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Abstract

We describe the first known algorithm for efficiently maintaining a Binary Space Partition (BSP) forn

continuously moving segments in the plane, whose interiors remain disjoint throughout the motion. Under
reasonable assumptions on the motion, we show that the total number of times this BSP changes is O(n2), and
that we can update the BSP in O(logn) expected time per change. Throughout the motion, the expected size of the
BSP is O(n logn).

We also consider the problem of constructing a BSP forn static triangles with pairwise-disjoint interiors
in R3. We present a randomized algorithm that constructs a BSP of size O(n2) in O(n2 log2n) expected time.
We also describe a deterministic algorithm that constructs a BSP of size O((n+ k) log2n) and height O(logn) in
O((n+ k) log3n) time, wherek is the number of intersection points between the edges of the projections of the
triangles onto thexy-plane. This is the first known algorithm that constructs a BSP of O(logn) height for disjoint
triangles inR3.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Binary Space Partition (BSP, also known as BSP tree), originally proposed by Schumacker
et al. [32] and further refined by Fuchs et al. [19], is a hierarchical partitioning of space widely used
in several areas, including computer graphics (visibility determination [4,34], global illumination [9],
shadow generation [12,13], and ray tracing [25]), solid modeling [26,28,35], geometric data repair [24],
robotics [5], network design [22], and surface simplification [3]. Key to the BSP’s success is that it serves
both as a model for an object (or a set of objects) and as a data structure for querying the object.

Informally, a BSPB for a set of objects is a binary tree, where each nodev is associated with a convex
region∆v. The regions associated with the children ofv are obtained by splitting∆v with a hyperplane.
If v is a leaf ofB , then the interior of∆v does not intersect any object.5 The regions associated with
the leaves of the tree form a convex decomposition of space. The faces of the decomposition induced by
the leaves intersect the objects and divide them into fragments; these fragments are stored at appropriate
nodes of the BSP. The efficiency of BSP-based algorithms depends on the number of nodes in the tree
and on the height of the tree. As a result, several algorithms for constructing BSPs of small size and/or
small height have been proposed [4,10,19,29,30,34,35].

In this paper, we studycylindrical BSPs in which all the cuts that do not contain any input object are
made by hyperplanes parallel to the same fixed direction. We address two problems. The first problem
can be formulated as follows. LetS be a set ofn interior-disjoint segments in the plane, each moving
along a continuous path. We want to maintain the BSP forS as the segments inS move. We assume that
the segments move in such a way that they never intersect, except possibly at their endpoints. Most of the
work to date deals with constructing a BSP for a set of static segments that do not move. Paterson and Yao
propose a randomized algorithm that constructs a BSP of O(n logn) size in2(n logn) time for a set ofn
segments in the plane [29]. They also propose a deterministic algorithm, based on a divide-and-conquer
approach, that constructs a BSP of size O(n logn) in 2(n logn) time [29]. Both of these algorithms are
not “robust”, in the sense that a small motion of one of the segments may cause many changes in the tree,
or may cause non-local changes. Therefore, they are ill-suited for maintaining a BSP for a set of moving
segments.

There have been a few attempts to update BSPs when the objects defining them move. Naylor describes
a method to implement dynamic changes in a BSP, where the static objects are represented by a balanced
BSP (computed in a preprocessing stage), and then the moving objects are inserted at each time step into
the static tree [27]. Using the same assumption that moving objects are known a priori, Torres proposes
the augmentation of BSPs with additional separating planes, which may localize the updates needed
for deletion and re-insertion of moving objects in a BSP [36]. This approach tries to exploit the spatial
coherence of the dynamic changes in the tree by introducing additional cutting planes. Chrysanthou
suggests a more general approach, which does not make any distinction between static and moving
objects [14]. By keeping additional information about topological adjacencies in the tree, the algorithm
performs insertions and deletions of a node in a more localized way. But all these prior efforts boil down
to deleting moving objects from their earlier positions and re-inserting them in their current positions
after some time interval has elapsed. Such approaches suffer from the fundamental problem that it is very
difficult to know how to choose the correct time interval size: if the interval is too small, then the BSP
does not in fact change combinatorially, and the deletion/re-insertion is just wasted computation; if it is

5 We assume that the objects are(d − 1)-dimensional polytopes inRd .



P.K. Agarwal et al. / Computational Geometry 16 (2000) 103–127 105

too big, then important intermediate changes to the BSP can be missed, which may affect applications
that use the tree.

Our algorithm, instead, treats the BSP as akinetic data structure, a paradigm introduced by Basch
et al. [6]; see also the survey by Guibas [20]. We view the equations of the cuts made at the nodes of the
BSP and the edges and faces of the subdivision induced by the BSP as functions of time. The cuts and the
edges and faces of the subdivision change continuously with time. However, “combinatorial” changes in
the BSP and in the subdivision (we precisely define this notion later) occur only at certain times. We
explicitly take advantage of the continuity of the motion of the objects involved so as to generate updates
to the BSP only when actual events cause the BSP to change combinatorially.

In Section 3, we describe a randomized kinetic algorithm for maintaining a BSP for moving segments
in the plane. We assume that the segment motions areobliviousto the random bits used by the algorithm;
our algorithm chooses a random permutation of the segments at the beginning of time, and we assume
that no agent determining the motion of the segments has access to any information about this random
permutation. Following Basch et al. [6], we assume that each moving segment has a posted flight plan
that gives full or partial information about the segment’s current motion. Whenever a flight plan changes
(possibly due to an external agent), our algorithm is notified and it updates a global event queue to reflect
the change. We first derive a randomized algorithm for computing a BSP for a set of static segments,
which combines ideas from Paterson and Yao’s randomized and deterministic algorithms, but is also
robust, in the sense described earlier. The “combinatorial structure” of the BSP constructed by this algo-
rithm changes only when thex-coordinates of a pair of segment endpoints become equal. We prove that
at any given instant, we need to consider only O(n) such endpoint pairs. Furthermore, the set of pairs we
need to consider changes only when the combinatorial structure of the BSP changes. We show that under
our assumption on the segment motions, the BSP can be updated in O(logn) expected time at each event.
We also show that ifk of the segments ofS move along “pseudo-algebraic” paths, and the remaining
segments ofS are stationary, then the expected number of changes in the BSP is O(kn logn). As far as
we know, this is the first nontrivial algorithm for maintaining a BSP for moving segments in the plane.

Next, we study the problem of computing a BSP for a setS of n interior-disjoint triangles inR3.
Paterson and Yao [29] describe a randomized incremental algorithm that constructs a BSP of size O(n2)

in expected time O(n3). They also show that their algorithm can be made deterministic without affecting
its asymptotic running time. It has been an open problem whether a BSP forn triangles inR3 can be
constructed in near-quadratic time. Sub-quadratic bounds are known for special cases: Paterson and
Yao’s algorithm for orthogonal rectangles [30], de Berg’s result for fat polyhedra [17], and the technique
of Agarwal et al. [2] for fat orthogonal rectangles. However, none of these approaches leads to a near-
quadratic-time algorithm for triangles inR3. The bottleneck in analyzing the expected running time of
the Paterson–Yao algorithm is that no nontrivial bound is known on the number of vertices in the convex
subdivision ofR3 induced by the BSP constructed by the algorithm. Known techniques for analyzing
randomized algorithms, such as the Clarkson–Shor framework [16] or backwards analysis [33], cannot
be used to obtain a near-quadratic bound on this quantity, since the BSP constructed by the algorithm is
not canonical; it strongly depends on the order in which triangles are processed.

In Section 4, we present a randomized algorithm that constructs a BSP forS of size O(n2) in
O(n2 log2n) expected time.6 Our algorithm is a variant of the randomized Paterson–Yao algorithm. We

6 Our algorithm constructs a BSP of expected size O(n2). We can make the size bound deterministic by repeatedly running
the algorithm until it constructs a BSP of size O(n2). This process affects only the constant factor in the running time.
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construct the BSP forS in such a way that there is a close relationship between the BSP and the planar
arrangement of the lines supporting the edges of thexy-projections of the triangles inS. We use results
on random sampling [16] and on arrangements of lines [18] to bound the expected number of vertices in
the convex subdivision ofR3 induced by the BSP and the expected running time of the algorithm.

Finally, we present a deterministic algorithm in Section 5 for constructing a BSP for a setS of n
triangles inR3. If k is the number of intersection points of thexy-projections of the edges of triangles
in S, then the algorithm constructs a BSP of size O((n+ k) log2n) in time O((n+ k) log3n); if
k� n2, the deterministic algorithm constructs a much smaller BSP than do Paterson and Yao’s and
our randomized algorithms. Another nice property of our deterministic algorithm is that the height of
the BSP it constructs is O(logn), which is useful for ray-shooting queries, for example. It was an open
problem whether BSPs of near-quadratic size and O(logn) height could be constructed forn triangles
in R3. The height of the BSP constructed by the randomized algorithms (both ours and Paterson and
Yao’s) can be�(n), e.g., whenS is the set of faces of a convex polytope.

Before proceeding further, we give a formal definition of a BSP. Abinary space partitionB for a
set S of convex (d − 1)-polytopes inRd with pairwise-disjoint interiors is a binary tree defined as
follows: Each nodev in B is associated with a convexd-polytope∆v and a set of(d − 1)-polytopes
Sv = {s ∩∆v | s ∈ S}. The polytope associated with the root ofB is Rd itself. If Sv is empty, then node
v is a leaf ofB . Otherwise, we partition∆v into two convex polytopes by acutting hyperplaneHv.
We refer to the polytopeHv ∩∆v as thecut made atv. At v, we store the equation ofHv and the set
{s | s ⊆Hv, s ∈ Sv} of polytopes inSv that lie inHv. If we letH+v be the positive halfspace andH−v be
the negative halfspace bounded byHv, the polytopes associated with the left and right children ofv are
∆v ∩H−v and∆v ∩H+v , respectively. The left subtree ofv is a BSP forS−v = {s ∩H−v | s ∈ Sv} and the
right subtree ofv is a BSP forS+v = {s ∩H+v | s ∈ Sv}. The size ofB is the sum of the number of nodes
in B and the total number of polytopes stored at all the nodes inB.

For our purposes,S is either a set ofn segments in the plane or a set ofn triangles inR3. A unifying
feature of all the BSPs constructed by our algorithms is that the region∆v associated with each nodev
is acylindrical cell in the sense that∆v may contain top and bottom faces that are contained in objects
belonging toS, but all other faces are vertical. In the plane,∆v is a trapezoid; inR3, ∆v may have large
complexity, as it can contain many vertical faces.

2. Static algorithm for segments

Let S be a set ofn interior-disjoint segments in the plane. In this section, we describe a randomized
algorithm for computing a BSPB for S when the segments inS are stationary. In the next section, we
explain how to maintainB as each segment inS moves along a continuous path.

Our algorithm makes two types of cuts: apoint cut is a vertical cut through an endpoint of a segment
and anedgecut is a cut along a segment. Edge cuts are always contained totally within input segments;
therefore, they do not cross any other input segment. For each nodev ∈ B , the corresponding polygon
∆v is a trapezoid; the left and right boundaries of the trapezoid are bounded by point cuts, and the top
and bottom boundaries are bounded by edge cuts.

We now describe our static algorithm. We start by choosing a random permutation〈s1, s2, . . . , sn〉
of S. We say thatsi has ahigher priority thansj if i < j . We add the segments in decreasing order of
priority and maintain a BSP for the segments added so far. LetSi = {s1, s2, . . . , si} be the set of the first
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Fig. 1. The BSPBi−1, the sequence of cuts made in theith stage, and the BSPBi . At each step, the shaded
trapezoid is split. Portions ofsi that lie in the interior of a trapezoid that corresponds to a current leaf node are
drawn using thick lines. The label next to a node signifies the cut made at that node.

i segments in the permutation. Our algorithm works inn stages. At the beginning of theith stage, where
i > 0, we have a BSPBi−1 for Si−1; B0 consists of a single nodev, where∆v is the entire plane. In the
ith stage, we addsi and compute a BSPBi for Si as follows:
1. Supposep andq are the left and right endpoints ofsi , respectively. Letv be the leaf ofBi−1 such that
∆v containsp. We partition∆v into two trapezoids∆−v and∆+v using a point cut defined byp, where
∆−v lies to the left of the cut. We create two childrenw andz of v, with w being the left child ofv.
We set∆w =∆−v and∆z =∆+v and storep at v. We then perform a similar step forq.

2. For each trapezoid∆x that intersectssi , we storesi at x, and split∆x into two trapezoids by making
an edge cut alongsi . We again create two childrenw andz of x, with w being the left child. We set
∆w to be the sub-trapezoid of∆x lying below the cut and∆z to be the sub-trapezoid of∆x lying
above the cut.

The resulting tree is the BSPBi for Si . See Fig. 1 for an example of constructingBi from Bi−1.
This completes the description of our algorithm. Note that once we fix the permutation, the algorithm is

deterministic and constructs a unique BSP. In order to analyze the algorithm, we need a few definitions.
We refer to the vertical segment drawn upwards (respectively, downwards) from an endpointp as the
upper (respectively,lower) threadof p. We call the segment containing the other endpoint of a thread
thestopperof that thread. Note that the priority of the stopper of a thread ofp is higher than that of the
segment containingp. We can prove the following lemma about each thread.

Lemma 2.1. Letp be an endpoint of a segments ∈ S. The expected number of segments crossed by each
of p’s threads isO(logn).

Proof. Let σ1, σ2, . . . be the sequence of segments inS that intersect the top threadρ of p, sorted in
increasing order of they-coordinates of their intersection withρ; clearly, there are at mostn segments
in this sequence. The segmentσi is crossed byρ if and only if s is inserted before any of the segments
σ1, σ2, . . . , σi−1, σi . SinceB is constructed by inserting the segments ofS in random order, the probability
that ρ crossesσi is 1/(i + 1). Therefore the expected number of segments crossingρ is at most
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∑n
i=1 1/(i + 1)=O(logn). We can similarly show that the expected number of segments crossingp’s

lower thread is O(logn). 2
We can use this lemma to bound the size and height ofB .

Theorem 2.2. The expected size of the BSP constructed by the above algorithm isO(n logn) and the
height of the BSP isO(logn), where the second bound holds with high probability.

Proof. In order to bound the size ofB , the BSP constructed by the algorithm, it is enough to count the
total number of cuts made inB , since a cut is made at each interior node ofB . Clearly, there are at most
2n point cuts made inB . If an edge cute is made at a nodev, we chargee to the right endpoint ofe.
Supposes is the segment inS containinge. The right endpoint ofe is either the right endpoint ofs or the
intersection point ofs with a thread of a segment whose priority is higher thans. In this way, we charge
each endpoint and the intersection point of a segment and a thread at most once. As a result, Lemma 2.1
implies that the expected total number of edge cuts is O(n logn), which proves that the expected size of
B is O(n logn).

To boundB ’s height, we first bound thedepthof an arbitrary pointp in the plane, i.e., the number of
nodes in the path from the root ofB to the leafv ∈ B such that∆v containsp. We bound the number of
nodes on this path that are split by edge cuts and point cuts separately.

Let σ1, σ2, . . . be the ordered sequence of segments inS intersected by a vertical ray starting atp
and pointing in the(+y)-direction. An ancestor ofv is split by an edge cut throughσi if and only if σi
has higher priority thanσ1, σ2, . . . , σi−1. This event happens with probability 1/i. Hence, the expected
value ofX, the number of ancestors ofv that are split by edge cuts, isHn =O(logn). We can actually
prove that this bound onX holds with high probability. SinceX is the sum of independent 0–1 random
variables, using Chernoff’s bound [23, p. 68], we have that for any constantα > 1,

Pr[X > αHn]6
(

eα−1

αα

)Hn
=O

(
n−α lnα+α−1).

In particular, for any constantc we can chooseα so that Pr[X > αHn] < 1/nc, which shows that the
value ofX is O(logn) with high probability.

We now consider the ancestors ofv that are split by point cuts. Letπ1, π2, . . . be the left segment
endpoints that lie to the left ofp. An ancestor ofv is split by a point cut throughπi only if the segment
with πi as endpoint has higher priority than the segments withπ1, π2, . . . , πi−1 as endpoints. A similar
analysis to the one above proves that the number of ancestors ofv that are split by points cuts is O(logn)
with high probability. Thus, the depth of any pointp in the plane is O(logn) with high probability.

The segments inS and the vertical lines passing through every segment endpoint decompose the plane
into O(n2) trapezoids. Any two points in one of these trapezoids will be contained in the same leaf of
any BSP that our algorithm constructs, independent of the permutation we choose at the beginning of the
algorithm. Hence, the height of BSP is the maximum depth of O(n2) points, one in each such trapezoid.
Since the depth of each point is O(logn) with probability 1− 1/nc, the height ofB is also O(logn) with
probability 1− 1/nc−2, if we choosec > 3. This argument completes the proof of the lemma.2



P.K. Agarwal et al. / Computational Geometry 16 (2000) 103–127 109

3. Kinetic algorithm for segments

We now describe how to maintain the static BSP as the segments inS move continuously, under
the assumption that their interiors remain pairwise disjoint throughout the motion. We parameterize the
motion of the segments by time and uset to denote time. For a given time instantt , we will uset− and
t+ to denote the time instantst − ε andt + ε, respectively, whereε > 0 is a sufficiently small constant.

Let si ∈ S be a segment with endpointsp and q. We assume that the position ofp at time t is
p(t)= (xp(t), yp(t)), wherexp(t) andyp(t) are continuous functions of time;q(t) is specified similarly.
The position ofsi at time t is si(t) = (p(t), q(t)); if si is moving rigidly, then the equations for its
endpoints are not independent. Our algorithm and the analysis work even if the endpoints ofsi move
independently. LetS(t) denote the setS at timet . We assume that we choose a random permutationπ

of S once in the very beginning (att = 0), and thatπ does not change with time. LetB(t) denote the
BSP constructed by the static algorithm when applied onS(t), usingπ as the permutation to decide the
priority of the segments. We describe an algorithm that updates the BSP under the following assumption.

(?) There is no correlation between the motion of the segments inS and their priorities. Therefore, the
chosen permutationπ always behaves like a random permutation, and Lemma2.1and Theorem2.2
hold at all times.

We first give an important definition. Thecombinatorial structureof B is a binary tree, each of whose
internal nodesv is associated with the set of segmentsSv and with the segment endpoint (respectively,
segment) defining the point (respectively, edge) cut made atv. We will use the combinatorial structure of
the BSP crucially in our algorithm.

3.1. Critical events

As the segments inS move continuously, the equations of the cuts associated with the nodes ofB also
change. At the same time, the edges and vertices of the trapezoids in the subdivision of the plane induced
by B also move. However, the combinatorial structure ofB changes only when the setSv changes for
some nodev ∈ B or when the segment endpoint or segment defining the cut made atv changes. Since
the segments inS are interior-disjoint and they move continuously, the setSv changes only when the
endpoint of a segment inSv lies on the left or right edge of∆v. See Fig. 2 for an example of such an
event. IfSv does not change, then the cut made atv changes only if the segment defining the cut becomes
vertical. We formalize this idea in the following lemma, which is not difficult to prove.

Fig. 2. Endpointp lies on the left edge of∆v (the shaded trapezoid) att . The setSv changes at time instantt .
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Fig. 3. The shaded trapezoid∆v is transient.

Lemma 3.1. For any time instantt , B(t−) and B(t+) have different combinatorial structures if and
only if there exists aj > 0 such that eithersj rotates through a vertical line at timet or there is a leaf
v ∈ Bj−1(t−) such that an endpoint ofsj lies on the left or right edge of∆v at timet .

This lemma implies that the combinatorial structure ofB(t) changes if and only if for a nodev ∈ B(t),
∆v shrinks to a vertical segment; we refer to these instants of time ascritical events. This observation
motivates us to call a nodev in B(t) transientif ∆v does not contain any endpoint in its interior and a
point cut is made at the parentp(v) of v; we call∆v a transient trapezoid. See Fig. 3. Note that only
edge cuts are made atv and its descendants. Thus, transient trapezoids are maximal among all those not
containing point cuts. The following corollary to Lemma 3.1 is immediate.

Lemma 3.2. For any time instantt , B(t−) andB(t+) have different combinatorial structures if and only
if there exists a transient nodev in B(t−) so that∆v becomes a vertical segment at timet .

Transient nodes have some useful properties that are summarized in the following lemma.

Lemma 3.3. At any instantt , all transient nodes inB(t) have the following properties. Letv be a
transient node inB(t).

(i) No proper ancestor ofv is transient.
(ii) Only edge cuts are made at the descendants ofv (including v itself). The left(respectively, right)

edge of the trapezoid associated with each descendant ofv is a portion of the left(respectively,
right) edge of∆v .

(iii) The expected number of descendants ofv is O(logn).
(iv) The number of transient nodes inB(t) is at most4n.

Proof. Let q be the endpoint of a segment inS through which the point cut atp(v) is made.
(i) No proper ancestorw of v can be transient since∆w containsq.
(ii) Since∆v does not contain any endpoints, only edge cuts are made at all the descendants ofv. Each

segment that intersects∆v crosses the left and right boundaries ofv. Hence, the left (respectively, right)
edge of the trapezoids associated with each descendant ofv is a portion of the left (respectively, right)
edge of∆v.

(iii) Each segment that induces an edge cut made at a descendant ofv intersects one ofq ’s threads.
Hence, by Lemma 2.1, the expected number of descendants ofv is O(logn).
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(iv) A point cut is made at the parent of each transient node. There are 2n nodes inB that are split by
point cuts; each such node has two children.2

Intuitively, transient nodes are the highest nodes inB(t) that can shrink to a vertical segment, thus
causing a change in the combinatorial structure ofB(t). If a trapezoid contains an endpoint in its interior,
it cannot be the next trapezoid to shrink to a segment; and if an edge cut is made at the parentp(v) of
a nodev and∆p(v) does not contain an endpoint, then∆p(v) also shrinks to a segment whenever∆v

shrinks to a segment. Hence, it suffices to keep track of transient nodes to determine all the instants when
the combinatorial structure ofB(t) changes. In the rest of the section, we present our kinetic algorithm
motivated by this observation.

3.2. Updating the BSP

For a nodev in B , letλv (respectively,ρv) denote the endpoint of a segment inS that induces the point
cut containing the left (respectively, right) edge of∆v. To detect critical events, we maintain the set

Γ (t)= {(λv, ρv) | v is a transient node at timet
}

of endpoint pairs inducing the point cuts that bound the left and right edges of each transient node;
Lemma 3.3 implies that|Γ (t)| = O(n). The elements ofΓ (t) are certificates that prove that the
combinatorial structure ofB(t) is valid. For each pair(λv, ρv) in Γ (t), we use the known flight paths
of λv andρv to compute the time at which thex-coordinates ofλv andρv coincide; we store these time
values in a global priority queue. In order to expedite the updating ofB at each critical event, we also
store some additional information with the nodes inB and the segments inS:
1. At each nodev of B , we store the numbercv of segment endpoints lying in the interior of∆v (cv helps

us to determine the new transient trapezoids at an event).
2. For each endpointp of a segment inS, we maintain the listTp (respectively,Bp) of segments that

the upper (respectively, lower) thread ofp crosses, sorted in the(+y)-direction (respectively,(−y)-
direction). As the segments move, we will use these lists to update the stoppers of the threads issuing
from the segment endpoints.
We first constructB(0) using the static algorithm presented in Section 2. Next, we compute the set

Γ (0) and insert the corresponding critical events in the priority queue. Then we repeatedly remove the
next event from the priority queue and updateB , Γ , and the priority queue as required. In the rest of
the section, we will prove that if the combinatorial structure ofB changes at timet , then we can obtain
B(t+) from B(t−) in O(logn) expected time. We will also show that at each event, the expected time to
update the global event queue is O(logn).

We now describe the procedure for updating the tree at each critical event. Recall that at each such
instant t , there is a segmentsj ∈ S such that (i) eithersj becomes vertical or (ii) there is a leaf
w ∈ Bj−1(t−) such that an endpointp of sj lies on the left or right edge of∆w . We consider each
case separately. LetB− = B(t−) andB+ = B(t+). For a nodez ∈ B−, let B−z denote the subtree ofB−
rooted atz; defineB+z similarly.

Case(i). The segmentsj is vertical. In this case,v is a transient node inB− with the property thatλv
andρv are both endpoints ofsj . See Fig. 4. Letρv = p andλv = q. Let u bev’s grandparent inB−; the
trapezoid∆u containssj . Sinceq is to the left ofp at timet−, v is the left child of the right child ofu
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Fig. 4. The case whenλv andρv belong to the same segment.

Fig. 5. The case whenλv andρv are endpoints of different segments. Arrows mark the horizontal extents of the
trapezoids.

in B−. At time t+, p is to the left ofq. The static algorithm when applied to the segments inS at timet+
will make a point cut throughp in ∆u. Thus, we obtainB(t+) by storingp with u andq with the right
child of u.

Case(ii ). The pointsλv andρv are endpoints of different segments. Assume thatρv = p (respectively,
λv = q) is the right endpoint of the segmentsi (respectively,sj ), thatsi lies abovesj , and that the priority
of si is higher than that ofsj (i.e., i < j ). Thex-coordinate ofq is less than thex-coordinate ofp at t−.
See Fig. 5. We now describe how we updateB(t) for this case. We will show later how to relax these
assumptions. Letu andw be the leaves ofBi−1(t−) andBj−1(t−), respectively, at which the point cuts
throughp andq, respectively, are made. At timet−, a point cut made throughq divides∆w into two
trapezoids. One of these trapezoids is∆v, which is transient at timet−. By our assumptions about the
event,v is the right child ofw, andw lies in the left subtree ofu. LetuL be the left child ofu, and letwL
be the left child ofw. Let x be the leaf ofBj−1(t+) that containsq at timet+. Since the combinatorial
structures ofBj−1(t−) andBj−1(t+) are identical,x is a leaf ofBj−1(t−) too and lies in the right subtree
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of u in Bj−1(t−). Let sk ∈ S be the segment containing the top edge of∆x in Bj−1(t−). At time t+, as
q leaves the trapezoid∆w and enters∆x , ∆wL expands to∆w , ∆v disappears, and∆x is split by a point
cut throughq into two trapezoids: a new trapezoid∆v′ and the portion of∆x lying to the right of the
cut throughq. At time t−, ∆w is split by a point cut throughq and∆wL is split by an edge cut alongsj ,
while at timet+,∆w is split by an edge cut alongsj . ThereforeB+w is the same asB−wL . To obtainB+, we
execute the following steps:
1. We search in the right subtree ofu to locate the leafx of Bj−1(t−) such that∆x containsq at timet+.
2. We delete the nodew from B−, and ifw was a left (respectively, right) child of its parentp(w), we

makewL the new left (respectively, right) child ofp(w).
3. We construct the subtreeB+v′ by determining the setC of segments that intersect∆v′ (at timet+) and

by making edge cuts through the segments inC in decreasing order of priority. There are two cases to
consider:
(a) The segmentsk contains the top edge of∆v . See Fig. 6. The setC consists ofsj and the set of

segments intersecting∆v (at timet−). We find these segments by traversing all the nodes ofB−v .
(b) The segmentsi contains the top edge ofv. See Fig. 7. We setsk to be the stopper of the upper

thread ofq at timet+. As in the previous case, we includesj and the segments inducing the edge
cuts made inB−v in C. In addition,C contains all segments that appear beforesk in the upper

Fig. 6. The edge cuts made inB−v andB+v′ . Segments crossing∆v and∆v′ are labeled with their priorities. The
label next to a node is the priority of the segment containing the edge cut made at that node.

Fig. 7. The case when the top edges of∆w and∆x are contained in different segments. The segmente is intersected
by the top thread ofq at t+ but not att−.
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thread ofp. We determine these segments by traversingTp, the list of segments that cross the
upper thread ofp. Note that these segments also cross the upper thread ofq at t+.

Finally, we insertsj into Bp, the list of segments inS crossed by the lower thread ofp, and update
Tq .

4. We attachB+v′ to a descendant ofp(x), the parent ofx in B−, as follows: We create a nodey
and associate the point cut throughq with it. The left and right subtrees ofy in B+ areB+v′ and
B−x , respectively. Ifx is the left (respectively, right) child ofp(x), then we addy as the new left
(respectively, right) child ofp(x).

5. We update the setΓ (t+). For a nodez, the numbercz of endpoints lying in the interior of∆z changes
only if z lies along the paths inB+ from u to the nodesp(w) andy. For such a nodez, if cz = 0 at
t+ and if∆p(z) is split by a point cut, we add(λz, ρz) to the listΓ (t+). On the other hand, ifcz 6= 0 at
t+ but z is transient att− (z must be an ancestor ofx in B−), we delete(λv, ρz) from Γ (t+). We also
update the priority queue to reflect the changes toΓ (t+).

Other cases.We now show how we relax the assumptions we made earlier about the relative positions of
si andsj and their priorities.
1. If q is the left endpoint ofsj , the update procedure is the same, except that at timet+ we do not make

an edge cut throughsj in B+v′ . See Fig. 8(a).
2. If thex-coordinate ofq is greater than thex-coordinate ofp at timet−, we adapt a similar procedure

as the one described above. See Fig. 8(b). The nodex is again the leaf ofBj−1(t+) such that∆x

containsq at t+. We can reconstructB+v′ as before: if the same segment contains the top edge of
∆v and∆x , the same set of segments (apart fromsj ) intersects∆v and∆v′ ; otherwise, among the
segments that intersect∆v, only segments belowsi intersect∆v′ . In both cases,sj intersects either∆v

or ∆v′ depending on whetherq is the left or right endpoint ofsj . In the second case, we also update
Tq accordingly. The other changes toB are similar to the cases we have handled; the details are not
difficult to work out.

3. If p is the left endpoint ofsi , we reflectS about they-axis and reduce the problem to one of the earlier
cases.

4. If si lies belowsj , we reflectS about thex-axis, reducing the problem to one of the earlier cases.
5. If the priority ofsi is less than the priority ofsj , we swap the roles ofsi andsj and reduce the problem

to one of the earlier cases.
This completes the description of our procedure for processing critical events. We now analyze the

running time of the update procedure. Assumption (?) implies that Lemma 2.1 and Theorem 2.2 hold at
timest−, t and t+. We spend O(logn) time in Step 1, since we traverse a path inB to find the nodex.

Fig. 8. Some other cases that arise when different segments interact in a critical event.
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It is clear that Step 2 takes O(1) time. In Step 3, we find the segments crossing∆v′ and constructB+v′
in O(logn) expected time, since the expected size ofB−v is O(logn) (by Lemma 3.3) and the expected
number of segments inTp is O(logn) (by Lemma 2.1). It is clear that Step 4 takes O(1) time. Finally,
in Step 5, we process O(logn) nodes lying in two paths in the tree. By Lemma 3.3, each of the two
paths contains at most one transient node. Hence, we insert or delete at most two events from the priority
queue, which implies that Step 5 takes O(logn) time. We thus obtain the main result of this section.

Theorem 3.4. At each critical event, we can updateB(t) in O(logn) expected time.

Note that this theorem makes our BSP a kinetic data structure that is efficient, local, and compact, in
the sense defined by Basch et al. [6]. However, our BSP is not responsive, since some events may take
�(n) time to process.

We say that the trajectories followed by a set of segments arepseudo-algebraicif the segments move
so that each pair of endpoints exchangesy-order only O(1) times. A special case of pseudo-algebraic
trajectories is when the trajectories of all the endpoints are constant-degree polynomials. If the trajectories
of k of the segments inS are pseudo-algebraic and the remaining segments are stationary, then the total
number of critical events is O(kn). We spend O(logn) expected time to maintainB(t) at each event
point. Hence, we obtain the following corollary to Theorem 3.4.

Corollary 3.5. LetS be a set ofn segments in the plane, and letG⊆ S be a set ofk segments. Suppose
each segment ofG moves along a pseudo-algebraic trajectory and the remaining segments ofS are
stationary, the total expected time spent in maintainingB is O(kn logn).

Remark. Our update algorithm works correctly even if two or more events occur at the same instant.
If the events involve trapezoids in different parts ofB , it does not matter in which order we process
the events. Otherwise, assume that at timet there are two transient trapezoids∆v and∆w with λv = p,
ρv = λw = q and ρw = r , such that thex-coordinates ofp, q and r are the same. The definition of
transient trapezoids implies that only the events involving the pairs(p, q) and(q, r) are in the priority
queue at timet−. At time t , we process one of these events. Assume without loss of generality that this
event involves(p, q). When we process this event, we insert an event involving the pair(p, r) into the
priority queue. Our algorithm updatesB correctly irrespective of whether the event involving(q, r) or
the one involving(p, r) is processed next.

4. BSPs for triangles: a randomized algorithm

In this section we describe a randomized algorithm for constructing a BSPB of expected size O(n2) for
a setS of n triangles with pairwise-disjoint interiors inR3. The expected running time of the algorithm
is O(n2 log2n). We describe the algorithm in Section 4.1 and analyze its performance in Section 4.2.

4.1. The randomized algorithm

We start with some definitions. For an objects in R3, let s∗ denote thexy-projection ofs. LetE be the
set of edges of the triangles inS, and letE∗ denote the set{e∗ | e ∈ E}. Let L be the set of lines in the
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Fig. 9. An active facef and an active cell∆v ∈∆(f ) that is a vertical section of the cylinder erected onf . The
boundary of triangles intersects∆v and the boundary ofs∗ intersectsf .

xy-plane supporting the edges inE∗. We choose a random permutation〈`1, `2, . . . , `3n〉 of L, and add
the lines one by one in this order to computeB . LetLi = {`1, `2, . . . , `i}.

The algorithm works in 3n stages. In theith stage, we add̀i and construct a top subtree7 Bi of B
by refining the leaves ofBi−1; B0 consists of one node (corresponding toR3) andB3n is B . As usual,
we associate a convex polytope∆v with each nodev of Bi−1. If v is a leaf ofBi−1 and no triangle inS
intersects the interior of∆v, i.e.,Sv = ∅, thenv is a leaf ofB and we do not refine it further. Otherwise,
we partition∆v into two or more cells; these cells are leaves ofBi+1.

Before describing theith stage of the algorithm in detail, we explain the structure ofBi . We need
a few definitions first. At a nodev of B , the cutting planeHv may support a triangles ∈ S such that
Hv ∩∆v ⊆ s, i.e., the portion ofHv that lies in the interior of∆v is contained ins. Such a cutting plane
is referred to as afree cutands is called afree triangle. We say that a leafv of Bi (or the cell∆v) is
active if a triangle inS intersects the interior of∆v (i.e.,Sv 6= ∅); similarly, we say that a facef in the
line arrangementA(Li) is activeif a segment inE∗ intersects the interior off . For each active leafv in
Bi , the algorithm ensures that∆v satisfies the following properties:
(P1) If a triangles ∈ S intersects the interior of∆v, then the boundary ofs also intersects the interior of

∆v.
(P2) The cell∆v is a vertical section of the cylinderf ×[−∞,∞] for exactly one active facef ofA(Li);

the vertical section may be truncated by triangles ofS at the top and bottom. See Fig. 9.
In order to execute each stage efficiently, we maintain the following additional information:
(i) For each active cell∆ ∈ Bi, we store the subsetS∆ ⊆ S of triangles that intersect the interior of∆.
(ii) We maintain the arrangementA(Li) as a planar graph [18]. For each active facef ∈ A(Li), we

maintain the set∆(f ) of those active cells inBi that lie inside the cylinderf × [−∞,∞]. Note that
by Properties (P1) and (P2), a facef ∈A(Li) is active if and only if∆(f ) 6= ∅.

We now describe theith stage in detail. LetHi be the vertical plane supporting̀i. In the ith stage,
we make a vertical cut inside each active cell that is intersected byHi , followed by a number of free

7 A topsubtree of a tree is one that includes the root of the tree.
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Fig. 10. (a) Tracing̀4 (the thick line) through the faces ofA(L3). The facef is shaded. (b) Splitting cell∆ ∈∆(f )
byH4, the vertical plane containing̀4. (c) The free cuts inF∆+ are ordered byz-coordinate.

cuts as follows. LetH+i (respectively,H−i ) be the positive (respectively, negative) halfspace supported
byHi .
1. We tracè i through the faces ofA(Li−1). For each facef ∈A(Li−1) intersected bỳ i , we use`i

to split f into two facesf + andf −. See Fig. 10(a). Next, we partition each active cell∆ ∈ ∆(f )
into two cells∆+ =∆∩H+i and∆− =∆∩H−i (see Fig. 10(b)) and execute the following two steps
on∆:

2. We compute the setS∆+ ⊆ S∆ of triangles that intersect the interior of∆+. We also compute the set
F∆+ ⊆ S∆+ of triangles whose boundaries do not cross∆+. Similarly, we compute the setsS∆− and
F∆− for ∆−.

3. We split∆+ into a setΨ of |F∆+| + 1 cells by making free cuts along each of the triangles inF∆+ .
The cells inΨ can be ordered byz-coordinate. Since the triangles inS are pairwise-disjoint, each
triangles ∈ S∆+ \F∆+ intersects a unique cell∆′ ∈ Ψ . We compute∆′ by performing a binary search
in Ψ , and adds to S∆′ . For each cell∆′ ∈ Ψ , we add∆′ to the set∆(f +) if S∆′ 6= ∅. Next, we repeat
the same procedure for∆−.

Whenever we split a three-dimensional cell into two, we add two children to the corresponding node in
Bi−1 and store the necessary information with the newly created nodes. The resulting tree isBi. The cuts
made in Step 3 ensure thatBi satisfies property (P1).Bi satisfies property (P2) since the cuts made in
Step 1 are vertical. Note that a triangles ∈ S does not intersect the interior of any cell after the three lines
supporting the edges ofs∗ have been processed.

Remark. The free cuts made in Step 3 are crucial in keeping the size of the BSP quadratic. Instead, if
we simply erect vertical planes as we do in Step 1 of the algorithm, and make cuts along a triangles ∈ S
only when all three lines supporting thexy-projections of the edges ofs have been added, then there are
instances of input triangles for which our algorithm will construct a BSP of�(n3) size regardless of the
initial permutation of the triangles.
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4.2. Analysis of the algorithm

We first bound the expected size ofB . A similar proof is used by Paterson and Yao [29] to analyze
their randomized algorithm for constructing BSPs for triangles inR3. The cuts made by the algorithm
partition each triangle inS into a number of sub-polygons; each such sub-polygon is contained in the
cutting plane of some node inB and is stored at that node. Letν(S) be the total number of polygons
stored at the nodes ofB . The following lemma bounds the size ofB in terms ofν(S).

Lemma 4.1. The size ofB is at most11ν(S).

Proof. Recall that the size ofB is defined to be the sum of the number of nodes inB and the total
number of triangles stored at all the nodes inB . To bound the size ofB , we count the number of nodes
in B and then addν(S). Let ν(E) be the number of segments into which the edges of the triangles inS

are partitioned by the cuts inB .
We first bound the number of leaves inB in terms ofν(S) andν(E). Let v be the parent of a leafw

in B . Either a free cut or a vertical cut through an edge of a triangles ∈ S is made atv (since these are
the two types of cuts we make inB). We chargew to the cut made atv. There are three cases to consider:
1. If we made a face cut atv, we charge the cut at most twice.
2. If we made a vertical cut atv and if both children ofv are leaves ofB , thens is vertical. In this case,

we charges twice.
3. If w is the only child ofv that is a leaf and if a vertical cut is made atv, we now show that this cut is

charged at most once. Suppose the vertical cut atv passes through an edgee of s. It is clear that we
have not made a vertical cut passing throughe at any ancestor ofv. Consider the segmente′ = e∩∆v .
Let Φ denote the set of segments thate′ is partitioned into by the cuts made at the descendants ofv

in B . Since we have made a vertical cut throughe, we do not make vertical cuts inB through any of
the segments inΦ. Therefore, we can chargew to any segment inΦ. We charge each such segment
at most once in this manner.

This argument implies that the number of leaves inB is at most 2ν(S)+ ν(E).
To bound this quantity, for each triangles ∈ S, consider the arrangementAs on s formed by the

intersection ofs and the cuts inB . Let es be the number of edges inAs that are portions of edges ofs and
let fs be the number of faces inAs . Since at most three edges on the boundary of a face inAs are also
portions of the edges ofs, we havees 6 3fs . Summing over all triangless ∈ S, we haveν(E)6 3ν(S).
Hence, the number of leaves inB is at most 5ν(S), which implies that the number of nodes inB is at
most 10ν(S), thus proving the lemma.2

Thus, it suffices to bound the expectationE[ν(S)] to bound the expected size ofB . To that end, we
count the expected number of new sub-polygons created in theith stage, and sum the result over all
stages. We bound the numberνis of new sub-polygons into which a triangles ∈ S is partitioned by the
cuts made in theith stage, and sum the resulting bound over all triangles inS. Note that the vertical cuts
made in theith stage are contained in the vertical planeHi containing`i.

Fix a triangles ∈ S. For 16 k 6 i, let λk =Hk ∩ s be the segment formed by the intersection ofHk
ands, and let3i be the set of resulting segments. Note that the endpoints of eachλk lie on the boundary
of s. To calculateE[νis], consider the segment arrangementA(3i) on s. We call a face ofA(3i) a
boundaryface if it is adjacent to an edge ofs; otherwise, it is aninterior face. See Fig. 11. Recall that for
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Fig. 11. The arrangementA({λ1, λ2, λ3, λ4}) on triangles (the shaded triangle). The facef1 is a boundary face
and the facef2 is an interior face. The segmentλ5 does not partitionf2.

a leafv ∈ Bi−1, we partition the cell∆v only if ∆v is active. Property (P1) implies that the cuts made in
theith stage do not cross the interior of any interior face ofA(3i−1), since such a face cannot intersect the
interior of any active cell∆v. Hence,νis is the number of boundary faces ofA(3i−1) that are intersected
by λi . (If property (P1) did not hold,νis would beall the regions ofA(3i−1) that are intersected byλi .)

For 16 k 6 i, letµ(3i, k) denote the number of boundary faces in the arrangementA(3i \ {λk}) that
are intersected byλk. Observe that the sum

∑
16k6i µ(3i, k) equals the total number of edges bounding

the boundary faces ofA(3i). By the zone theorem [11,18], the total number of edges of the boundary
faces ofA(3i) is O(i). Hence,∑

16k6i
µ(3i, k)=O(i).

Since the lines inLi are chosen randomly from the setL, λi can be any of the lines in3i with equal
probability. Therefore,

E
[
νis
]= 1

i

∑
16k6i

µ(3i, k)=O(1).

Hence, the total number of pieces created in theith stage is O(n). Summing overi, we find that the
total number of sub-polygons into which the triangles inS are partitioned over the course of the entire
algorithm is O(n2). The following lemma is immediate.

Lemma 4.2. The expected size of the BSP constructed by the algorithm isO(n2).

Remark. Since each cell∆v ∈ B is cylindrical, each vertexp of ∆v is contained in one of the triangles
s that contains the non-vertical faces of∆v . In fact,p is a vertex of the arrangementA({λ1, λ2, . . . , λ3n})
on s defined above. Thus, the preceding argument implies that the expected value of the total number of
vertices of the nodes ofB is also O(n2). However, the height ofB can be�(n), e.g., if the triangles inS
form a convex polytope.

Before analyzing the running time of the algorithm, we establish a relation between the projected edges
intersecting an active facef ∈A(Li−1) and the triangles intersecting the cells in∆(f ). For such an active
facef , let kf be the number of projected edges inE∗ that intersect the interior off . By Property (P1),
if a triangle s ∈ S intersects the interior of a cell∆ ∈ ∆(f ), i.e., s ∈ S∆, then the boundary ofs also
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intersects the interior of∆. Therefore, an edge ofs∗ intersects the interior off . Sinces intersects the
interior of only one cell in∆(f ), we obtain∑

∆∈∆(f )
|S∆|6 kf . (4.1)

We now analyze the expected running time of the algorithm. We count the time spent during the
ith stage in inserting the linèi and then add this time over all stages of the algorithm. The zone
theorem implies that in Step 1 of the algorithm, we spend O(i) time in tracing`i throughA(Li−1). While
processing an active facef of A(Li−1) that intersects̀ i , for each cell∆ ∈∆(f ), we spend O(1) time
in Step 1 and O(|S∆|) time in Step 2. In Step 3, for each triangles ∈ S∆+ \F∆+ , we spend O(log|F∆+|)
time in the binary search used to find the cell in the setΨ that intersectss. Hence, the total time spent in
Step 3 for the facef is O(|S∆| log |S∆|). Thus, (4.1) implies that the total time spent in processingf is∑

∆∈∆(f )
O
(|S∆| log|S∆|)=O(kf logkf ).

Let Z be the set of all active faces ofA(Li−1) that are intersected bỳi. The total time spent in theith
stage is∑

f∈Z
O(kf logkf ).

We now bound this sum. If we denote the number of vertices on the boundary of a facef by |f |,
then by the zone theorem, we have

∑
f∈Z |f | = O(i). Consider the vertical decompositionA‖(Li−1)

of A(Li−1). Each facef ∈ A(Li−1) is decomposed into O(|f |) trapezoids inA‖(Li−1). By standard
random-sampling arguments (see Clarkson [15]), the expected number of edges inE∗ that intersect the
interior of any such trapezoid is O((n logi)/i). This implies that for a facef ∈ A(Li−1), the expected
value ofkf is O(|f |(n logi)/i). Hence, the expected time spent in theith stage is∑

f∈Z
O(kf logkf )=

∑
f∈Z

O
(
|f |
(
n logi

i

)
logn

)
=O

(
n log2n

)
,

which implies the following theorem.

Theorem 4.3. Let S be a set ofn non-intersecting triangles inR3. We can compute a BSP forS of
expected sizeO(n2) in expected timeO(n2 log2n).

5. BSPs for triangles: a deterministic algorithm

In this section, we describe a deterministic algorithm for computing a BSP for a setS of n triangles
in R3. As in the previous section, letE denote the set of edges of triangles inS, and letE∗ = {e∗ | e ∈E}
be the set ofxy-projections of the edges inE. Let k be the number of intersections between the edges
inE∗. Our algorithm constructs a BSPB of size O((n+k) log2n) and height O(logn) in O((n+k) log3n)

time. The algorithm is a three-dimensional extension of Paterson and Yao’s algorithm for constructing a
BSP for segments in the plane [29]. The cuts we make are either free cuts contained in triangles ofS or
vertical extensions of the cuts made by the Paterson–Yao algorithm when applied to thexy-projections
of the edges of the triangles inS. Before presenting our algorithm, we give some definitions.
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Fig. 12. Anchored segments inE∗v (these segments are drawn thick).

As in the previous section, each nodev of B is associated with a cylindrical cell∆v , but the top and
bottom faces of∆v are now trapezoids. Let∆∗v denote thexy-projection of the top (or bottom) face of∆v ;
two of the edges of∆∗v are perpendicular to thex-axis. We refer to the faces of∆v passing through these
edges as theleft andright faces and to the other two vertical faces of∆v as thefront andbackfaces.

LetE∗v be the set ofxy-projections of the segments inE that intersect the interior of∆v and are clipped
within ∆∗v. A segmentγ ∈E∗v is calledanchoredif its endpoints lie on the two parallel edges of∆∗v and
γ does not intersect any other segment ofE∗. 8 Fig. 12 shows an example. The anchored segments inE∗v
can be linearly ordered byy-coordinate (since they are disjoint). LetAv be the set of anchored segments
in E∗v and letPv be the set of intersection points between the segments ofE∗v . Finally, letFv ⊆ Sv be
the set of all free triangles inSv. Recall that a triangles ∈ Sv is free with respect to∆v if no edge ofs
intersects the interior of∆v; s partitions∆v into two cylindrical cells. Since∆v is a cylindrical cell, the
triangles inFv can be sorted by theirz-coordinates. Before describing the algorithm, we state two useful
lemmas that are easy to prove.

Lemma 5.1. Let v be a node inB such thatFv 6= ∅. Then one of the following conditions holds:
(i) There exists a trianglet ∈ Fv such that the plane containingt splits∆v into two cells∆w and∆z

and |Pw|, |Pz|6 2|Pv|/3.
(ii) There exist two consecutive trianglest1, t2 ∈ Fv such that the planes containingt1 and t2 split ∆v

into three cells∆w , ∆y and∆z where the top and bottom faces of∆y are contained int1 and t2,
|Py|> |Pv|/3, andFy = ∅.

Lemma 5.2. Let v be a node inB such thatFv = ∅ andAv 6= ∅. Then one of the following conditions
holds:
(i) There exists an anchored edgee ∈ Av such that the vertical plane containinge splits∆v into two

cells∆w and∆z and |Pw|, |Pz|6 2|Pv|/3.
(ii) There exist two consecutive anchored edgese1, e2 ∈ Av such that the vertical planes containinge1

ande2 split∆v into three cells∆w ,∆y and∆z where the front and back faces of∆y are bounded by
the planes containinge1 ande2, |Py|> |Pv|/3, andAy = ∅.

8 This definition requires thatγ not intersect thexy-projection of any segmentγ ′ ∈E even whenγ ′ does not intersect∆v .
An alternative definition could have required thatγ not intersect any other segment inE∗v . The reason we use our definition
will become clear when we describe our algorithm.
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5.1. The deterministic algorithm

Let I be the set of intersection points ofE∗. Suppose|I | = k. In a pre-processing step, we compute the
setI in O((n+ k) logn) time using the Bentley–Ottman sweep-line algorithm [7,31]. Our algorithm then
constructsB in a top-down fashion by maintaining a top subtree ofB . We say that a leafv of the subtree
is active if Sv 6= ∅. Note thatv is active even ifSv contains free triangles; in contrast, in Section 4, an
active leafv has the property thatSv does contain any free triangles. We store the set of all active leaves
of the current subtree in a list. For each active leafv, we maintain the setsPv , Av, Fv andSv. We can
easily obtain the setE∗v from the setsAv andSv \ Fv.

At each step of the algorithm, we choose an active leafv, compute at most two cutting planes, and use
these planes to split∆v into at most three cells. For each childw of v, if Sw is nonempty, we markw
as being active. Before describing how we compute the cutting planes, we specify how we determine the
setsPw , Fw , Sw andAw (the procedure is symmetric for the other children ofv):
Pw: Let p ∈ Pv be the intersection point ofe∗1 ande∗2, wheree1 ande2 are triangle edges;p ∈ Pw if both

e1 ande2 intersect∆w andp is contained in∆∗w.
Fw : Let s be a triangle inSv. If s intersects∆w but none of the edges ofs intersects the interior of∆w,

thens ∈ Fw .
Sw: SinceSw is the union ofFw andSw \ Fw, it is enough to specify how to computeSw \ Fw . Let s be

a triangle inSv \ Fv. If an edge ofs intersects the interior of∆w, thens ∈ Sw \Fw .
Aw: Let e∗ ∈ E∗v , wheree is an edge of a triangle inSv. There are two cases to consider: (i) Ife∗ ∈ Av

ande intersects∆w , thene∗ ∈Aw . (ii) If e∗ /∈Av, e intersects∆w, and no point inI is contained in
∆∗w ∩ e∗, thene∗ ∈Aw . To detect the second case, for each edgee∗ ∈ E∗v , we store the set of points
in I that are contained ine∗ (these points are formed by the intersection ofe∗ and other segments in
E∗).

It is clear that these sets can be computed for all children ofv in O(|Pv| + |Fv| + |Sv| + |Av|) time.
We now describe how we compute the cutting planes we use to partitionv. Our algorithm uses three

kinds of cuts: afacecut is a plane containing a triangle inS (all face cuts will be free cuts), anedgecut
is a vertical plane erected on an anchored segment inAv , and apoint cut is a plane perpendicular to the
x-axis passing through a point inPv . See Fig. 13. We choose the cutting planes as follows.
1. Fv 6= ∅: We apply Lemma 5.1 to select a setΦ of at most two free triangles inFv and split∆v into at

most three cells using face cuts contained in the triangles inΦ. See Fig. 13(i). Since no triangle inΦ
intersects any triangle ofSv, each triangle ofSv \Φ belongs to exactly one of the cells we partition
∆v into. We can similarly partition the anchored segments inAv. 9

2. Fv = ∅ andAv 6= ∅: We apply Lemma 5.2 to select a setϒ of at most two anchored segments inAv
and split∆v using edge cuts passing through the segments inϒ . See Fig. 13(ii). Since no segment
in Av \ϒ intersects the vertical planes erected on the segments inϒ , we can partition the anchored
segments ofAv between the cells that∆v is split into.

3. Fv = ∅,Av = ∅: We split∆v into two cells using the point cut through the vertex inPv with the
medianx-coordinate. See Fig. 13(iii).

9 If ∆w is one of the cells that we split∆v into using face cuts, thenAw ⊆ Av . This property holds because we defined a
segmentγ ∈ E∗v to be anchored ifγ does not intersect any other segment inE∗, i.e., if no point inI lies onγ . On the other
hand, if we had definedγ to be anchored ifγ does not intersect any other segment inE∗v (i.e., if no point inPv lies onγ ), then
it is possible thatγ ∈Aw butγ 6∈Av . This possibility arises when there is a triangle edgeβ that intersects∆v andβ∗ intersects
γ butβ does not intersect∆w .
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Fig. 13. Cuts made in the deterministic algorithm: (i) free cut, (ii) cut parallel to thez-axis through an anchored
segment, and (iii) cut parallel to theyz-plane through a vertex ofPv .

5.2. Analysis of the algorithm

We now analyze the performance of the algorithm. We first bound the size ofB , then the running
time of the algorithm, and finally the height ofB . Let v be a node inB such thatPv containsp
intersection points,Av containsa anchored segments, andFv containsf free triangles; clearlySv
contains O(p+ a + f ) triangles. LetBv denote the subtree ofB rooted atv. Set

S(p, a, f )=max
v
|Bv|,

where the maximum is taken over all nodesv with |Pv| = p, |Av| = a and|Fv| = f . We boundS(p, a, f )
by setting up a recurrence for it. Suppose the cutting planes chosen atv partition∆v into the cells∆w,∆y

and∆z. We use the convention that∆y is empty if we chose only one cutting plane atv and that∆y lies
“between”∆w and∆z if we choose two cutting planes atv. Let pw = |Pw|, aw = |Aw| andfw = |Fw|;
definepy, ay, fy,pz, az andfz similarly. Note thatPw,Py andPz are disjoint subsets ofPv ; therefore,
pw + py + pz 6 p. We consider three cases:

(i) f 6= 0. Since we partition∆v using free cuts, we haveaw+ay+az = a andfw+fy+fz < f . If we
use one free cut to partitionv (in this case,∆y is empty), Lemma 5.1(i) implies thatpw,pz 6 2pv/3.
If we use two (consecutive) free cuts to partitionv, Lemma 5.1(ii) implies thatpw + pz 6 2pv/3,
py > pv/3 andfy = 0.

(ii) f = 0,a 6= 0. Since the edge cuts we use to partition∆v are erected on anchored segments inAv , we
haveaw+ay +az 6 a−1. These cuts may intersect triangles inSv, creating free triangles inFw , Fy
andFz. However, there are O(p+ a) triangles inSv; hence, we have thatfw + fy + fz =O(p+ a).
If we use one edge cut to partitionv (in this case,∆y is empty), Lemma 5.2(i) implies that
pw,pz 6 2pv/3. If we use two (consecutive) edge cuts to partitionv, Lemma 5.2(ii) implies that
pw + pz 6 2pv/3,py > pv/3 anday = 0.

(iii) f = 0,a = 0. We split∆v using a point cut defined by the vertex inPv with the medianx-coordinate,
which implies thatpw,pz 6 p/2. Since the cut may intersect triangles inSv, both∆w and∆z can
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contain anchored segments and free triangles. Since there are O(p) edges inE∗v and O(p) triangles
in Sv, we haveaw, az, fw, fz =O(p).

If we choose one edge cut or one point cut atv, then the size of nodev is one. If we pick one face cut at
v, then the size of nodev is two, since we store the free triangle inducing this face cut atv. If we choose
two cuts atv, assume without loss of generality thatw is a child ofv and thaty andz are the children of
x, the other child ofv. If we pick two edge cuts atv, thenv andx each have size one. If we select two
face cuts atv, thenv andx each have size two. The preceding discussion implies that we can write the
following recurrence forS(p, a, f ):

S(p, a, f )6 S(pw, aw, fw)+ S(py, ay, fy)+ S(pz, az, fz)+ 4, (5.1)

wherepw + py + pz 6 p, and
1. aw + az = a, fw + fz = f − 1, pw,pz 6 2p/3, andpy = ay = fy = 0, if f 6= 0 and we apply

Lemma 5.1(i).
2. aw + ay + az = a, andfw + fz = f − 2, fy = 0, pw + pz 6 2p/3, andpy > p/3, if f 6= 0 and we

apply Lemma 5.1(ii).
3. aw + az = a− 1, fw + fz =O(p+ a), pw,pz 6 2p/3, andpy = ay = fy = 0, if f = 0, a 6= 0 and we

apply Lemma 5.2(i).
4. aw + az = a − 2, ay = 0, fw + fy + fz =O(p+ a), pw + pz 6 2p/3, andpy > p/3, if f = 0, a 6= 0

and we apply Lemma 5.2(ii).
5. pw,pz 6 p/2, aw, az, fw, fz =O(p), andpy = ay = fy = 0 if f = 0, a = 0.
Using mathematical induction, we can prove that the solution to this recurrence is

S(p, a, f )=O
(
p log2p+ (p+ a) logp+ f ).

Since the root node ofB hasn+ k intersection points, no anchored segments, and no free triangles, and
sincek =O(n2), we obtain the following lemma.

Lemma 5.3. The size ofB is O((n+ k) log2n).

We now analyze the running time of the algorithm. As we have noted earlier, at each nodev, we can
choose the cutting planes and perform the operations to split∆v in O(p + a + f ) time. If T (p, a, f )
denotes the maximum time taken by our algorithm to construct the subtree ofB rooted at a nodev with
|Pv| = p, |Av| = a and|Fv| = f (the maximum is taken over all such nodesv), we have

T (p, a, f )= T (pw, aw, fw)+ T (py, ay, fz)+ T (pz, az, fz)+O(p+ a + f ),
wherepw,aw,fw,py, ay, fz,pz, az andfz satisfy the same conditions as in (5.1). Using mathematical
induction, we can prove that the solution to the above recurrence is

T (p, a, f )=O
(
p log3p+ (p+ a) log2p+ (p+ a + f ) logp

)
.

Thus, we obtain the following lemma.

Lemma 5.4. The time taken by our algorithm to constructB is O((n+ k) log3n).

We now prove a lemma that implies that the height ofB is O(logn). We first need a simple definition:
if v is a node ofB andw is a descendant ofv in B , then thedistancebetweenv andw is the number of
tree edges in the path fromv tow.
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Lemma 5.5. Let v be a node inB . If w is a descendant ofv and the distance betweenw andv is seven,
thenpw 6 2pv/3.

Proof. We first define some notation that will be useful in the proof. For a nodev ∈ B , consider the
subtreeT rooted atv such that ifw is a leaf ofT , thenpw 6 2pv/3 and ifw is an interior node ofT ,
thenpw > 2pv/3. We usedv to denote the height ofT (the height of a tree is the maximum distance
between the root and a leaf of the tree). We claim that for any nodev ∈ B , dv 6 7. Clearly, the lemma is
true if we prove this claim.

If we choose one cutting plane atv, thendv = 1 since for each childw of v, we havepw 6 2pv/3.
Suppose we choose two cutting planes atv. These cuts split∆v into three regions∆w , ∆y and∆z such
thatpy > pv/3; therefore,dv = dy + 2. If we apply Lemma 5.1(ii) atv, we haveFy = ∅. Similarly, if we
apply Lemma 5.2(ii) atv, we haveAy =∅.

We now prove a bound ondy . If we choose one cutting plane aty, we havedy = 1, which proves
that dv = 3. Let us now consider the other possibilities (i.e., we split∆y using Lemma 5.1(ii) or
Lemma 5.2(ii)). Lety′ be the grandchild ofy such thatpy ′ > 2py/3, which implies thatdy = dy ′ + 2.
Since eitherFy orAy is empty, we consider the two possible cases:
1. Fy 6= ∅ andAy = ∅: Since we apply Lemma 5.1(ii) aty, Fy ′ = ∅. Further,Ay ′ = ∅ since the face cuts

that split∆y do not create any new anchored edges. Therefore, we splity′ using a point cut, which
implies thatdy ′ = 1; therefore,dy = 3.

2. Fy = ∅ andAy 6= ∅: Since we apply Lemma 5.2(ii) aty, Ay ′ = ∅. Applying the argument of the
previous case toy′, we havedy ′ = 3, which implies thatdy = 5.

This argument shows thatdv 6 7 for all nodesv ∈ B . 2
Combining the last three lemmas, we state the main result of this section.

Theorem 5.6. Let S be a set ofn triangles inR3, and letk be the number of intersection points of the
xy-projections of the edges ofS. We can compute a BSP of sizeO((n+ k) log2n) and heightO(logn) for
S in O((n+ k) log3n) time.

6. Conclusions

In this paper, we first presented an efficient algorithm to maintain a BSP of a set of moving segments
in the plane. Currently, we do not know any non-trivial lower bounds for this problem. Agarwal et al. [1]
have extended our result and developed an algorithm to maintain BSPs for moving triangles inR3.

We have also presented algorithms for constructing BSPs for triangles inR3. The randomized
algorithm constructs a BSP of worst-case optimal size and runs in near-optimal time in the worst case.
The deterministic algorithm is near-optimal in the worst-case. However, for inputs such as terrains that
actually arise in practice, the number of intersections between thexy-projections of the triangles is likely
to be near-linear. In such cases, our deterministic algorithm constructs BSPs of near-linear size.

There are many interesting open questions regarding BSPs. First of all, our deterministic algorithm
is likely to construct BSPs of near-linear size for terrains and urban landscapes, which are common in
computer graphics and geographic information systems, but might not be very good for data sets in other
application domains (e.g., CAD design). Proving near-linear bounds on BSP size in models that capture
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the geometric structure of such inputs will be very useful. Secondly, all our algorithms for triangles inR3

construct BSPs of�(n2) size even if an O(n) size BSP exists. This raises the question of constructing a
BSP of optimal or near-optimal size for triangles inR3. It is not known whether the problem isNP-hard.
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