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Abstract

Background: Conformation generation is a ubiquitous problem in molecule modelling. Many applications
require sampling the broad molecular conformational space or perceiving the bioactive conformers to
ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem,
ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we
described an efficient conformation sampling method named Cyndi, which is based on multi-objective
evolution algorithm.

Results: The conformational perturbation is subjected to evolutionary operation on the genome encoded
with dihedral torsions. Various objectives are designated to render the generated Pareto optimal

conformers to be energy-favoured as well as evenly scattered across the conformational space. An
optional objective concerning the degree of molecular extension is added to achieve geometrically
extended or compact conformations which have been observed to impact the molecular bioactivity (J
Comput -Aided Mol Des 2002, 16: 105–112). Testing the performance of Cyndi against a test set consisting
of 329 small molecules reveals an average minimum RMSD of 0.864 Å to corresponding bioactive
conformations, indicating Cyndi is highly competitive against other conformation generation methods.
Meanwhile, the high-speed performance (0.49 ± 0.18 seconds per molecule) renders Cyndi to be a
practical toolkit for conformational database preparation and facilitates subsequent pharmacophore
mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2
format are accessible in Additional file 1.

Conclusion: On the basis of MOEA algorithm, we present a new, highly efficient conformation generation
method, Cyndi, and report the results of validation and performance studies comparing with other four
methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and
outperforms other four multiple conformer generators in the case of reproducing the bioactive
conformations against 329 structures. The speed advantage indicates Cyndi is a powerful alternative
method for extensive conformational sampling and large-scale conformer database preparation.
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Background
One of the imperative aspects in drug design and develop-
ment is to perceive corresponding bioactive conforma-
tions which determine the physical and biological
properties of drugs [1]. Conformation generation is the
kernel in computer-aided drug design (CADD) methods
such as molecular docking [2-4], pharmacophore con-
struction and matching [5,6], 3D database searching [7-
9], 3D-QSAR [10-12], and molecular similarity/dissimi-
larity analysis [13], to name a few. The ability to account
for conformational flexibility is highly valued by these
methods as it presumes that small molecules have to
adopt energy-reasonable conformations in respect of dif-
ferent environments. However, according to Boltzmann
Law, the properties observed for "one molecule" are actu-
ally the conformer-ensemble averages [14]. The conform-
ers with high energies contribute little to the ensemble-
average properties quantitatively and consequently have
to be discarded during the conformation generation proc-
ess. To select those low-energy conformers, a brute-force
method can be applied to enumerate a set of conforma-
tions to describe the real-life distribution of the molecular
conformational ensemble across the energy surface.
Unfortunately, thorough conformational sampling may
lead to combinatorial explosion problem even if the mol-
ecules are decomposed into fragments first and recom-
bined into new conformers using predefined torsion
library [15]. Therefore, a practical conformational ensem-
ble should guarantee the conformers are energy reasona-
ble and can span available conformational space evenly.

Recent studies on crystal structures of ligand-protein com-
plexes revealed that the bioactive molecules tend to adopt
more extended conformations than compact ones [16]
and may be several kcal/mol higher in energy than their
respective global energy minima [17]. Although our
knowledge about the pharmacologically allowed confor-
mational space is still limited, one of the criteria for
accessing conformer generation tools remains to be to
what extent the experimental determined conformations
can be reproduced as quickly as possible since it's not
applicable to cover the whole conformational space in
short time. Researchers are referred to the works by Bos-
trom who evaluated the capability of reproducing the bio-
active conformations of several state-of-art conformation
generation programs [18-20]. When it comes to confor-
mational analysis in which multiple low-energy confor-
mations are required, the generated conformers need to
be geometrically distinct in case that some "hot spots" of
the conformational space are over sampled, which cannot
reflect the molecular flexibility because duplicated con-
formers failed to provide new information about the sys-
tem. From this point of view, conformation generation
may be formulated as a multi-objective optimization
process in which the optima are not dominated by sole

criteria exclusively. Moreover, besides of potential energy
and geometrical diversity restraints, other sophisticated or
rule-of-thumb criteria such as pharmacophore and bind-
ing pocket mapping can be implemented to sample more
biased conformers fulfilling these objectives.

As a non-deterministic optimization method, genetic
algorithm (GA) has been broadly applied in molecular
docking, pharmacophore construction, and conformation
generation [21-31]. Most traditional GA implementations
of conformation generation perturb the dihedral torsions
of rotatable bonds (sometimes plus flipping the ring con-
formations by modifying the geometry of sp3 hybridized
atoms at the junctions of two (or more) fused aliphatic
rings) using single objective function, which can be either
potential energy of single individual conformers or some
sophisticated designed metric of conformational space
completeness/saturation in conjunction with the popula-
tion each individual belongs to. For a detailed review of
application of single objective GA in computer-aided drug
design see the references [32,33]. However, in practical
application, an ideal conformer ensemble must meet both
energy and diversity criteria simultaneously (even though
they conflict to each other sometimes), and it's imperative
to consider all the objectives to find a set of equally valid
optima (namely Pareto-optimal solutions) to maintain the
balance between these restraints. Consequently multi-
objective genetic algorithm (MOGA) or multi-objective
evolution algorithm (MOEA) is an alternative appropriate
method to solve such trade-off problems.

MOGA or MOEA method has been successfully applied to
diverse areas in CADD, e.g. molecular docking [34], phar-
macophore generation [35,36], combinational library
building [37], and QSAR analysis [38]. During the prepa-
ration of this manuscript, Vainio used the MOGA method
to generate conformer ensembles for drug-size organic
molecules [39]. In his work, two uncorrelated objective
functions, van de Waals (VDW) energy and dihedral tor-
sion energy, were calculated individually using the
MMFF94 force field. A niche filter on the basis of calculat-
ing the root mean square deviation (RMSD) between con-
formers as well as a user-definable energy cutoff value
were used to reduce the size of the generated ensemble in
the post processing step. Tested against the CCDC/Astex
test set containing 311 entries with known bioactive con-
formations, the authors declared their method success-
fully produced low-energy conformers that are
geometrically distinct from each other, which was the
result their method designed to obtain.

In this work, a MOEA-based conformation generation
method, named Cyndi, is presented with four specially
designed objective functions. The conformers are encoded
into GA individuals with the dihedral torsions of rotatable
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bonds, VDW and torsional energy terms are selected as
two distinctive objectives to separate the generated con-
formers in energy space using Tripos force field [40];
moreover, the geometric dissimilarity (GD) of the indi-
viduals is characterized by comparing the RMSD value
between each individual and the corresponding initial
conformer. As an optional objective, the molecular gyra-
tion radius is employed to sample the conformations with
various geometric extension degrees. As a proof-of-con-
cept test, a combined test set composed of 329 small mol-
ecules, whose bioactive conformers are available from
Protein Data Bank (PDB) [41], is benchmarked against
our method. The ability of Cyndi in reproducing bioactive
conformations as well as generating geometrically diverse
conformational ensembles is well assessed and the results
demonstrate that Cyndi provides an effective means to
sample the conformational space and find the set of con-
formers with expected energy stability and geometric
diversity.

Results and discussion
Flowchart

The design and application of the genomes and objectives
are based on ο-MOEA method developed by Deb et al.
[42]. The general flowchart of Cyndi is elucidated in Fig-
ure 1 and summarized below:

a. Read the input molecules, and then initialize the
population of N individuals by perturbing the input
3D conformer with randomly generated dihedral
angles. Afterwards, step through the population to
pick up the non-dominant individuals into archives.

b. Pick up the parents using tournament selection to
generate new child with crossover and mutation oper-
ations, calculate the fitness for the new child and
update the archive if the new child dominates any
individuals in the archive. Repeat the generation pro-
cedure until the termination condition is achieved.

c. Discard the geometrical redundant conformers with
the RMSD filter.

d. Optimize the remaining conformers with energy
minimization and discard the conformers outside the
energy cutoff, then discard the geometrical redundant
conformers again.

e. Output the final generated conformers.

Profiles of conformer ensembles generated by MOEA 

method

With traditional single-objective approach, the solutions
identified through several independent runs may be local
minimum in a single-objective space. Hence, compromise

between energy and geometrical feasibility has to be
explicitly considered to select the solutions from the sin-
gle-objective conformational space [37]. Cyndi sur-
mounted this problem by offering a set of pareto solutions
from which the users can select a conformer bearing
favoured VDW energy but low GD value or vice versa. In
this way the Pareto frontier actually covers the different
region of the solution space and suppresses the "random-
ness" inherited with the EA algorithm. Different confor-
mations are generated and possess rationality with respect
to at least one objective.

For the case with 2-objective functions, the Pareto optimal
solutions in the final archive should distribute across a 2D
Pareto frontier curve and non-overlap with each other. For
the case with 3-objective functions, the Pareto front curve
transformed into a 3D surface whose profile is hard to pre-
dict. Therefore, to visualize the distribution of the solu-
tions on the Pareto front, the exemplary scatter points as
well as surface landscape for the ligand of 1mcr (PDB ID)
is plotted in the 3D space composed of 3 objective values
of each solution in the final archive (see Figures 2a and
2b). To clarify the result, the 3D hypersurface are mapped
onto the plane formed by the other two objectives in con-
tour mode that using continuous deepening colors to rep-
resent increasing GD values (see Figure 2c). Then
corresponding solutions are also mapped on the same
plane as scattered points whose sizes varied with corre-
sponding RMSD values. One can see the solutions in the
final archive are separated quite well in the three-objective
space and only few points overlapped on the solution sur-
face (marked with red ovals as outliers). These solutions
are the representatives of the feasible solution space.

Computational Performance of Cyndi

The ability for conformation generation of Cyndi was
tested against a data set containing 329 drug-sized mole-
cules whose bioactive conformations were extracted from
the PDB database (see Methods Section). Figure 3 presents
the distribution of the rotatable bonds of the test set, the
PDB IDs and rotatable bonds numbers corresponding to
each molecule are listed in Table A1 (see Additional file
2). Most of the molecules posses less than 11 rotatable
bonds. To access the computational cost of Cyndi, the his-
togram of processing times is presented in Figure 4. For
the overwhelming majority of the molecules, the confor-
mation generation time distributes from 0.2 seconds to
0.6 seconds and the average computation time is about
0.49 ± 0.18 seconds per molecule. The computational cost
of post minimization was not considered during the eval-
uation because energy minimization is the major time
limit step for most stochastic conformational analysis
algorithms and intensively depends on the applied local
optimization algorithms, adopted force field, and speci-
fied minimization iterations. Alternatively the conformer

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1mcr


BMC Bioinformatics 2009, 10:101 http://www.biomedcentral.com/1471-2105/10/101

Page 4 of 14

(page number not for citation purposes)

Flowchart of Cyndi methodFigure 1
Flowchart of Cyndi method.
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ensembles generated with Cyndi can also be energy mini-
mized by external softwares implemented with alternative
force fields, therefore the energy optimization is discarded
from computational time evaluation. As a matter of fact,
the average computational time of Cyndi amounts to
23.68 seconds and never exceeds 50 seconds for each
molecular conformer ensemble in an independent run,
which is still acceptable and superior to that of Balloon or

Catalyst Best (at least 100 seconds per ligand conformer
ensemble averagely). The result presented here proves that
Cyndi is extremely fast and capable of generating con-
formers in nearly constant time disregarding the molecu-
lar flexibility, and therefore, can be utilized to prepare
conformational database for large-scale molecular data-
base used in virtual screening.

Cyndi is originally designed as an "upstream" conforma-
tion generator for ligand-based virtual screening in the
pipeline of computer-aided drug design. The numbers of
generated conformers have to be limited due to the fact
that "downstream" calculations are probably highly com-
putationally expensive. Theoretically the sizes of the con-
formational ensembles may increase significantly for
highly flexible molecules. The number of conformers
obtained after post processing are plotted against the
number of rotatable bonds of each molecules (Figure 5).
Interestingly, the numbers of generated conformers don't
increase linearly with the numbers of rotatable bonds as
expected, instead, a skewed distribution with a peak value
of 7 rotatable bonds was observed (as plotted in grey
line). For highly flexible molecules with more than 20
rotatable bonds, the RMSD filter scaled on number of
rotatable bonds tends to drive the geometric similarity cri-
terion more stringent by increasing RMSD tolerance.
Therefore the conformational space in the archive is con-
sidered to be more "crowded" and more conformers were
discarded for the highly flexible molecules. This treatment
was a trade-off between elimination of conformational
"combinatorial explosion" and enumeration of excessive
geometrically diverse conformers. Cyndi employs fixed
population size, and if one hopes to sample the confor-
mational space for the flexible molecules more thor-
oughly, multiple runs or increased population size is
recommended. Cyndi combines the Pareto optimal con-
formers from independent runs and outputs final confor-
mation ensemble after energy as well as geometric filter.

Profile of solution space of the final archive from the ligands of PDB entry 1MCRFigure 2
Profile of solution space of the final archive from the 
ligands of PDB entry 1MCR. A total of 65 solutions are 
reserved in the archive. (a) 3D grid surface landscape of 
Pareto solutions projected on the 3-objective space. The 
colors are varied according to the Geometric Dissimilarity 
(GD, represented by RMSD to initial conformation) values as 
the color bar legend labelled. Three low GD valleys are 
labelled as the black arrows. (b) 3D scatter points represen-
tation of the Pareto solutions in 3-objective space. (c) 2D 
contour representation of Pareto solutions in 3-objective 
space. The colors are deepened as the GD values increase. 
The 65 conformers are projected on the space with black 
points, whose size varies according to their GD values 
respectively. The overlapped solutions are marked with red 
ovals as outliers.

Distribution of rotatable bonds in the test set containing 329 molecular structuresFigure 3
Distribution of rotatable bonds in the test set containing 329 molecular structures.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1MCR
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1MCR
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Assesing the ability of reproducing bioactive 

conformations of Cyndi

To evaluate Cyndi's capability of reproducing the bioac-
tive crystal structures, the distribution of minimum RMSD
values between best-fit conformers and crystal structures
is shown in Figure 6 by plotting against the number of
rotatable bonds of corresponding molecules. The mini-
mum RMSD values are linearly correlated to the numbers
of rotatable bonds of ligands with R2 = 0.68, which is in
accordance to the expectation that the predictive inaccu-
racy increases with the molecular flexibility. The average
minimum RMSD value of total 329 conformational
ensembles to their crystal bound conformers is 0.864 ±

0.687 Å for 3-objective case (0.831 ± 0.601 Å for 4-objec-
tive case), and in addition, nearly 67.2% of the minimum
RMSD values are below 1.0 Å (93.6% below 2.0 Å). As a
comparison, both the results of Cyndi with and without
the optional objective (gyration radius) are compared
with Balloon, and three conformation generation meth-
ods provided in Catalyst. Figure 7 shows the histogram of
the cumulative distribution of the 329 molecules whose
minimum RMSD to crystal conformers is within specific
cutoff thresholds. It's apparent that the results of Cyndi
are better or equal to those of the 4 methods considering
that they share similar percentage of conformers within 2
Å threshold to the bioactive ones. With regard to the
apparent potency of bioactive conformations reproduc-
tion (35.2% of the minimum RMSD of generated confor-
mations are within 0.5 Å intervals from the bioactive
ones) as well as speedup advantage, Cyndi outperforms
other methods both in accuracy and efficiency. Table A1
(see Additional file 2) lists more detailed comparisons of
Cyndi and other methods for each molecule. The result of
initial single 3D conformers generated by ChemAxon's
Standardizer module is also tabulated in Table A1 (see
Additional file 2) as reference.

Comparing with 3-objective case, additional objective of
gyration radius slightly bettered the result (lowering the
average minimum RMSD from 0687 Å to 0.607 Å) and
the number of minimum RMSD within 0–0.5 Å cutoff to
the bioactive conformers increased from 107 to 116.
Essentially, considering the definition of gyration radius
and essence of VDW energy, there would be certain over-
lapping between these two objectives on penalizing the
steric bumped conformations, which has been observed
(data not shown). This is part of the reason that gyration

Distribution of CPU time used in MOEA procedure for all 329 conformer ensemblesFigure 4
Distribution of CPU time used in MOEA procedure 
for all 329 conformer ensembles.

Number of generated conformers per molecule plotted against the number of the rotatable bondsFigure 5
Number of generated conformers per molecule plot-
ted against the number of the rotatable bonds. The 
observed skewed peak distribution trend is represented in 
the solid line.

Minimum RMSD by superposition of generated conformers and crystal bound conformation plotted against the number of rotatable bondsFigure 6
Minimum RMSD by superposition of generated con-
formers and crystal bound conformation plotted 
against the number of rotatable bonds. The observed 
linear trend is presented in solid line.
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radius was formulated as an optional objective. Including
gyration radius may improve the qualities of generated
conformations for some flexible molecules, but it is not
always the case. Actually the Pareto solutions in 4-objec-
tive space do not necessarily bear larger gyration radius
because MOEA algorithm never optimizes towards the
extremum of any single objective. Figure 8 depicts the
alignments of best-fit conformers for two flexible mole-
cules (PDB entries 1if8 and 1sme) generated with and
without gyration radius objective. For 1if8, the bioactive
structure adopts a relatively extended conformer with a
gyration radius of 5.250 Å; comparing with the conformer
generated in 3-objective case, the minimum RMSD (to the
bioactive one) of conformer generated by Cyndi with 4-
objective is reduced from 1.186 Å to 0.501 Å with gyration
radius increasing from 4.830 Å to 5.233 Å (see Figure 8a);
while for 1sme, the minimum RMSD increases from
1.754 Å to 2.569 Å with gyration radius increasing from
6.093 Å to 6.274 Å for 3-objective and 4-objective cases
respectively (see Figure 8b). In fact, additional objective
separates the solutions across more refined hyper grids on
the Pareto frontiers so as to sample the conformational
space more thoroughly. For linear molecules, including
gyration radius may boost the procedure of conforma-
tional sampling if the bioactive conformers adopt more
extended conformation; however, maximizing gyration
radius in Cyndi may blur the unbiased sampling proce-
dure for highly branched molecules (as 1sme in Figure

8b) which may harbor multiple reasonable spatial exten-
sions. Practically, because of the inherit irreproducibility
flaw of evolution algorithm, one is advised to repeat sev-
eral independent runs from diverse multiple random con-
formations both with and without gyration radius
objective to sample the conformational space more thor-
oughly, as Table A2 (see Additional file 3) shows, the
results from 3 independent runs of Cyndi outperformed
that of single run to some extent.

Assessment geometrical diversity of generated conformer 

ensembles

The RMSD filter was applied to remove the conforma-
tional redundancy. To quantify the geometrical variation,
agglomerative hierarchical clustering analysis was per-
formed on the populated distance matrix via calculating
the RMSD values between each pair of conformers. The
resulted clustering dendrograms as well as corresponding
reordered similarity heatmaps for four selected conformer
ensembles are shown in Figure 9. In principle, if the con-
formers in the ensemble are totally geometrically different
from each other, explicit non-overlapping diagonal blocks
should emerge from the similarity matrix. The ligand of
1apt (isovaleryl (iva)-val-val-lysta-o-et) is typically a pep-
tide mimic with 3 peptide bonds and a total of 18 rotata-

The distribution of best-fit conformers (defined by minimum RMSD to crystal structures) to 329 compounds for Cyndi, Catalyst Fast, Catalyst Best, Catalyst CEASAR and balloonFigure 7
The distribution of best-fit conformers (defined by 
minimum RMSD to crystal structures) to 329 com-
pounds for Cyndi, Catalyst Fast, Catalyst Best, Cata-
lyst CEASAR and balloon. The best fit RMSD cumulative 
distributions for 329 molecules are compared among 6 
methods: Cyndi (both with 3 and 4 objectives), Catalyst Fast, 
Catalyst Best, Catalyst CEASAR and Balloon. Note that Fast, 
Best and CEASAR failed to generate conformations for some 
molecules, as the entries labeled by "NA" in Table A1 (see 
Additional file 2).

Comparing the performance of Cyndi with 3 objectives and 4 objectivesFigure 8
Comparing the performance of Cyndi with 3 objec-
tives and 4 objectives. Exemplary alignments of conform-
ers generated by Cyndi with 3 and 4 objectives: (a) 1IF8 and 
(b) 1SME. Only the best-fitted conformers to the bioactive 
structures are shown. The crystal structure conformations 
are coloured in terms of element (Carbon in grey; oxygen in 
red and nitrogen in blue), the conformers generated by 
Cyndi with 3 objectives are coloured in magenta and the 
ones with 4 objectives are in green.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1IF8
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1SME
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1if8
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1sme
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1if8
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1sme
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1sme


BMC Bioinformatics 2009, 10:101 http://www.biomedcentral.com/1471-2105/10/101

Page 8 of 14

(page number not for citation purposes)

ble bonds. Since the stiffness induced by the peptide
bonds (energy-constrained close to 0 and 180 degrees),
the conformer ensemble is generally clustered into two
major groups indicated by two large on-diagonal blocks,
the members in each cluster are at least within 3.0 Å
RMSD threshold against each other (see Figure 9a). Each
of the large clusters is divided into much smaller inde-
pendent ones if we lower the dissimilarity threshold to 0.5
or 1.0 Å, indicating the generated conformers are geomet-
rically dissimilar to each other at this level. Similar results
have also been observed in the case of all other three mol-
ecules because they all bear one or more peptide bonds.
Comparing with 1apt, more distinguishable small-size
on-diagonal blocks are exemplified by ligand of 1tmn (N-
carboxymethyl dipeptide, 14 rotatable bonds) and that of
1epo (mor-phe-nle-chf-nme, 20 rotatable bonds) in Fig-
ures 9b and 9d. The conformers are geometrically distin-
guishable with each other below the RMSD threshold of
2.0 Å, illustrating the generated conformers are highly dis-
tantly spread in conformational space. As for a less flexible
case, the ligand of 8gch (gly-ala-trp tripeptide with 9 rotat-
able bonds) in Figure 9c exhibits a more blurred profile of
clustering heatmap below the RMSD threshold of 2.0 Å.
Allowing for the more compact conformational space
formed by relatively small number of rotatable bonds, the
RMSD threshold for dissimilarity should be lowered by
reducing the scaling factor in GD filter.

Theoretically, the generated conformers should maximize
diversity by distinguishing geometrically with each other
completely. Practically, this goal can not be achieved
because for a molecule bearing middle level flexibility
(like 1epo), the energy-favoured accessible areas are lim-
ited with respect to broadly sampled conformational
space. Herein many conformers have to be discarded
which failed to pass the low-energy filter despite their geo-
metrical dissimilarity. The RMSD threshold in the RMSD
filter increases with molecular flexibility, and for those
molecules with moderate flexibility (with number of
rotatable bonds up to 15), the threshold is about 0.5 Å
with the scaling parameter set to 0.1. From the observa-
tion of the clustering heatmaps, most of the conformers
are geometrically different from each other at the thresh-
old level of 0.5 Å considering the corresponding on-diag-
onal blocks are small-size and non-overlapped (filled by
deepest red colour). When increasing the threshold, the
areas of on-diagonal blocks become larger and the corre-
sponding borders turn out fuzzier. Cyndi employs a scal-
able RMSD threshold instead and achieves a good
compromise to generate limited number (usually no
more than 100 averagely) of diverse conformers.

It may be argued that the generated conformers can be
biased geometrically to mimic the starting conformation

because GD objective reflects essentially minimized
RMSD between the individuals and initial conformation.
Actually, different from single objective GA in which the
population evolves towards the extremum in the single
objective space exclusively, the optimization essential of
Cyndi is to generate a non-dominant solution set in the
hyperspace of multiple objectives because no single or a
few objectives can exclusively harness the optima towards
the extrema in single or parts of objective space. For the
Pareto optimal conformers in the final archive, most of
them are geometrically distant from the initial conformers
because they are favourable in other objective spaces such
as VDW and torsion energy. Namely the objectives divide
the objective hyperspace into grids with the size of corre-
sponding ο values and the Pareto solutions scatters across
those non-dominant grids consisting of Pareto frontier.

Currently, Cyndi only supports generating conformer
ensemble from an initial 3D conformation, and moreo-
ver, since Cyndi merely perturbs the dihedral torsions in
optimization procedure, it is not compulsive but highly
recommended starting from the conformer converted by
the 2D-to-3D conversion toolkits or the one energy-mini-
mized to local minimum with appropriate force field to
ensure the generated conformers bear reasonable bond
lengths and bond angles. The work of integrating the 1D-
to-3D and 2D-to-3D features to perfect Cyndi in handling
the problem of conformation generation is under
progress.

Conclusion
A new conformation generation method Cyndi was
designed based on a fast and robust MOEA theory. Using
multiple objectives controlling energy accessibility as well
as geometric diversity, Cyndi is capable of searching the
conformational space in nearly constant time and sam-
pling the Pareto frontier on which both energy and diver-
sity features are favoured. Three independent objectives
(VDW energy, torsion energy and geometrical dissimilar-
ity) are employed and tested against 329 ligands with
available crystal determined conformations, the resulted
minimum RMSD to bioactive conformers amounts to
0.864 Å in average. The objectives can be implemented
easily so it's very simple to customize Cyndi to generate
different conformation ensembles which are pareto opti-
mals scattering in the hyperspace formed by different
objectives.

Methods
Overview of Multi-objective Evolution Algorithm

In real life, most optimization problems involve multiple
objectives (possibly in conflict), which should be satisfied
simultaneously. Generally, optimization with single
objective often results in "optimal" solutions against only
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Clustering analyses of generated conformers for 4 selected molecule structuresFigure 9
Clustering analyses of generated conformers for 4 selected molecule structures. The dendrograms and reordered 
similarity heatmaps represent the results of the complete-linkage clustering, applying to the distance matrix populated via com-
puting the global RMSD values between each pair of conformers in the ensembles. The blocks in the heatmaps are coloured 
according to the legend which represents RMSD value as colour bins. The structures for a) 1APT, b) 1TMN, c) 8GCH, and d) 
1EPO are presented.
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one objective but unacceptable with respect to the other
ones. To solve this trade-off problem, multiple instead of
single reasonable solutions should be reserved, incorpo-
rating multiple objectives optimized simultaneously. A
solution is said to be Pareto optimal if it is not dominated
by any other solutions in the solution space, which cannot
be improved with respect to any objective without wors-
ening at least one of other objectives. The set of all feasible
non-dominated solutions is referred to as the non-domi-
nated or Pareto optimal solutions and the Pareto frontier
can be mapped out by ranking the fitness of the Pareto
optimal solutions in the search space, see references [43-
45] for more details.

Through the operation on the population of individuals
with inherent parallel mechanism, GA or EA is suitable to
solve multi-objective optimization problems. The crosso-
ver operator may exploit structures of good solutions with
respect to different objectives to create new non-domi-
nated solutions in unexplored parts of Pareto front. There
are many MOGA and MOEA methods tailored for differ-
ent practical problems, and generally speaking they are
merely different with respect to fitness assignment proce-
dure, elitism, or diversification approaches [46].

We adopt ο-MOEA method, a robust algorithm based on
the concept of ο-domination developed by Deb et al.
[47,48] as our conformational searching engine. In ο-
MOEA, two populations co-evolve, one is the general
evolving population P(t) identical to those used in single-
objective GA, the other is the "archive" population A(t)
serving as the collection of Pareto solutions generated in
the tth generation. A(0) is the ο-non-dominated solution
set of P(0) after initialization. The crossover operator is
applied to two individuals randomly selected from P(t)
and A(t), respectively, and each new child is compared
with the individuals in the two populations by the ο-dom-
ination method to check if it would be accepted or not.
Each individual in the archive is defined as identification
array B as following:

where  is the minimum probable value of the jth

objective function and οj is the user-definable tolerance

between two objective values. Identification array divides
the whole jth objective function space into the hyper-

boxes with the size of οj. If the identification array of the

new child dominates any archive individual, then the
dominated individual is substituted by the new child; oth-
erwise the new child is discarded. If none of the two con-

ditions is satisfied, the new child is a ο-non-dominated
solution. Following criteria are used to handle the new
child:

1. When the new child and one archive individual
share the same identification array B, namely they are
in the same box, the new child would only be accepted
either if it dominates the archive individual or it is
nearer to B.

2. When the new child doesn't share one identification
array B with any of archive individuals, the new child
would be accepted.

In this way, the distribution of Pareto optimal solution set
is attained under the condition that each box of the Pareto
frontier can only be occupied by one solution. The
number of Pareto optimal solutions can be restrained by
scaling the ο value.

Similarly, the selection procedure in the population P(t)
is also determined by epsilon domination. If the new
child dominates one or more individuals in P(t), the new
child would substitute one of such individuals randomly,
or else it should be discarded. If they are non-dominated
by each other, one of them would be substituted by the
other randomly to fix the size of the population.

Details of MOEA in Cyndi

2.1 Genome Encoding

Similar to the encoding scheme used in traditional single
objective GA operated on molecules, namely the mole-
cules are divided into a set of rigid fragments linked by
several rotatable single bonds, Cyndi encodes the genome
into a vector of real numbers within the interval of [0, 2π),
which represents the torsion angle each rotatable bond to
be rotated during the conformation generation. The phe-
notypes, namely the conformers, are easily translated
through rotating the single bond by the values coded in
each gene. There have been some reports declaring that
reducing the continuous torsion space into discrete one
(using torsion grid or biasing the torsion value towards
the favourable ranges discovered through mining torsion
space) may boost convergence [15], however, this
assumption may cause missing some conformational sig-
nificant areas due to the limited accessible information,
for this reason, we still manipulate the genomes in contin-
uous torsion space.
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2.2 Optimization Objective Functions

Two terms of potential energy calculated with Tripos force
field, VDW and torsion energy, are taken as parts of the
objectives for separating the solutions in energy space,
during which both bond lengths and bond angles are fro-
zen. The torsion term is directly subjected to the geometric
variations during the evolution, consequently it is selected
as one of the objectives; the second objective is VDW
energy in that it increases exponentially with intensive
steric bumps so as to penalize the "ugly" conformers. The
format of VDW term is a conventional Lenard-Jones 12-6
function defined in Tripos force field and no cutoff is
employed regarding the small size of most drug-size mol-
ecules. Since all the energy calculations are performed
without considering solvent effects, electrostatic term is
also discarded to avoid abnormal compact conformations
induced by intra-molecular interaction such as internal
hydrogen bonds and salt bridges.

The profile of energy landscape is often described as a zig-
zagged hypersurface. Two geometrically similar conform-
ers may locate quite distant in energy hypersurface but
converge to one minimum after energy optimization.
Therefore a mechanism is necessary to promote geometric
diversity in the population of evolving conformers; the
geometric dissimilarity (GD) between each individual
and the input conformation is set as the third objective, to
control the geometrical distribution of the Pareto optimal
solutions. The GD calculation is formulated as eq. (2):

where xindiv, i and xinput, i are the positions of the ith heavy
atom in each individual and the input conformer. Here
only the positions of the heavy atoms are considered in
GD calculation.

Previous study indicated most of the bioactive conformers
tend to adopt relatively extended geometries [16], in light
of this important observation, Cyndi provides an optional
objective to direct the evolution towards generating con-
formers with different geometrical extension degree. Sim-
ilar to the work by Izrailev et al., the objective that
quantifies the degree of extension is formulated by calcu-
lating the gyration radius for each molecule, as defined in
eq.(3):

where xi and mi are the position and mass, respectively, of

the ith atom;  is the geometrical centre of the molecule.
This objective may improve the conformational diversity
if we have no idea about whether the bioactive conformer
is compact or extended.

The multi-objective optimization model of Cyndi consists
of a set of n parameters (design variables), a set of l objec-
tive functions, and a set of m constraints. Objective func-
tions and constraints are functions of the design variables.
It can be formulated mathematically as follows:

where x is the design vector x = {Tb1, <, Tbn}T, in which Tb1,
<, Tbn are the torsion angles of the nth rotatable bonds.
Accordingly, the constraints for the design variables
(g(x)s) can be represented as

0 ≤ Tb1, <, Tbn < 2π (5)

y is the objective vector, which consists of VDW term f1(x),
torsion score f2(x), and the diversity of geometry f3(x) or
f4(x), respectively. Note that the maximal problem for GD
or gyration radius of each conformation is converted to
minimal problem through reciprocal to ensure the most
conformational distribution in geometric space. The max-
imal X is denoted as the decision space, and Y is denoted
as the objective space.

The objective functions of Cyndi are easy to extend and
customize without modifying kernel of the algorithm. By
integrating other objectives as constraints, such as the
interaction energy of ligand with the binding receptor or
pharmacophore model matching, Cyndi would evolve to
facilitate structure or ligand based virtual screening easily.

2.3 Archive Post Processing

The final archive contains the optimal solutions on Pareto
frontier which have been separated by the objectives and
are non-dominant to each other. However, the conform-
ers in the archive may be energy-unfavourable or geomet-
rically crowded because they may be suboptimal in the
single objective case. Therefore, the final set of conforma-
tions is the pruned result of archive members by user-
definable energy and RMSD filters.

The conformational energy and geometry are optimized
using the conjugated gradient (CG) method with Tripos
force field, and all energy terms excluding electrostatic
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term and torsion term lest inner electrostatic interaction
and torsion angle perturbation undermine generated con-
formation. After energy minimization, following energy
cutoff is applied to discard those conformers beyond the
energy window:

Ecutoff = Ew + k × Nrot (6)

where Ew is a user-definable energy cutoff (default is 20
kcal/mol), Nrot is the number of rotatable bonds of current
molecule and k is the scaling parameter (user-definable
and the default value is 0.5). Similar to Balloon's
approach, such energy cutoff takes into account of the
effect imposed by molecular flexibility and reflects the
observed dependence between the local minima and
number of rotatable bonds of bioactive conformation
[49]. Only those conformers within the energy threshold
are labelled as energy-favoured and survived to subse-
quent RMSD filter.

The conformers survived from the energy filter are submit-
ted to a RMSD filter to remove geometrical duplicates. We
adopted the filter scheme defined in Catalyst [50]. Con-
formers are compared with each other in terms of RMSD
and any conformer within the RMSD tolerance (vide
infra) of another conformer is discarded:

where c is a user-definable scaling parameter, and Nrot,
again, is the number of rotatable bonds. The involvement
of molecular flexibility can efficiently reduce the geomet-
rical redundancy for highly flexible molecules.

Testing of Cyndi

The ability for conformation generation of Cyndi was
tested against a data set containing 329 drug-sized mole-
cules whose bioactive conformations were extracted from
the PDB database (see Additional file 1). This is a com-
bined set of part of CCDC/Astex subset [51,52] used in
Balloon's validation and the subset used by Izrailev et.al.
[53,54]. To avoid the influences on the generation of con-
formers from existing crystal structures, single 3D con-
former was regenerated for each molecule from 2D
structures using the Standardizer module of ChemAxon
package [55].

Cyndi test run was performed on each of the molecules in
the test set with 200 populations and 200 generations.
The probabilities for crossover and mutation operation
were set to 0.85 and 0.1, respectively. The relatively larger
mutation probability was designated to sample the con-
formational space more broadly by mutating the existing

conformers more frequently. The epsilon values for the
four objectives (VDW energy, torsion energy, GD value,
and gyration radius) were set as 20 kcal/mol, 5 kcal/mol,
0.2 Å and 0.1 Å, respectively. The maximum iteration for
post processing CG minimization was set to 100, and the
convergence criterion based on gradient RMS was set to
0.1 kcal·mol-1·Å-1. No initial optimization against the
input conformers was applied and the input conformers
were discarded from the final conformer ensembles.
Other parameters were set to the default values men-
tioned previously.

To make a comparison, the Pentium4 processor opti-
mized version of Balloon (version 0.6.6.4641) [56] as
well as three conformer generation methods (Catalyst
Best, Catalyst Fast and CEASAR) in DS2.0 [57-60] were
run against the same test. All default parameters were
applied and the maximum number of generated conform-
ers was limited to 100. The initial single 3D conformers
generated by Standardizer of ChemAxon were also
retained for further comparison (see Table A1 in Addi-
tional file 2).

To make an impartial comparison, the minimum RMSD
values between the crystal bound conformers and the con-
formers generated by all methods were calculated with a
third-party program, Vrms 1.0, which is an RMSD calcula-
tor removing artificial differences caused by symmetry
[61]. In this study, a conformation is considered to be suc-
cessfully reproduced if the RMSD value is less than 0.5 Å,
as compared to the original X-ray structure. Balloon,
Cyndi, Vrms and DS 2.0 were all run on a workstation
with an Intel Pentium Dual Core Processor (2.66 GHz).

Hierarchical clustering was applied to analyze the confor-
mational diversity of each conformer ensemble generated
by Cyndi. Vrms calculated RMSD values between each
pairs of conformers were used to populate a distance
matrix, which was then analyzed by applying complete
linkage agglomerative hierarchical clustering. The cluster-
ing results were visualized by dendrograms and reordered
heatmaps of the distance matrix.
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