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We compute the single-particle states of a two-dimensional �2D� electron gas confined to the surface of a

cylinder immersed in a magnetic field. The envelope-function equation is solved exactly for both a homoge-

neous and a periodically modulated magnetic field perpendicular to the cylinder axis. The nature and energy

dispersion of the quantum states reflects the interplay between different length scales, namely, the cylinder

diameter, the magnetic length, and, possibly, the wavelength of the field modulation. We show that a transverse

homogeneous magnetic field drives carrier states from a quasi-2D �cylindrical� regime to a quasi-one-

dimensional regime where carriers form channels along the cylinder surface. Furthermore, a magnetic field

which is periodically modulated along the cylinder axis may confine the carriers to tunnel-coupled stripes,

rings, and dots on the cylinder surface depending on the ratio between the field periodicity and the cylinder

radius. Results in different regimes are traced to either incipient Landau-level formation or Aharonov-Bohm

behavior.
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I. INTRODUCTION

The interest in the electronic properties of quantum sys-

tems with cylindrical symmetry has received a boost since

the early proposals of adopting carbon nanotubes1,2 as build-

ing blocks for future nanoelectronic devices, exploiting their

peculiar mechanical and electrical properties.3,4 In recent

years new inorganic semiconductor systems are also emerg-

ing where carriers are confined on a bent surface, and several

possibilities arise to obtain two-dimensional �2D� electron

gases �2DEGs� with cylindrical symmetry �C2DEGs�, which

may enrich the wealth of physics and applications of planar

semiconductor nanostructures. One such system can be ob-

tained from a standard epitaxially grown 2DEG at a planar

heterojunction, which is then overgrown with a lattice-

mismatched material at some distance above the buried

2DEG. A sacrificial layer below the 2DEG allows the release

of the elastic energy by liftoff and bending of a thin layer of

material embedding the 2DEG up to complete rolling.5–8 The

rolled-up layers stick together, thus forming a C2DEG with a

radius ranging from tens of nanometers up to several mi-

crons, showing peculiar magnetoresistance with respect to

the corresponding planar structures.8 Alternatively, a C2DEG

can be obtained in coaxial structures which can be fabricated

similarly to standard layered heterostructures, but using a

cylindrical substrate rather than the usual planar substrate for

multilayer overgrowth of lattice matched materials. The cy-

lindrical substrate, in turn, can be obtained by a self-standing

single-crystal semiconductor nanowire, fabricated by seeded

growth, either assisted by Au �Refs. 9 and 10� or Ga �Ref.

11� nanoparticles. The latter possibility is particularly prom-

ising for high-mobility nanodevices to avoid Au-induced

deep level traps. The resulting C2DEGs will have a diameter

determined by the diameter of the nanowire used as a sub-

strate in the few tens of nanometer range.

Although carbon nanotubes and C2DEGs share the cylin-

drical symmetry of the electronic states, they have very dif-

ferent curvatures. Carbon nanotubes have typical diameters

in the few nanometers range and are basically quasi-one-
dimensional �1D� systems, while the diameter of C2DEGs is
at least one order of magnitude larger. For this reason, we
expect the electronic properties of the latter systems to be
dominated by size quantization, as in usual planar hetero-
structures, rather than by the atomistic details. In addition,
the effect of an external magnetic field is stronger in
C2DEGs than in carbon nanotubes since the magnetic length
of typical fields is comparable to the lateral dimension, while
carbon nanotube diameters are much smaller. Therefore, the
interplay between the cylinder diameter and the magnetic
length adds a new degree of freedom to manipulate the quan-
tum states of the carriers.

It can also be noticed that the field itself may be modu-
lated on the scale of the nanostructure diameter.12,13 In fact,
modulated fields can be obtained by means of ferromagnetic
strips or dots on top of a 2DEG, which give rise to effective
periodic potentials and hence to oscillatory behaviors in the
magnetoresistance of planar structures.14,15 These oscilla-
tions in the magnetoresistivity and their effect on the elec-
tronic properties of planar 2DEGs have been studied
extensively.16–18 This is the counterpart of homogeneous
magnetic fields applied to modulated periodic 2D structures,

which may induce complex and fascinating electronic prop-

erties such as the Hofstadter butterfly.19,20 It is therefore in-

teresting to couple modulated magnetic fields with structures

having a built-in periodicity of the carrier states on the same

length scale such as the C2DEGs introduced above.

In this paper, we investigate the effect of a transverse

magnetic field on the single-particle properties of carriers in

a C2DEG. Electronic band structures and density of states

�DOS� are obtained with the magnetic field either uniform or

periodically modulated along the cylinder. In the former

case, the field does not break the translational invariance

along the axis of the cylinder and the electronic states scale

with the ratio between the cylinder diameter and the mag-

netic length. The system is found to show a transition from a

quasi-2D to a quasi-1D behavior as a function of the field

strength. On the contrary, a modulated magnetic field breaks
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the continuous translational symmetry of the cylindrical

2DEG leading to the formation of energy subbands and

opens gaps along the cylinder axis. In such system the effect

of the field depends on the interplay between its intensity �or

magnetic length�, the radius of the tube, and the wavelength

of the field modulation. We find that the tailoring of different

length scales may lead to the formation of electronic states

similar to those observed in arrays of antidots,21 with the

magnetic field giving rise to a series of regions where the

carriers cannot penetrate, if not belonging to very high en-

ergy bands. Allowed regions form a network of tunnel-

coupled dots, rings, and arrays depending on the ratio be-

tween the cylinder radius and the field periodicity.

The paper is organized as follows. In Sec. II, the cylindri-

cal system under study is introduced and its Schrödinger

equation is derived. In Sec. III, the theory is applied to the

case of a homogeneous transverse field and different regimes

of 1D localization are discussed. Section IV addresses the

effect of a spatially modulated magnetic field in different

regimes of tube radius, field modulation wavelength, and

field strength. We also discuss our results in connection with

Aharonov-Bohm effects and Landau-level formation. In Sec.

V, the conclusions are drawn.

II. HAMILTONIAN OF A C2DEG IN A MAGNETIC FIELD

We consider the problem of a spinless electron bound to

the surface S of a cylinder in a magnetic field perpendicular

to its axis. The general derivation of a proper quantum equa-

tion of motion on a curved surface is a problem with a long

history. The classical approaches are the Lagrangian method

of de Witt22 and the limiting procedure of Jensen-Koppe23

and da Costa.24 While the former includes the effects of the

curvature directly in the equation of motion, the latter is most

appropriate when the system under consideration is a real

surface embedded in the three-dimensional �3D� space25–28

as in our case. When a magnetic field is introduced, the prob-

lem gets more complicated, but experimental measures

pointed out more than a decade ago that the transport prop-

erties of nonplanar 2DEGs in a homogeneous magnetic field

show an oscillatory behavior due to the nonuniform compo-

nent of the field perpendicular to the 2DEG.29 The same type

of measures has been recently repeated on C2DEGs,8,30,31

showing a dependence of the magnetoresistance on the in-

tensity and direction of the magnetic field. From a theoretical

point of view, only recently it has been shown, by one of the

authors,32 that an analytical expression of the Schrödinger

equation where the dynamics on the surface is decoupled

from the transverse one can always be obtained provided that

a proper choice of the gauge is made. However, for the

present case of a straight cylinder with constant radius r the

solution is not difficult and can be achieved using also dif-

ferent approaches.27,33–35

Let the cylinder axis be along the y direction of a Carte-

sian reference system with x and z perpendicular to S �see

Fig. 1�. We also define two coordinates q1 and q2 lying on S

and q3 perpendicular to S as shown in Fig. 1. Therefore, S is

defined by

�
x = r sin�q1/r� ,

y = q2,

z = r cos�q1/r� ,
� with �

q1 � �0;2�� ,

q2 � �− �;�� ,

q3 = 0.
� �1�

Next, we consider a magnetic field perpendicular to the cyl-

inder axis. For definiteness, we set the magnetic field along

the z axis, B� = �0;0 ;B�y��, with an intensity B�y� possibly

modulated along the y direction. A convenient choice for the

vector potential is A� = �0;xB�y� ;0�, which in the cylindrical

frame is

A� �q1,q2� = �A1;A2;A3� = �0;rB�q2�sin�q1/r�;0� . �2�

With this choice of the gauge, the Hamiltonian reads32

H = −
�2

2m
� �

2

�q1
2

+
�

2

�q2
2� +

ie�

2m
� �

�q2

A2 + A2

�

�q2

�
+

1

2m
e2A2

2 −
�2

8mr2
, �3�

where e�0 is the elementary charge and m is the electron

mass, respectively. The last term in Eq. �3� is the potential

arising from the �constant� curvature of the surface24 and will

be dropped in the following since it amounts to a rigid en-

ergy shift. Note that, for this particular surface and field con-

figuration, the above equation can also be obtained by writ-

ing the Laplacian term contained in the Hamiltonian in

cylindrical coordinates using the Peierls substitution36 based

on the principle of minimal coupling i�
�

�q�
→ �i� �

�q�
+eA� �.

III. HOMOGENEOUS MAGNETIC FIELD

We next apply the general formalism to the case of a

cylinder in a homogeneous magnetic field of intensity B.

Here, the vector potential in Eq. �2� reads A� �q1�
= �0;rB sin�q1 /r� ;0�. The geometry is shown in Fig. 1,

where the direction of the field is represented by the upward

arrow, while the intensity of its component normal to S is

indicated by the light �low value� and dark �high value� col-

ors.

The vector potential depends only on q1, i.e., the position

along the circumference of the cylinder and does not break

the translational invariance along q2. Since the field does not

FIG. 1. �Color online� The cylindrical surface S in a homoge-

neous magnetic field B. The cylindrical reference frame used

throughout the paper is indicated. The intensity of the field compo-

nent normal to S is shown in color code both in space and as an

open surface with darker colors indicating a stronger field.
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depend on q2, the wave function separates as

��q1,q2� = ��q1�eik2q2, �4�

where k2 is the wave vector along the axis. The Hamiltonian

reads

H =
�2

2m
	−

�
2

�q1
2

+ Vk2
�q1�
 , �5�

where

Vk2
�q1� = k2

2�1 −
eBr

�k2

sin
q1

r
�2

�6�

is a wave-vector-dependent 1D effective potential that wraps

around the circumference of the cylinder. Figure 2 shows the

profile of Vk2
�q1� /k2

2, as a function of the dimensionless

parameter

� =
eBr

�k2

�7�

that gives the strength of the interaction between the charge

and the field, for a given wave vector value. For �	1 the

effective potential has one shallow minimum at q1= �� /2�r.

As a consequence the carriers tend to localize in a quasi-1D

channel on one side of the cylinder, where the component of

the field normal to S is minimum, which side being decided

by the relative sign of the wave vector and the field. For �

1, Vk2

�q1� /k2
2 has two minima which, for large �, are lo-

cated at q1=0 and q1=�r, i.e., above and below the cylinder.

In this regime, carriers form two quasi-1D channels located

where the component of the field normal to S is maximum,

and the field is either entering or exiting the surface.

A. Energy levels

For a given k2, we found the exact eigenstates of the

Hamiltonian H by writing the ��q1� component of � as a

linear combination of the modes on the circumference

��q1� =
1

�2�
�

n

cnei
n

r
q1. �8�

The zero-field energies of the 2D states are

�n�k2� =
�2

2m
�n2

r2
+ k2

2� , �9�

where n is an integer labeling the modes on the circumfer-

ence mixed by the magnetic field. By direct diagonalization

of Eq. �5� on the basis of the modes on the circumference, we

obtain the energies �n�k2� and the eigenfunctions for any

value of B. All reported calculations are obtained with n

=20 in Eq. �8�. With such choice, the convergence is accu-

rate within 1%.

In order to discuss the eigenstates of a carrier in the pres-

ence of a homogeneous field, it is convenient to define the

dimensionless coupling parameter

�c = r�2�eB

�
, �10�

namely, the ratio between half of the circumference and the

magnetic length calculated by averaging the intensity of the

field over one half of the circumference. Clearly, this param-

eter describes the coupling between the field and the carrier.

Apart from the averaging, it corresponds to the one defined

in Ref. 33. We stress that the energies of the eigenstates scale

with �c, i.e., the same energy is obtained for different values

of the tube radius and field intensity as long as r�B is con-

stant.

The subband structure for a homogeneous field is shown

in Fig. 3. At �c=0 �zero field�, the energy bands are given by

Eq. �9�; therefore, all bands are doubly degenerate except for

the lowest one. When a magnetic field is applied, the double

degeneracy is lifted by the orbital Zeeman splitting. For high

values of �c, that is, for sufficiently strong field at fixed tube

radius, the subbands flatten at small k2. By increasing �c, the

energy becomes almost independent of the wave vector in a

larger range and approaches the value of Landau levels in a

planar 2D system. As we will see in the following these

states correspond to Landau-type states confined above and

below the cylinder.

B. Density of states and magnetic-induced localization

With the energy bands just calculated, it is possible to

obtain the DOS for any given value of �c, applying the fol-

lowing formula:37

q
1 /r

0

0.5

1

1.5

2

γ

0

2

4

V
k
2 /k

22
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π

FIG. 2. �Color online� The effective potential Vk2
�q1� /k2

2 as a

function of the position around the circumference q1 and of the

coupling parameter �. For low �, Vk2
�q1� has one shallow minimum

at q1= �� /2�r, which bifurcates into two deeper minima at larger

values of �. At back of the graph, the potential is shown at three

selected values of � as indicated.
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DOS��� = 2�
n,k2

�� − �n�k2�� , �11�

where  is a Dirac delta and the factor 2 is included for spin

degeneracy. The DOS, as a function of the energy and �c, is

shown in Fig. 4. We can recognize different regimes: �i� at

small �c �low field�, the orbital Zeeman splitting lifts the

double degeneracy of the zero-field bands; �ii� at intermedi-

ate fields, the energy of the states is lowered by the interac-

tion with the field; and �iii� at large fields, different subbands

merge into highly degenerate levels reminiscent of the cor-

responding 2D Landau level. In Fig. 4, the energy splitting

due to the orbital Zeeman effect is shown for the two states

n=1 �dash-dotted line� and n=−1 �solid line�48 for a specific

k2 value. As the field is switched on, the degenerate levels

split, then the energy decreases and reaches a minimum for a

value of �c that is larger for larger n and k2. The locus of the

minima of all the states with the same n �and different wave

vectors� gives a peak in the DOS, indicating the formation of

a 1D state. In the top panel of Fig. 5 we show the DOS

corresponding to �c=1.3. Peak A belongs to the locus of the

minima of the n=0 states and is strongly suggestive of the

�−1/2 behavior of a quasi-1D system, with � being the energy

with respect to the band edge. Analogously, peak B belongs

to the locus of minima of the n=1 states. In the bottom panel

of Fig. 5, a polar plot shows the probability densities corre-

sponding to peaks A, B, and C �described later�. These 1D

states localize in the region of the cylinder where the field is

parallel to the surface. In fact, they are edge states driven on

one side of the cylinder by Lorentz force and this side is

determined by the sign of the charge and by the direction of

B. A change in the relative sign of these parameters switches

the localization to the opposite side. In this regime the po-

tential V�q1� has one minimum as shown in Fig. 2.

For high values of �c, the energy levels gather into Lan-

dau levels whose energy grows linearly with B. The first

Landau level is formed, independently of k2, by the states

n=0 and 1, the second one by the states n=−1 and 2, and so

on. The Landau levels are well recognizable in the density of

states of Fig. 4 where they appear as dark lines. In the top

panel of Fig. 5, the most prominent feature is peak C which

corresponds to the formation of the first Landau level. Due to

the finite curvature the energy levels acquire a finite disper-

sion, which gives rise to the 1D-like tail of the DOS on the

low-energy side unlike the standard 2D Landau levels. The

probability density of a Landau state is localized in the re-

gions where the magnetic field is perpendicular to S; as

shown in the bottom panel of Fig. 5 it has two lobes aligned

with the magnetic field. In this case the region of localization

is independent of the charge sign and of the direction of the

field. The 1D Landau states are always the strips that run on

the top and on the bottom of the cylinder. However, since

this effect is related to the formation of Landau levels on the

cylinder, the strength of the localization reaches a saturation

for high �c. This means that the maximum localization in the

circumferential direction is independent of the cylinder ra-

dius, of the intensity of the magnetic field, and of the wave

vector k2.

The detailed analysis given for the first three peaks of the

DOS can be repeated for all other peaks. In general, as the

FIG. 3. �Color online� Energy subbands at selected values of the

coupling parameter �c. The parabolic subbands �c=0 �zero field�
are doubly degenerate except for the lowest one.

FIG. 4. �Color online� DOS as a function of the energy and the

coupling parameter �c �color code given in the legend�. For refer-

ence, we show three energy levels corresponding to k2r=8, which

evolve from the n=0, �1 levels at �c=0 as indicated. The vertical

line at �c=1.3 shows the position of the DOS reported in Fig. 5.
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value of �c increases, each state evolves in a 1D state of type

A or B and then shrinks in a 1D Landau state.

IV. SPATIALLY MODULATED MAGNETIC FIELD

We next consider the case of a magnetic field periodically

modulated in intensity along the axis of the cylinder with

zero average intensity. To be specific, we consider a mag-

netic field whose intensity varies with a sinusoidal law along

the axis. The vector potential in Eq. �2� reads

A� �q1,q2� = �0;rB cos�q2/R�sin�q1/r�;0� , �12�

where 2�R is the wavelength of the spatial modulation of the

field along q2 and B is its maximum intensity. Also in the

modulated-field case, we choose the gauge according to Eq.

�2� with A3=0 that leads to the most suitable expression of

the Hamiltonian.32 In Fig. 6, the arrows indicate the direction

of the modulated magnetic field, while the intensity of its

component perpendicular to S is shown in color code. Note

the square pattern formed by the white regions where the

perpendicular component of the field vanishes, either be-

cause the field is parallel to S or because it has a vanishing

intensity there.

Since the vector potential now depends on both q1 and q2,

the wave function cannot be separated as in Eq. �4�, and we

have to solve a fully 2D problem. However, since the Hamil-

tonian is periodic in q2, we can apply the Bloch’s theorem to

a periodic system with a 1D unit cell of length 2�R along q2.

The exact eigenstates ��q1 ,q2� are found as a linear combi-

nation of the zero-field states as

��q1,q2� =
1

2�
�
nl

cnl�k2�ei
n

r
q1ei�k2+lG�q2, �13�

where G=1 /R and −G /2�k2�G /2. The corresponding

zero-field energies are

�nl�k2� =
�2

2m
�n2

r2
+

l2

R2
+ k2

2� . �14�

Here, the quantum numbers n and l are integers representing

the mode numbers around the circumference and along q2 in

the 1D unit cell, respectively. When a finite field is applied,

the n and l modes are mixed. In this section, the results are

obtained by taking n= l=30 in Eq. �13�.
One useful parameter to characterize the system is �v

=� /�0, which is the ratio between �, namely, the magnetic

flux through a cell ��r��R� and the magnetic-flux quantum

�0=2�� /e. Note that the field is not constant within the cell

��r��R�. Therefore, we have

� =
1

�2rR


0

�r 
0

�R

B�q1,q2�dq1dq2 = 4BRr , �15�

and

FIG. 5. �Color online� Top: DOS at �c=1.3. The presence of

many peaks indicating new 1D states is clearly visible. The states of

peaks A and B correspond to states with n=0 and 1 at zero field,

respectively. Peak C contains states starting from both n=0 and 1.

For the given value of �c they form 1D Landau levels. Bottom:

Probability densities of the states corresponding to the peaks in the

top panel. States A and B are 1D states localized in the region of the

cylinder where B is parallel to the surface: these are edge states

driven in that position by Lorentz force. State C belongs to a Lan-

dau level: these 1D states are localized in the regions where B is

perpendicular to the surface. The direction of the field is indicated

by the arrow.

FIG. 6. �Color online� The cylindrical surface S of radius r in a

magnetic field periodically modulated with wavelength 2�R along

the tube axis. The intensity of the field component normal to S is

shown in color code both in 3D space and on the open surface as in

Fig. 1. Lighter colors indicate regions where the vertical component

of the field is zero, either because the field is parallel to S or be-

cause the intensity is zero.
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�v =
2eBRr

��
. �16�

The parameter �v gives the strength of the coupling between

the field and the carriers and plays a role analogous to �c in

the homogeneous case of Sec. III. The coupling increases

linearly with the intensity of B and with the spatial period-

icities r and R. Indeed, �v is defined in analogy to other

works involving magnetic field applied to a 2D

system.19,38–41 In Ref. 19, �v is alternatively interpreted as

the ratio between the period of motion of an electron with

crystal momentum � /�rR �which is 2�rRm /�� and the re-

ciprocal of the average cyclotron frequency 4eB /�2m.

In general terms, the vector potential creates an effective

2D potential on the surface S that tends to localize the wave

function where the component of the field orthogonal to S is

zero �lighter regions in Fig. 6�. Specifically, the low-energy

states of the carriers will be mainly localized at the intersec-

tions of the above stripes. These quasi-zero-dimensional

�0D� regions are connected by tunneling in a 2D network.

The ratio �=r /R between the cylinder radius r and the length

of the field modulation R identifies different regimes,

whether ��1, ��1, or ��1 as we show next.

A. Ringlike localization

Let us start from the case ��1, namely, the field is slowly

modulated with respect to the cylinder diameter and r�R.

All the results of this subsection are for �=0.71. The left

panels of Fig. 7 show the energy bands at two values of �v.

Compared to the gapless parabolic band structure at zero

magnetic field reported in the central upper panel �dotted

lines�, the finite-field band structure is characterized by large

gaps in the low-energy range. Furthermore, the lowest sub-

bands are almost flat for the values of �v shown here, which

indicates carrier localization.

In Fig. 8 we show the DOS as a function of the coupling

parameter �v. This clearly shows the opening of many en-

ergy gaps with an amplitude that strongly depends on �v. At

somewhat regular values, the two lowest subbands are com-

pletely flat. The modulation in the DOS and the occurrence

of peaks �darker lines in Fig. 8� is also shown in the top

panel of Fig. 9 for two specific values of �v.

In the bottom panel of Fig. 9 we show the probability

density on the tube for a state belonging to the peak in the

top panel indicated with the arrow. The charge density is

mainly distributed in a superlattice of quasi-0D states in-

duced by the magnetic field localized at the intersections of

the regions where the perpendicular component of B is zero

�see Fig. 6�. The localization is stronger for increasing �v.

For the present case of ��1, the asymmetric shape of the

unit cell ��r��R� turns into an asymmetric tunneling be-

tween the quasi-0D regions, where charge is mainly local-

ized. At this value of �v, tunneling is almost suppressed

along the axis direction, but it is present around the circum-

ference. The effect is that the 2DEG is rearranged in arrays

of weakly coupled pairs of quantum dots. Also, note that the

positions of the dots along the axis are independent of the

sign of the charges and, since the confinement occurs in the

zeros of the effective field, the positions are also independent

of the direction of the field. When � is significantly smaller

than 1, the tunneling in the axial direction is completely sup-

pressed and the particle probability is homogeneous in the

circumference direction, so that in each unit cell two rings

form at the positions q2=
1

2
�R and

3

2
�R.

B. Striplike localization

Next we analyze the case ��1, namely, the field modu-

lation is rapid with respect to the tube diameter and R�r. All

numerical results presented in this subsection are for �
=1.40. The energy subbands are shown in Fig. 7 �right pan-

els� for two values of �v. Again, the magnetic field affects

the dispersion and opens energy gaps. Almost flat bands can

be observed for specific values of the �v parameter and lo-

FIG. 7. Energy subbands for the three selected values of �

=0.71,1 ,1.4 �left, center, and right column� each at �v=2.5,4 �up-

per and lower row�. In the upper central panel the parabolic sub-

bands at zero field are also shown with dotted lines for comparison.

FIG. 8. �Color online� DOS at �=0.71 �see Sec. IV A� as a

function of the energy and the coupling parameter �v �color code

given in the legend�. The DOS shown in Fig. 9 corresponds to the

two vertical lines at �v=8.77 and 9.33.
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calized states will be observed on the surface of the cylinder.
The DOS as a function of the parameter �v is shown in

Fig. 10 and in the top panel of Fig. 11. Again, the magnetic

field has the main effect of opening gaps not present at zero

field, although the gap pattern is different from Fig. 8.

In the bottom panel of Fig. 11, we show the probability

density on the tube for a state belonging to the peak indicated

with the arrow in the top panel. A rearrangement of the

charge density in a lattice of quasi-0D regions is obtained

analogously to the ��1 case. However, the unit cell ��r

��R� is now shorter along the cylinder axis, and tunneling

between the quasi-0D states is larger along the axis direction.

Therefore, the magnetic field induces a localization of the

carriers in two arrays of tunnel-coupled dots along the axis

direction. The two arrays on opposite sides of the cylinder

are weakly coupled by tunneling. Also in this case, the local-

ization is stronger for increasing �v and does not depend on

the sign of the charge or on the direction of the field. When

the limiting case of � much greater than 1 is approached, the

tunneling between dots in the circumference direction is ab-

sent and the localized states result in two 1D-strips on the

sides of the cylinder, which are not modulated along the axis.

C. Dotlike localization

The �=1 case is an admittedly difficult condition to be

obtained exactly, but it is discussed here for completeness

and as an example of the intermediate regime r�R. The

energy bands are shown in the central panels of Fig. 7.

Again, for �v=2.5 a flat band is present and the width of this

band is modulated by the magnetic field that affects tunnel-

ing.

FIG. 9. �Color online� Top: DOS at �=0.71 for �v=8.77 and

9.33. Bottom: Probability density for a state belonging to the peak

indicated with the arrow in the top panel. Darker color means

higher density. The applied field rearranges the C2DEG in a lattice

of quasi-0D states connected in a ringlike shape around the tube and

weakly coupled along the tube.

FIG. 10. �Color online� DOS at �=1.40 �see Sec. IV B� as a

function of the energy and the coupling parameter �v �color code

given in the legend�. The DOS shown in Fig. 11 corresponds to the

two vertical lines at �v=8.77 and 9.33.

FIG. 11. �Color online� Top: DOS at �=1.40 for �v=8.77 and

9.33. Bottom: Probability density for a state belonging to the peak

indicated with the arrow in the top panel. Darker color means

higher density. In this case, tunneling between the dots is not neg-

ligible along the axis direction, while it is almost suppressed around

the circumference.
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The DOS is shown in Fig. 12 as a function of the param-

eter �v. Now, the modulation of the DOS shows regular pat-

terns of energy gaps and peaks periodic with �v. A detailed

analysis of these features will be given in Sec. IV D. The

DOS at selected values of �v is also shown in Fig. 13, where

the peaks and gaps are clearly visible.

In the bottom panel of Fig. 13 we show the probability

density on the tube for a state belonging to the peak indicated

with the arrow in the top panel. Due to the additional sym-

metry of the ��r��R� unit cell, the tunneling probability

between the quasi-0D states is now the same along the axis

and around the circumference directions, and a superlattice

of dots each connected by four arms to neighboring dots is

formed.

To summarize, we expect that at r�R a periodically

modulated magnetic field creates a square lattice of 0D

states. The localization is stronger for larger intensities and

independent from the direction and the sign of the carriers.

When r substantially deviates from R, the tunnel coupling

between the dots increases either along cylinder axis �r
�R�, creating two weakly coupled 1D arrays of quantum

dots, or along the cylinder circumference �r�R�, making the

system more similar to a 1D array of weakly coupled quan-

tum rings.

D. Insights from the energy landscape

Having established in Secs. I and III how the energy lev-

els and the ensuing DOS are strongly affected by the inten-

sity and modulation of the magnetic fields, we now look

more closely to the overall behavior with respect to the in-

teraction parameter �v. This will give us a deeper insight into

the physics governing this system and exposes the analogies

and consistencies with other physical situations.

1. Aharonov-Bohm oscillations

We first focus on the low-energy part of the spectrum and

consider for definiteness the case �=1. A peculiar character-

istic of the DOS �Fig. 12� is the oscillation of the energy

levels so to form a plait. Figure 14 shows the energy levels at

k2=0 with the oscillatory behavior of the lowest levels with

�v. This trend is a characteristic of many electronic systems

under the effect of a magnetic field, and it is a typical fin-

gerprint of Aharonov-Bohm-type behavior.38,42 In this spe-

cific device, the dots and the arms connecting them are re-

gions of zero field that constitute a loop around a region of

nonzero perpendicular component of the magnetic field, as

shown in the bottom panel of Fig. 13. Clearly, this explains

qualitatively the shift of the energy levels with �v, although

our explicit calculation must take into account that the rings

are not well defined for low values of �v, since the tunneling

between the dots can be very high and the dots themselves

are quite large. Furthermore, the direction and intensity of

the field are not constant throughout the ring and, finally, the

shape of the ring is not round but more squarelike. This

explains why the minimum of the energy of the ground state

is not constant against �v as it would be in a textbook

Aharonov-Bohm system. Furthermore the periodicity of the

oscillations is not strictly an integer of the ratio � /�0. An

analogous behavior is revealed in self-assembled semicon-

ductor rings, where the energy dependence on the magnetic

field is explained taking into account the finite width of the

ring and the nonuniform confining potential.43,44 Note that in

this system the Aharonov-Bohm ring is not physically de-

fined in the absence of the field and is induced by the same

magnetic field and its interplay with the geometry of the

C2DEG.

FIG. 12. �Color online� DOS at �=1 �see Sec. IV C� as a func-

tion of the energy and the coupling parameter �v �color code given

in the legend�. The DOS shown in Fig. 13 corresponds to the two

vertical lines at �v=8.77 and 9.33.

FIG. 13. �Color online� Top: DOS at �=1 for �v=8.77 and 9.33.

Bottom: Probability density for a state belonging to the peak indi-

cated with the arrow in the top panel. Darker color means higher

density.
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2. Landau levels

In Sec. III we have connected the energy levels at high

homogeneous magnetic field with the formation of Landau

levels on the surface of the tube. In the inhomogeneous case

the lowest energy states are confined close to the regions

where the field is parallel to the surface or its intensity goes

to zero �we recall that the average field is zero in the present

investigation�. Since the Landau levels cannot appear in re-

gions of zero perpendicular field, they are not involved in the

formation of low-energy states. They form at higher energy

instead. Figure 14 compares the k2=0 energy levels of the

homogeneous with inhomogeneous cases, for the same r, in a

broad energy range �up to the 100th level�. A set of levels,

indicated by arrows and roman numerals, shows a linear shift

with �v with the same slope as the first Landau level of the

homogeneous case. Plots of the carrier densities show that

these states correspond to carriers confined in the region

where the field is perpendicular to the cylinder surface, that

is, the regions circulated by the Aharonov-Bohm-type rings
which localize the low-energy states. These are highly de-
generate states due to the flat dispersion with respect to ky

and n. Clearly, the degeneracy is not the same as for genuine
2D Landau levels due to the periodicity imposed by the
modulated field and the cylindrical symmetry. The degen-
eracy can also be traced to the charge density �Fig. 14, right
panels�, which is redistributed in dots that are well separated.
Tunneling between these regions is completely suppressed.

V. CONCLUSIONS

We have investigated theoretically the effect of a mag-

netic field, either homogeneous or periodically modulated

along the cylinder axis, on the electronic states in a C2DEG.

The combined effects of the 2D-system curvature and the

field can lead to carrier localization effects that are at the

base of peculiar features of the DOS. In particular, we de-

scribed how it is possible to alter the dimensionality of the

states using the magnetic field.

As described in Sec. III, in a homogeneous magnetic field,

the extended states of the cylinder form either a single or two

1D channels, depending on the field strength, localized in

different regions of the cylinder. In the case of a field peri-

odically modulated in space, the carriers are localized into a

superlattice of tunnel-coupled quasi-0D states as we showed

in Sec. IV.

The localization type �cylindrical 2D, 1D, and 0D� is only

determined by the ratio between the diameter of the nano-

structure, the magnetic length, and, possibly, the wavelength

of the field modulation. Therefore a change in dimensionality

of the carrier states can be achieved in any C2DEG at the

appropriate field intensity. It turns out that for usual labora-

tory fields, in the few Tesla regimes, carrier localization oc-

curs for C2DEGs with diameters in the few tens of nanom-

eters range. This dimension is typical of semiconductor

nanotubes,5–8,11 while smaller systems, as carbon nanotubes,

would need much larger fields to reveal the same effects.

The carrier localization and DOS modulation should alter

significantly the transport properties of the C2DEG. For ex-

ample, the excitonic recombination efficiency is strongly de-

pendent on the overlap and dimensionality of electron and

hole states45–47 that, in turn, depends on the amplitude of the

homogeneous magnetic field. We have also found clear signs

of incipient Landau levels similar to the familiar 2DEG case

and, in the modulated-field case, also Aharonov-Bohm type

of oscillations in the low-energy spectrum.

ACKNOWLEDGMENTS

The authors are pleased to thank Giampaolo Cuoghi for

the fruitful discussions. This work was partially supported by

Project FIRB No. RBIN04EY74.

FIG. 14. �Color online� Top: the energy levels at k2=0 are pre-

sented as a function of �v in the case of �=1 up to the 100th level.

The bands corresponding to the Landau levels are indicated by the

arrows on the right axis. The Landau levels for the corresponding

case with a homogeneous field are shown with a solid line. Bottom:

The probability densities of the system for the Landau levels I, II,

and III �see the arrows on the left plot� are shown. Darker color

means higher density. The carriers are confined in the regions with

the field perpendicular to the cylinder surface.
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