and be mistaken for the resonance peak, especially in
the presence of ripple.

Conclusions

The cross grid provides a simple and satisfactory solution for sensors of small
diameter, where the grids can be made long enough without high extra costs.
However, the low cut-off frequency constitutes a risk for interference from e.g. the
thermowell, which is normally mounted quite close to the sensor.

The star grid has a cut-off frequency that is lower than originally anticipated,
and only slightly higher than that of the cross grid. The isolation efficiency is,
however, good at the resonant frequency. Increasing the number of sectors further
does not increase the cut-off frequency, because the lowest mode is only dependent on
the diameter of the pipe, when the number of sectors is 6 or higher. Increasing the
number of sectors might improve the isolation efficiency because of an increase in
Qrad0. For the large sensors a more efficient end grid design, with a higher cut-off
frequency, is needed so that the grids can be made shorter than the star grids and the
risk of interference be avoided.

7.2.3 Improved End Grid Design – The Ring Grid

The main problem with the star grid is the TE01 mode that is independent of the sector
angle, and possibly the transversal quasi-TEM mode resonance in the legs of the star.
If the diameter of the grid is maintained equal to the pipe diameter, the cut-off
frequency of TE01 in the grid can only be increased by turning the sectors into
semisectors. The author has therefore designed a new grid – the ring grid, which is
shown in Fig. 7.4. The ring grid has a ring in the centre making the holes semisectorial
waveguides. This also makes the legs of the star shorter, thereby pushing the resonant
frequency of the possible TEM resonance upwards. The ring grid can therefore be
expected to give a high isolation efficiency, and remove the TEM resonance and the
risk of interference in the sweep window.

Optimization of the Ratio r = b/a and the Number of Sectors in a Ring Grid

In choosing the ratio of radii r = b/a for the ring grid, the cut-off frequency in the
centre hole and the semisectors, as well as the resonant frequency of the TEM
resonance in the legs, should be taken into account. The wall thickness of the ring and
the legs can be forgotten. In reality the finite thickness will further improve the
efficiency of the grid. Figure 7.5 shows the relative cut-off frequency of the centre
hole and the semisectors, and the resonant frequency of the TEM mode, as a function
of r in a ring grid with 8 sectors. It is seen that the optimal choice for r is in the
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Figure 7.4 The basic design of a ring grid with 8 sectors. The semisectors have a higher cut-off
frequency than the sectors in a star grid, thereby allowing the grid to be made shorter.
The legs are also shorter than in a star grid, thus pushing the TEM resonance further
away from the resonant frequency of the sensor.

Figure 7.5 A comparison of the cut-off frequency of the semisectors and the centre hole relative
to the theoretical resonant frequency of the sensor. The graphs are for a ring grid with
8 sectors. The quasi-TEM resonance in the legs of the star is also shown. A value of
b/a ≈ 0.37 gives optimal performance.
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Figure 7.6 A comparison of the cut-off frequency of the semisectors and the centre hole relative
to the theoretical resonant frequency of the sensor. The graphs are for a ring grid with
6 sectors. The quasi-TEM resonance in the legs of the star is also shown. A value of
b/a ≈ 0.25 gives optimal performance.

vicinity of 0.37, which gives a ratio fc/frt = 2.07 for the grid. If the thickness of the ring
is taken into account, the optimal value for r in the semisectors is slightly higher. In
practice r = 0.4 can be recommended, when b is the outer radius of the ring.

If more than 8 sectors would be used, only the cut-off frequency of the TEν1

mode, where ν = 0.5*number of sectors, would increase. From Figure 7.5 it is seen
that already for 8 sectors either the cut-off frequency of TE11 in the centre hole or TE01

in the semisectors is lower than that of TE41. Increasing the number of sectors past 8
therefore does not bring any improvement to the lowest cut-off frequency of the grid.

Figure 7.6 shows the situation for a ring grid with 6 sectors. The optimal value
for r is ≈ 0.25, which gives the ratio fc/frt = 1.74. This is somewhat better than for a
star grid with 8 sectors. A ring grid with 8 sectors is, however, significantly better.

In a cross grid the lowest mode is TE21. The cut-off frequency of this mode
would decrease if a ring would be used in the centre. Ring grids are therefore not
recommended to be designed with only 4 sectors.

For optimal performance, ring grids with 8 sectors and r = 0.4 are
recommended as the most efficient type of sectorial/semisectorial grid.

Simulated Isolation of a Ring Grid with 8 Sectors

The isolation of a ring grid was simulated with the HFSS in the same way as the cross
and star grid. The same type of model was used: Dp = 50 mm, dg = 50 mm, length of
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model = 150 mm, thickness of plates and ring = 2 mm, bo/a = 0.412 (bo is the outer
radius of the ring) and bi/a = 0.372 (bi is the inner radius of the ring), ports at the ends,
and grid in the middle. The b/a values were chosen to be the same as in the prototype
described below. With the given dimensions the cut-off frequency in the centre hole is
9.5 GHz, and 10.06 GHz in the semisectors.

S21 was simulated as a function of frequency. The result is shown in Fig. 7.7a
together with the calculated attenuation based on the lowest cut-off frequency. The
ring grid is seen to perform well. The effective cut-off frequency seems to be roughly
10.5 GHz and only a few small peaks are seen in the graph. The peaks are so small
that they have no practical effect on the isolation. They may be caused by HFSS.
When visualized by HFSS, the field configuration at the frequencies of the peaks
looked exactly like outside the peaks. Based on these results it seems feasible to make
the ring grids considerably shorter than the star grids.

If the isolation would be purely caused by attenuation below cut-off, the
isolation expressed in dB would be directly proportional to the length of the grid.
However, because of Qrad0 the situation is not quite that simple. A new simulation was
therefore made with dg = 0.25Dp. The result of this simulation is shown in fig. 7.7b.
The graph of the isolation looks much like for the longer grid, except that the isolation
has decreased. The graph again contains some small peaks, which are partly at
different frequencies than for the longer grid. Again they may be caused by the HFSS.

At the theoretical resonant frequency (frt = 4.593 GHz) the isolation given by
the simulation is -34.9 dB, whereas the theoretical attenuation below cut-off as given
by (4.3) is -18.9 dB. The difference (-16.0 dB) comes mainly from the inefficiency
with which the exciting mode launches the waveguide modes in the grid holes, and
the fact that already a grid made of thin wires would provide some isolation, as taken
into account by Qrad0. In this simulation the waveguide was excited by the dominant
mode, i.e. the TE11 mode, whereas the TM010 mode is used in the resonator. Because
of this, and the fact that the quality factors of a resonator also depend on the stored
energy, which depends on e.g. the length of the cavity as is seen from (3.23), it is
impossible to predict the exact values of Qrad and Qrad0 from the simulations. To
achieve this a whole sensor would have to be simulated.

It is also difficult to put an exact limit to Qrad for a sensor. If only the influence
on the peak is taken into account, a fairly low value (Qrad ≈ 300) could be tolerated
before the radiation starts to affect the measurements of watercut. Another factor is
the interference from objects outside the sensor. It is for example important to be able
to measure and calibrate the sensor on the bench, without that e.g. a hand in front of
an end grid disturbs the measurement. Here the CFR sensor described in Ch. 6
provides a good reference. In Sec. 6.6.1 it was shown that when the sensor (Dp = 52.5
mm) is surrounded by 40 mm long pipe sections, things at the outside affect the sensor
very little, and when the pipe sections are 50 mm long, the sensitivity to the outside
disappears completely. From Fig. 6.31 it is seen that these lengths correspond to Qrad

= 1200...4000. Qrad values within this range, or higher, can therefore be considered
acceptable for a sensor.

An indication of the radiation quality factors corresponding to the simulation
of the ring grid can be obtained from (4.10). Because the simulation takes into account
the coupling and the reflection from a thin grid, (4.10) gives "Qrad", when Qrad0 = 1 is
assumed:
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Figure 7.7 The isolation provided by a ring grid (8 sectors) with the dimensions dg = Dp = 50
mm (a), and dg = 0.25Dp = 12.5 mm (b), b/a = 0.37...0.41. The thickness of the plates
and the ring = 2 mm. A: The attenuation below cut-off as calculated from (4.3). B:
The result from the simulation with HFSS.
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3090
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1
10/9.34rad == −Q (7.5)

In the same way "Qrad0" is obtained from the difference between the calculated
attenuation and the simulated isolation (-16.0 dB), which gives Qrad0 = 39.8. The value
for Qrad given by (7.5) is well within the acceptable range obtained for the CFR
sensor.

Measurements of a Prototype Sensor with Ring Grids

A prototype sensor with ring grids was made from a piece of pipe. The dimensions
were: Dp = 101.5 mm, b/a = 0.372…0.412 (as in the simulation model), length of
cavity = 50 mm,  and dg = 48 mm. The resonant frequency and the quality factors of
the sensor were measured, together with the relative radiation on the outside of the
sensor. The radiation was measured in the same way as described in Sec. 7.2.2, except
that the measurement was performed at two fixed positions at distances of 10 cm and
60 cm from the sensor. Thin slices were then cut from the ends of the sensor in steps
of roughly 0.05Dp so that the measurements could be performed as a function of dg. 

Figure 7.8 shows the results for the resonant frequency fr and the unloaded
quality factor Qu. The resonant frequency is seen to be almost unaffected by dg. Qu is
also almost unchanged in the first few measurements. The first value was therefore
taken as the metal quality factor Qm. Qrad was then calculated from (3.13) assuming Qd

= 0. The results for Qrad are shown in fig. 7.9, together with a graph given by (4.10)
fitted to the results. The best fit was obtained with fc/frt = 1.95, and Qrad0 = 70. For dg

= 0.25Dp the fitted graph gives Qrad = 4280, which is a quite satisfactory value and
slightly higher than indicated by the simulation.

The frequency ratio is slightly, but not significantly lower than the theoretical
value of 2.07, considering that these values are quite sensitive to measurement errors.
If the real peak height would be 0.15 dB higher than measured, the best fit would be
obtained with fc/frt = 2.07, and Qrad0 = 55. This would increase Qrad to 4600.

The measured radiation was plotted as a function of frequency. Because of the
large variations in the radiation level, and the unknown frequency response of the
antenna, readings were taken from the printouts at one frequency only. A resonance
peak at 2.8 GHz in the sensor was clearly distinguishable in the measured radiation.
The readings were therefore taken at the top of this peak. No significant difference
was detected between the measurements at the two different distances. Figure 7.10
shows the relative increase in the radiation compared to the level in the first
measurement at dg = 0.475Dp, corrected for the observed variation in the peak height
in the sensor. The graph shows the expected increase calculated from (4.3). The best
fit was obtained for fc/frt = 2.15. This time the frequency ratio is slightly, but not
significantly higher than the theoretical value of 2.07.

When the prototype was measured, qualitative observations of the sensitivity
to the outside world were also done. The following observations were noted:
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Figure 7.8 The measured resonant frequency and loaded quality factor of the prototype sensor
with ring grids as a function of the length of the grids. The measurements were
performed with a network analyzer .

Figure 7.9 The radiation quality factor calculated from the measurements of the prototype sensor
with ring grids. The graph was calculated with (4.10) assuming fc/frt = 1.95, and Qrad0

= 70, which values gave the best fit.
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Figure 7.10 The measured increase in the radiation outside the sensor at 2.8 GHz, when the ring
grids were cut shorter. The graph was calculated from (4.3). The best fit was obtained
for fc/frt = 2.15.

•  dg ≥ 0.296Dp: The resonance peak was unaffected by a hand held in front of the
grid.

•  dg = 0.246Dp: The height of the resonance peak dropped 1...2 dB, when a hand
was held against the grid. The effect disappeared a very short distance away. With
a metal plate the effect was negligible. The sensor performed well.

•  dg = 0.197Dp: The effect of the hand had increased: At a distance of 5 cm the hand
caused no change of frequency, but a drop of 0.4 dB in power. Held right in front
of the grid the hand caused a frequency shift of +0.35 MHz, and a drop in power
of 4.1 dB. Metal plate: +0.35 MHz and -3 dB at 5 cm, and -2.65 MHz and -3.1 dB
at 1 cm. The sensor was still usable as a sensor, but the accuracy and repeatability
of measurements and calibration performed on the bench would be degraded.

The results from the measurements of the prototype confirm the results from
the theoretical calculations and the simulations about the high fc/frt ratio compared to
cross and star grids. They also confirm the result from the simulations that ring grids,
which are a quarter of a pipe diameter long, provide enough isolation for the
resonance to be unaffected by radiation.
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7.2.4 Conclusions

The end grids in a sensor have two purposes. First of all they shall prevent the energy
at the resonant frequency from escaping through radiation. Secondly they shall prevent
energy also at higher frequencies from escaping during a frequency sweep
measurement. If energy can escape, it may become reflected and enter the cavity again
and create spurious peaks. Especially when the watercut is high, these spurious peaks
may enter the sweep window from the high end, while the right peak is low and broad,
and may even have left the sweep window from the low end in the case of an out-of-
range situation. It is therefore important that the isolation at the resonant frequency is
high enough, the cut-off frequency of the grids is high, and the frequency response is
clean without resonances. The isolation outside the resonance does not need to be so
high, because the power is attenuated both in escaping and in penetrating back after
reflection. Note that the frequency response of the grids is affected by the permittivity
of the MUT in the same way as the resonator, because both the resonator and the holes
in the grids are completely filled by the MUT.

Figure 7.11 shows the simulated results for cross, star, and ring grids of the
same length, dg = Dp. The ring grid has the best isolation and the cleanest response
without resonances, and therefore has the best potential for making short grids. Figure
7.12 shows the simulated results for a cross grid with dg = Dp, a star grid with dg =
0.5Dp, and a ring grid with dg = 0.25Dp, 8 sectors, and b/a = 0.37...0.4. With these dg

values the ring grid has the lowest isolation at the resonant frequency, but the isolation
was proven good enough by the measurements of the prototype. Figure 7.8 shows that
dg = 0.25Dp is a turning point - shorter grids start to become affected by radiation,

Figure 7.11 The simulated isolation of a cross grid, a star grid, and a ring grid of the same length.
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Figure 7.12 The simulated isolation of a cross grid, a star grid, and a ring grid. The lengths are
those with which they have been used in various versions of the MFI WaterCut
sensor.

longer are not. Figure 7.5 shows that increasing the number of sectors in a ring grid
past 8 does not increase the cut-off frequency, whereas a slight increase in Qrad0 might
be expected because of the denser structure. The small improvement in the minimum
grid length would, however, be of little practical importance. Grids with more than 8
sectors are not recommended. Fig. 7.12 also shows that the frequency response of the
ring grid is clean and the cut-off frequency high, whereas both the cross and the star
grids have far lower cut-off frequencies and strong resonances.

Because the discussed structures do not obstruct the flow significantly, the
pressure drop crated by the flow is small and does not affect the choice of end grid.

Based on the results above, cross grids with dg = Dp are recommended only for
small sensors (2”), where the mechanically more complicated structure of the ring
grids are difficult or expensive to manufacture. For larger sensors ring grids with dg =
0.25Dp, 8 sectors, and b/a = 0.37… 0.4 are recommended.

7.3 The MFI Downhole WaterCut Sensor

7.3.1 Introduction

The oil well technology is going in the direction of longer or multiple boreholes with
production from many zones into the same main well. In order to optimise the
production and the recovery this brings in the need to measure and control the
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contribution from each zone separately. Currently permanent downhole
instrumentation include temperature and pressure sensors. In addition such ”smart
wells” would benefit largely from having watercut meters that measure the
composition of  the inflow from a zone. With these instruments in place, the operator
would continuously know what is being produced from each zone, enabling him to
optimise the well production. For the control of a well it is important to know how the
watercut develops over time and with changing production rate, but especially
important that a water breakthrough is detected.

Roxar has a development project going on with support from the Norwegian
Research Council and the oil companies Elf Petroleum and Norsk Hydro. In this
project a complete downhole watercut meter is being developed. The sensor for the
downhole watercut meter will be described in this chapter. The sensor was developed
by the author.

Compared to a topside meter, a downhole meter has to face entirely different
environmental constraints. First of all the space available is small, and the temperature
can be high. The highest temperature rating for current instruments is 180oC. The
pressure is also high, up to the order of 1000 bar, depending on the depth of the well.
Furthermore the power available is limited. The high pressure is the easiest to
overcome. It is merely a question of mechanical design. The high temperature, the low
power available, and the limited space, all require that the amount of electronics put
downhole be kept to an absolute minimum. Therefore the FSA method of measuring
resonant frequency (see Sec. 6.9.2) was chosen as the operating principle for the
electronics. The electronics will not be discussed further here, but the operating
principle was mentioned because it must be taken into account in the design of the
sensor because of the requirements put by the FSA method on the cleanness of the
frequency response.

7.3.2 Geometrical Constraints

In an oil well the drilled hole is lined by a metal pipe called a casing or a liner
(depending on dimension and location in the well) that is cemented in place. It will
here mostly be called casing for simplicity. Inside the casing is the completion, which
consists of another metal pipe, which is called the tubing, and the necessary safety
valves and other equipment plus instrumentation. The space between the casing and
the tubing is called the annulus. The produced fluids flow in the tubing to the surface.

In a producing zone of a smart well a length of the annulus is sealed off by
packers. Inside this sealed off area the casing has been perforated for a certain distance
by firing small shaped explosive charges. Through these perforations the fluids flow
into the annulus. A distance away, inside the same sealed off area, is a valve, where
the fluids flow into the tubing to be mixed with the main flow.

A watercut sensor for measuring the inflow from a zone must be located so
that it can be passed by wireline tools, which are used for various interventions in the
well, i.e. it must not obstruct the tubing. The only possibility is therefore to locate the
sensor in the annulus between the perforations and the valve. The MFI WaterCut
sensor has been designed to be mounted on the outside of the tubing. Two sensors will
be mounted opposite to each other for detection of partial separation and for providing
redundancy. The basic configuration is shown in Fig. 7.13, and a cross section
showing the arrangement of the sensors in the annulus is shown in Fig. 7.14.
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Oil wells come in various sizes. It has been decided that the watercut meter
will be designed for the two most common sizes of smart wells: 4” tubing in 7” liner
and 51/2” tubing in 95/8” casing. The latter alternative was chosen for the first
prototype of the sensor, but the former has been chosen for the prototype of the meter.
The difference between the sensors for the two sizes will only be the radius of
curvature.

Figure 7.13 The basic arrangement of a production zone in a smart well that is equipped with two
watercut sensors and a sliding valve for control of the inflow from the zone. The axial
dimension has been reduced in the picture.

Figure 7.14 A cross section of an oil well showing the general outline of the watercut sensors
mounted in the annulus.
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7.3.3 Basic Design of the Sensor

Some of the design criteria for the sensor were that it should fit in the annulus, have
some clearing to the casing (otherwise it would be impossible to install with the
completion), cause as little pressure drop as possible, have a frequency response
suitable for measurement with the FSA technique, and leave some space allowing
cables and hydraulic pipes to pass on their way to gauges, valves, and watercut meters
located at other producing zones deeper in the well.

The sensor that the author has designed to match the criteria is a semisectorial
cavity sensor with a high b/a ratio. The ends are shorted by grids that allow the flow to
pass through the sensor. The cylindrical walls are solid metal, and the end grids
consist each of 4 evenly spaced radial/axial plates such that the openings in the ends
are divided into 5 smaller holes.

The coupling probes are short pins that couple to the electric field. They are
mounted on the concave wall for better protection during the completing of the well,
when the tubing with the sensors mounted on is slided in place inside the casing. The
distance from the top of the well to the location of the producing zone is typically
several kilometres.

The enclosure for the electronics is a small pipe that is also mounted in the
annulus a small distance downstream of the sensor.

7.3.4 Version #1 of the Sensor

The first version of the sensor (Fig. 7.15) was designed for a tubing pipe with an outer
diameter of 5½" (140 mm). It has an axial length of 100 mm between the grids, a
mean length of 150 mm in the perpendicular direction (i.e. the tangential direction),
and an internal height of 10 mm. Hence the ratio of radii is b/a = 0.875. The grids are
50 mm long , i.e. dg = 0.33Dp.

Figure 7.15 The basic design of version #1 of the sensor.

The Resonance Modes in the Sensor

Because the b/a ratio is high, the waveguide modes in the semisectorial waveguide
resemble those in a low rectangular waveguide, with the broad side equal to the mean
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arc of the sector (see Sec. 5.4.2). The sensor can therefore first be approximately
analyzed as a rectangular cavity resonator, ignoring the curvature.

The resonant frequencies of the modes in a rectangular cavity are given by
(3.49):
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where A, B, and L denote the width, height and length of the rectangular resonator.
Because the height B of the cavity is much smaller than the width A and the length L,
the resonant frequencies of the modes with m ≥ 1 will be much higher than those of
the modes with m = 0. The lowest TEnm waveguide mode in a rectangular waveguide
is TE10, and the lowest TMnm mode is TM11. Therefore all TMnml resonant modes will
have much higher resonant frequencies than the lowest TEnml modes.

The resonant frequencies of the lowest modes are shown in Fig. 7.16 as a
function of the width of the cavity. The resonant frequency of TM110 is 15.1 GHz,
independent of A. The FSA method of measuring the resonant frequency requires that
for the electronics always to lock to the right peak, there should be no other resonance
peaks in the vicinity of the used peak (see Sec. 6.9.2). Figure 7.16 shows that the
distance to the other modes decreases with increasing A. Hence, from this point of
view only, a cavity with a width to length ratio of 1:1 would be optimal. However,
achieving a high gain and a high reliability at high temperatures using currently
available components becomes increasingly difficult with increasing frequency.
Because also the resonant frequency of TE101 decreases with increasing A, a larger
width to length ratio would therefore be preferable. The problem of the higher modes
can be eliminated by properly locating the probes so that coupling to these modes is
avoided. The first version of the sensor was therefore chosen to be 150 mm wide. The
space that is left for cables and hydraulic pipes to pass the sensors would not be large
enough, when two sensors are used, if the width would be significantly larger.

The electric field distribution of the modes with index values n, l ≤ 3 are
shown in Fig. 7.17. The crosses indicate probe locations. One has equal distance to
the broad ends and is displaced 1/3 of the distance from the centre towards one short
end, and the other one has equal distance to the short ends and is displaced 1/3 of the
distance from the centre towards one broad end. In these positions at least one of the
probes is always in a null of a mode with at least one even numbered index, or at least
one index equal to 3, so avoiding coupling to these modes. This is also clearly seen in
Fig. 7.17 from the fact that maximum one of the crosses is visible, except for TE101.
With the probes mounted in the indicated positions, a frequency response is achieved
that is well suited for the FSA method.

The resonant frequencies were also calculated based on semisectorial resonant
modes using the results from Ch. 5. The semisectorial resonator corresponding to the
150 mm x 10 mm x 100 mm rectangular resonator has the dimensions given above
and in Fig. 7.15: ϕ0 = 114.6o, b/a = 0.875, a = 80 mm, and L = 100 mm. From the
discussion in Ch. 5 it is evident that the TEνml modes with m ≥ 2, and all TMνml

modes, have much higher resonant frequencies than the TEνml modes with m = 1 (n ≠
0). Thus the semisectorial modes with m = 1 correspond to the rectangular modes with
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Figure 7.16 The resonant frequencies of the first 13 modes in a rectangular cavity as a function of
A, when L = 100 mm, and B = 10 mm. The modes, to which coupling can be avoided
with the probes located as shown in Fig. 7.17, are shown dashed.

Figure 7.17 The distribution of the electric field of the modes with n, l ≤ 3. The crosses indicate
the positions of the probes that only couple to TE101 of the shown modes.
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m = 0. The resonant frequencies of the TEνml modes are given by (3.50) by
substituting ν for n:
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The p values were calculated by solving (5.34) for the resonator with the given
dimensions. The p values, the resulting resonant frequencies, and the corresponding
resonant frequencies that were calculated using the rectangular resonator
approximation are given in Table 7.1, together with measured values (see below). It is
seen that the difference between the results of the exact and the approximate
calculations of the resonant frequency is very small.

Prototype for Testing the Calculations

A prototype, with the nominal dimensions equal to those given above, was built for
testing the calculations. The quality of the work was, however, not very high. The
resulting frequency response was measured using a network analyzer and is shown in
Fig. 7.18. It is seen that the coupling to the higher modes is much smaller than to the
main mode, but not zero, as intended. The reason for the finite coupling is probably a
combination of the the poor metal work and the perturbation of the electric field
caused by the end grids and the probes.

The prototype was built so that the locations of the probes could be changed.
In that way the coupling to the higher modes could be increased (see Fig. 7.20) and
their resonant frequencies be derived accurately. The results are shown in Tab. 7.1.
The measured resonant frequencies are 3.6…9.4% lower than the calculated. Due to
the poor quality of the sensor, no absolute conclusions can be drawn from these
deviations. It seems, however, that the deviation is proportional to l, which indicates
that it is at least in part caused by the fringing field in the end grids. Because the exact
resonant frequency of the sensor is not important for the application, the achieved
accuracy is sufficient.

Simulation of the Frequency Response Using HFSS

A semisectorial sensor was simulated with HFSS for the purpose of optimising the
design. By the time this was done, it had been decided that the first downhole watercut
sensor was to be built for a 4” tubing, not 5½”. The mechanical design of the carrier
(piece of ”tubing” with threads in the ends, with sensors, electronics, cables etc.
mounted on) had been worked out, taking into account the space required by the
probes on the concave side of the sensor. Maintaining the mean length of the arc, the
simulated sensor was given the following dimensions: a = 72 mm, b = 62 mm, ϕ0 =
128.3o, L = 100 mm. Table 7.1 shows the calculated resonant frequencies both for the
4” and the 5½” designs. In practice the resonant frequencies are the same.
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Figure 7.18 The measured frequency response of the prototype of version #1 of the downhole
sensor for 5½” tubing.

Figure 7.19 The frequency response of version #1 of the downhole sensor for 4” tubing as
simulated with HFSS.
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Figure 7.20 A superposition of two measurements of the frequency response of the prototype of
version #1 of the downhole sensor for 5½” tubing. The probe locations have been
varied to show all the modes of interest. Compare to Fig. 7.18, which was measured
with the probes in the positions indicated in Fig. 7.17.

Table 7.1 Comparison of calculated and measured resonant frequencies for version #1 of the
downhole sensor. The measurements were performed with a network analyzer using
the prototype with a = 80 mm. For the semisectorial modes ν was calculated from

(5.31), 1νp′  was solved from (5.34), and fr was calculated from (7.7). For the

rectangular modes fr was calculated from (7.6).

Calculated
Semisectorial cavity, L = 100 mm

a = 80 mm, ϕ0 = 114.6o a = 72 mm, ϕ0 = 128.3o

Rectangular
approximation
150x10x100

Meas-
ured

Mode n
ν 1νp′ fr ν 1νp′ fr Mode fr fr ∆[%]

TEν11 1 1.571 1.677 1.803 1.403 1.509 1.803 TE101 1.803 1.739 -3.6
TEν11 2 3.142 3.353 2.501 2.806 3.018 2.501 TE201 2.500 2.375 -5.0
TEν12 1 1.571 1.677 3.163 1.403 1.509 3.162 TE102 3.162 2.925 -7.5
TEν11 3 4.712 5.029 3.355 4.209 4.527 3.356 TE301 3.354 3.198 -4.6
TEν12 2 3.142 3.353 3.606 2.806 3.018 3.606 TE202 3.606 - -
TEν12 3 4.712 5.029 4.244 4.209 4.527 4.244 TE302 4.243 3.953 -6.8
TEν11 4 6.283 6.705 4.274 5.611 6.034 4.273 TE401 4.272 4.075 -4.6
TEν13 1 1.571 1.677 4.610 1.403 1.509 4.610 TE103 4.610 4.177 -9.4
TEν13 2 3.142 3.353 4.925 2.806 3.018 4.925 TE203 4.924 - -
TEν12 4 6.283 6.705 5.001 5.611 6.034 5.001 TE402 5.000 - -
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A frequency span from 100 MHz to 5 GHz, with a step of 50 MHz, was used
in the simulation. In the vicinity of the main resonance peak the step was decreased
first to 10 MHz and then to 2 MHz. The resulting frequency response is shown in Fig.
7.19. The resonant frequency given by the simulation was fr = 1.649 GHz, which is
8.5% lower than the calculated, and 5.2% lower than the measured. The deviations are
probably due to the fringing field in the end grids and the inaccuracy of the
dimensions of the built prototype. The overall similarity to the measured response is
good.

7.3.5 Version #2 of the Sensor

The results obtained with version #1 were good, but there was a desire to further
lower the resonant frequency in order to improve the gain margin of the FSA
electronics. It was therefore decided to increase the length of the resonator but
maintain the aspect ratio, i.e. L was increased from 100 mm to 225 mm. The locations
of the probes were changed accordingly so as to maintain the same type of relation to
the short and broad ends of the cavity (see Fig. 7.24).

Figure 7.21 shows the mode diagram as a function of L, and Table 7.2 shows
the calculated resonant frequencies for L = 225 mm.

Simulation of the Frequency Response Using HFSS

A new simulation of the frequency response was performed after increasing the length
of the sensor (a = 72 mm, ϕ0 = 128.3o, L = 225 mm). The result is shown in Fig. 7.22.
The modes were identified based on the electric field pattern visualized by HFSS. It
clearly shows that the higher modes have been shifted relative to each other compared
to the simulation in Fig. 7.19, even though the aspect ratio of the rectangular
approximation was maintained. This is a further indication that the fringing field in

Table 7.2 The calculated and measured fr for version #2 of the downhole sensor. For the

semisectorial modes ν was calculated from (5.31), 1νp′  was solved from (5.34), and fr

was calculated from (7.7). For the rectangular modes fr was calculated from (7.6).

Calculated
Semisectorial cavity, L = 225 mm

a = 80 mm, ϕ0 = 114.6o a = 72 mm, ϕ0 = 128.3o

Rectangular
approximation
150x10x225

Meas-
ured

Mode n
ν 1νp′ fr ν 1νp′ fr Mode fr fr ∆[%]

TEν11 1 1.571 1.677 1.203 1.403 1.509 1.202 TE101 1.202 1.082 -1.75
TEν12 1 1.571 1.677 1.667 1.403 1.509 1.667 TE102 1.667 - -
TEν11 2 3.142 3.353 2.109 2.806 3.018 2.110 TE201 2.108 - -
TEν13 1 1.571 1.677 2.236 1.403 1.509 2.236 TE103 2.236 - -
TEν12 2 3.142 3.353 2.405 2.806 3.018 2.405 TE202 2.404 - -
TEν13 2 3.142 3.353 2.829 2.806 3.018 2.829 TE203 2.828 - -
TEν14 1 1.571 1.677 2.848 1.403 1.509 2.848 TE104 2.848 - -
TEν11 3 4.712 5.029 3.075 4.209 4.527 3.075 TE301 3.073 - -
TEν12 3 4.712 5.029 3.284 4.209 4.527 3.285 TE302 3.283 - -
TEν14 2 3.142 3.353 3.334 2.806 3.018 3.334 TE204 3.333 - -
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Figure 7.21 The resonant frequencies of the first 13 modes in a rectangular cavity as a function of
L, when A = 150 mm, and B = 10 mm. The modes, to which coupling can be avoided
with the probes located as shown in Fig. 7.17 (with A and L switched, n and l
switched, and the scales multiplied by 1.5), are shown dashed.

Figure 7.22 The simulated frequency response of version #2 of the downhole sensor for 4” tubing.
The modes were identified based on the electric field pattern visualized by HFSS.
The names of the modes refer to the rectangular cavity approximation.
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the end grids influences the deviation between the theoretically calculated and the
simulated resonant frequencies.

The simulation shows that the frequency response is well suited for
measurement with the FSA method. It can, however, be further improved by
optimising the locations of the probes. Before this was done, the probes were
optimised to provide the desired coupling, because the size of the probes probably
also influences the coupling to the higher modes.

Optimization of the Size and Shape of the Probes Using HFSS

The coupling probes are pins that couple to the electric field. When they are located as
shown in Fig. 7.17, they have individual coupling quality factors (Qe1 and Qe2) that are
identical within the accuracy of the simulations of HFSS. The total quality factor Qext,
as defined by (6.14), is therefore used below.

The external structure of the probes, which determines the coupling, is
depicted in Fig. 7.23, with the important dimensions defined. All simulations have
been performed with the sensor filled with air. The coupling in other situations can be
calculated based on the discussion in Ch. 6.

Version #1 of the sensor (L = 100 mm), was simulated with probes with the
following dimensions and permittivity: di = 10 mm, dp = 4 mm, lp = 6 mm, and εri =
4.8. This gave the coupling Qext = 171.0.

Version #2 was first simulated with the same probes as version #1, resulting in
the coupling Qext = 549.3. The decrease in the coupling is mainly due to the larger
volume of the sensor, which leads to a lower energy density. When the diameter of the
pin was increased to dp = 6 mm, the coupling increased to Qext = 465.5. When the
diameter of the insulator was also increased, to di = 12 mm, the coupling increased to
Qext = 336.1. In these first three simulations of version #2 the location of probe P1 (see
Fig. 7.24) was erroneously put to z = –25 mm, while it should have been –37.5 mm (=

Figure 7.23 The shape of the external part of the probes, with definition of the notations.
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225 mm/6). When this was corrected, the coupling slightly decreased to Qext = 361.1.
This coupling was considered satisfactory, and the probes were therefore designed
with the following dimensions and permittivity: di = 12 mm, dp = 6 mm, lp = 6 mm,
and εri = 4.8. The simulation in Fig. 7.22 was performed with these probes.

Optimization of the Locations of the Probes Using HFSS

As is seen from the frequency response in Fig. 7.22, the coupling to the modes that are
shown dashed in Fig. 7.21 (modes with at least one even numbered index, or one
index equal to 3) is not zero, as it would theoretically be, if the probes and the end
grids would not perturb the electric field pattern. HFSS was used for optimising the
locations of the probes so as to minimize the coupling to the next three modes (TE102,
TE201, and TE103). These modes were given the highest priority, because they are
closest to the used resonance mode. The coupling to the higher modes can also be
expected to decrease, when the locations are optimised for the mentioned modes.

Using the cylindrical co-ordinate system defined in Fig. 7.24, the starting point
for the optimization was: P1: z1 = –37.5 mm, ϕ1 = 0o, and P2: z2 = 0 mm, ϕ2 = 21.4o (=
128.3o/6). By studying which of the probes that was supposed to be in the null of a
mode, and which of the co-ordinates of the probe that moves it relative to the null, it
could be concluded that the following co-ordinates should be the subject of
optimisation: z2 for the coupling to TE102, ϕ1 for the coupling to TE201, and z1 for the
coupling to TE103. After a few manual iterations the following co-ordinates were
found to significantly decrease the coupling to the mentioned modes: z1 = –38.2 mm
(∆z1 = –0.7 mm), ϕ1 = 2o (∆ϕ1 = 2o),  z2 = –1.5 mm (∆z2 = –1.5 mm), ϕ2 = 21.4o.

The whole frequency response was simulated again with the new probe co-
ordinates. The result is shown in Fig. 7.25. It can be concluded that the frequency

Figure 7.24 The cylindrical co-ordinate system for expressing the locations of the probes, with the
theoretical locations (i.e. excluding the disturbing influence of the probes and the end
grids) marked. Note that the sensor is shown in a flat 2-dimensional projection.
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response has been significantly improved by the optimization of the probe locations
and is well suited for measurement using the FSA method.

Measurements of the Prototype of Version #2 of the Sensor

A sensor with the dimensions given above was built. Because of the geometrical
constraints that limit the maximum protrusion of the probes on the concave outside of
the sensor, the probes had a 90o bend such that a high-temperature coaxial cable was
attached to the side of the pill-shaped rear part of the probes. The outer diameter of the
cable was 3 mm, the sheath was made of a high-grade steel, and the dielectric was a
ceramic powder. Because of the large diameter of the centre pin of a probe, and the
closeness of the rear end of the outer conductor, there was a relatively large
capacitance from the rear end of the pin to the rear end of the outer conductor. This
shunt capacitance provides a shortcut to ground, which limits the coupling. The
simulations, which gave a coupling of Qext = 361.1 (see above), were performed with
straight probes for simplicity. To explore the influence of the shunt capacitance two
sets of probes were made, which had a slightly different distance from the rear end of
the pin to the outer conductor. The measured coupling was Qext = 498.4 for the probes
with the shorter distance, and Qext = 307.3 for the probes with the larger distance. The
results show that the capacitance strongly influences the coupling, and the probe
design with the larger distance was adopted. The results reported below were
measured with these probes.

The probes were produced so that a ceramic reinforced glass (εri = 4.8) was
cast between the centre conductor and the outer conductor, and the steel sheath of the
cable was EB (electron beam) welded to the outer conductor of the probe. The probes
are therefore perfectly watertight and pressure resistant. Because of the materials the
probes and the sensor can also stand the specified temperature of 180oC, and far
beyond.

Figure 7.26 shows the measured frequency response, with the sensor filled
with air. Comparison to Fig. 7.25 shows that the simulation has predicted the general
shape of the frequency response well, especially considering that the resolution of the
simulated response is 50 MHz outside the main resonance peak, while it is 6.2 MHz
in the whole measured response. Figure 7.26 also shows that the optimization of the
probe locations was less successful than expected. The reason is probably a
combination of the production tolerances, and the limited accuracy of the simulations.
The result is, however, acceptable. Because the peaks of TE102, TE201, and TE103 are
much lower than the main peak, there is no risk for confusion of peaks, when the FSA
method is used for measuring the resonant frequency.

The measured resonant frequency was 1183.9 MHz, while the simulated was
1169 MHz, and the calculated 1202 MHz. Hence the real resonant frequency deviated
from the calculated by –1.51% and from the simulation by 1.27%.

The sensor was measured filled with static emulsions of motor oil and water,
with a salinity of S = 3%. The measured frequency responses are shown in Fig. 7.27,
the peak height in Fig. 7.28, and the coupling (Qext) in Fig. 7.29. Fig. 7.27 shows that
the peak is clearly defined for all the measured cases, and Fig. 7.29 shows that the
coupling obeys model (6.7) relatively well. Now also the coupling measured in air fits
the model better than was the case with the CFR sensor (see Fig. 6.15).
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Figure 7.25 The simulated frequency response after optimization of the probe locations. Compare
to Fig. 7.22.

Figure 7.26 The measured frequency response of the prototype of version #2 of the downhole
sensor for 4” tubing. The sensor was filled with air.
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Figure 7.27 The measured frequency response of the prototype of version #2 of the downhole
sensor, when it was filled with various mixtures of motor oil and water (S = 3%).

Figure 7.28 The measured peak height of the prototype of version #2 of the downhole sensor,
when it was filled with various mixtures of motor oil and water (S = 3%). The single
point on the y-axis (−4.7 dB) was measured for the empty sensor.
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Figure 7.29 The coupling (Qext) calculated from the measurements of the prototype of version #2
of the downhole sensor, when it was filled with various mixtures of motor oil and
water (S = 3%).

7.3.6 The Length of the End Grids

The length of the end grids was first designed to be dg = 50 mm, because this was
expected to be enough. The simulations of the sensor gave an ”infinitely high”
radiation quality factor, indicating that the expectation was right. Because the value of
Qrad0 is not known, an exact calculation of Qrad can not be performed. An estimation
of the efficiency of the grids will be performed here by comparing to the grids studied
in Sec. 7.2.

The grids of the downhole sensor consist each of 4 evenly spaced radial/axial
plates such that the openings in the ends are divided into 5 smaller holes (see Fig.
7.15). The size of the holes is consequentially: ϕ0 = 25.7o, b/a = 0.861, a = 72 mm.
The lowest mode is the semisectorial mode TEν1, with ν = 7.013. This has the p value

1νp′ = 7.541. Eq. (5.18) now gives fc = 5.001 GHz. Using the rectangular

approximation, the holes are waveguides with the dimensions: A = 30 mm, B = 10
mm. This gives fc = 5.000 GHz, which is practically the same result. The ratio to the
theoretical resonant frequency is now
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Equation (4.3) gives that the below-cut-off attenuation is –44.1 dB, and (4.10) that the
radiation quality factor is

rad0rad 25975QQ = (7.9)

Taking into account that probably Qrad0 >> 1, the calculations support the result from
the simulations that Qrad is very high.

The measurements of the sensor with ring grids (see Sec. 7.2.3) gave Qrad =
4280 for dg = 0.25Dp, which was observed to be enough and therefore chosen as the
design length. Assuming that Qrad0 = 1, and solving (4.10) for dg, gives that the same
degree of isolation would be achieved in the downhole sensor with dg = 41.1 mm. If
Qrad0 = 10 is assumed, the result is dg = 29.8 mm, and if Qrad0 = 20 is assumed, the
result is dg = 26.4 mm. Because Qrad0 is not yet known, and the space in the axial
direction is not limited, it was decided to maintain dg = 50 mm.

7.4 A Humidity Sensor for Harsh Environments

7.4.1 Introduction

The humidity of the air is an important control parameter in many industrial
processes, and needs therefore to be measured. In some cases, such as dryers and
ovens, the environmental conditions are harsh for conventional measuring methods.
For example in a dryer for veneer sheets the temperature is typically 170oC and the air
contains dust and vaporized resin. In addition the humidity may be high, up to the
order of 1 kg of water vapour per 1 kg of dry air. Conventional humidity sensors
incorporating materials such as metal oxide ceramics [Seiyama et al., 1983], organic
polymers [Inami et al., 1985], and thin films [Jachowicz and Senturia, 1981] etc.
encounter problems with the operating range of humidity, high ambient temperature,
long period of operation, dust, oil vapours, or organic vapours etc. Therefore the
author and his colleagues at the Radio Laboratory of the Helsinki University of
Technology developed a microwave humidity meter for harsh environmental
conditions [Vainikainen et al., 1986], [Toropainen et al., 1987]. The electronics of the
meter was further developed by Toropainen [Toropainen, 1989]. The sensor of this
meter will be briefly described here.

7.4.2 The Design of the Humidity Sensor

The humidity sensor is a cylindrical cavity resonator with end grids, as shown in Fig.
7.30. It is designed to be mounted in the open space inside an oven or a drier. The end
grids allow the air to pass freely through the sensor. It operates on the TE011 mode (see
Fig. 3.3 and Sec. 3.7.1), which has an electric field that is zero on all walls. Because
the permittivity affects the resonant frequency through the electric field only, the
sensor is insensitive to a thin layer of contamination (e.g. condensed resin and dust)
on the walls. The reflection coefficient S11 is measured as a function of frequency. The
sensor was designed for a frequency of 9.5 GHz (TE011).



164

Figure 7.30 The microwave humidity sensor for harsh environments. The sensor is a cavity
resonator operating on TE011. The resonant frequency is 9.5 GHz and the signal is
coupled to the cavity through an iris. S11 is measured as a function of frequency.

Figure 7.31 The negative relative frequency change as a function of humidity ratio (X is the ratio
of the mass of the water vapour to the mass of the dry air), and temperature in a
microwave cavity resonator. The graphs are based on (7.10), with ptot = 0.1013 MPa.
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A similar sensor operating on TE011 has been reported used for the
measurement of the refractive index (th esquare root of the permittivity) of the
atmosphere [Crain and Deam, 1952]. For that application the resonant mode was
chosen because of the high Qu, allowing the measurement of the resonant frequency
with a high accuracy. Another related sensor has been reported used for the
measurement of the density of hydrogen in both liquid, two-phase, and gaseous phase
[Wenger and Smetana, 1972]. That sensor also operated on TE011, but differed from
the current design by having longer end ”grids”, with a ring in the centre and four
radial legs, like a ring grid with four sectors. The legs were used mainly for holding
the ring in place and were therefore limited to the outward facing part of the grids. The
section of the grid that faced the cavity only consisted of the centre pipe, thus forming
a coaxial section.

Because of the all-metal structure the humidity sensor can withstand high
temperatures. The effect of the thermal expansion on the resonant frequency is,
however, large compared to the effect of the humidity in the air. The temperature of
the sensor must therefore be measured and compensated for. Preferably a material
with an as small thermal expansion coefficient as possible should be used. The
prototype of the sensor was built using a metal alloy called invar, which has a thermal
expansion coefficient that is near zero in a temperature range around room
temperature. Outside this range the coefficient grows, but stays low compared to that
of most other metals.

7.4.3 The Method of Coupling

The signal is fed through a rectangular waveguide and coupled to the cavity through a
magnetic aperture (see Fig. 3.4d) in the shorted end of the waveguide. The waveguide
is oriented with the broad side parallel to the axis of the cylindrical cavity so that the
aperture couples to the axial magnetic field at the wall. Because the TMnml modes
have no axial magnetic field, the aperture only couples to the TEnml modes, thus
avoiding coupling to TM111, which is a degenerate mode to TE011. Only one coupling
is used because the resonant frequency is deduced from the reflection coefficient.

7.4.4 The End Grids

The structure of the end grids is shown in Fig. 7.30. They are ring grids with only two
sectors, b/a = 0.54, and dg = 0.7Dp. The sectorial holes are rounded at the ends, which
makes the calculation of the cut-off frequency using semisectorial waveguide modes
inaccurate. For the sake of simplicity the rectangular waveguide approximation is
therefore used here to estimate the cut-off frequency of the grids.

The mean width of the waveguide is A = 44.5 mm, giving a cut-off frequency
for TE10 of fc = 3.4 GHz. Hence, the cut-off frequency in the grids is far lower than the
resonant frequency of the TE011 mode, i.e. the isolation is completely based on Qrad0.
This is possible because the coupling from the TE011 mode in the cavity to the TEn0

modes in the grids is low, because their electric fields are orthogonal (tangential in the
cavity, and radial in the grids). The first mode in the grids with a tangential electric
field component is TE01. It has a cut-off frequency of fc = 15.8 GHz, which gives fc/fr

= 1.66, which is somewhat higher than the value 1.593 given by (7.2) for the star
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grids. Because the grids are also longer than the star grids (dg = 0.7Dp compared to
0.5Dp for star grids), neither the modes with other than a purely radial electric field do
significantly affect the resonance. The end grids in the hydrogen sensor that was
mentioned above [Wenger and Smetana, 1972], are based on nearly the same
principle. The TE011 mode does not couple to the coaxial TEM mode in the grids
because of orthogonal electric fields.

The frequency change over the whole measurement range of humidity is small
(see below). The requirements on the purity of the frequency response are therefore
low. Because the coupling method only couples to TEnml modes, and the grids are tight
enough for TE011, there are therefore no problems in identifying the right peak under
any measurement conditions.

Measuring small changes of the resonant frequency with a high accuracy
requires that the peak is clean and narrow, i.e. that Ql is high. The measured loaded
quality factor of the cavity was  Ql = 1240, and the calculated unloaded quality factor
was Qu = 1590, which gives Qext = 5633. It was assumed that most of the losses were
due to the poor conductivity in the metal, and the sensor was therefore silver plated.
After the plating the values were Ql = 3000 and Qu = 6418. The conductivity of silver
is known to be σAg = 6.173*107, but that of invar is not known to the author. The
material resembles stainless steel, which has σss = 1.1*106. Using these values in
(3.34) gives Qrad = 12059 for the radiation quality factor. Testing other values for the
conductivity of invar gives σinvar = 0.5...3*106 ⇒  Qrad = 9173...45420. It can be
concluded that even though the radiation quality factor is not known exactly, the end
grids are very tight, despite of the low cut-off frequency.

7.4.5 The Dielectric Properties of Humid Air

The measurement of humidity with a microwave resonator is based on the dependence
of the permittivity of air on the humidity. The negative relative frequency change
expressed in ppm is known to be [Smith, 1967]:
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where ptot is the total absolute pressure in N/m2 (= Pa), RW/RL is the ratio of the gas
constants of water vapour and dry air = 1.608, X is the moisture ratio of the air (the
mass of the water vapour to the mass of the dry air), and T is the temperature in oK.
Note that only the plane numbers without the units should be inserted in the equation.
Figure 7.31 shows graphs calculated using (7.10) for typical measurement conditions.
The changes in the resonant frequency are seen to be in the range up to 12.35 MHz (=
1.3 o/oo of 9.5 GHz).

7.4.6 Practical Tests with the Prototype of the Meter

The prototype of the electronics had a resolution of ∆f/f0 = 0.002 o/oo, and the
measurement time was 50 ms per point, which made fast dynamic measurements



167

possible. The sensor was equipped with two temperature sensors (Pt100), one
measuring the temperature of the sensor body, and the other measuring the
temperature of the air.

The prototype of the meter was mounted in a veneer sheet dryer and tested
continuously for 8 weeks. The temperature was typically 170oC, and the humidity
ratio varied in the range X = 0.025…0.7. The reference humidity was measured with a
classical psychrometer, i.e. the dry/wet temperature method. The correlation was
good: R2 = 0.9954. Most of the scatter is believed to have been caused by the
reference method. The sensor got a thin layer of contamination during the test that was
detected mainly as a change of colour. This contamination caused no detectable drift
during the test period, even though the meter was never cleaned or recalibrated. Fast
changes in temperature caused problems as expected, because of the large mass of the
sensor, and hence long time constant for temperature changes. These situations could
easily be detected from the difference in the readings of the two temperature sensors.

The test showed that the meter could withstand the conditions in the dryer and
measure the humidity over the whole range of conditions occurring during the test.
The test was considered successful.

7.4.7 Conclusions

The performance of the meter satisfied the requirements of the applications that it was
intended for in terms of accuracy, speed of measurement, measurement range, and
immunity to high temperatures and contamination. It was never commercialized,
however, because of the high price of the components. With the technology of today it
would be possible to realize the meter to a significantly lower cost.
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8 ACCURACY OF RESULTS OF SIMULATION WITH HFSS

8.1 Introduction

Studying the accuracy of the results of the simulations with HFSS on a theoretical
basis by studying the finite element method is outside the scope of this thesis.
However, because simulation results have been used extensively throughout the thesis,
the matter of accuracy is important. In some cases comments on the accuracy have
been made in the thesis at the places where the results have been presented. In this
chapter a summary is presented of the experiences and observations related to the
accuracy that were made from the roughly 370 cases that were simulated. The only
purpose with the presentation is to provide the reader with a basis for evaluating the
reliability of the simulation results presented in the thesis. It should be noted that all
simulations were performed with the Hewlett-Packard HFSS version 5.1 for PC, and
no conclusions can be drawn about the accuracy of similar simulations performed with
newer or older versions of the software.

Indications of the accuracy have been acquired in several ways:
•  Simulation results have been compared to exactly calculated results, where

possible.
•  Simulation results have been compared to measurements.
•  The variation of the simulation results as a function of the number of iterations

and the convergence of the solution have been studied.
•  The behaviour of the simulated frequency response in the vicinity of the cut-off

singularity has been studied.
•  The smoothness of graphs of simulated data points has been studied.

8.2 Comparison of Simulated Results to Calculated and Measured Results

8.2.1 Broadband Frequency Response

HFSS solves the simulation problem in an iterative process. First the volume of the
simulated structure is divided into tetrahedron-shaped elements. Then a solution for
the fields is calculated, and the S parameters are calculated based on the field solution.
Next the model is refined by decreasing the size of the elements in places, where the
solution indicates a high field strength. Then a new solution is calculated, and so forth.
The convergence of the results is indicated by the parameter ∆S that is calculated by
HFSS based on the changes in the S parameters from the previous to the last iteration.

The iteration process is performed at a single frequency. If a frequency range
has been defined, the iteration is by default performed at the highest frequency, but
can be defined otherwise by the user. Then the solutions at the other frequency points
are calculated using the same tetrahedron model. If the iteration is performed at a
frequency close to a resonant frequency, the refinement of the tetrahedron model will
reflect the field pattern of that resonance mode. It may therefore be expected that the
accuracy of the results for other resonances, with different field patterns, is poorer. In
the few cases, where the frequency response was simulated over a broad range and the
iteration was performed close to the main resonance, the results show that HFSS has



169

predicted the presence and the frequencies of the other resonances fairly well, also far
from the iteration frequency. One example is shown in Figs. 6.28 and 6.29, where the
simulated and measured responses of the CFR sensor are presented. It should be noted
that the spacing of the frequency points (i.e. the frequency resolution) is 2.5 MHz in
the measured response and 100 MHz in the simulated response, except close to the
main resonant frequency, where it is 2 MHz. The most significant difference between
the results is at the frequencies below the main resonance. The simulation predicts an
upward sloping response before the antiresonance, where the measurements show an
almost flat level. The resonant frequencies can not be compared because the
simulation was performed for an infinitely thin fin, and the permittivity of the sample
of diesel was not verified.

Another example is shown in Figs. 7.22, 7.25, and 7.26, where the simulated
and measured responses of the downhole sensor are shown. The frequency resolution
of the measurements is 6.25 MHz, and that of the simulations is 50 MHz, and 2 MHz
close to the resonant frequency. In the simulation the metal parts were defined as
perfectly conducting, which explains the higher resonance peak. The similarity of the
responses is good taking into account the difference in resolution. However, the
optimization of the location of the probes, which was performed to eliminate the
coupling to the next three modes, more or less failed. The result may have been better
if a larger number of iterations would have been used, resulting in smaller
tetrahedrons.

Looking at the frequency responses in a narrow bandwidth, the shape of the
top of the resonance peak always agreed well with the theoretical shape defined by
(3.27). An example is given in Fig. 6.13.

HFSS also provides another possibility to simulate a frequency response, the
so-called "fast frequency sweep". In this case the solution derived at the frequency,
where the iteration was performed, is directly used to generate the S parameters at the
other frequencies. This method generates a frequency response much faster than by
calculating a new solution for each frequency point. The fast frequency sweep was
tested by simulating a piece of rectangular waveguide. The iteration was performed
above the cut-off frequency and the frequency sweep was extended below the cut-off.
In this case HFSS displayed a perturbation in the vicinity of the cut-off frequency, but
failed to predict the cut-off of the power transmission below this frequency. Based on
this test the fast frequency sweep method was rejected and not further used in the
reported work.

8.2.2 Cut-Off Frequency, Resonant Frequency, and Quality Factor

In a few cases the simulated results can be directly compared to calculated or
measured results. In the latter case also measurement and machining errors will be
included in the observed deviation between the results. Here simulation results that
were used in the thesis are studied as examples illustrating the general accuracy level
of the results. The dependence of the accuracy on the number of iterations and related
matters are studied in Sec. 8.3.

From the simulations of the cut-off frequency of a cylindrical waveguide as a
function of the height of the fin (see Fig. 6.4), two points can be compared to theory.
These are the points with the fin extending to the centre of the waveguide, and without
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the fin (h = 0). In these cases the simulated cut-off frequency deviates from the
calculated by –0.25% and 0.47% respectively.

In the case of a wedge-shaped fin, all the simulated points can be compared to
theory. Figure 6.9, shows that the largest deviation in the predicted effect of α is
0.95%. When the graphs were plotted, however, the systematic difference was
removed by only plotting the effect of a change in α. When the absolute values are
compared, the simulated value for α = 1o is 1.6% lower than the calculated value. The
deviation for other values of α are smaller. The systematic deviation is partly caused
by the software bug described below. Another reason may be the finite sector angle
used (15o) in drawing the cylinder.

A sensor was simulated with exactly the same dimensions as the measured
sensor only in the case of version #2 of the downhole sensor. As reported in Sec.
7.3.5, the simulated resonant frequency was 1.27% lower than the measured.

The used version of HFSS (5.1 for PC) contains a software bug, which usually
(but not always) causes the data in the exported S parameter matrix to be shifted
downwards in frequency by one frequency step. The error caused by the bug was
considered insignificant for practical purposes, and was therefore not corrected. The
step size used, when simulating resonances, was usually 2 or 3 MHz, which means
that the reported resonant frequencies have been underestimated by maximum 0.3%.
In the case of cut-off frequencies, the error is probably smaller than 0.5% (see Fig.
8.1).

The simulation results for the external quality factor seem to be more variable
than those for the frequency. Fortunately the exact value of Qext is less important than
that of fr. In practice Qext only affects the peak height as shown in Fig. 6.11. The
sensitivity varies, but generally a 10% change in Qext leads to a 0.4…0.8 dB change in
the peak height in the range of interest (roughly: 100 < Qext < 700). A difference of a
few dB between the predicted and the measured peak height does not affect the
performance of the sensor, as long as the peak height is within the dynamic range of
the electronics.

CFR sensors with the same dimensions (except fin thickness), including two
different values of probe intrusion (lp), were both simulated and measured filled with
diesel fuel (see Sec. 6.5.4). The simulated Qext was 56% lower than the measured in
both cases. This is partly explained by the fact that lp for the two probe sets in the
measured sensor turned out to be 5.7 mm and 7.2 mm, instead of 6 mm and 7.5 mm as
designed. The probe tips also had a rounded edge, while they were simulated with a
sharp edge. Other reasons may be: General inaccuracy of the simulations, that the
problem had not converged enough (see Sec. 8.3), or the same unknown phenomenon
that caused the deviation from model (6.7) in going from measuring air to measuring
diesel fuel in Fig. 6.15.

For the downhole sensor the simulated and measured values of Qext show a
closer agreement than for the CFR sensor (see Sec. 7.3.5) but the shunt capacitance
that was not included in the simulated model, affected the results. The simulated value
was 17.5% higher and 27.5% lower than those measured with the smaller and larger
shunt capacitances respectively.

The error caused by the process of retrieving Qext from the simulated S
parameters is small, even though the resonant frequency is fitted manually (see Sec.
6.5.2). Because the shape of the resonance peak from the simulations agrees well with
the theoretical shape, the resonant frequency can be fitted with a high precision. Tests
have shown that even when the value of fr clearly can be seen to be too small or too
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large, the value of Qext differs less than 1.5% from the value obtained for the optimal
fit.

8.3 The Variation of the Results with the Number of Iterations and the Degree

of Convergence

The degree of convergence is indicated in HFSS by the parameter ∆S that is calculated
from the changes in the S parameters from the previous iteration to the last. The
changes are larger if the iteration is performed at a frequency close to the resonant
frequency, and thus indicating poorer convergence, than if it is performed further
away from the peak. The results for fr and Qext do not, however, depend much on how
close to the resonant frequency the iteration is performed. Therefore ∆S does not
necessarily give a true indication of the quality of the simulation result. This is
illustrated in Tab. 8.1, which shows the results from two simulations of the same case
of the rectangular resonator described in Sec. 6.5.1. In Simulation 1 the problem does
not seem to converge as judged from ∆S, whereas the situation looks better for
Simulation 2. The results for fr and Qext after 8 iterations are, however, nearly the
same: Simulation 1: fr = 4394.96 MHz and Qext = 245.1, and Simulation 2: fr =
4393.20 MHz and Qext = 239.1.  In HFSS the default criterion for good convergence is
∆S ≤ 0.01.

Two tests were performed to investigate the dependence of the results for fr

and Qext on ∆S and the number of iterations. In both cases the rectangular resonator
(Sec. 6.5.1) was simulated but with different probe dimensions. The simulations were
performed at points 17.9 dB and 15.2 dB below the peak maximum respectively. The
results are shown in Tab. 8.2. They show that the resonant frequency is much less
dependent on good convergence than the quality factor. While fr has changed by
0.02% and 0.007% from the 4th to the 7th iteration, Qext has changed by 27.5% and
24.7%. After the 7th iteration the default criterion ∆S ≤ 0.01 is fulfilled in both cases,
and Qext has changed by 1.4% and 0.1% from the 6th to the 7th iteration. It therefore
seems that the criterion ∆S ≤ 0.01 can be used also in simulations of fr and Qext as long
as the iteration frequency is located above the resonant frequency, where the

Table 8.1 The ∆S parameter as a function of the number of iterations for two simulations of the
same case of the rectangular resonator in Fig. 6.12, performed at two different
frequencies. In Simulation 1 and 2 the iteration was performed at a frequency, where
the power transmission coefficient was respectively 2.05 dB and 6.94 dB lower than
at the resonant frequency. n is the number of iterations.

∆S
n

Simulation 1 Simulation 2
2 0.09 0.095
3 0.047 0.052
4 0.158 0.084
5 0.116 0.076
6 0.152 0.043
7 0.066 0.0243
8 0.162 0.0295
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Table 8.2 The results from two simulations of the rectangular resonator (Sec.6.5.1) illustrating
the dependence of fr and Qext on ∆S and the number of iterations (n).

Simulation A Simulation B
n ∆S fr Qext ∆S fr Qext

4 0.056 4494.96 1057 0.200 2053.88 595.8
5 0.041 4495.38 1218 0.073 2053.83 650.2
6 0.017 4495.66 1328 0.025 2054.00 742.4
7 0.005 4495.77 1348 0.007 2054.02 743.1

power transmission coefficient is roughly 15…20 dB lower than at the maximum. It
should be noted that both fr and Qext increase with the number of iterations. This is not
a coincidence in these two studied cases, but was noted as a general fact in all the
simulations, where results were calculated for a various number of simulations. The
phenomenon is neither restricted to narrow peaks. A series of 4 simulations was
performed with the rectangular resonator, where the loss was varied: tanδMUT = 0,
0.0096, 0.015, and 0.02. First 5 iterations was used (∆S = 0.014…0.029) and then 7
iterations (∆S = 0.004…0.008). The values for Qext increased by 18.5%, 7.8%, 11.0%,
and 10.9% respectively, when the number of iterations was increased from 5 to 7.

8.4 Behaviour of the Frequency Response Close to the Cut-Off Singularity

Several simulations were performed, where the transmission through pieces of various
kinds of waveguides was simulated with the purpose of finding the cut-off frequency.
The iteration frequency was in the passband and the lowest simulated frequency well
below the cut-off frequency. It was then noted that resonance-like features appeared in
the frequency response in the vicinity of the cut-off frequency. A typical case is shown
in Fig. 8.1, illustrating the transmission through a 10 cm long cylindrical waveguide
with an inner diameter of 50 mm, and with a 3 mm thick fin extending to the centre of
the waveguide. The frequency response shows a strong gain peak and a subsequent
attenuation peak slightly above the cut-of frequency, which are clearly unphysical. In
the series of simulations performed with a varying fin thickness, the results of which
are shown in Fig. 6.8, the highest encountered gain peak was 22.5 dB, and the deepest
subsequent attenuation peak was –10 dB. Because of these peaks the cut-off frequency
values shown in Figs. 6.8 and 6.9 were derived by fitting a model based on (4.3) to the
simulations so that a good fit was obtained below the cut-off frequency, as shown in
Fig. 8.1. In the other cases, where simulated results for the cut-off frequency are
reported, the frequency of the gain peak was taken as the cut-off frequency. The
difference is in the order of 0.7%. The errors caused by taking the frequency of the
gain peak as the cut-off frequency and by the software bug that shifts the data down by
one frequency step, partly compensates for each other.

It is probable that the peaks or spikes that are seen in Figs. 7.2, 7.3, 7.7, 7.11,
and 7.12 in the frequency responses of the end grids were caused by the same
phenomenon, and consequently also unphysical.
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Figure 8.1 The simulated transmission through a 10 cm long cylindrical waveguide with an inner
diameter of 50 mm, and with a 3 mm thick fin extending to the centre of the
waveguide, displaying unphysical spikes. The fitted model is also shown.

8.5 Smoothness of Simulated Graphs

The random errors in the simulated results can be estimated from the probably unreal
humps in the graphs displaying the results (see e.g. Figs. 4.6, 6.4…6.9, and 6.27). The
size of the humps is somewhat difficult to estimate accurately, but generally they seem
to be smaller than 0.8%. In Fig. 6.7, which has a high resolution, they are smaller than
0.5%, and in Fig. 6.8, where the simulations were performed with a high number of
iterations, they are smaller than 0.1%. Again the results are worse for the quality
factor. In Fig. 6.27 the humps are smaller than 10%.

8.6 Summary

The main experiences related to the accuracy of the results of the simulations with
HFSS, which have been obtained in the work with the thesis, can be summerized as
follows:
•  The resonant frequency converges towards the final value much faster than the

value of the external quality factor.
•  The values of both the resonant frequency and the external quality factor increase

with the degree of convergence. Because 5 iterations was used in the major part of
the work to limit the size of the problem, the values of Qext reported for the CFR
and the downhole sensors are probably slightly too low.
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•  The convergence indicator ∆S indicates slower convergence, when the iteration is
performed closer to the resonant frequency, even though the results seem to show
equally fast convergence.

•  The default criterion for convergence (∆S ≤ 0.01) can be used, when the iteration
is performed at a frequency above the resonant frequency, where the power
transmission coefficient is roughly 15…20 dB lower than at the maximum.

•  Close to the cut-off frequency of a waveguide the simulated frequency response
displays unphysical spikes.

•  Judged from the smoothness of the graphs, the random errors are < 1% for the
resonant frequency and < 10% for the external quality factor.

•  Simulation over a broad bandwidth results in a frequency response with a good
general agreement with measurements, even though the iteration is performed on a
single frequency.
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9 SUGGESTIONS FOR FURTHER STUDIES

The sensors that are described in the thesis all work satisfactorily and do not seem to
have any major weaknesses. From a commercial point of view, apart from normal
continuous product development, there is no imminent need for further studies of the
sensors at the level treated in the thesis. However, from a theoretical point of view,
and for being able to provide tools for designing other sensors based on the same
principles as the described ones, there are a few things that need to be studied:
•  The principle of providing isolation for a resonator with end grids or small enough

pipes, i.e. sections, which are below cut-off at the used frequency, is largely
dependent on the factor Qrad0. Methods should be developed to calculate Qrad0

approximately. Methods developed in conjunction with the development of
microwave vacuum tubes, and for calculating the reflection of plane waves from
metal grids (e.g. parabolic reflectors, Fabry-Perot resonators, and microwave oven
doors) can probably be applied.

•  The methods for designing the probes should be studied further. An approximate
model for calculating the absolute coupling should be developed, and the models
describing the relative dependence on the probe dimensions should be developed
further. The effect of using rounded edges on the probes should be studied.

•  The dependence of the coupling on the permittivity of the MUT should be studied
and an explanation to the deviation from model (6.7) in Fig. 6.15 should be found.

•  More should be found out about the convergence of problems simulated with
HFSS, and the accuracy of the simulation results. General directions should be
compiled for how to simulate resonator sensors to reach the best results in the
shortest time.
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