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Fig. 2 .  V S I R  versus frequency  plot. 

VSWR  versus frequency  plots  of  the  resonators  shown  in  Fig. 1 
are given in Fig. 2. The (1 :2) VSWR bandwidth  of  the  microstrip 
resonator  on a  wedge-shaped dielectric is 28 percent  and  that on 
a stepped  dielectric  is 25 percent,  whereas  the  bandwidth is 13 
percent  for  an  equivalent  rectangular  resonator.  The  maximum 
height  for all the  resonators  was 0.01 m.  This  indicates  that  there 
is considerable  improvement  of  bandwidth over that  of a  similar 
rectangular  microstrip  resonator.  It  may  be  mentioned  that  the 
feed  point was in  the  same  position  for all the  resonators. 
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Cylindrical-Rectangular Microstrip  Antenna 

CLIFFORD M. KROWNE 

Absrracf-Resonant  frequencies f, of  a  cylindrical-rectangular  micro- 
strip  antenna  are  theoretically  calculated. Comparison is  made  tof,  for  a 
planar  rectangular  patch  antenna,  including  the  simplest  planar  patch 
modes  having no field  variation  normal  to  the  patch  surface.  The  validity 
of using  planar  antenna  patches  to  characterize  microstrip  antennas is 
examined. 

INTRODUCTION 

In many  applications  pertaining t o  satellites, missiles, space- 
craft,  and  aircraft,  conformal  microstrip  antenna  patches  are used. 
Microstrip  antenna  patches  are  placed  above  what  may  be  char- 
acterized  as a conducting  plane  with a dielectric  substrate  separa- 
ting  the  patch  from  the  conducting  plane [ l]  . However,  often 
this  plane  surface is either  distorted or the  antenna  elements  are 
intentionally  placed  on a curved  surface.  Thus t o  determine  the 
correct  modal field solution  to  the  electromagnetic  cavity  prob- 
lem,  which  can  be used to  find  the  radiation field solution,  this 
curvature  should  be  taken  into  account.  Here  this is done  for a 
rectangular  patch on a cylindrical  surface.  The  assumption  that 
the  conducting  patch  and  the  conducting  cylinder  (ground  sur- 
face)  act as electric walls, and  that  the  open  cavity  ends  act  as 
magnetic walls is applied to   the analysis for  obtaining  the  fields 
and  associated  modal  resonant  frequencies [4]. This  assumption 
should  be  particularly valid when using these fields for  deter- 
mining  the  radiation  pattern  for  the  limiting case of thin cavities 
(I? Q n) which  are  utilized  for  most  microstrip  antenna  applica- 
tions. All of  the analysis for  simplicity also  assumes that  the  per- 
mittivity E and  permeability  pare  constant  (homogeneousmedium 
filling cavity)  and real (no  dielectric losses). 

The eigenvalue equations  for  resonant  frequencies f ,  are  nu- 
merically solved and  examined over  a range of  dielectric  sub- 
strate  thicknesses k .  These  resonant  frequencies f,c for  the 
curved  cylindrical-rectangular  antenna,  representing a distortion 
of a planar rectangular microstrip  antenna,  are  compared  to 
resonant  frequencies frR of  the  planar  patch  antenna  in  order  to 
assess the validity of  the  commonly used assumption  that  con- 
formally  mounted  microstrip  antennas  may  be  treated as  planar. 
The  results  demonstrate  that  this  assumption is good for h that 
is small compared to   the surface  curvature a, and  that  it is ex- 
cellent when  considering  excitation  of  the  antenna  with  no  spatial 
field  variation  normal to  the  surface. 

THEORY 

The  geometry  of  the cavity is shown in Fig. 1 where  Fig. l(a) 
is a perspective  drawing  of a conducting  patch on a cylindrical 
surface, Fig. l(b) is a cross  section  through  the  patch  and nor- 
mal to  the z-axis, and Fig. l(c)  shows  the  cavity  isolated  by itself 
in cross  section.  The  conducting  patch  and  grounded  cylindrical 
surface  are  treated as electric walls and  the  magnetic walls of  the 
cavity are  defined  by  dropping  perpendiculars  from  the  patch 
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Fig. 1. (a)  Perspective  drawing of cylindrical-rectangular  cavity. @) Its 

cross  section.  (c) Cross section of cavity  isolated  to  be  by  itself. 

edges to  the  cylindrical  conducting  surface.  The  electric walls are 
located  at p = a and p = a + h where h is the  dielectric  substrate 
thickness,  and  the  magnetic walls are  located  at z = 0, -2b and 

Below follows  the  derivation  of  the  fields  and  eigenfrequencies 
for the transverse electric (TE,) modes, transverse magnetic 
(TM,) modes,  and  the  limiting case modal results where  the  radial 
thickness+Jz becoyes vanishingly  small. 

The E and H phasor field solutions to Maxwell’s harmonic 
equations in a  source  free  cavity  can  be  written as [3] 

@ = 0 , 2 e .  

where ,u is the  permeability  and E is the  permittivity. A and  Fare  
arbitrary  vector  phasor  potentials which satisfy  the  Helmholtz 
equations 

- t +  

V2g+ k2$= 0 (2a) 

V ‘A’ + k 2 i  = 0,  
where 

k2 = w2pte. (2c) 

Th: TE  to z field solution is constructed  by  choosing A’ = 0 
and F = iz$ where ir, is the  unit  constant  vector in the axial 
z-direction  and $ is a scalar function.  The  fields  are  known  once 
$ h2s bee2  determined  subject  to  the  boundary  conditions (BC) 
on E and H (Dirichlet conditions). 

Using (1) and (2) and  applying  magnetic wall BC‘s, $ can  be 

$mli=Am&u(kmiP)sin  (3) 

Here A ,  is a  constant  for  the nzlith mode, nz = 1 ,2 ,  .-, and I = 
0, 1 ,  .-, u = m ~ / 2 8 ,  and R ,  satisfies Bessel’s equation [4] - [ 6 ]  

p z [ p 7 ]  + [ p 2 - u 2 ] R , ( p ) = 0  (4) 

with p = kmip. Solutions  to (4) are Bessel functions  of  the  first 
kind J ,  and  of  the  second  kind AI, which  are  linearly  independent. 
Thus 

dP 

R,@) = ClJ,@) + C i l Y , @ ) .  (5) 

If the special  case 0 = n/2q occurs  where q is an integer,  then 
u = nzq is an  integer,  and J, and AI, should  be used to  con- 
struct R,(p), otherwise J-, may  be used in place of Nu if u # in- 
teger.  Subjecting (5) to   the electric wall BC’s requires 

ClJ,‘(k,@) + c~A‘,,‘(km1~) = 0 (7a) 

clJ,‘(k,i[a + h ] )  + ~2N,’(k,i[a + h ] )  = 0 (7b) 

where  the  primes  denote  differentiation  with  respect  to  the 
argument. For there t o  be  a  nontrivial  solution t o  (7), two  linear 
equations in two  unknowns c1 and c 2 ,  the  determinant  of  the 
matrix  formed  by  the ci coefficients  must  be  zero: 

Ju’(kmg)Nu‘(kmi[a + 1 7 1 )  

-Ju’(k,i[e + h]ylr,‘(k,ia) = 0.  (8) 

Equation (8) produces  an  infinite  denumerable set of k m i  
eigenvalues with i = 1 , 2 ,  . . e .  Arbitrarily set c2 = 1 and  determine 
c1 from (7a): 

~1 = cm i = -Nu ‘(km P)/’J~ ’(km PI. (9) 

The field solution is found  from (3)  and (4), [7 ]  : 

Eo = AmlikmiRu’(kmip) sin e@) cos ( z  z) ;E ,  = 0 
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H, = --A,~i(k,j)2R,(k,ip) -i sin g$) cos (g z )  . (loe) 
wE.1 

Cavity  resonant  frequencies f, for  each mli mode  are  found 
from  the  equation 

and (2c): 

-+ 
The TM to z field solution is constructed  by  choosing F = 0 

and A' = &$. Using  (1) and (2) and  applying  magnetic wall BC's, 
$J can  be  written  as 

Here Bmli is a constant  for  the  mlith  mode, m = 0, 1 , **e, and 1 = 
1, 2, -, and R,  satisfies (4) with p = k ,  ip. Equation (5) still ap- 
plies. Imposing  the  electric wall BC's on (5) requires 

R u e )  Ip=a, a + h  = 0,  (14) 

c1J,(kmi[a + h ] )  + c2Nu(kmi[a + h ] )  = 0. 

In  order  that cl, c2 # 0 ,  

Jdkm za)n'u(km i[a + h 1 1 
-Ju(km i[ a + h ]  )Nu@, ia) = 0 > (1 6) 

which is obtained  from (15). Equation (16) produces  an  in- 
finite  denumerable  set of k ,  eigenvalues with i = 1,  2, --. Ar- 
bitrarily  set c2 = 1 and  find c1 from (15a): 

'1 =Crni=--N,(km,u)/Ju(k,ia). (1 7 )  

The  field  solution is obtained  from (4) and  (13) 

E = - -i B,lik,i (z) R,'(k,ip) cos e$) COS (5 z )  
U E  

Cavity  resonant  frequencies  are  found  from (12). 

Inspection  of  the  cavity field solutions  in (10) for the TE t o  
z modes  and  (18)  for  the TM to  z mo4es sh2ws tkat  the  com- 
plex  power  density  (Poynting  vector) P = E X H* is purely 
imaginary.  Thus  the  time average power  flow Pav out of the walls 
is zero.  This result is expected,  however,  some  comments  are  in 
order.  For  applications  where  the cavity is used to  model a. 
microstrip  antenna  radiator,  the  following  procedure  can  be  used 
to  obtain  radiation.  First  the  cavity  field  solutions  are  obtained 
as  it has  been  done  here.  Next  the  field  solutions  are  used as 
Huygens  sources  at  the  open wall (formed  by  perpendiculars 
dropped  from  the  antenna  patch edges to  the  conducting  surface 
below)  boundaries.  These wall fields allow for  actual  radiation 
(with  the  dropping  at  this stage of  the  magnetic wall conditions). 
Finally  the  radiation  problem  may  be simplified by using the 
equivalence  principle to exprejs  the bou$dary fields alternatively 
a,s radiating  electric  current J = 6 X Hb and  magnetic  current 
M = E ,  X A sources (b  subscript  denotes  boundary  and is nor- 
mal to wall which  points  outward  from cavity). 

Consider  the  limiting case of  the  cavity  where h + 0. First  ex- 
amine  the TM, modal field solution.  Equation  (16)  can  be  writ- 
ten as 

E@) = J,@)nr,(P + A P )  - J u o ,  + A P Y t J ( P )  = 0 (19) 

by  letting p = ak, i and A p  = hk, i. Using Taylor series expan- 
sions  of  the Bessel functions  about p and  retaining  only first order 
terms in A p ,  the  left  side  of  (19)  can  be simplified to  read 

E(P) = [ J u @ ) N , ' ( P )  - Ju (PWLJ(P) l   AP ( 2 0 4  

L 
=- 4 0 .  
np 

Equation  (20b) was obtained  from  (20a)  by  identifying  the  term 
in brackets as the Wronskian of J ,  and Nu.  Combining  (19)  and 
(20)  require  that p .+ 03. That  is, a finite k,  i solution to   the  radial 
Bessel equation  cannot  be  found  for  the  limiting case of A p / p  + 

0 or h/a + 0. Thus  for  physical  reasons  the TM to z field solution 
would not be  used  to  obtain  the  general field solution. For com- 
pleteness,  however,  the TM to z field solution will be given for 
this  limiting case. Referring t o  (1 7) and (1 8),  and  setting /3 = ln/2b 

E,, = - B,li'P COS (u$) COS (/3~); EO = E, = 0 
i 

(2 1 a) 
WE 

H# = Bmu' cos (@) sin (/3z); H p  = H, = 0, (2 1 b) 

where Bml: is related to Bmli by 

Bmli' = -kmiBm~iRur(kmia). (22) 

Next  examine  the TE, modal field  case. Equation (8) can  be 
expressed as 

= J,'(P)N,'(P + &I -Ju'(P + a P > N u ' ( P )  = 0. (23) 
Following  the  same  procedure  in going from  (19) to (20a),  the 
left side of  (23)  becomes 

D ( P )  = [J,'(P)A'u"(P) -Ju"(P)h:'(P)l A P .  (24) 
Utilizing (4) t o  eliminateJ,"  andN,"  in (24) transforms D ( p )  into 

u2 - 2 

P 2  

P 
N P )  = ~ [J,'(P)n'u(P> - J , ( P ) N u ' ( P ) l 4 0 >  (25)  

which  by  (20)  becomes 

2 p 2 - l ?  
D ( p )  = - - 

71 P3 
4 0 .  
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From  (23) D@) = 0. Imposing  this  constraint on (26)  produces 
solutions p = +u = kma/2, if p ZO. Since m is an  integer on the 
domain (4, m), p = u is  a complete  solution  statement. For 
p = 0, application  of  L'Hipital's rule shows  that D(0) = 0 and 
(26) is automatically satisfied. Since p = 0 corresponds  to m = 0, 
p = u for all m on  the  integer  domain. 

The TE to z field solution  for  the  limiting case A p / p  -+ 0 or 
h/a + 0, referring  to (9) and (lo), is given by 

(27a) 

Ho = - AmI'P cos (@) sin (Pz); Hp = 0 
i 

ww 
-7 

Hz = _i2 Aml'u sin (u0) cos (Pz). 
wluI 

Here we have used k ,  = mn/2Oa, cmi = c, , and 
A,I' = A,liUR,(U). (28) 

Resonant  frequencies using (12) are given by 

The  modal ( f r ) m l  are  the  same  form as found  for a planar 
rectangular  cavity  with k, = nn/h = 0 (i.e., n = 0 giving n o  
field  variation  in  the x coordinate  direction)  for  the TE t o  z 
modes.  This k, choice  produces  the  same  planar  rectangular  field 
solution  functional  form as we found  in  (27),  the  correspondence 
being  obvious if the  limit a -+ 00 is applied  and  the  identifications 
a@ -+ y:  20a + 2c,  and p +x made (2c is the  extent  in  the  rectan- 
gular coordinate y direction). 

It is interesting to  note  that  the  correct field solutions  for  thin 
cavities  seen in  (27)  are  obtained  by solving the  electromagnetic 
problem  subject to  the  constraint  that all variation  with p goes t o  
zero; i.e., a/ap + 0. The  procedure  of  taking a/an + 0 where is 
a unit  vector  normal to the  conformal  conducting  surface is often 
applied t o  microstrip  antenna  problems  and leads to good agree- 
ment  between  theory  and  experiment [ 4 ] .  

NUMERICAL RESULTS 
For  illustrative  purposes  the  dimensions  of  the  cylindrical- 

rectangular  cavity will be  chosen to  be e = 2 cm, b = 1 cm, 0 = 
24'. The filling  relative dielectric  constant is set to  E ,  = 5.0. 
From  the k,  eigenvalue solutions as determined  by  (16),  the 
TM, li cylindrical-rectangular  frequency eigenvalues fyc are 
found using ( 1 2 )  and  are  shown  in  Table I for m = 0 - 4 ,  i = 1 - 
5,  and Z = 1. The TE, li frequency eigenvalues fyc are  found  in a 
similar manner using (8) and (12) and  are given in  Table I1 for 
m = 1 - 5, i = 1 - 5, and Z = 0. Both  tables  provide f,c for h/a = 
0. 1: 0.25, 0.50, 0.75,  and 1.00. 

The  effect  of  curvature  on a patch  antenna's f, can  be ascer- 
tained  by  considering  the  inner radial surface  of  the  cylindrical- 
rectangular  patch  antenna  to  be  equal  to  the  patch  area  of a 
planar  rectangular  patch  antenna.  The radial thickness h is set 
equal to  the planar  patch  antenna's  dielectric  substrate  thickness. 
The  rectangular  dimensions  are  therefore x = h,  y = 2Oa, and 
z = 2b. Tables I11 and V give f rR  for  the  rectangular  patch  for, 
respectively, h/a = 0.1 and 1.0, 

TABLE I 
RESONANT  FREQUENCIES FOR T H E T M , ~ ~  CYLINDRICAL 

RECTANGULAR CAVITY MODES 

h 
a m O  1 2 3 4 
- 

I 

1 

2 
0.10 3 

4 

5 

1 

2 
0.25  3 

4 
T 

1 

33.6812 

67.1115 

1oo.6080 

134.1122 

167.6219 

13.8115 

27,0187 

40.3580 

53.7310 

61.1177 
1.4825 

33.8062 

61.2257 
100.6a01 

134.1665 

167.6653 

14.2642 

27.2542 

40.5162 

53.8500 

67 .?I30 
8.1474 

34.5333 

67.5495 
100.8969 

134.3290 

167.7954 

15.5424 

2 1 . 9 4 9 3  

40.9an 

54.2054 

67 .LI;U! 
9 ,8668 

35.5697 

68.0858 
101.2567 

134.5996 

169.0121 

17.4626 

2?.0704 

41.7606 

54.7926 
h l  97nh 

12.1789 

36.9718 

68.8296 
101.15Rb 

134.9774 

168.3149 

19.8397 

30.5721 

42.6292 

i5.6G46 

h8 .h?hq 

14.7789 

2 13.8156 14.1917 15.2733  16.9277  19.0098 

0.50 3 

4 
5 

1 

2 
0.75  3 

4 
5 

1 

2 

20.5138 

21.0194 

33.6822 

5.5724 

9.5375 

13.8139 

18.1835 

22.5916 

4.7262 

7.4856 

20.6429 

27.2159 

33.8401 

6.3029 

10.0002 

14.3395 

18.4126 

22.7928 

5.4483 

7.9932 

21.4031 

27 . ~ 1 4  
34.3096 
8.0726 

11.2803 

15.0377 

19.1622 

23.3870 

7.1178 

9.3591 

22.61b1 

28.7417 

35.0790 

10.2890 

13.1466 

16.5334 

i0.3261 

24.3486 

9.1102 

11.2583 

24.2115 

30.0166 

36.1300 

12.6525 

15.3735 

18.3943 

21.8623 

25.6408 

11.15~1 

13.3957 

1.00  3 10.5948 10.9612 12.0074 13.5916 15. 5506 

4 13.8146 14.1002 14.9269 16.2303 17.9170 

5 17.0867 17.3187 17.9996 1?.oa94 20.i3L4 

Here m = 0-4, I = 1, i = 1-5. h/a = 0.1,0.25,0.50,0.75,  and 1.00.0 = 
2 cm, b = 1 cm, e = 24", and er = 5.0. 

TABLE I1 
RESONANT FREQUENCIES  FOR  THE TEmIi CYLINDRICAL 

RECTANGULAR CAVITY MODES 

!! m .  1 2 3  4  5 
a 

1 
2 

0.10 3 
4 
3 

1 

2 

0.25 3 
4 
3 

1 

2 
0.50  3 

4 
5 

1 

2 
0.75 3 

4 
5 

2 
1.00 3 

4 

5 

3.8117 
33.7462 
67.1455 
100.6297 
134.1285 
3.5617 
13.9070 
27.065: 
40.3881 
53.7542 
3.2029 
7.5291 
13.8246 
20.3896 
27.0236 

2. 8864 
5.5236 
9.4144 
13.7656 
18.1152 
2.6013 
4.5719 
7.3312 
10.4740 
13.7212 

7.6230 
34.3685 
67.4744 
100.5464 
134.2011 

7.1111 

15.2L70 
27.7656 
40.862: 
54.1107 

6.29?1 
9.5525 
14.9569 
21.1657 
27.6119 
5.5190 
7.8925 
10.890~ 
14.7470 
18.8938 
1. a545 
7.0171 
8.9682 
11.6081 
14.5818 

11.4335 
35.4334 
68.0118 

10i .2066 

134.5618 
10.  6366 
17.26'1 

28.7038 
61.6L01 

.54.098 
9.2L.63 

12.2701 
16.6354 
22.IrDb3 

28.i6i4 
7.9754 
10.6914 
13.c0:9 
16.2170 
20.084il 

5,9525 
9.4959 

11 ,3300 

1j.jSj 
15.9575 

15.2426 
36.8470 
68.7571 

101.7088 

134.9391 
lC.1262 
I?. 7649 
30.4240 
LZ.7955 
55.5142 
12.0673 
15.3210 
18.8978 

i4.0'13 
20.8376 
!0.3760 
13.4310 
:5.6652 
1t.2622 
21.6723 
9.0795 
11.8GLR 
13.8137 
15.6580 
17.7125 

I ? .  0499 
38.5892 
69. 7036 
102.3508 
135.4243 
17.5892 
22.6055 
32.2770 
'4.02.L 
56.544' 

1L.8769 
18.442' 
21.4561 
26.012' 
31.1452 
12.7550 
16.0361 
:Koa76 

20.6383 
23.5902 
: 1.1614 
14.0fn4i 
16.2729 
18.2029 
20.0036 

Here m = 1-5, I = 0, i = 1-5. Same cavity dimensions as in Table I. 



198 IEEE  TRANSACTIONS ON ANTENNAS AND PROPAGATION,  VOL.  AP-31,  NO. 1 ,  JANUARY 1983 

TABLE 111 
RESONANT FREQUENCIES FOR  THE TM,li RECTANGULAR 

CAVITY MODES FOR = 1 AND h/a = 0.1 WITHg = 1.675516 
IN (30) 

m O  1 2 3 4 
1 

1 33.68499  33.92176  34.62235  35.75951 37.  29334 

2 67.11938  67.23851  67.59467  68.18413  69.oon91 

3 100.60930  100.68882  100.92700  101.32273  101.87416 

4  134.11316  134.17287  134.35165  134.64919  135.06L63 

5 167.62260  167.67034  167.e1348  168.04877  166.38482 

____ 

TABLE N 
RESONANT FREQUENCIES F O R T H E T M ~ ~ ~ R E C T A N G U L A R C A V I T Y  

MODES FOR I = 1 AND h/a = 0.1 WITHg = 1.759292 IN (30) 

O O  1 2 3 4 
1 

1 33.68499 33.89981 34.52628 39.57175 36.97272 

2 67.19375 67.22745 67.55062 68.08584 68.82815 

~--__I ~- 

3  1no.60930  100.68143  100.89750  101.25661  101.75723 

4  134.11316 134.16728 134.32950 134.59944 334.97645 

5 167.62260 167.66590 167.79574 168.01192 166.31L11 

TABLE V 
RESONANT  FREQUENCIES FORTHETM,~~RECTANGULARCAVITY 

MODES FOR 2 = 1 AND h/a = 1.0 WITH g = 1.675516 IN (30) 

m O  1 2 3 4 
I 

_- 
I 4.740135  6.202906 9 . 3 n ~ o 4  12.904778 36.69@6!8 

2  7.494811  8.495844  10.963614  14.15U499  17.671636 

3 10.599264  11.323234  13.280550  16.012770  19.1952C4 

4 13.8197:29 14.387238  15.969161  18.304368 21.1411779 

5 17.09079':  17.552651  18.871249  20.886440  23.413884 

.- 

with g = 1.6755  16.  Equation (30) gives f r R  in  GHz. For non- 
trivial TM, rectangular  patch  field  solutions i = 1 , 2 ,  - e ,  m= 0, 1 ~ 

*-, and 1 = 1, 2,  e-. These  eigennumbers  correspond  exactly t o  
those  in  Table  I.  Comparison of the f,c and f rR  eigenvalues in 
Table  I  and  Table 111 for h/a = 0.1 shows the largest difference 
being 0.87 percent. As i increases the  difference is reduced,  but as 
m increases, the  difference is increased.  This  same f r  behavior 
with  varying i and nz occurs  for h/a = 1 .O in  Tables I and  V  with 
the largest difference  being 4.4 percent. For the TE, rectangular 
patch fields,  having nontrivial  solutions  at i = 0, 1, .-, nz = 1, 2 :  
-..: 2 = 0, 1, e - ,  the  difference is about  an  order of magnitude 
larger. Tables I1 and VI1 for h/a = 0.1 demonstrate  that  the 
largest f r  difference is 5.2  percent,  and  Tables I1 and IX for 
h/a = 1 .O that  this value is enlarged to 79.2  percent. 

The TE, cylindrical-rectangular eigenvalues correspond  to 
the  two-dimensional  resonating  modes  of  the  planar  rectangular 
patch  antenna  which have no  field  variation  normal  to  the  patch 
surface.  These  modes  are  often  utilized in planar  microstrip 
antenna  analysis,  and have f rR  and frc differing  by less than 5 
percent  for h/a = 0.1. 

Tables Iv,  VI,  VIII,  and x provide f r R  calculated  using (30) 
with g = 1.759292 (h/a = 0.1) or 2.513274 (h/e = 1.0). Using 
these g values means  that  an  equivalent  rectangular  cavity  (to 
the  cylindrical-rectangular  cavity)  has  been  found  because  an 
average radius r = a + h/2 has  been  chosen  for  one side of  the 
cylindrical-rectangular cavity. One  might  expect fyR to  be 
extremely close to f r c .  Agreement is within 0.01 1  percent  for 

TABLE VI 

MODES  FOR I = 1 AND h/a = 1.0  WITH g = 2 5  13274 IN (30) 
RESONANT  FREQUENCIES  FOR  THE  TM,liRECTANGULARCAVITY 

m 0 1 2 3 4 
1 

. -_ 
i &.iLGi35 5 .  &3?GLZ 3 .  ,,"LC9 9 .  jOG4OL - ...,*, " .. ,-,,-, 

I I . V I ' + V J *  

2  7.494811 7.955281 9 .758303 10.963614 13.038438 

3 10.599261. 10.929716 11.865983 13.280550 15. 039051 

4  13.819749 14.074792 14.813596 15.969161 17.458927 

5  17.090799 17.297679 18.681803 18.871249 20.147558 

TABLE VI1 
RESONANT  FREQUENCIES  FOR  THE T h l i  RECTANGULAR  CAVITY 

MODES FOR I = 1 AND h / Q  = 0.1 WITH g = 1.6755 16 IN (30) 

m 1 2 3 4 5 
1 

0 4.00089 8.00179 12.00269 16.00358 20.00447 

1 33.75576 34.45973 35.60208 37.14245 39.03361 

2 67.15492 67.51151 68.10!70 68.91945 69.956.8 1 

3 100.63101 1CO.87133 101.26727 101.81901 102.52402 
4 13s.130q4 1 3 4 . 3 0 ~ ~ 4  134.60746 135.02303 135.55546 

TABLE VI11 

MODES FOR I = 1 AND h/a = 0.1 WITH g = 1.759292 IN (30) 
RESONANT  FREQUENCIES  FOR  THE  TE,liRECTANGULAR  CAVITY 

1 2 3 4 5 
1 

0 3 .81038 7.62075 11.&3!13 l>:Z415U i9 .05 j 28 

1 33.73371 34.37324 35.41348 36  .E2048 38.55409 

2 67.14384 67.46741 68.00329 68.  74649 69.6903Y 

3 100.62562 100.84182 101.2G112 101.70201 102.3/12&2 

4  134.12540 134.28768 134.55770 134.93483 135.41616 

TABLE IX 
RESONANT  FREQUENCIES  FOR  THE TE,ziRECTANGULAR CAVITY 

MODES FOR = 1 AND h/Q = 1.0  WITH g = 1.6755  16 IN  (30) 

m 1 2 3 4 5 
I 

0 4.008949 8.0017895 12.002685 16.003579 20.004474 

1 5.219349 8.6754289 12.461896 16.350809 20.283328 

2 7.806723 10.438697 13.747806 17.350858 21.097789 

3  10.822066 12.850626 15.658045 1a.900383 22.389482 

4 13.991361 15.613445 17.994873 20.877393 24.081735 

TABLE X 
RESONANT  FREQUENCIES  FOR  THE  TE,liRECTANGULAR  CAVITY 

MODES FOR I = 1 AND h / Q  1.0 WITH g = 2.513274 IN (30) 

I 2 3 4  5 
1 ____ 
0 2.653263  5.334526  8.0017bY IU.bbYb5L 13.33b313 

1 4.287542  6.300128  8.675L29  11.163162  13.751063 

2  7.214711  8.567054  12.026731  12.600?55  14.926321 

3 10.403088  11.382755  12.85C626 14.6CO.;SS 16.702313 

4  13.Cb9E69  14.429421  15.613445  17.131.?67  18.91G535 

___ ___-____ 

h/n = 0.1 and 4.4 percent  for lz/a = 1 .O for the TM, modes 
For the TE, modes,  agreement is within,  respectively, 0.035 
percent  and  19.5  percent  for h/a = 0.1 and 1.0. 

CONCLUSION 

The  field  distribution  within  a  cylindrical-rectangular  micro, 
strip  antenna  has  been  determined using a  cavity  modal  mode 
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for  the TE, and TM, modes.  Resonant  frequency eigenvalue 
equations  for  these  modes  were used t o  calculate  the eigen- 
frequencies ( f r ) ,  li for  some  of  the  lowest  order  modes. 

Comparison  of (J.)mli for  the  cylindrical-rectangular case 
fYc, and Cfv)mli for  a  planar  rectangular  microstrip  antenna f i R ,  

allows  an  assessment of  the  effect  curvature  has on resonant 
frequency.  Numerical  results  show  that  curvature  changes f, by 
less than  about 5 percent  for  a  substrate  dielectric  thickness  equal 
to  one  tenth  of  the  radius  of  curvature.  The  exact  effect  of  curva- 
ture on f, will be  dependent  on  the  particular  choice of antenna 
parameters,  but  the results found in this  communication  should 
be  a  useful  guide  when designing conformal  microstrip  antennas. 

An equivalent  rectangular  microstrip  planar  antenna to  the 
cylindrical-rectangular  microstrip  antenna  had  been  defined. 
Agreement  between f , ~  and frc is better  than  0.035  percent. 
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Combined E- and H-Plane Phase Centers of 
Antenna Feeds 

PER-SIMON KILDAL, MEMBER, IEEE 

Absrrucr-The feed  efficiency,  a  first  approximation  to the aperture 
efficiency  of  a  paraboloid  or  a  conventional  Cassegrain  antenna, is used 
to define  uniquely  a  combined E- and  H-plane  phase  center of the feed 
pattern. A formula  for  numerical  calculation  of  the  combined phase 
center is presented,  as well as  theoretical  results  of  the  feed  position 
tolerances  and  the  efficiency loss due  to  differences  in  the  principal  plane 
phase  patterns. 

I. INTRODUCTION 

For designing a  reflector  antenna  system.  it is important 
to  know  the  feed  phase  center since it  determines  the  location 
of  the  feed relative to  the focal point  of  the  reflector. Too large 
a  deviation  between  the  two  points causes  severe defocusing  of 
the  secondary  radiation  pattern.  The  phase  center  of an antenna 
is  ideally the  center of a  portion  of  a  sphere  on  which  the  radia- 
tion field of  the  antenna has a  constant phase [ l ] .  121. However, 
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in many cases the  phase  patterns  are  oscillatory, so that an ideal 
phase center  does  not  exist. A more  practical  definition of the 
phase  center  has  been given by  Rusch  and  Potter [3, p. 1471 ~ 

as the  center  of  the "best" nearly  constant-phase  spheres in a 
least squares sense. Although  the  definition given by  Rusch  and 
Potter is general enough t o  obtain  a  combined E- and  H-plane 
phase center  within  a given solid  angle, practical  formulas were 
given only  for  numerical  calculation of a  phase  center in a single 
principal  plane. This communication  presents  a  practical  formula 
for  calculation  of  a  combined E- and  H-plane  phase  center,  and 
is therefore an important  supplement  to  Rusch  and  Potter's  work. 

The  results  in  this  communication  are  obtained  by  a slightly 
different general definition.  The  feed  for  a  paraboloid  or  a 
conventional Cassegrain reflector  system is located in such  a 
way  that  the  phase  reference  point  of  the  feed  pattern  coincides 
with  the  focal  point  of  the  reflector  system.  The  phase  center 
is then  defined as the  phase  reference  point  which  maximizes 
the  feed  efficiency,  the  latter  being  the  first-order  approxima- 
tion  to  the  aperture  efficiency of the  paraboloid  or  the Casse- 
grain system.  This  definition is equivalent to  that  of  Rusch  and 
Potter [3] for  a  proper  choice  of  weighting  functions in the 
least-squares  calculation.  The  resulting  calculation  formula 
for  the overall phase  center is therefore  also very  similar to  the 
formula  for  the  principal  plane  phase  center.  The  tolerances on 
the  phase-center  position  (corresponding  to  the axial tolerances 
on  the  position  of  the  feed in the  reflector  antenna)  and  the 
efficiency losses due  to  differences in the  principal  plane  phase 
patterns are  also  discussed. 

11. MATHEMATICAL FORMULATION 

We assume a far-field  feed pattern,  which is linearly  polarized 
and  determined  by  its  E-plane  pattern A ( $ )  and  H-plane  pattern 
c($), according to  

where 2~ and i;tc are  unit  vectors in the  direction  of increasing 
polar angle $ and  azimuth angle t ,  respectively. Equation ( 1 )  
assumes  that A ( $ )  and C($) are given with  respect  to  the  same 
phase reference  point 0, positioned  at z = 0 and  that p is the 
distance  from 0 to  the far-field point (Fig. 1 ) .  A ( $ )  and C($) 
can be  transformed  to  a  new  phase  reference  point P positioned 
at z = 6 :  by  the  relations 

~ ~ ( $ 1 :  A ( $ ) e - i k 6 c o s 0  . c,( l ) )=C($)e- ik6cOS? (2) 
Then  the  far field is given by ( 1 )  if A & ( + )  and C6($) replace 
A ( $ )  and C($), respectively,  and if p now is the  distance  from 
P to  the far-field point. 

We consider  the  feed t o  be  located in the  primary  focus  of  a 
paraboloidal  antenna  or in the  secondary  focus  of  a  conventional 
Cassegrain antenna  (hyperboloid-paraboloid  configuration) in 
such  a way that  the  point P coincides  with  the  proper  focal  point. 
Then  the  first  approximation to  the  aperture  efficiency of the 
reflector  antenna,  excluding  the  effects  of blockage and  sub- 
reflector  diffraction in the Cassegrain, is 
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