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Abstract

We describe the first known algorithm for efficiently maintaining a Binary Space Partition (BSP) for
continuously moving segments in the plane, whose interiors remain disjoint throughout the motion. Under
reasonable assumptions on the motion, we show that the total number of times this BSP charig®s &n®
that we can update the BSP inl6gn) expected time per change. Throughout the motion, the expected size of the
BSP is Qnlogn).

We also consider the problem of constructing a BSPfastatic triangles with pairwise-disjoint interiors
in R3. We present a randomized algorithm that constructs a BSP of siz& @ O(nzlogzn) expected time.

We also describe a deterministic algorithm that constructs a BSP of $izetk) log?n) and height Qlogn) in

O((n + k) log® n) time, wherek is the number of intersection points between the edges of the projections of the
triangles onto the y-plane. This is the first known algorithm that constructs a BSP @g@:) height for disjoint
triangles inR3. 0 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Binary Space Partition (BSP, also known as BSP tree), originally proposed by Schumacker
et al. [32] and further refined by Fuchs et al. [19], is a hierarchical partitioning of space widely used
in several areas, including computer graphics (visibility determination [4,34], global illumination [9],
shadow generation [12,13], and ray tracing [25]), solid modeling [26,28,35], geometric data repair [24],
robotics [5], network design [22], and surface simplification [3]. Key to the BSP’s success is that it serves
both as a model for an object (or a set of objects) and as a data structure for querying the object.

Informally, a BSPB for a set of objects is a binary tree, where each nodeassociated with a convex
region A,. The regions associated with the childrervaire obtained by splitting, with a hyperplane.

If vis a leaf of B, then the interior ofA, does not intersect any objegtThe regions associated with

the leaves of the tree form a convex decomposition of space. The faces of the decomposition induced by
the leaves intersect the objects and divide them into fragments; these fragments are stored at appropriat
nodes of the BSP. The efficiency of BSP-based algorithms depends on the nhumber of nodes in the tree
and on the height of the tree. As a result, several algorithms for constructing BSPs of small size and/or
small height have been proposed [4,10,19,29,30,34,35].

In this paper, we studgylindrical BSPs in which all the cuts that do not contain any input object are
made by hyperplanes parallel to the same fixed direction. We address two problems. The first problem
can be formulated as follows. Létbe a set ofz interior-disjoint segments in the plane, each moving
along a continuous path. We want to maintain the BSRfas the segments ifimove. We assume that
the segments move in such a way that they never intersect, except possibly at their endpoints. Most of the
work to date deals with constructing a BSP for a set of static segments that do not move. Paterson and Yac
propose a randomized algorithm that constructs a BSRofd@n) size in® (n logn) time for a set ofz
segments in the plane [29]. They also propose a deterministic algorithm, based on a divide-and-conquel
approach, that constructs a BSP of siz@ (0gn) in ©(nlogn) time [29]. Both of these algorithms are
not “robust”, in the sense that a small motion of one of the segments may cause many changes in the tree
or may cause non-local changes. Therefore, they are ill-suited for maintaining a BSP for a set of moving
segments.

There have been a few attempts to update BSPs when the objects defining them move. Naylor describe
a method to implement dynamic changes in a BSP, where the static objects are represented by a balance
BSP (computed in a preprocessing stage), and then the moving objects are inserted at each time step int
the static tree [27]. Using the same assumption that moving objects are known a priori, Torres proposes
the augmentation of BSPs with additional separating planes, which may localize the updates needec
for deletion and re-insertion of moving objects in a BSP [36]. This approach tries to exploit the spatial
coherence of the dynamic changes in the tree by introducing additional cutting planes. Chrysanthou
suggests a more general approach, which does not make any distinction between static and moving
objects [14]. By keeping additional information about topological adjacencies in the tree, the algorithm
performs insertions and deletions of a node in a more localized way. But all these prior efforts boil down
to deleting moving objects from their earlier positions and re-inserting them in their current positions
after some time interval has elapsed. Such approaches suffer from the fundamental problem that it is very
difficult to know how to choose the correct time interval size: if the interval is too small, then the BSP
does not in fact change combinatorially, and the deletion/re-insertion is just wasted computation; if it is

5We assume that the objects a@ke— 1)-dimensional polytopes iR<.
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too big, then important intermediate changes to the BSP can be missed, which may affect applications
that use the tree.

Our algorithm, instead, treats the BSP akirsetic data structurea paradigm introduced by Basch
et al. [6]; see also the survey by Guibas [20]. We view the equations of the cuts made at the nodes of the
BSP and the edges and faces of the subdivision induced by the BSP as functions of time. The cuts and th
edges and faces of the subdivision change continuously with time. However, “combinatorial” changes in
the BSP and in the subdivision (we precisely define this notion later) occur only at certain times. We
explicitly take advantage of the continuity of the motion of the objects involved so as to generate updates
to the BSP only when actual events cause the BSP to change combinatorially.

In Section 3, we describe a randomized kinetic algorithm for maintaining a BSP for moving segments
in the plane. We assume that the segment motionsldidgousto the random bits used by the algorithm;
our algorithm chooses a random permutation of the segments at the beginning of time, and we assume
that no agent determining the motion of the segments has access to any information about this randorn
permutation. Following Basch et al. [6], we assume that each moving segment has a posted flight plan
that gives full or partial information about the segment’s current motion. Whenever a flight plan changes
(possibly due to an external agent), our algorithm is notified and it updates a global event queue to reflect
the change. We first derive a randomized algorithm for computing a BSP for a set of static segments,
which combines ideas from Paterson and Yao’s randomized and deterministic algorithms, but is also
robust, in the sense described earlier. The “combinatorial structure” of the BSP constructed by this algo-
rithm changes only when thecoordinates of a pair of segment endpoints become equal. We prove that
at any given instant, we need to consider only:\Osuch endpoint pairs. Furthermore, the set of pairs we
need to consider changes only when the combinatorial structure of the BSP changes. We show that unde
our assumption on the segment motions, the BSP can be updatéldgn®Dexpected time at each event.
We also show that ik of the segments o move along “pseudo-algebraic” paths, and the remaining
segments of are stationary, then the expected number of changes in the BSR/Ad0Qn). As far as
we know, this is the first nontrivial algorithm for maintaining a BSP for moving segments in the plane.

Next, we study the problem of computing a BSP for a $eif n interior-disjoint triangles inR3.
Paterson and Yao [29] describe a randomized incremental algorithm that constructs a BSP ¢i%ize O
in expected time ©@:°). They also show that their algorithm can be made deterministic without affecting
its asymptotic running time. It has been an open problem whether a BSPtfiangles inR* can be
constructed in near-quadratic time. Sub-quadratic bounds are known for special cases: Paterson an
Yao’s algorithm for orthogonal rectangles [30], de Berg’s result for fat polyhedra [17], and the technique
of Agarwal et al. [2] for fat orthogonal rectangles. However, none of these approaches leads to a near-
quadratic-time algorithm for triangles iR®. The bottleneck in analyzing the expected running time of
the Paterson—Yao algorithm is that no nontrivial bound is known on the number of vertices in the convex
subdivision ofR® induced by the BSP constructed by the algorithm. Known techniques for analyzing
randomized algorithms, such as the Clarkson—Shor framework [16] or backwards analysis [33], cannot
be used to obtain a near-quadratic bound on this quantity, since the BSP constructed by the algorithm is
not canonical; it strongly depends on the order in which triangles are processed.

In Section 4, we present a randomized algorithm that constructs a BSP ébrsize Qn?) in
O(n?log?n) expected timeé® Our algorithm is a variant of the randomized Paterson—Yao algorithm. We

6our algorithm constructs a BSP of expected size%). We can make the size bound deterministic by repeatedly running
the algorithm until it constructs a BSP of siz&/3). This process affects only the constant factor in the running time.
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construct the BSP fo§ in such a way that there is a close relationship between the BSP and the planar
arrangement of the lines supporting the edges ofctherojections of the triangles ifi. We use results
on random sampling [16] and on arrangements of lines [18] to bound the expected number of vertices in
the convex subdivision dk® induced by the BSP and the expected running time of the algorithm.

Finally, we present a deterministic algorithm in Section 5 for constructing a BSP for & aiet
triangles inR3. If k is the number of intersection points of the-projections of the edges of triangles
in S, then the algorithm constructs a BSP of siz&(O+ k)log®n) in time O((n + k)logn); if
k <« n?, the deterministic algorithm constructs a much smaller BSP than do Paterson and Yao’s and
our randomized algorithms. Another nice property of our deterministic algorithm is that the height of
the BSP it constructs is @gn), which is useful for ray-shooting queries, for example. It was an open
problem whether BSPs of near-quadratic size ariid@:) height could be constructed fartriangles
in R3. The height of the BSP constructed by the randomized algorithms (both ours and Paterson and
Yao’s) can be (n), e.g., whens is the set of faces of a convex polytope.

Before proceeding further, we give a formal definition of a BShilary space partition3 for a
set S of convex (d — 1)-polytopes inR? with pairwise-disjoint interiors is a binary tree defined as
follows: Each nodev in B is associated with a convekpolytope A, and a set ofd — 1)-polytopes
S,={sN A, |seS}. The polytope associated with the root®fs R¢ itself. If S, is empty, then node
v is a leaf of B. Otherwise, we partitiom, into two convex polytopes by autting hyperplaneH,.
We refer to the polytopdl, N A, as thecut made atv. At v, we store the equation df, and the set
{s|s € H,, seS,} of polytopes inS, that lie in H,. If we let H," be the positive halfspace ar~ be
the negative halfspace bounded Hy, the polytopes associated with the left and right children afe
A,NH,; andA, N H,, respectively. The left subtree ofis a BSP forS, ={sN H, |s € S,} and the
right subtree ob is a BSP forS;" = {s N H," | s € S,}. The size ofB3 is the sum of the number of nodes
in B and the total number of polytopes stored at all the nodé in

For our purposesy is either a set ofi segments in the plane or a setofriangles inR3. A unifying
feature of all the BSPs constructed by our algorithms is that the regjjicsssociated with each node
is acylindrical cell in the sense that, may contain top and bottom faces that are contained in objects
belonging toS, but all other faces are vertical. In the plang, is a trapezoid; ilR3, A, may have large
complexity, as it can contain many vertical faces.

2. Static algorithm for segments

Let S be a set of: interior-disjoint segments in the plane. In this section, we describe a randomized
algorithm for computing a BSB for S when the segments ifi are stationary. In the next section, we
explain how to maintai8 as each segment simoves along a continuous path.

Our algorithm makes two types of cutspaint cut is a vertical cut through an endpoint of a segment
and anedgecut is a cut along a segment. Edge cuts are always contained totally within input segments;
therefore, they do not cross any other input segment. For eachwed®, the corresponding polygon
A, is a trapezoid; the left and right boundaries of the trapezoid are bounded by point cuts, and the top
and bottom boundaries are bounded by edge cuts.

We now describe our static algorithm. We start by choosing a random permutatias, ..., s,)
of S. We say that; has ahigher priority thans; if i < j. We add the segments in decreasing order of
priority and maintain a BSP for the segments added so farSiet{ss, 5o, ..., s;} be the set of the first
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Fig. 1. The BSPB'~1, the sequence of cuts made in thih stage, and the BSB!. At each step, the shaded
trapezoid is split. Portions of that lie in the interior of a trapezoid that corresponds to a current leaf node are
drawn using thick lines. The label next to a node signifies the cut made at that node.

i segments in the permutation. Our algorithm works stages. At the beginning of thi¢h stage, where

i >0, we have a BSB ! for S'~1: B° consists of a single nodg whereA, is the entire plane. In the

ith stage, we adst and compute a BSB' for S’ as follows:

1. Suppose andg are the left and right endpoints gf respectively. Let be the leaf of3'~! such that
A, containsp. We partitionA, into two trapezoidsA; and A" using a point cut defined by, where
Ay lies to the left of the cut. We create two childrenandz of v, with w being the left child ofv.

We setA,, = A, andA, = A} and storep atv. We then perform a similar step for

2. For each trapezoid, that intersects;, we stores; atx, and splitA, into two trapezoids by making
an edge cut along;. We again create two childremn andz of x, with w being the left child. We set
A, to be the sub-trapezoid of, lying below the cut andA, to be the sub-trapezoid of, lying
above the cut.

The resulting tree is the BSF for S'. See Fig. 1 for an example of constructiBgfrom B2,

This completes the description of our algorithm. Note that once we fix the permutation, the algorithm is
deterministic and constructs a unique BSP. In order to analyze the algorithm, we need a few definitions.
We refer to the vertical segment drawn upwards (respectively, downwards) from an engdsrthe
upper (respectivelylower) thread of p. We call the segment containing the other endpoint of a thread
the stopperof that thread. Note that the priority of the stopper of a threagd @f higher than that of the
segment containing. We can prove the following lemma about each thread.

Lemma 2.1. Let p be an endpoint of a segmeng S. The expected number of segments crossed by each
of p’s threads isO(logn).

Proof. Let o1, 05, ... be the sequence of segmentsSirthat intersect the top thread of p, sorted in
increasing order of the-coordinates of their intersection wi clearly, there are at mostsegments
in this sequence. The segmentis crossed by if and only if s is inserted before any of the segments
01,02, ...,0,_1,0;. Sincel3 is constructed by inserting the segments @i random order, the probability
that p crosseso; is 1/(i + 1). Therefore the expected number of segments crosgirg at most
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11/ +1) =0(ogn). We can similarly show that the expected number of segments crogsing
lower thread is @ogn). O

We can use this lemma to bound the size and heigt. of

Theorem 2.2. The expected size of the BSP constructed by the above algorittr isgn) and the
height of the BSP i©(logn), where the second bound holds with high probability.

Proof. In order to bound the size @&, the BSP constructed by the algorithm, it is enough to count the
total number of cuts made i, since a cut is made at each interior nodésofClearly, there are at most
2n point cuts made irB. If an edge cuk is made at a hode, we chargee to the right endpoint oé.
Suppose is the segment iy containinge. The right endpoint oé is either the right endpoint afor the
intersection point of with a thread of a segment whose priority is higher tham this way, we charge
each endpoint and the intersection point of a segment and a thread at most once. As a result, Lemma 2.
implies that the expected total number of edge cuts(isl@yn), which proves that the expected size of
B is O(nlogn).

To boundB’s height, we first bound thdepthof an arbitrary point in the plane, i.e., the number of
nodes in the path from the root 6fto the leafv € B such thatA, containsp. We bound the number of
nodes on this path that are split by edge cuts and point cuts separately.

Let 01, 05, ... be the ordered sequence of segments intersected by a vertical ray starting at
and pointing in the+y)-direction. An ancestor of is split by an edge cut through if and only if o;
has higher priority thaw, o2, ..., 0;_1. This event happens with probability i. Hence, the expected
value of X, the number of ancestors ofthat are split by edge cuts, i, = O(logn). We can actually
prove that this bound oX holds with high probability. Sinc& is the sum of independent 0—1 random
variables, using Chernoff’s bound [23, p. 68], we have that for any congtaut,

ex—l

aOl

Hl’l
PiX > aH, < ( ) = O(nfalno”r“*l).

In particular, for any constant we can choose so that PfX > «H,] < 1/n¢, which shows that the
value of X is O(logn) with high probability.

We now consider the ancestors wfthat are split by point cuts. Let, 7, ... be the left segment
endpoints that lie to the left gb. An ancestor ob is split by a point cut through; only if the segment
with 7r; as endpoint has higher priority than the segments withr,, ..., 7;_, as endpoints. A similar
analysis to the one above proves that the number of ancestothaif are split by points cuts is({@gn)
with high probability. Thus, the depth of any pointin the plane is @ogn) with high probability.

The segments i and the vertical lines passing through every segment endpoint decompose the plane
into O(n?) trapezoids. Any two points in one of these trapezoids will be contained in the same leaf of
any BSP that our algorithm constructs, independent of the permutation we choose at the beginning of the
algorithm. Hence, the height of BSP is the maximum depth @Dpoints, one in each such trapezoid.
Since the depth of each point igl0gn) with probability 1— 1/n°, the height of5 is also Qlogn) with
probability 1— 1/n¢2, if we chooser > 3. This argument completes the proof of the lemma.
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3. Kinetic algorithm for segments

We now describe how to maintain the static BSP as the segmerfisniove continuously, under
the assumption that their interiors remain pairwise disjoint throughout the motion. We parameterize the
motion of the segments by time and us® denote time. For a given time instantwe will user~ and
t* to denote the time instants- ¢ andr + ¢, respectively, where > 0 is a sufficiently small constant.

Let s; € S be a segment with endpoins and g. We assume that the position pf at timer is
p(t) = (x,(1), y, (1)), wherex, () andy,(¢) are continuous functions of time{z) is specified similarly.
The position ofs; at timez is s;(t) = (p(¢), g(¢)); if s; is moving rigidly, then the equations for its
endpoints are not independent. Our algorithm and the analysis work even if the endpointacyfe
independently. LeS(¢) denote the sef at timer. We assume that we choose a random permutation
of S once in the very beginning (at= 0), and thatr does not change with time. L&i(¢+) denote the
BSP constructed by the static algorithm when applied @i, usingz as the permutation to decide the
priority of the segments. We describe an algorithm that updates the BSP under the following assumption.

(x) There is no correlation between the motion of the segmenrfsaind their priorities. Therefore, the
chosen permutationr always behaves like a random permutation, and Lerirhand Theoren2.2
hold at all times.

We first give an important definition. Treombinatorial structureof 53 is a binary tree, each of whose
internal nodes is associated with the set of segmefitsand with the segment endpoint (respectively,
segment) defining the point (respectively, edge) cut made\&e will use the combinatorial structure of
the BSP crucially in our algorithm.

3.1. Critical events

As the segments i§ move continuously, the equations of the cuts associated with the noffealsd
change. At the same time, the edges and vertices of the trapezoids in the subdivision of the plane inducec
by B also move. However, the combinatorial structure3o€hanges only when the sg&f changes for
some node € B or when the segment endpoint or segment defining the cut madehstnges. Since
the segments i are interior-disjoint and they move continuously, the $ethanges only when the
endpoint of a segment ifi, lies on the left or right edge oft,. See Fig. 2 for an example of such an
event. IfS, does not change, then the cut made ehanges only if the segment defining the cut becomes
vertical. We formalize this idea in the following lemma, which is not difficult to prove.

>
t+
o

!

Fig. 2. Endpoint lies on the left edge oft,, (the shaded trapezoid) atThe setS, changes at time instant
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Fig. 3. The shaded trapezait, is transient.

Lemma 3.1. For any time instant, B(:~) and B(t™) have different combinatorial structures if and
only if there exists g > 0 such that eithes; rotates through a vertical line at timeor there is a leaf
v € B/71(+7) such that an endpoint af; lies on the left or right edge of, at time.

This lemma implies that the combinatorial structurdsgf) changes if and only if for a nodee B(7),
A, shrinks to a vertical segment; we refer to these instants of tinegitisal events This observation
motivates us to call a nodein B(¢) transientif A, does not contain any endpoint in its interior and a
point cut is made at the parep(v) of v; we call A, atransient trapezoidSee Fig. 3. Note that only
edge cuts are made atand its descendants. Thus, transient trapezoids are maximal among all those not
containing point cuts. The following corollary to Lemma 3.1 is immediate.

Lemma 3.2. For any time instant, B(t~) andB(t ™) have different combinatorial structures if and only
if there exists a transient nodein B(t~) so thatA, becomes a vertical segment at time

Transient nodes have some useful properties that are summarized in the following lemma.

Lemma 3.3. At any instantz, all transient nodes in3(¢t) have the following properties. Let be a

transient node i3 (z).

() No proper ancestor of is transient.

(i) Only edge cuts are made at the descendants (@ficluding v itself). The left(respectively, right
edge of the trapezoid associated with each descendanti®fa portion of the lefirespectively,
right) edge ofA,.

(iii) The expected number of descendants isfO(logn).

(iv) The number of transient nodes/iz) is at mos#n.

Proof. Letg be the endpoint of a segmentSrthrough which the point cut ai(v) is made.

(i) No proper ancestow of v can be transient sincé,, containsg.

(i) Since A, does not contain any endpoints, only edge cuts are made at all the descenda&izsabf
segment that intersects, crosses the left and right boundariesvsoHence, the left (respectively, right)
edge of the trapezoids associated with each descendanisaf portion of the left (respectively, right)
edge ofA,.

(i) Each segment that induces an edge cut made at a descendairitefsects one of’s threads.
Hence, by Lemma 2.1, the expected number of descendants @(logn).
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(iv) A point cut is made at the parent of each transient node. Therenamedes in53 that are split by
point cuts; each such node has two childrem

Intuitively, transient nodes are the highest node®{mn) that can shrink to a vertical segment, thus
causing a change in the combinatorial structur8@f. If a trapezoid contains an endpoint in its interior,
it cannot be the next trapezoid to shrink to a segment; and if an edge cut is made at the parenfit
a nodev and A, does not contain an endpoint, the),,, also shrinks to a segment whenever
shrinks to a segment. Hence, it suffices to keep track of transient nodes to determine all the instants whel
the combinatorial structure @ (z) changes. In the rest of the section, we present our kinetic algorithm
motivated by this observation.

3.2. Updating the BSP

For a nodev in B, let A, (respectively,,) denote the endpoint of a segmentithat induces the point
cut containing the left (respectively, right) edgef. To detect critical events, we maintain the set

I'(t) = {(hy, py) | v is atransient node at timeé

of endpoint pairs inducing the point cuts that bound the left and right edges of each transient node;
Lemma 3.3 implies thatI"(r)| = O(n). The elements off"(r) are certificates that prove that the
combinatorial structure oB(r) is valid. For each paiti,, p,) in I'(¢), we use the known flight paths
of 1, andp, to compute the time at which thecoordinates ok, andp, coincide; we store these time
values in a global priority queue. In order to expedite the updating af each critical event, we also
store some additional information with the nodegiand the segments ifx
1. Ateach node of 3, we store the numbet, of segment endpoints lying in the interior 4f, (¢, helps

us to determine the new transient trapezoids at an event).
2. For each endpoint of a segment ins, we maintain the list, (respectively,B,) of segments that

the upper (respectively, lower) thread pfcrosses, sorted in the-y)-direction (respectively—y)-

direction). As the segments move, we will use these lists to update the stoppers of the threads issuing

from the segment endpoints.

We first construct3(0) using the static algorithm presented in Section 2. Next, we compute the set
I' (0) and insert the corresponding critical events in the priority queue. Then we repeatedly remove the
next event from the priority queue and upd#tel”, and the priority queue as required. In the rest of
the section, we will prove that if the combinatorial structuré3ofhanges at time, then we can obtain
B@™) from B(t~) in O(logn) expected time. We will also show that at each event, the expected time to
update the global event queue igl&yn).

We now describe the procedure for updating the tree at each critical event. Recall that at each such
instantz, there is a segment; € S such that (i) eithers; becomes vertical or (ii) there is a leaf
w € B/71(t7) such that an endpoint of s; lies on the left or right edge of\,,. We consider each
case separately. L&t~ = B(r~) andB* = B(t*). For a nodez € B, let B denote the subtree &~
rooted atz; defineB similarly.

Case(i). The segment; is vertical. In this casey is a transient node 8~ with the property that.,
andp, are both endpoints of;. See Fig. 4. Lep, = p andi, =g. Letu bev’s grandparent irB~; the
trapezoidA, containss;. Sincegq is to the left ofp at timez~, v is the left child of the right child of:
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At time ¢t~ At time ¢t

Fig. 4. The case when, andp, belong to the same segment.

At time ¢t~ At time ¢t

Fig. 5. The case whek, andp, are endpoints of different segments. Arrows mark the horizontal extents of the
trapezoids.

in B~. Attime ¢, p is to the left ofg. The static algorithm when applied to the segments ai timer*
will make a point cut throughp in A,. Thus, we obtair3(:™) by storing p with « andg with the right
child of u.

Case(ii). The pointsi, and p, are endpoints of different segments. Assume hat p (respectively,
Ly = q) is the right endpoint of the segment(respectivelys;), thats; lies aboves;, and that the priority
of 5; is higher than that of; (i.e.,i < j). Thex-coordinate of; is less than the-coordinate ofp ats~.
See Fig. 5. We now describe how we updAte) for this case. We will show later how to relax these
assumptions. Let andw be the leaves oB'~1(r~) and B/~1(t ), respectively, at which the point cuts
through p andg, respectively, are made. At time, a point cut made througd divides A,, into two
trapezoids. One of these trapezoidsAis which is transient at time—. By our assumptions about the
event,v is the right child ofw, andw lies in the left subtree af. Letu; be the left child ofx, and letw;

be the left child ofw. Let x be the leaf of3/~1(¢+*) that containg; at time:*. Since the combinatorial
structures of3/~1(+~) andB/~1(¢+*) are identicalx is a leaf of 3/~1(+~) too and lies in the right subtree
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of u in B/~1(¢+7). Let s, € S be the segment containing the top edgeAefin B/~1(t7). At time ¢ T, as
g leaves the trapezoid,, and entersA,, A,,, expands tad,,, A, disappears, and, is split by a point
cut throughg into two trapezoids: a new trapezoitl,, and the portion ofA, lying to the right of the
cut throughg. Attimer~, A, is split by a point cut through and A, is split by an edge cut along,
while at timer™, A, is split by an edge cut along. ThereforeB; is the same a8, . To obtain3™*, we
execute the following steps:
1. We search in the right subtreewofo locate the leaf of B/~1(+~) such thatA, containsg at timer+.
2. We delete the node from B, and if w was a left (respectively, right) child of its parep{w), we
makew; the new left (respectively, right) child gf(w).
3. We construct the subtré®’, by determining the sef of segments that intersegt, (at time:*) and
by making edge cuts through the segment§ iim decreasing order of priority. There are two cases to
consider:
(a) The segmeny; contains the top edge of,. See Fig. 6. The saf consists ofs; and the set of
segments intersecting, (at times~). We find these segments by traversing all the nodés; of
(b) The segment; contains the top edge af See Fig. 7. We sef, to be the stopper of the upper
thread ofg at timez™. As in the previous case, we includeand the segments inducing the edge
cuts made inB3; in C. In addition,C contains all segments that appear befgrén the upper

At time t— At time tt

Fig. 6. The edge cuts made By andBj,. Segments crossing, and A,, are labeled with their priorities. The
label next to a node is the priority of the segment containing the edge cut made at that node.

At time ¢~ At time ¢

Ay Ay

Fig. 7. The case when the top edges\gf and A, are contained in different segments. The segraénintersected
by the top thread of att™ but not atr~.
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thread ofp. We determine these segments by traversipgthe list of segments that cross the
upper thread of. Note that these segments also cross the upper threpdtof .
Finally, we inserts; into B, the list of segments i crossed by the lower thread pf and update
T,.
V\q/e attachB;, to a descendant op(x), the parent ofx in B~, as follows: We create a node
and associate the point cut throughwith it. The left and right subtrees of in B+ are B}, and
B, respectively. Ifx is the left (respectively, right) child op(x), then we addy as the new left
(respectively, right) child op(x).

. We update the sdt(t™). For a node;, the numbee, of endpoints lying in the interior af\, changes

only if z lies along the paths i8* from u to the nodeg(w) andy. For such a node, if ¢, =0 at
1T andif A, is split by a point cut, we ad@.,, p.) to the listI"(¢*). On the other hand, if, # 0 at
t* but z is transient at~ (z must be an ancestor ofin 57), we delete(),, p,) from I'(+*). We also
update the priority queue to reflect the changes to").

Other casesWe now show how we relax the assumptions we made earlier about the relative positions of

S

1.

2.

ok

ands; and their priorities.

If ¢ is the left endpoint of;, the update procedure is the same, except that atrtimee do not make

an edge cut throughy in B.. See Fig. 8(a).

If the x-coordinate of; is greater than the-coordinate ofp at timez—, we adapt a similar procedure

as the one described above. See Fig. 8(b). The noideagain the leaf o3/~1(+*) such thatA,
containsg at ™. We can reconstrucB;, as before: if the same segment contains the top edge of
A, and A, the same set of segments (apart frofpintersectsA, and A,; otherwise, among the
segments that intersedt,, only segments below intersectA,, . In both cases;; intersects eithen,

or A, depending on whethey is the left or right endpoint of;. In the second case, we also update
T, accordingly. The other changes ffoare similar to the cases we have handled; the details are not
difficult to work out.

If p is the left endpoint of;, we reflectS about they-axis and reduce the problem to one of the earlier
cases.

If 5; lies belows;, we reflectS about thex-axis, reducing the problem to one of the earlier cases.

If the priority ofs; is less than the priority of;, we swap the roles of ands; and reduce the problem

to one of the earlier cases.
This completes the description of our procedure for processing critical events. We now analyze the

running time of the update procedure. Assumptignifiplies that Lemma 2.1 and Theorem 2.2 hold at
timesz—,t ands*. We spend @ogn) time in Step 1, since we traverse a pathsino find the nodex.

P S S EC
' q1 :Sj | :% sj_;_:—q+: 31_;_.q: |

Fig. 8. Some other cases that arise when different segments interact in a critical event.
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It is clear that Step 2 takes(D time. In Step 3, we find the segments crossifig and construci3;,

in O(logn) expected time, since the expected sizé3pfis O(logn) (by Lemma 3.3) and the expected
number of segments ifi, is O(logn) (by Lemma 2.1). It is clear that Step 4 takeslPtime. Finally,

in Step 5, we process (@gn) nodes lying in two paths in the tree. By Lemma 3.3, each of the two
paths contains at most one transient node. Hence, we insert or delete at most two events from the priority
gueue, which implies that Step 5 takedd@») time. We thus obtain the main result of this section.

Theorem 3.4. At each critical event, we can upda&r) in O(logn) expected time.

Note that this theorem makes our BSP a kinetic data structure that is efficient, local, and compact, in
the sense defined by Basch et al. [6]. However, our BSP is not responsive, since some events may tak
Q(n) time to process.

We say that the trajectories followed by a set of segmentpsaado-algebraidf the segments move
so that each pair of endpoints exchangesrder only Q1) times. A special case of pseudo-algebraic
trajectories is when the trajectories of all the endpoints are constant-degree polynomials. If the trajectories
of k of the segments i§ are pseudo-algebraic and the remaining segments are stationary, then the total
number of critical events is @n). We spend @ogn) expected time to maintaif$(z) at each event
point. Hence, we obtain the following corollary to Theorem 3.4.

Corollary 3.5. Let S be a set ol segments in the plane, and I8tC S be a set ok segments. Suppose
each segment off moves along a pseudo-algebraic trajectory and the remaining segmestsaia
stationary, the total expected time spent in maintairtthig O(kn logn).

Remark. Our update algorithm works correctly even if two or more events occur at the same instant.
If the events involve trapezoids in different parts®f it does not matter in which order we process
the events. Otherwise, assume that at tintleere are two transient trapezoids and A,, with A, = p,

Py = Ay = g and p,, = r, such that thex-coordinates ofp, ¢ andr are the same. The definition of
transient trapezoids implies that only the events involving the gairg) and (g, r) are in the priority
queue at time~. At time ¢, we process one of these events. Assume without loss of generality that this
event involves(p, ¢). When we process this event, we insert an event involving the(pair) into the
priority queue. Our algorithm updaté$ correctly irrespective of whether the event involviag r) or

the one involving(p, r) is processed next.

4. BSPs for triangles: a randomized algorithm

In this section we describe a randomized algorithm for constructing aB&Rxpected size @?) for
a setS of n triangles with pairwise-disjoint interiors iR3. The expected running time of the algorithm
is O(n2log?n). We describe the algorithm in Section 4.1 and analyze its performance in Section 4.2.

4.1. The randomized algorithm

We start with some definitions. For an objedh R, let s* denote thexy-projection ofs. Let E be the
set of edges of the triangles K and letE* denote the sefe* | ¢ € E}. Let £ be the set of lines in the
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z-axis A

r-axis

Fig. 9. An active facef and an active cell, € A(f) that is a vertical section of the cylinder erected fonThe
boundary of triangle intersectsA, and the boundary of* intersectsy .

xy-plane supporting the edges Ei. We choose a random permutatiof, o, ..., £3,) of £, and add

the lines one by one in this order to compiteLet £/ = {¢1, {o, ..., £;}.

The algorithm works in 3 stages. In théth stage, we add, and construct a top subtrée3’ of 3
by refining the leaves oB'~*; B° consists of one node (correspondingR®) and 3% is B. As usual,
we associate a convex polytope with each node of B'~L. If v is a leaf of 3~ and no triangle inS
intersects the interior oft,, i.e., S, = @, thenv is a leaf of 5 and we do not refine it further. Otherwise,
we partitionA, into two or more cells; these cells are leaved3of!.

Before describing théth stage of the algorithm in detail, we explain the structuredofWe need
a few definitions first. At a node of 5, the cutting planef/, may support a triangle € S such that
H,N A, Cs,i.e., the portion off, that lies in the interior ofA, is contained ins. Such a cutting plane
is referred to as free cutands is called afree triangle We say that a leaf of B’ (or the cellA,) is
activeif a triangle in S intersects the interior af\, (i.e., S, # ); similarly, we say that a fac¢ in the
line arrangementd (L) is activeif a segment inE* intersects the interior of . For each active leaf in
B, the algorithm ensures that, satisfies the following properties:

(P1) If atriangles € S intersects the interior of\,,, then the boundary of also intersects the interior of

A,.
(P2) The cella, is a vertical section of the cylindgf x [—oo, co] for exactly one active facg of A(LY);
the vertical section may be truncated by triangles at the top and bottom. See Fig. 9.

In order to execute each stage efficiently, we maintain the following additional information:

(i) Foreach active celt € B/, we store the subsét, C S of triangles that intersect the interior &f.

(i) We maintain the arrangememt(£’) as a planar graph [18]. For each active fate A(L'), we
maintain the sefA () of those active cells i3’ that lie inside the cylindef x [—oo, oo]. Note that
by Properties (P1) and (P2), a fage= A(L') is active if and only ifA(f) # @.

We now describe théth stage in detail. LeH; be the vertical plane supportirg. In theith stage,
we make a vertical cut inside each active cell that is intersecteH;byollowed by a number of free

7 A top subtree of a tree is one that includes the root of the tree.
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z-axis A z-axis A
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l3 J x-axis z-axis

(a) (b) ()

Fig. 10. (a) Tracind (the thick line) through the faces gf(£3). The facef is shaded. (b) Splitting celA € A( f)
by Hy, the vertical plane containing;. (¢) The free cuts irf 4+ are ordered by-coordinate.

cuts as follows. LetH;" (respectively,H;”) be the positive (respectively, negative) halfspace supported
by H;.
1. We tracet; through the faces ofd(£'~1). For each facef € A(L'~1) intersected by;, we use;
to split f into two facesf™ and f~. See Fig. 10(a). Next, we partition each active c&lE A(f)
into two cellsA* = AN H andA~ = AN H;” (see Fig. 10(b)) and execute the following two steps
on A:
2. We compute the set,+ € S, of triangles that intersect the interior dft. We also compute the set
F,+ C Sy+ of triangles whose boundaries do not crass. Similarly, we compute the sef§,- and
F,- for A™.
3. We splitA™ into a set¥ of |F,+| + 1 cells by making free cuts along each of the trianglegin.
The cells in@ can be ordered by-coordinate. Since the triangles khare pairwise-disjoint, each
triangles € S,+ \ Fa+ intersects a unique cel’ € ¥. We computeA’ by performing a binary search
in ¥, and adds to S, .. For each cel’ € ¥, we addA’ to the setA(f) if Su # #J. Next, we repeat
the same procedure fat~.
Whenever we split a three-dimensional cell into two, we add two children to the corresponding node in
B~ and store the necessary information with the newly created nodes. The resulting3re€hs cuts
made in Step 3 ensure th&t satisfies property (P1)3’ satisfies property (P2) since the cuts made in
Step 1 are vertical. Note that a triangle S does not intersect the interior of any cell after the three lines
supporting the edges of have been processed.

Remark. The free cuts made in Step 3 are crucial in keeping the size of the BSP quadratic. Instead, if
we simply erect vertical planes as we do in Step 1 of the algorithm, and make cuts along a iriaisgle

only when all three lines supporting the-projections of the edges efhave been added, then there are
instances of input triangles for which our algorithm will construct a BSR 6f%) size regardless of the

initial permutation of the triangles.
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4.2. Analysis of the algorithm

We first bound the expected size Bf A similar proof is used by Paterson and Yao [29] to analyze
their randomized algorithm for constructing BSPs for triangle®inThe cuts made by the algorithm
partition each triangle ir§ into a number of sub-polygons; each such sub-polygon is contained in the
cutting plane of some node i and is stored at that node. LetS) be the total number of polygons
stored at the nodes &f. The following lemma bounds the size Bfin terms ofv(S).

Lemma 4.1. The size of3 is at mostL1v(S).

Proof. Recall that the size oB is defined to be the sum of the number of node®iand the total
number of triangles stored at all the nodedsinTo bound the size 0B, we count the number of nodes
in B and then add(S). Let v(E) be the number of segments into which the edges of the triangl&s in
are partitioned by the cuts if.

We first bound the number of leavesiin terms ofv(S) andv(E). Let v be the parent of a leab

in B. Either a free cut or a vertical cut through an edge of a triangleS is made aw (since these are

the two types of cuts we make ). We chargew to the cut made at. There are three cases to consider:

1. If we made a face cut at we charge the cut at most twice.

2. If we made a vertical cut atand if both children ob are leaves of3, thens is vertical. In this case,
we charges twice.

3. If wis the only child ofv that is a leaf and if a vertical cut is madewtwe now show that this cut is
charged at most once. Suppose the vertical cut@sses through an edgef s. It is clear that we
have not made a vertical cut passing througtt any ancestor af. Consider the segmeat=e¢nN A,.

Let @ denote the set of segments tlats partitioned into by the cuts made at the descendanis of
in B. Since we have made a vertical cut throughve do not make vertical cuts ii through any of
the segments . Therefore, we can charge to any segment i@. We charge each such segment
at most once in this manner.

This argument implies that the number of leave®iis at most 2(S) + v(E).

To bound this quantity, for each trianglec S, consider the arrangement; on s formed by the
intersection of and the cuts irB. Lete,; be the number of edges i, that are portions of edges ofand

let f; be the number of faces id,. Since at most three edges on the boundary of a facg iare also

portions of the edges af we havee; < 3f;. Summing over all triangles € S, we havev(E) < 3v(S).

Hence, the number of leaves Bis at most B(S), which implies that the number of nodeshis at

most 1@(S), thus proving the lemma. O

Thus, it suffices to bound the expectati@ifiv(S)] to bound the expected size Bf To that end, we
count the expected number of new sub-polygons created inthhstage, and sum the result over all
stages. We bound the numbérof new sub-polygons into which a triangtec S is partitioned by the
cuts made in théth stage, and sum the resulting bound over all triangle$s Mote that the vertical cuts
made in theth stage are contained in the vertical pldiiecontaining¢;.

Fix a triangles € S. For 1< k < i, let o, = H; N's be the segment formed by the intersectiontpf
ands, and letA; be the set of resulting segments. Note that the endpoints ofigdiehon the boundary
of 5. To calculateE[v!], consider the segment arrangemetitA;) on s. We call a face ofA(A;) a
boundaryface if it is adjacent to an edge ofotherwise, it is arinterior face. See Fig. 11. Recall that for
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)

Fig. 11. The arrangememt({A1, A2, A3, A4}) on triangles (the shaded triangle). The fagg is a boundary face
and the facef> is an interior face. The segmexy does not partitiory>.

a leafv € B'~1, we partition the cella, only if A, is active. Property (P1) implies that the cuts made in
theith stage do not cross the interior of any interior facelof\; _;), since such a face cannot intersect the
interior of any active cell,. Hence,! is the number of boundary faces.df A;_;) that are intersected
by 2;. (If property (P1) did not holdy! would beall the regions ofA(A;_1) that are intersected by;.)

For 1< k <i, let w(A;, k) denote the number of boundary faces in the arrangemdént \ {1,}) that
are intersected by,. Observe that the sudt; ., ; u(A;, k) equals the total number of edges bounding
the boundary faces ofi(A;). By the zone theorem [11,18], the total number of edges of the boundary
faces of A(A;) is O(i). Hence,

Y (A k) =00).

1<k<i
Since the lines inC’ are chosen randomly from the st A; can be any of the lines in; with equal
probability. Therefore,

, 1
E] == " A, k) =0(Q).
1<k<i
Hence, the total number of pieces created initiestage is @:). Summing overi, we find that the
total number of sub-polygons into which the trianglesSiare partitioned over the course of the entire
algorithm is Qn?). The following lemma is immediate.

Lemma 4.2. The expected size of the BSP constructed by the algorit@m®.

Remark. Since each celi, € B is cylindrical, each vertey of A, is contained in one of the triangles

s that contains the non-vertical facesAf. In fact, p is a vertex of the arrangemenit({i1, A, ..., A3,})

on s defined above. Thus, the preceding argument implies that the expected value of the total number of
vertices of the nodes @ is also Qn?). However, the height oB can beQ (n), e.g., if the triangles ir§

form a convex polytope.

Before analyzing the running time of the algorithm, we establish a relation between the projected edges
intersecting an active facg e A(L~1) and the triangles intersecting the cellsAnf). For such an active
face f, let k; be the number of projected edgesArn that intersect the interior of . By Property (P1),
if a triangles € S intersects the interior of a celh € A(f), i.e.,s € S,, then the boundary of also
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intersects the interior of\. Therefore, an edge of intersects the interior of . Sinces intersects the
interior of only one cell inA(f), we obtain

> 18al <k 4.1)
AcA(f)

We now analyze the expected running time of the algorithm. We count the time spent during the
ith stage in inserting the liné; and then add this time over all stages of the algorithm. The zone
theorem implies that in Step 1 of the algorithm, we speitd @me in tracing¢; through A(£~1). While
processing an active face of A(L£'~1) that intersectg;, for each cellA € A(f), we spend @1) time
in Step 1 and @S4|) time in Step 2. In Step 3, for each triangle Sy+ \ Fa+, we spend Qog|Fa+|)
time in the binary search used to find the cell in thesedhat intersects. Hence, the total time spent in
Step 3 for the faceg is O(|S4|log|S4]). Thus, (4.1) implies that the total time spent in processirg

> O(ISallog|Sal) = O(ky logky).

A€A(f)
Let Z be the set of all active faces of(£'~1) that are intersected béf. The total time spent in thah
stage is

> O(kylogky).

fez
We now bound this sum. If we denote the number of vertices on the boundary of & fagd 1|,
then by the zone theorem, we haye;., | /| = O(i). Consider the vertical decompositiod! (£~
of A(L71). Each facef € A(L71) is decomposed into Qf|) trapezoids inAl (£~1). By standard
random-sampling arguments (see Clarkson [15]), the expected number of edgethat intersect the
interior of any such trapezoid is(©Q: logi)/i). This implies that for a facg € A(L~1), the expected
value ofk s is O(| f|(nlogi)/i). Hence, the expected time spent in tkiestage is

ZO(krogkf):ZO(m( )Iogn) =O(nlog?n),

fez fez

which implies the following theorem.

nlogi

i

Theorem 4.3. Let S be a set ofn non-intersecting triangles iiR3. We can compute a BSP f6r of
expected siz&(n?) in expected tim©(n2log?n).

5. BSPs for triangles: a deterministic algorithm

In this section, we describe a deterministic algorithm for computing a BSP for&@et triangles
in R3. As in the previous section, |é denote the set of edges of trianglesSirand letE* = {¢* | e € E}
be the set ofcy-projections of the edges if. Let k be the number of intersections between the edges
in E*. Our algorithm constructs a B3Pof size Q(n+ k) log? n) and height @ogn) in O((n +k) log®n)
time. The algorithm is a three-dimensional extension of Paterson and Yao's algorithm for constructing a
BSP for segments in the plane [29]. The cuts we make are either free cuts contained in triasgbes of
vertical extensions of the cuts made by the Paterson—Yao algorithm when appliedciehgections
of the edges of the triangles & Before presenting our algorithm, we give some definitions.



P.K. Agarwal et al. / Computational Geometry 16 (2000) 103-127 121
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Fig. 12. Anchored segments £i; (these segments are drawn thick).

As in the previous section, each nodef 5 is associated with a cylindrical cell,, but the top and
bottom faces ofA, are now trapezoids. Let’ denote thery-projection of the top (or bottom) face df, ;
two of the edges ofA} are perpendicular to the-axis. We refer to the faces af, passing through these
edges as thieft andright faces and to the other two vertical facestf as thefront andbackfaces.

Let E be the set ok y-projections of the segments Mthat intersect the interior ai,, and are clipped
within A*. A segmenty € E is calledanchoredif its endpoints lie on the two parallel edges£f and
y does not intersect any other segment6f8 Fig. 12 shows an example. The anchored segmerits in
can be linearly ordered by-coordinate (since they are disjoint). L&t be the set of anchored segments
in EX and letP, be the set of intersection points between the segmeni oFinally, let F, € S, be
the set of all free triangles if,. Recall that a triangle € S, is free with respect ta, if no edge ofs
intersects the interior oft,; s partitions A, into two cylindrical cells. Sincel, is a cylindrical cell, the
triangles inF, can be sorted by theg-coordinates. Before describing the algorithm, we state two useful
lemmas that are easy to prove.

Lemma 5.1. Letv be a node in3 such thatF, # #. Then one of the following conditions holds

(i) There exists a triangle € F, such that the plane containingsplits A, into two cellsA,, and A,
and|Py|, | P;| < 2[Py|/3.

(i) There exist two consecutive trianglast, € F, such that the planes containing and z, split A,
into three cellsa,,, A, and A, where the top and bottom faces af are contained iry; and 5,
|P,| > |P,|/3, and F, = @.

Lemma 5.2. Letv be a node inB3 such thatF, =@ and A, # . Then one of the following conditions

holds

(i) There exists an anchored edge& A, such that the vertical plane containingsplits A, into two
cellsA, and A, and|P,|, | P.| < 2|P,|/3.

(i) There exist two consecutive anchored edges, € A, such that the vertical planes containirag
ande, split A, into three cellsA,,, A, and A, where the front and back faces af, are bounded by
the planes containing; andey, |Py| > |P,|/3, and A, = 0.

8 This definition requires that not intersect the y-projection of any segment’ € E even when,’ does not intersectt, .
An alternative definition could have required thanot intersect any other segmentit}. The reason we use our definition
will become clear when we describe our algorithm.
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5.1. The deterministic algorithm

Let I be the set of intersection points Bf. Supposeé!| = k. In a pre-processing step, we compute the
setl in O((n + k) logn) time using the Bentley—Ottman sweep-line algorithm [7,31]. Our algorithm then
constructss in a top-down fashion by maintaining a top subtredsofVe say that a leaf of the subtree
is activeif S, # @. Note thatv is active even ifS, contains free triangles; in contrast, in Section 4, an
active leafv has the property that, does contain any free triangles. We store the set of all active leaves
of the current subtree in a list. For each active leafve maintain the set®,, A,, F, andS,. We can
easily obtain the sef; from the setsA, andS, \ F,.
At each step of the algorithm, we choose an active deabmpute at most two cutting planes, and use
these planes to splitt, into at most three cells. For each childof v, if S,, is nonempty, we marky
as being active. Before describing how we compute the cutting planes, we specify how we determine the
setsP,, F,, S, andA,, (the procedure is symmetric for the other childrenpf
P,: Let p € P, be the intersection point @f andes, wheree; ande, are triangle edges: € P, if both
e1 ande; intersectA,, and p is contained inA? .

F,: Lets be atriangle inS,. If s intersectsA,, but none of the edges ofintersects the interior oft,,
thens € F,,.

S»: Sinces, is the union ofF,, andS,, \ F,, itis enough to specify how to compusg \ F,. Lets be
atriangle inS, \ F,. If an edge ofs intersects the interior of\,,, thens € S, \ F,,.

A,: Lete* € E, wheree is an edge of a triangle if,. There are two cases to consider: (iptfe A,
ande intersectsA,,, thene* € A,,. (i) If ¢* ¢ A,, e intersectsA,,, and no point in/ is contained in
A Ne*, thene* € A,,. To detect the second case, for each egige £}, we store the set of points
in I that are contained ia* (these points are formed by the intersectior’odnd other segments in
E*).

It is clear that these sets can be computed for all childraninfO(| P,| + |F,| + |S,| + | A,]) time.

We now describe how we compute the cutting planes we use to pattitiOnr algorithm uses three
kinds of cuts: dacecut is a plane containing a triangle $h(all face cuts will be free cuts), agdgecut
is a vertical plane erected on an anchored segmeat jrand apoint cut is a plane perpendicular to the
x-axis passing through a point i,. See Fig. 13. We choose the cutting planes as follows.

1. F, # : We apply Lemma 5.1 to select a setof at most two free triangles iR, and splitA, into at
most three cells using face cuts contained in the triangl@s. i8ee Fig. 13(i). Since no triangle @&
intersects any triangle df,, each triangle of5, \ @ belongs to exactly one of the cells we partition
A, into. We can similarly partition the anchored segmenta in®

2. F, =0 andA, # (. We apply Lemma 5.2 to select a Setof at most two anchored segmentsAn
and splitA, using edge cuts passing through the segments.i8ee Fig. 13(ii). Since no segment
in A, \ Y intersects the vertical planes erected on the segmenifs we can partition the anchored
segments ofd, between the cells that, is split into.

3. F,=0,A, =@: We split A, into two cells using the point cut through the vertexfn with the
medianx-coordinate. See Fig. 13(iii).

9If A, is one of the cells that we split, into using face cuts, theA,, € A,. This property holds because we defined a
segmenty € E’ to be anchored i/ does not intersect any other segmengfh i.e., if no point in/ lies ony. On the other
hand, if we had defineg to be anchored i’ does not intersect any other segmengih(i.e., if no point inP, lies ony), then
itis possible thay € Ay, buty ¢ A,. This possibility arises when there is a triangle efigbat intersectg\,, ands™* intersects
y but 8 does not intersect,, .
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Fig. 13. Cuts made in the deterministic algorithm: (i) free cut, (ii) cut parallel tqzthris through an anchored
segment, and (iii) cut parallel to the-plane through a vertex a?,.

5.2. Analysis of the algorithm

We now analyze the performance of the algorithm. We first bound the si# tifen the running
time of the algorithm, and finally the height ¢f. Let v be a node inB such thatP, contains p
intersection pointsA, containsa anchored segments, arfg, contains f free triangles; clearlys,
contains Qp + a + f) triangles. Let3, denote the subtree &f rooted atv. Set

S(p,a, f)=max|B,|,

where the maximum is taken over all nodesith | P,| = p, |A,| =a and|F,| = f. We boundS(p, a, f)

by setting up a recurrence for it. Suppose the cutting planes chosgragittion A, into the cellsaA,,, A,

andA,. We use the convention that, is empty if we chose only one cutting planevadnd thatA, lies

“between” A, and A, if we choose two cutting planes at Let p,, = | Py |, a, = |A,| @and f, = |Fyl;

definepy, ay, fy, p., a, and f; similarly. Note thatP,,, P, and P, are disjoint subsets a?,; therefore,

pw + Py + p; < p. We consider three cases:

(i) f #0.Since we partitiom, using free cuts, we have, +a,+a, =a andf, + f, + f. < f. Ifwe

use one free cut to partitian(in this case A, is empty), Lemma 5.1(i) implies that,, p, < 2p, /3.
If we use two (consecutive) free cuts to partitionLemma 5.1(ii) implies thap,, + p, < 2p,/3,
py > py/3andf, =0.

(i) f=0,a+#0. Since the edge cuts we use to partitibpare erected on anchored segments jinwe
havea,, +a, +a, < a — 1. These cuts may intersect trianglesSjn creating free triangles if,,,, F)
and F,. However, there are @ + a) triangles inS,; hence, we have that, + f, + f. = O(p +a).
If we use one edge cut to partition (in this case,A, is empty), Lemma 5.2(i) implies that
Pw, P < 2p,/3. If we use two (consecutive) edge cuts to partitigi.emma 5.2(ii) implies that
Pw + P: <2py/3, py > py/3 anda, =0.

(i) f=0,a =0.We splita, using a point cut defined by the vertex#n with the medianc-coordinate,
which implies thatp,,, p, < p/2. Since the cut may intersect trianglesSin both A,, and A, can
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contain anchored segments and free triangles. Since therg ayee@es inE’; and Q'p) triangles

in S,, we havea,,, a., f,, f. = O(p).
If we choose one edge cut or one point cut athen the size of node is one. If we pick one face cut at
v, then the size of node s two, since we store the free triangle inducing this face cut Htwe choose
two cuts atv, assume without loss of generality thats a child ofv and thaty andz are the children of
x, the other child ofv. If we pick two edge cuts at, thenv andx each have size one. If we select two
face cuts av, thenv andx each have size two. The preceding discussion implies that we can write the
following recurrence foS(p, a, f):

S(p.a, [) < S(pw, aw, fu) +S(py. ay, fy) + S(pz,az, f2) + 4, (6.1

wherep,, + p, + p. < p, and

lay,+a,=a, fo+f:=f—-1 pu,p.<2p/3, andp, =a, = f, =0, if f#0 and we apply
Lemma 5.1(i).

2. ay+ay+a,=a,andf, + f.=f -2, f,=0, p, + p, <2p/3, andp, > p/3,if f #0 and we
apply Lemma 5.1(ii).

3.ay+a,=a—-1, f, + f;=0(p+a), py, p. <2p/3,andp, =a, = f, =0,if f =0,a # 0 and we
apply Lemma 5.2(i).

4. ay+a,=a—-2,a,=0, f + f, + =0 +a), pp,+p.<2p/3,andp, > p/3,if f=0,a#0
and we apply Lemma 5.2(ii).

5. pw,p.<p/2,ay,a;, fu, f-=0(p),andp, =a, = f, =0if f =0,a=0.

Using mathematical induction, we can prove that the solution to this recurrence is

S(p.a, f)=0(plog® p + (p +a)logp + f).

Since the root node df hasn + k intersection points, no anchored segments, and no free triangles, and
sincek = O(n?), we obtain the following lemma.

Lemma 5.3. The size of3 is O((n + k) log? n).

We now analyze the running time of the algorithm. As we have noted earlier, at eacl ,nedecan
choose the cutting planes and perform the operations toAplih O(p +a + f) time. If T(p, a, f)
denotes the maximum time taken by our algorithm to construct the subtigeanfted at a node with
|P,| = p,|A,| =a and|F,| = f (the maximum is taken over all such nodgswe have

T(p,a, f)=T(pw,aw, fu) + T(py,ay, f) +T(pza., f2) +O(p+a+ f),
where p,, a,, fu. py.ay, fz, p..a; and f; satisfy the same conditions as in (5.1). Using mathematical
induction, we can prove that the solution to the above recurrence is

T(p,a, f)=0(plog’ p+ (p+a)log p + (p +a+ f)logp).
Thus, we obtain the following lemma.

Lemma 5.4. The time taken by our algorithm to construgiis O((n + k) log®n).
We now prove a lemma that implies that the heighBas O(logn). We first need a simple definition:

if vis anode of3 andw is a descendant afin B, then thedistancebetweenv andw is the number of
tree edges in the path fromto w.
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Lemma 5.5. Letv be a node in3. If w is a descendant af and the distance betweemandv is seven,
thenp, < 2p,/3.

Proof. We first define some notation that will be useful in the proof. For a node3, consider the
subtree7 rooted atv such that ifw is a leaf of 7, thenp,, < 2p,/3 and ifw is an interior node of/,
then p,, > 2p, /3. We used, to denote the height df (the height of a tree is the maximum distance
between the root and a leaf of the tree). We claim that for any nad8, d, < 7. Clearly, the lemma is
true if we prove this claim.

If we choose one cutting plane at thend, = 1 since for each childv of v, we havep, < 2p,/3.
Suppose we choose two cutting planes.athese cuts splif\,, into three regionsi,,, A, and A, such
that p, > p,/3; therefored, = d, + 2. If we apply Lemma 5.1(ii) at, we haveF, = ¢. Similarly, if we
apply Lemma 5.2(ii) ab, we haveA, = ¢.

We now prove a bound od,. If we choose one cutting plane af we haved, = 1, which proves
that 4, = 3. Let us now consider the other possibilities (i.e., we sgljit using Lemma 5.1(ii) or
Lemma 5.2(ii)). Lety’ be the grandchild of such thatp,, > 2p, /3, which implies that/, = d,, + 2.
Since eitherF, or A, is empty, we consider the two possible cases:

1. Fy, #¢¥andA, =§: Since we apply Lemma 5.1(ii) at, 7,y = @. Further,A,, = ¢ since the face cuts
that splitA, do not create any new anchored edges. Therefore, weyspiging a point cut, which
implies thatd,, = 1; therefored, = 3.

2. Fy, =0 and A, # . Since we apply Lemma 5.2(ii) at, A, = @. Applying the argument of the
previous case to’, we haved,, = 3, which implies that/, = 5.

This argument shows thdt < 7 for allnodesv e B. O

Combining the last three lemmas, we state the main result of this section.

Theorem 5.6. Let S be a set of: triangles inRR3, and letk be the number of intersection points of the
xy-projections of the edges 6f We can compute a BSP of sén + k) log? n) and heightO(logn) for
Sin O((n + k) log®n) time.

6. Conclusions

In this paper, we first presented an efficient algorithm to maintain a BSP of a set of moving segments
in the plane. Currently, we do not know any non-trivial lower bounds for this problem. Agarwal et al. [1]
have extended our result and developed an algorithm to maintain BSPs for moving triarifes in

We have also presented algorithms for constructing BSPs for triangl@.imThe randomized
algorithm constructs a BSP of worst-case optimal size and runs in near-optimal time in the worst case.
The deterministic algorithm is near-optimal in the worst-case. However, for inputs such as terrains that
actually arise in practice, the number of intersections betweemtprojections of the triangles is likely
to be near-linear. In such cases, our deterministic algorithm constructs BSPs of near-linear size.

There are many interesting open questions regarding BSPs. First of all, our deterministic algorithm
is likely to construct BSPs of near-linear size for terrains and urban landscapes, which are common in
computer graphics and geographic information systems, but might not be very good for data sets in other
application domains (e.g., CAD design). Proving near-linear bounds on BSP size in models that capture
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the geometric structure of such inputs will be very useful. Secondly, all our algorithms for triangigs in
construct BSPs of2 (n?) size even if an @:) size BSP exists. This raises the question of constructing a
BSP of optimal or near-optimal size for trianglesRaA. It is not known whether the problem iP-hard.
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