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Abstract: Cytauxzoon felis is a tick-transmitted, obligate, hemoprotozoal, piroplasmid pathogen
of felids and the causative agent of cytauxzoonosis. It has a complex life cycle which includes a
tick as its definitive host and a felid as its intermediate host. Since its first description in 1976,
C. felis infections of felids have been reported in several southeastern and south-central U.S. states,
overlapping with the ranges of its two known biological vectors, Amblyomma americanum (Lone star
tick) and Dermacentor variabilis (American dog tick). Infected felids demonstrate disease as either an
acute, often-fatal, infection, or a subclinical carrier infection. To develop effective C. felis transmission
control strategies, the incidence of acute cytauxzoonosis, patient risk factors, the role of domestic
cat carriers, and ecological variabilities need to be investigated further. Of equal importance is
communicating these strategies for high-risk cat populations, including recommending year-round
use of an acaricide product for all cats that spend any time outdoors. More studies are needed to
further identify factors affecting C. felis and other Cytauxzoon spp. infection, transmission, disease
progression, and treatment options and outcomes within the U.S. and globally. Here we provide an
overview of C. felis highlighting its lifecycle within its definitive host, transmission to its intermediate
host, symptoms and signs providing evidence of transmission, definitive diagnosis, current treatment
and prevention strategies, and future considerations regarding this condition.

Keywords: Amblyomma americanum; cytauxzoonosis; Dermacentor variabilis; domestic cat; merogony;
schizogony; sporogony; sporozoites

1. Introduction

To date, five Cytauxzoon spp. have been identified worldwide: Cytauxzoon felis in the
Americas, Cytauxzoon europaeus, Cytauxzoon otrantorum, and Cytauxzoon banethi in Europe,
and Cytauxzoon manul in Asia [1,2]. Although all five species are closely related, this
article is intended as an overview or description of the Cytauxzoon felis organism found
in the continental United States (U.S.), including its history, phylogenetic classification,
anatomy, complex life cycle, and the repercussions of its passage through its definitive and
intermediate hosts. Only limited epidemiologic data on the detection of C. felis infection in
felids in the U.S. is presented in this overview. Readers interested in a thorough review
of where feline cytauxzoonosis has been identified since its initial description in 1948,
including felids infected by Cytauxzoon spp. found in Europe, Asia, and the Americas, are
referred to two excellent review articles: Wang et al. 2017 [2] and, Reichard et al. 2021 [3].

Cytauxzoon organisms are apicomplexan protozoa in the subclass Hematozoa, order
Piroplasmida, and family Theileriidae (Figure 1) [2]. The microscopic intra-erythrocytic
pathogens of the Cytauxzoon, Babesia, and Theileria genera are often called piroplasms due
to their 1–2-micron diameter pear-shaped or circular (signet ring) appearance [4]. Cytaux-
zoon felis is an obligate, hemoprotozoal, piroplasmid pathogen of felids and the agent
of cytauxzoonosis, an often-fatal disease of domestic cats residing in the southeastern
and south-central U.S. [3,5]. The history of C. felis, its phylogenetic placement, anatomy,
and complex life cycle has been studied for over four decades with many questions
still unanswered.
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ily Theileriidae, order Piroplasmida, subclass Hematozoa, and phylum Apicomplexa. 

2. History 
The Cytauxzoon genus was first described in 1948, when W.O. Neitz and A.D. Thomas 

characterized a Theileria-like piroplasm that underwent schizogony in histocytes of an Af-
rican duiker (Sylvicapra grimmia) from South Africa [6]. Nearly thirty years later, Cy-
tauxzoon felis was first described by J.E. Wagner of the University of Missouri when he 
characterized a Cytauxzoon-like piroplasm in four cats that suffered fatal disease outcomes 
from 1973 to 1975 [7]. Because Cytauxzoon organisms had previously only been described 
in African ungulates, the Plum Island Animal Disease Center of the United States Depart-
ment of Agriculture (USDA) and the Animal and Plant Health Inspection Service (APHIS) 
endeavored to determine if the organism was a foreign disease and whether or not it 
posed a threat to the U.S. livestock industry [8]. To help address this question, over 500 
cats were experimentally infected with C. felis in over 100 serial passages, and the course 
and outcome of the disease was studied [8]. Their findings suggested that the disease was: 
(1) largely fatal for domestic cats, and (2) unlikely to be a foreign animal disease, thus not 
a concern for U.S. food production. Since that time, molecular diagnostic methods suggest 
that the organism found in the African duiker was likely a Theileria species [9]. The poten-
tial for interspecies transmission of C. felis was investigated further when four domestic 
livestock species, nine lab animal species, and 17 wildlife species were experimentally in-
oculated with blood or tissue homogenates from euthanized domestic cats with confirmed 
acute cytauxzoonosis [10]. One of the bobcats in the study developed clinical signs while 
another bobcat and two sheep developed low-grade persistent parasitemia without clini-
cal signs. No studies have investigated whether sheep with parasitemia can act as a com-
petent host to infect the tick vector of this disease. Since its initial description in the U.S., 
C. felis has been identified in a variety of felid species within the U.S. and South America 
[2,3]. 

3. Phylogeny 
In the past, taxonomic classification of organisms like C. felis was based on pheno-

typic similarities, but with the advent of molecular assays, genetic similarities have taken 
a greater role in phylogenetic organization [11]. Several genetic-based phylogenetic 

Figure 1. Apicomplexa phylogenetic tree with the genus Cytauxzoon (circled in red) within the family
Theileriidae, order Piroplasmida, subclass Hematozoa, and phylum Apicomplexa.

2. History

The Cytauxzoon genus was first described in 1948, when W.O. Neitz and A.D. Thomas
characterized a Theileria-like piroplasm that underwent schizogony in histocytes of an
African duiker (Sylvicapra grimmia) from South Africa [6]. Nearly thirty years later, Cy-
tauxzoon felis was first described by J.E. Wagner of the University of Missouri when he
characterized a Cytauxzoon-like piroplasm in four cats that suffered fatal disease outcomes
from 1973 to 1975 [7]. Because Cytauxzoon organisms had previously only been described
in African ungulates, the Plum Island Animal Disease Center of the United States Depart-
ment of Agriculture (USDA) and the Animal and Plant Health Inspection Service (APHIS)
endeavored to determine if the organism was a foreign disease and whether or not it posed
a threat to the U.S. livestock industry [8]. To help address this question, over 500 cats were
experimentally infected with C. felis in over 100 serial passages, and the course and outcome
of the disease was studied [8]. Their findings suggested that the disease was: (1) largely
fatal for domestic cats, and (2) unlikely to be a foreign animal disease, thus not a concern
for U.S. food production. Since that time, molecular diagnostic methods suggest that the
organism found in the African duiker was likely a Theileria species [9]. The potential for
interspecies transmission of C. felis was investigated further when four domestic livestock
species, nine lab animal species, and 17 wildlife species were experimentally inoculated
with blood or tissue homogenates from euthanized domestic cats with confirmed acute
cytauxzoonosis [10]. One of the bobcats in the study developed clinical signs while another
bobcat and two sheep developed low-grade persistent parasitemia without clinical signs.
No studies have investigated whether sheep with parasitemia can act as a competent host
to infect the tick vector of this disease. Since its initial description in the U.S., C. felis has
been identified in a variety of felid species within the U.S. and South America [2,3].

3. Phylogeny

In the past, taxonomic classification of organisms like C. felis was based on phenotypic
similarities, but with the advent of molecular assays, genetic similarities have taken a greater
role in phylogenetic organization [11]. Several genetic-based phylogenetic studies have
been performed to flesh out the taxonomic organization of the order Piroplasmida within
the phylum Apicomplexa. These have included the 18S gene, C1A-cysteine proteinase (a cell
invasion-egress enzyme) gene, and a linked 18S ribosomal subunit-cox1 mitochondrial
amino acid sequence evaluation [11–13]. The results of these studies suggest five distinct
Piroplasmida groups: (1) Babesia sensu strico, (2) Theileria and Cytauxzoon, (3) Theileria equi,
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(4) Babesia conradae, and (5) Babesia microti spp. [11]. The taxonomic classification of other
Cytauxzoon spp. found in Europe (C. europaeus, C. otrantorum, and C. banethi) and Asia
(C. manul) using the 18S rRNA genes have determined all five species are related with <2%
identity difference between them [1,2]. Although the genetic difference between the three
European Cytauxzoon spp. and C. manul is only 0.39%, a recent study suggests they are
closely related but separate species [1].

4. Anatomy

Like all Apicomplexa, each C. felis organism contains a nucleus, endoplasmic reticulum,
Golgi apparatus, a mitochondrion, an apicoplast, and a pellicle with an apical complex
(Figure 2) [14]. The first four organelles have functions much like those in other unicellular
or multicellular eukaryote organisms, whereas the apicoplast and apical complex are
unique to members of this phylum. The apicoplast contains its own circular DNA and
is surrounded by triple or quadruple membranes, supporting an endosymbiotic origin.
Although the exact function of this organelle is unclear, it has been proposed that it may take
part in several potential pathways including the synthesis of fatty acids, heme breakdown,
amino acid synthesis, isoprenoid precursors, and/or iron-sulfur clusters [12]. More studies
are needed to fully elucidate the function of apicoplasts in these organisms.
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The apical complex and pellicle consists of up to seven distinct cytoskeletal compo-
nents, each with a specialized function (Figure 2) [4,12]. The outer membrane and subpel-
licular microtubules of the pellicle provide a variably elastic cell shape to the organism [15].
The polar ring, made up of microtubular bands at the apical end of the organism, acts as an
organizing center for the subpellicular microtubules and gives the cell polarity. The small
dense bodies called micronemes secrete adhesive proteins allowing the hemoprotozoan to
move along the host cell membrane in a gliding motion, just prior to penetration [14,16].
Rhoptries, large saccular electron dense bodies, and dense body vacuoles secrete dissolving
enzymes to enable penetration into the host cell [4,12]. The final apical complex structure,
lacking in all Hematozoans including C. felis, is the conoid, a spiral cone of microtubules
associated with the polar ring, used as a feeding tube for cellular vampirism in some
apicomplexans (not depicted in Figure 2) [12].

The one mitochondrion found in each apicomplexan organism generally contains
multiple copies of short (6-kb) circular or linear strands of DNA (miDNA) [14]. The number
of mitochondrial genome copies per mitochondrion in each apicomplexan species varies
from a handful to over 100 copies each, which may further vary based on the apicomplexan
life stage. This redundancy may be a survival mechanism developed to maintain nucleic
acid sequence integrity by allowing the disposal of miDNA damaged by reactive oxygen
species (ROS) or harmful mutations [17]. The number of mitochondrial genome copies
per C. felis mitochondrion has yet to be determined. Interestingly, apicomplexan miDNA
contains genes for only three electron transport chain (ETC) proteins: cytochrome b (Cytb),
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cytochrome c oxidase subunit I (Cox1), and cytochrome c oxidase subunit III (Cox3) [14].
As such, they are missing the necessary genes for at least two of the needed mitochondrial
ETC subunits to perform oxidative phosphorylation and may derive all their energy via
anaerobic glycolysis [18]. It has been proposed that mitochondrion ETC functions in these
organisms include: (1) providing an electron sink for ubiquinone-dependent dehydroge-
nase used in cell metabolism for mitochondrial protein degradation, (2) maintaining a
transmembrane gradient for metabolite and protein transport, and/or (3) reducing ROS.
Additional studies are needed to evaluate the specific function of this organelle in apicom-
plexan organisms.

5. Life Cycle
5.1. Summary

Cytauxzoon felis has a complex lifecycle that starts, for the feline host, with the injection
of C. felis sporozoite-laden saliva from a feeding tick [4] (Figure 3). Each sporozoite invades
a monocyte and undergoes asexual division (schizogony) resulting in hundreds if not
thousands of ring-shaped merozoites being released into the blood when the monocyte
ruptures. Each merozoite, or piroplasm, invades an erythrocyte and either develops into a
non-replicating macro- and micro-gametocyte (gamogony) or undergoes asexual division
(merogony), resulting in 2–4 piroplasms being released when the erythrocyte ruptures.
Repeating rounds of merogony can occur indefinitely while the felid is alive. When a
vector-competent tick attaches to feed on an infected felid, it ingests the piroplasms along
with their blood meal. The gametocyte piroplasms will then undergo sexual development
(amphimixis) within the gut of the tick to form, first a zygote, then kinetes before migrating
and encysting in the tick’s salivary glands, where they undergo additional replication
(sporogony). Once the tick molts into a nymph or adult, the encysted sporozoites are ready
to be released in the saliva of the feeding tick. Thus, the cycle begins anew. A detailed
description of each C. felis life cycle stage is provided below and is based on what is known
of Theileria spp., a close relative with a presumed similar cycle (Figure 3).
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5.2. Asexual Schizogony

The rapid multiplication of C. felis within a monocyte is called schizogony and the
merozoite-laden monocytes are called schizonts or Koch’s bodies [4]. Asexual schizogony
begins after sporozoite-laden tick saliva is released into the feeding lesion around an em-
bedded tick’s mouthparts [4,12]. The immotile sporozoites, which have a fuzzy coat made
up of fibrillar material and hypervariable surface proteins, rely on random contact with
monocytes to begin their attachment and internalization. Unlike some apicomplexans,
Theileria spp. and presumably C. felis, does not require an apical-end orientation with the
host cell. It can enter the host cell in any orientation and does so within three minutes of
contact. The process of invasion is as follows; (1) the organism recognizes and attaches to
the host membrane, (2) using gliding motility, a junction is formed between the parasite
and the host cell, (3) as the parasite internalizes via host membrane zippering, it’s fuzzy
coat is shed, (4) the host membrane surrounding the parasite is separated and dissolved,
leaving the organism free within the host cytoplasm, and (5) the parasite takes control of the
host cell’s microtubular network for its own development [4,16] (Figure 4). The mechanism
by which the parasite hijacks the host cell to multiply and/or evade the host’s immune
system is unknown [19]. In addition, it is unknown if C. felis blocks monocyte apoptosis
as Theileria parva blocks lymphocyte apoptosis. Regardless, once established within a host
monocyte, ultrastructural changes to the parasite’s organelles and outer membrane and
sequential fissions results in a multilobulated, multinucleated mass connected by cytoplas-
mic bridges [4,20]. Each lobe has a nucleus, a mitochondrion, and related organelles [20].
Eventually the cytoplasmic bridges separate, leaving multiple mature intracytoplasmic
uninuclear merozoites [4,20]. Mature schizonts (measuring 25–60 µm in diameter) rupture,
releasing merozoites into the blood [21] (Figure 5). As with all extracellular phases of C. felis
development, merozoites form a fuzzy coat of fibrillar material to assist in its invasion of
the next host cell, the erythrocyte [4,20].
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5.3. Asexual Merogony

The budding fission of C. felis within erythrocytes is called merogony and occurs when
a trophozoite divides into a pair or tetrad of merozoites [4]. Merozoites enter erythrocytes
in the same fashion that sporozoites enter monocytes [4,20]. The internalized parasite
develops into a trophozoite, phagocytoses or pinocytosis the host cytoplasm through their
pellicular micropores, and then asexually divides into 2–4 merozoites. Erythrocyte rupture
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releases the merozoites into the host blood to begin the asexual merogony cycle again. With
that said, not all trophozoites produce merozoites. Some develop into haploid gametocytes
(gamogony), which do not reproduce within erythrocytes [4]. Gametocytes are larger than
merozoites and have unusual shapes that are not visible via light microscopy. As such,
trophozoites, merozoites, and gametocytes all appear as 1–2 µm signet ring piroplasms
within erythrocytes, microscopically (Figure 6).
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5.4. Sexual Reproduction

Amphimixis, the fusion of two gametes of Theileria spp. and, presumably C. felis,
occurs within the gut of the tick vector [4]. Ticks coat their food bolus with organized chitin
microfibrils held together with specific proteins (peritrophins) within a thick proteoglycan
matrix. This porous coating, called the peritrophic matrix, acts as a barrier protecting
the tick’s gut epithelium from infectious organisms as well as mechanical and chemical
damage, while improving the efficiency of digestion [22–24]. Intra-erythrocyte merozoites,
trophozoites, and gametocytes enter the tick gut lumen along with the bloodmeal coated
with the previously described peritrophic matrix [4]. Within five days of ingestion, and
as the erythrocytes are lysed, the merozoites and trophozoites are destroyed and digested,
whereas the gametocytes reorganize their microtubules and cytoplasm forming haploid
anisogametes [4]. Macrogametes (female form) take on a rounded shape, whereas microga-
metes (male form) stretch out and form a ray body, which has the shape of an arrowhead
with trailing arms [4]. When a micro- and macrogamete come into close contact, they attach
to each other via small fibrils, a small tube forms from one gamete to the other, the nucleus
of the microgamete fuses with the nucleus of the macrogamete, and a motile diploid zygote
is formed [4]. The arrowhead of the zygote releases chitinases and proteinases to dissolve
a path through the peritrophic matrix, allowing its escape into the ecto-peritrophic space
next to the tick’s intestinal epithelial cells [4]. The zygote immediately enters an intestinal
epithelial cell via the same mechanisms previously described [4]. Once inside the host
cell’s cytoplasm, the zygote spheres and its arrowhead disappears, and multiple motile
haploid kinetes are formed via meiosis [4]. The kinetes then exit the cell and enter the tick’s
hemolymph, an open circulatory system equivalent to mammalian blood [4]. This process
occurs within 13–34 days of tick ingestion [4].

5.5. Asexual Sporogony

Sporogony is the production of infective sporozoites. This stage starts with the kinetes
travelling to the tick’s salivary acini and gaining entry in the same way they entered
monocytes, erythrocytes, and tick intestinal epithelial cells [4]. The intracellular kinete
then forms a sporont, a large multinucleated syncytial cell that further develops into a
sporoblast, a sporont with a three-dimensional branching network. During this process,
the tick’s salivary acinar cell hypertrophies to accommodate the enlarging sporoblast. At
this point the tick undergoes ecdysis (molting of its cuticle) and the sporoblast remains
dormant. In this way, the C. felis organisms remain within their tick host from one life
stage to the next, also called transstadial or horizontal transmission. Within 48 h of tick
attachment to a host, the dormant sporoblast matures, apical complexes are formed, and
sporozoites ‘bud’ off via multiple fission. These sporozoites are released into the tick saliva
and inoculated into the host. If the host is a felid, the life cycle is repeated. Sporogony is an
asynchronous event with various stages of sporozoite development occurring at the same
time within salivary acinar cells. The result is a nearly continuous production, and release,
of sporozoites into the tick’s saliva and thus, the felid host.

6. Transmission Vectors & Definitive Host

Thus far, two ixodid ticks have been identified as competent biological vectors of C. felis
in the U.S., Amblyomma americanum and Dermacentor variabilis [25–28]. Like all ixodid ticks,
they have a life cycle with four stages, each of which can survive several months waiting
for a host: (1) egg, (2) larva, (3) nymph, and (4) adult, with the latter three stages requiring
a bloodmeal prior to transitioning to the next stage [29,30]. Depending on environmental
conditions, mainly temperature and humidity, the life cycle of these ticks can take 2–3 years
to complete [29]. To identify a host, ticks engage in a behavior called ‘questing’ which
includes climbing vegetation to an appropriate height, extending its two rostral legs for host
attachment, and responding to several potential factors, e.g., movement, carbon dioxide,
size, color, odor, touch, and sweat [29,30]. Once piggy-backed onto its host, the tick can
take up to several hours to find an appropriate feeding site [30]. To obtain a bloodmeal, the
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tick uses toothed chelicerae to cut through the dermis and allow for the barbed hypostome
to penetrate the skin. The mouthparts secrete a cement or latex-like material to hold
the hypostome in place, during the several days of feeding [29,30]. During feeding, the
tick releases many substances in its saliva, including anti-coagulants, anti-inflammatories,
analgesics, and pathogens, like C. felis [31,32]. These salivary substances mitigate the host
immune responses likely assisting pathogens like C. felis to become established. In addition,
the salivary composition changes over time to ensure an uninterrupted bloodmeal and
reaches peak volumes during the final 24–48 h of attachment. It is unknown how changes
in saliva composition affects C. felis sporozoite transmission to the felid host, if at all.
Regardless of life stage, once feeding is complete, the tick falls off, digests its bloodmeal,
and molts into the next life stage in preparation to overwinter or lay an egg mass of several
thousand eggs [30]. The larval, nymph, and adult forms of vector competent ticks may
become infected with C. felis during acquisition of a bloodmeal from a piroplasm-carrying
felid. After molting into the nymph or adult forms, these ticks transmit C. felis to their
next felid host. Although both tick vectors have similar life cycles and a preference for
geographic areas with ground debris, long grasses, and brushy to wooded areas, they also
have important differences [29,33].

6.1. Amblyomma americanum

Amblyomma americanum, the Lone star tick, is indigenous to the southeastern and
mid-central U.S. with a range that overlaps that of D. variabilis, and is expanding west
and north with climate changes [29,34]. It is a brown sexually dimorphic species in which
the females demonstrate a white spot on their central caudal scutum, while the males
demonstrate small white spots along the margin of their scutum [29]. This is an aggressive,
indiscriminate tick species in which all life stages will feed on any size animal, including
cats. Adults are most active in early spring to mid-summer, nymphs in late spring to early
fall, and larvae in late summer to early fall [29]. However, activity will vary with region
and location. A nationwide tick infestation study found that A. americanum ticks were the
second most common tick found on cats, most being in larval forms (39.1%) with fewer
adults and nymphs [35]. Amblyomma americanum were generally found on the ventral
regions of cats, especially the tail and perianal regions [36]. Although feline tick infestations
peak in mid-summer, studies have identified cats with ticks all year around, including
exclusively indoor cats [35,36]. As such, C. felis infections could occur in any season and in
any cat regardless of their lifestyle.

Two studies have demonstrated A. americanum is a competent vector for C. felis trans-
mission. The first study used A. americanum adults that had been fed to repletion as nymphs,
on a chronically C. felis-infected cat with 0.9% C. felis parasitemia, to infect four C. felis naïve
cats [25]. All four C. felis naïve cats exhibited typical cytauxzoonosis signs with evidence
of infection observed in blood and tissue evaluation. Another study used A. americanum
nymphs that had been fed to repletion as larvae, on a chronically C. felis-infected cat with
0.004% C. felis parasitemia, to infect three C. felis naïve cats [27]. All three C. felis naïve
cats exhibited typical cytauxzoonosis signs with evidence of infection on blood and tissue
evaluation. Transmission studies have determined C. felis sporozoite transfer can occur
within 36–72 h of feeding initiation by a tick of this species [26,28].

6.2. Dermacentor variabilis

Dermacentor variabilis, the American dog tick, has a large geographic distribution extend-
ing over the entire eastern half of the U.S., with a focal region on the west coast [31,37,38].
It is a brown tick with gold or silver markings on its scutum. Larvae of this species prefer
to feed on rodent-sized hosts and are most active in early spring through mid-summer,
nymphs prefer opossum-sized hosts and are most active in early summer to early fall, and
adult D. variabilis ticks feed most commonly on dog to deer-sized mammalian hosts, with
their greatest activity in early spring to early fall. A recent, nationwide tick infestation
study found that D. variabilis ticks were the third most common tick species found on cats,
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most being adult females (59.2%), with far fewer larvae and rare nymphs recovered [35].
Dermacentor variabilis ticks were generally found in the dorsal regions of cats, especially the
head and ears [36].

Two studies have demonstrated that D. variabilis is a competent vector for C. felis
transmission. In the first study, D. variabilis nymphs were allowed to feed to repletion
on a splenectomized chronically C. felis-infected wild-caught bobcat with 40% C. felis
parasitemia [39]. Once the ticks molted into adults, they were allowed to feed on a splenec-
tomized cat, resulting in typical acute cytauxzoonosis signs and findings. Another study
used laboratory-reared D. variabilis nymphs allowed to feed to repletion on C. felis-infected
cats [20]. After molting into adults, they were allowed to feed on C. felis naïve cats. As
with the previous experiment, the C. felis naïve cats also demonstrated typical acute cytaux-
zoonosis signs and findings. To this author’s knowledge, transmission time studies have
not been performed to determine the transfer time of C. felis to felids by D. variabilis.

Although the above studies from 1984 [39] and 1992 [20] demonstrated that D. variabilis
is capable of transmitting C. felis, three studies from 2009 to 2019 compared both the
A. americanum and D. variabilis competency to transmit C. felis to domestic cats and found
it was only transmitted by A. americanum [25,27,40]. The reason for transmission failure
in these recent studies is unknown. Perhaps some D. variabilis lineages are refractory to
C. felis. Additionally, since adult D. variabilis ticks more commonly feed on cats than juvenile
stages, it makes sense that transmission by D. variabilis is less common. This contrasts with
A. americanum, for which larval, nymphal and adult life stages will feed on cats providing
multiple opportunities for C. felis acquisition and transmission.

Given their expanding distribution, aggressive nature, observation frequency on feline
hosts, and correlation of geographic distribution with clinical cases of cytauxzoonosis,
A. americanum is likely the more significant vector for C. felis transmission to felids, especially
domestic felids. As the geographic ranges of C. felis vector competent ticks continue to
expand, it is likely that the number of cytauxzoonosis cases seen in felid intermediate hosts
will also increase.

7. Felid Intermediate Hosts

Members of the family Felidae serve as intermediate hosts of C. felis and infection
reservoirs. Examples of felids naturally infected with C. felis in the U.S. include bobcats
(Lynx rufus) [41–45], domestic cats (Felis catus) [46,47], cougars (Puma concolor) [48–50],
captive lions (Panthera leo), and tigers (Panthera tigris) [51,52]. Of these, only the bobcat and
domestic cat have been confirmed as competent reservoirs for C. felis transmission to other
felids via vector competent tick species [25,39,40,53].

For many decades, the bobcat was assumed to be the primary reservoir for C. felis in
the U.S. Studies demonstrated that most bobcats show few clinical signs with a shortened
schizont phase [41–43]. One prevalence study that evaluated the distribution and preva-
lence of C. felis carriers in wild felids (n = 705) using nested PCR and sequence analysis,
found that 138 of 696 bobcats over 14 states tested positive for C. felis [45]. The individual
state prevalence of C. felis in bobcats varied from 0 to 79%, with a strong association between
the C. felis prevalence and the distribution of A. americanum. With that said, there are also
reports of acute cases in bobcats leading to death [42,54]. It is possible that acute cases of
this disease occur more frequently than thought in bobcats but are never seen due to the
hidden life of these small predators.

At one time, domestic cats were considered a dead-end host for C. felis as infection
commonly ended in death [2,3,55,56]. However, as more studies explored C. felis prevalence
among domestic cats, this assumption came under scrutiny [2,28,40,53,57–61] (Figure 7).
Four studies between 2007 and 2020 in the U.S. looked at the prevalence of C. felis carrier do-
mestic cats using molecular diagnostic assays. One study evaluated 961 trap-neuter-release
cats in Florida (n = 494), North Carolina (n = 392), and Tennessee (n = 75) identifying only
3 positive cases (0.3% overall prevalence) [59]. Another study identified 56 positive cases
out of 902 healthy client-owned cats in Arkansas (25/161 cats; 15.5% prevalence), Missouri
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(8/62 cats; 12.9% prevalence), and Oklahoma (23/679 cats; 3.4% prevalence) [53]. A third
study identified 3 positives out of 672 healthy free-roaming (presumed trap-and-release)
cats in Oklahoma (3/380 cats; 0.8% prevalence) and Iowa (0/292 cats: 0% prevalence) [28].
The last study evaluated 1,104 feral (n = 216), owned (n = 351), and rescued (n = 537)
domestic cats with no known history of Cytauxzoon infection in eastern Kansas, identifying
270 positive cases (25.8% overall prevalence) [5]. These studies suggest that domestic cats
can, and are likely to act, as significant infection reservoirs in these areas. In A. americanum
endemic areas especially, both feral and owned domestic cats that survive acute cytaux-
zoonosis can serve as infection reservoirs for indigenous Lone star ticks to perpetuate the
C. felis life cycle.
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8. Cytauxzoonosis

Cytauxzoonosis can present as either an acute life-threatening form or as a subclinical
form, with the subclinical form generally diagnosed incidentally. The acute form is clinically
evident during the leukocyte (schizogenous) phase of C. felis infection and is most typically
seen in late spring with fewer cases seen in early fall, corresponding with tick vector
activity [21,62]. The mortality rate for acutely infected cats presented to veterinary facilities
is very high (40–100%) depending on whether appropriate and timely treatment is initiated
or not. The chronic subclinical form is the result of surviving an acute infectious form and
is evident during the erythrocyte (merogonous) phase of C. felis infection. Felids with the
subclinical form act as a reservoir for future tick and felid infections and do not benefit
from any known treatments.

8.1. Acute Disease

Cats with acute cytauxzoonosis commonly present to the veterinary clinic for acute
lethargy, anorexia, depression, and fever approximately 11 days post infection
(dpi) [2,40,55,57,58]. On physical exam, these cats are dehydrated, pyrexic (103–106 ◦F;
39.4–41.1 ◦C), have pale mucous membranes, and splenomegaly [2,40,55,57,58,63]. As the
disease progresses, pyrexia resolves and drops to subnormal with icterus and dyspnea devel-
oping shortly thereafter (16–21 dpi) [3,40,58,62]. Complete blood count and serum biochem-
istry changes are seen at around 13 dpi. Cytopenias are variable and can include: (1) marked
non-regenerative anemia (0.10–0.18 L/L; RI 0.29–0.48 L/L), (2) leukopenia (1.3–6.5 × 109/L;
RI 5.4–2.3 × 109/L), (3) neutrophilia (10.45–22.09 × 109/L; RI 2.5–8.5 × 109/L), (4) lympho-
cytosis (21.2–31.63 × 109/L; RI 1.2–8.0 × 109/L), and (5) moderate to marked thrombocytope-
nia (12.9–73.3 × 109/L; RI 300–800 × 109/L) [40,55,63]. Serum biochemistry and urinalysis
findings commonly include decreased albumin, increased glucose (7.94–12.15 mmol/L;
RI 3.50–8.32 mmol/L), increased Alanine Aminotransferase (ALT), increased total biliru-
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bin (15.39–141.93 mmol/L; RI 0.0–8.55 mmol/L), and bilirubinuria. When blood smears
are evaluated, schizont-laden monocytes may or may not be seen at the feathered edge
(Figure 5), but 1–2 µm signet ring piroplasms within erythrocytes will be seen by 18 dpi [40]
(Figure 6). Blood samples submitted for real-time PCR will test positive for C. felis at around
17 dpi. More sensitive PCR testing, e.g., droplet digital PCR (ddPCR), could improve early
diagnosis of acute disease allowing for earlier institution of life-saving treatment [64].

Death, generally occurring at about 21 dpi, has long been assumed to be due to vas-
cular obstruction by engorged schizonts, resulting in multiorgan failure due to hypoxic
injury. However, recent studies have suggested that along with hypoxic injury, local and
systemic immune responses to proinflammatory substances released by neutrophils and
schizogenous monocytes are responsible for much of the morbidity and mortality seen
in cytauxzoonosis [21,65–67]. Leukocyte activation results in proinflammatory cytokine
release which affect platelets and endothelial cells resulting in a hypercoagulable state
that may culminate in disseminated intravascular coagulation (DIC) [67,68]. Studies have
measured a significantly higher systemic concentration of the proinflammatory cytokine
TNF-α in cats that eventually died of the disease versus those that survived [65,66]. In
addition, CD18, an adhesion molecule that likely attaches infected monocytes to activated
endothelium, was also upregulated in cats that died versus those that recovered [65]. It is
not yet known whether the immune dysregulation seen is caused by the parasites them-
selves or by the secondary responses to proinflammatory cytokines. Cats that succumbed
to cytauxzoonosis had typical interstitial pneumonia findings on lung histopathology that
included thickened pulmonary interstitium due to edema and neutrophilic infiltrates, neu-
trophilic alveolar exudate, and evidence of vasculitis. Immunohistochemistry demonstrated
“a significant, widespread, qualitative increase in the expression of the pro-inflammatory
cytokines TNF-α, IL-1β, IL-6, as well as inducible nitric oxide synthase (iNOS)”, while
uninfected cat tissues demonstrated no or minimal expression of iNOS [66]. Expression
of iNOS is commonly found in human and animals with acute pulmonary distress syn-
drome [66]. In the aforementioned studies, schizonts stained positive for iNOS, suggesting
they were producing reactive nitrogen intermediates [66]. These intermediates can then
activate TNF-α, IL-1β, and/or IL-6. TNF-α and IL-1β upregulate CD18, the adhesion
molecule previously mentioned, while TNF-α activates endothelial cells and induces them
to express MHC-II [65,66]. Activated endothelial cells contract, causing local edema, and
release nitrous oxide (NO), which contributes to local tissue inflammation and damage,
and results in hypotensive shock and microvascular damage [66].

On necropsy, felids that have succumbed to acute cytauxzoonosis demonstrate gener-
alized icterus, splenomegaly, lymphadenopathy, petechia and ecchymosis on the heart and
lungs, clear yellow serous pericardial effusion, interstitial pneumonia, and large numbers
of schizonts within the vasculature attached to endothelial cells of most organs (Figure 8);
with the liver, lung, spleen, and lymph nodes most effected [2,21,58,63]. When examined,
the brain demonstrates schizogenous vascular occlusion with secondary ischemia and
necrosis of neurons as well [58,69,70]. The intravascular mega-schizonts are a prominent
diagnostic feature in these cases and typically measure 25–60 µm in diameter, but may
reach 250 µm in diameter with an enlarged nucleus, prominent nucleolus, and cytoplasm
full of variably mature basophilic merozoites [21]. The cause of death in acute Cytauxzoon
cases is a combination of hypoxic injury and local and systemic immune responses to
proinflammatory cytokines leading to poor pulmonary ventilation, decreased gas exchange,
and/or a procoagulant state resulting in DIC. Additional studies are needed to determine
how the host immune response to this pathogen differs during schizogenous and erythro-
cytic parasite phases, what factors mitigate those host immune responses, and how we
might manipulate the feline immune response to improve survival of these patients.
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8.2. Subclinical Disease

Felids that survive the acute phase of this disease, show evidence of erythrocyte
regeneration at 18–22 dpi, with resolution of subnormal body temperature and clinical
signs shortly thereafter (23–24 dpi) [40]. Normalization of erythrocyte indices is complete
by 43 dpi. These survivors manifest the chronic subclinical form of this disease by entering
a persistently parasitized erythrocyte stage [59,63]. It is unknown if the intra-erythrocytic
piroplasms are predominantly trophozoites, merozoites, or gametocytes, or if the distinction
matters. Felids with chronic disease are completely asymptomatic and remain persistently
infected for years, if not for life [57]. They appear to be protected from re-developing
clinical disease with additional C. felis challenges, provided they survived a previous
schizogenous phase. However, this reprieve may not be lifelong or may not be equally
protective against heterologous strains of the pathogen. A study evaluating the prevalence
of C. felis in southern Illinois wild-caught bobcats, identified one individual that appeared
to have been infected with a different strain (based on Internal Transcribed Spacer 1
(ITS-1) single nucleotide polymorphism) of C. felis between captures [44]. More recently, a
domestic shorthair cat successfully treated for acute cytauxzoonosis seven years prior, was
presented with a repeat C. felis infection confirmed on splenic histopathology [71]. Because
survival of the schizogenous phase is required for future protection, cats transfused with
piroplasm-laden blood will harbor piroplasms as a chronic carrier but are not immune to
C. felis challenge [41,72]. Due to their asymptomatic nature, carrier cats are typically only
diagnosed with C. felis if (1) they have a known history of surviving acute cytauxzoonosis,
(2) piroplasms are identified on a blood smear exam, and/or (3) they test positive for C. felis
via PCR. Further studies are needed to determine if C. felis reservoir cats are more likely to
be infected with certain C. felis strains, have co-infections with other organisms and, if so,
how that might affect the cat’s carrier status.

9. Diagnosis

The differential diagnosis for the acute cytauxzoonosis clinical signs of fever, lethargy,
icterus, dyspnea, and anemia could include cholangiohepatitis, hepatic lipidosis, pancre-
atitis, triaditis, sepsis, immune-mediated hemolytic anemia, oxidative damaging toxins
(e.g., acetaminophen, Allium spp), neoplasia, tularemia, feline infectious peritonitis, and
hemotropic mycoplasma, to name a few. Since no rapid in-clinic test is available to di-
agnose acute cytauxzoonosis, it is generally diagnosed by schizont (Figure 5) and/or
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intra-erythrocytic signet ring (Figure 6) identification at an antemortem blood smear re-
view, or schizont identification on postmortem tissue sample histopathology (Figure 8).
Although blood smear review and tissue histopathology are considered equally diagnostic
for this disease [5], a recent paper concluded that ‘novice observers’ were better able to
identify schizonts in splenic fine needle biopsy samples (77.1% sensitivity; 94.4% speci-
ficity) than lymph node aspirates (52.8% sensitivity; 96.4% specificity) or blood smears
(41.7% sensitivity; 96.9% specificity) [73]. When a blood smear demonstrates signet ring
(aka. piroplasm) erythroid hemoparasites in a cat, the three main differentials include:
(1) Mycoplasma hemofelis, (2) Cytauxzoon felis, and (3) Babesia spp. Mycoplasma hemofelis,
one of the most common feline hemoparasites, is generally associated with a strongly
regenerative hemolytic anemia, and coccoid or signet ring shaped organisms located on
the erythrocyte membrane and/or in the background [74]. Cytauxzoon felis infections are
often associated with a variable non-regenerative anemia, signet ring shaped organisms
within erythrocytes and rarely in the background, and/or schizonts at the blood smear
feathered edge or in tissue sample histology. Although immunocompetent cats have been
found to carry several Babesia species without ill effects in Europe, Asia, the Middle East,
and the Americas, four Babesia species in South Africa including Babesia leo, Babesia lengau,
and Babesia spp. Western Cape, and Babesia felis are associated with disease which can
include a regenerative anemia and intra-erythrocytic signet rings shaped organisms often
arranged in tetrads [75]. Although none of the latter four Babesia spp. have been reported
in the U.S., it should be a differential for any symptomatic felid with a history of travel to
Africa, especially the southern coastal regions. PCR is more readily available to identify
M. hemofelis and/or Babesia spp., than for C. felis. That said, PCR testing for C. felis is now
available through the Vector-borne Disease Diagnostic Laboratory (North Carolina State
University College of Veterinary Medicine), Zoologix Inc. (California), and Bioingentech
Ltd. (Chile). Additionally, a probe-based ddPCR assay has been proposed for early identifi-
cation (24 h prior to clinical signs) of cytauxzoonosis as well as for evidence of treatment
response [64]. Although not currently commercially available, ddPCR may augment or
replace other PCR techniques in the future. Since subacute and early acute infections may
not present with visible intra-erythrocytic signet rings and/or schizonts in C. felis infected
cats, an in-hospital test needs to be developed for rapid diagnoses of acute cytauxzoonosis
cases to initiate potentially lifesaving treatment for these cats. With that said, a diagnosis of
acute cytauxzoonosis in any cat living in or near C. felis endemic areas with typical clinical
signs can be made by visualization of either schizonts and/or intra-erythrocytic signet
rings via histopathology or blood smear samples. Since each of the previously mentioned
piroplasm diseases are treated differently, proper identification is critical for successful
outcomes in feline patients. Thus, in locations or regions where these feline piroplasm
diseases overlap, DNA sequencing may be indicated for proper species identification.

10. Treatment Options

All treatments for acute C. felis infections have incorporated basic supportive care
methods including intravenous fluids for dehydration and hypotension, antimicrobials
to treat concurrent septicemia, and heparin to prevent thrombus formation and DIC.
Several targeted anti-protozoal treatments have been proposed and attempted for C. felis
with variable success. Parvaquone and buparvaquone, used to treat Theileria parva in
cattle, were investigated, but found to be ineffective in treating experimentally induced
cytauxzoonosis cases [72,76]. Imidocarb dipropionate, a urea derivative used to treat Babesia
canis, demonstrated limited, inconsistent results, and was also abandoned as a treatment
candidate [57,72,77]. Dimethazine aceturate, used to treat trypanosomiasis in livestock,
was equally ineffective in the treatment of naturally occurring acute and chronic C. felis
infections in cats [47,78].

Currently, the most effective treatment is a combination of atovaquone (15 mg/kg
PO q 8 h × 10 days) and azithromycin (10 mg/kg PO q 24 h × 10 days) which provides a
60% success rate in treated cats, if initiated in a timely manner [79]. Atovaquone, a malaria
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treatment candidate, is a ubiquinone (Coenzyme Q) analogue that targets the cytochrome
b subunit of the mitochondrial electron transport chain [18,80–82]. Early studies of ato-
vaquone as a potential anti-malarial medication, demonstrated that parasite mitochondrial
membrane potential collapsed within minutes of treatment, while leaving the host mam-
malian mitochondria unaffected [83]. Subsequent studies explored energy metabolism
in Plasmodium spp. and found their mitochondrial energy production in the erythrocytic
stage was very slow, possibly explaining the poor Plasmodium response to atovaquone [84].
As stated previously, Apicomplexans appear to be missing at least two of the necessary
mitochondrial ETC subunits needed to perform oxidative phosphorylation [18]. As such,
atovaquone may not inhibit a vital function of their mitochondrion resulting in a less than
optimal response to this drug. Azithromycin, a macrolide antibiotic, inhibits protein transla-
tion at the parasite mitochondrial ribosome level and, thus, the parasite’s growth [18,80–82].
With the best treatment resulting in 40% mortality, improved treatment protocols are
needed. Many factors may influence patient response to treatment including the timing
of treatment initiation, the patient’s immune response to the parasite, the sporozoite load
injected, and parasite strain virulence to name a few [57,85]. Although further investigation
is needed to assess each of these factors and their contribution to the disease process and
patient response, no C. felis strain banks nor in vitro experimental systems exist to facilitate
the needed research. Thus far, studies trying to identify different pathogenic or virulent
strains using the ITS region of the 18S rRNA gene have determined there is no genotype
association with geography or clinical outcome of this disease [46,86]. Additionally, no
treatment protocols are available to clear infection of persistently infected felids to reduce
infection reservoir potential.

11. Control & Prevention

Since cats surviving the acute schizogenous phase appear to have protection from
re-developing clinical signs with future infections for an undetermined duration, it is
assumed they form a protective immune response [41,72,87]. As such, a vaccine could
potentially be developed if an appropriate protein candidate were found. To that end,
Tarigo et al. sequenced the C. felis genome and identified 4300 potential protein-coding
genes [85]. To date, two potential vaccine candidates have been examined. The highly
conserved Cf76 gene, like the T. parva p67 gene, encodes a protein expressed during the
schizont phase and is recognized by the feline humoral immune system and the AMA-1
gene, encoding an apical membrane antigen [2,87,88]. However, to date, no vaccine has
been developed. To produce a successful vaccine, more research is needed to identify and
confirm conserved, immunogenic, and protective antigens. In addition, more studies are
needed to better understand genetic determinants of virulence, transmission, and treatment
success, especially in the context of C. felis strain heterogeneity.

Since no C. felis vaccine exists and there is no consistently effective treatment, control of
this disease is based on transmission prevention by eliminating, or limiting, exposure to the
tick vectors. It is not uncommon for multi-cat households to see multiple cases of cytaux-
zoonosis. As such, limiting cats’ outdoor time during peak tick season, manual tick removal,
and/or treatment with acaricides remain the mainstay of control for this disease [6,53,86,87].
Two acaricides have demonstrated good to excellent efficacy in preventing C. felis trans-
mission by A. americanum, under experimental conditions. The first product, imidacloprid
10%/flumethrin 4.5% collar (Seresto, Elanco Inc, Greenfield, IN, USA), demonstrated 100%
efficacy in preventing adult A. americanum attachment and feeding, and thus transmission
of C. felis, in 10 cats [89]. Flumethrin, a synthetic pyrethroid, affects the neuronal sodium
channels of mites and ticks resulting in their death as well as acting as a repellant. Although
cats are generally sensitive to pyrethroids, this synthetic form does not require hepatic
glucuronidation, rendering it safe for use in cats. The second product, selamectin/sarolaner
(Revolution Plus, Zoetis Inc., Parsippany, NJ, USA), demonstrated >90% efficacy in re-
ducing A. americanum and D. variabilis tick counts 72 h after infestation and preventing
transmission of C. felis in 8 cats, when applied monthly [90]. Sarolaner, the isoxazoline
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compound in this product, causes paralysis and death of ticks via neural blockade. Since
C. felis can be transmitted from the tick to its felid host within as little as 36 h, it is critical to
use preventative products that either repel or kill ticks prior to parasite transmission. Other
current or future products that kill A. americanum and/or D. variabilis within 36 h should
be equally efficacious in C. felis transmission reduction. Additional research is needed to
improve preventative treatments, including considering developing a molecule that would
block earlier parasite developmental stages (e.g., sporozoite development in the tick), or
development of a vaccine against the tick vector.

12. Summary & Future Considerations

Cytauxzoonosis is caused by Cytauxzoon felis, a protozoal apicomplexan hemopar-
asite of felids in the Theileria & Cytauxzoon clade of Piroplasmidae, endemic to North
America. In the last four decades, much has been elucidated about this organism’s com-
plex life cycle, transmission, and the disease it causes in felids. Although it appears that
most, if not all, felids can become infected, the known competent hosts include bobcats
(L. rufus) and domestic cats (F. catus). Once within a host, C. felis begins the schizogenous
phase of asexual replication, which can cause severe illness and death in its host due to
proinflammatory cytokine stimulated damage, DIC secondary to endothelial damage,
hypoxic injury of multiple organs, and interstitial pneumonia with poor gas exchange
exacerbating hypoxemia. If the host animal survives the schizogenous phase, the C. felis
organism enters a perpetual erythrocytic phase causing the asymptomatic host to remain
persistently parasitemic, acting as a disease reservoir for years. Although clinical disease
upon subsequent re-infection is uncommon, it appears that infection with a different
C. felis strain can lead to additional acute life-threatening schizogenous phases in the
same host. The cornerstone of C. felis prevention is avoidance of transmission via tick
control. As such, all cats living in endemic areas, including indoor exclusive cats and
those with subclinical infection, should be treated year-round with acaricide products
that are known to repel or kill ticks rapidly.

A vaccine and more effective, affordable treatments are desperately needed, as is an
affordable rapid diagnostic test to confirm diagnosis early in the disease process and to
identify C. felis carrier cats. In addition, more studies are needed to better understand
factors affecting infection, disease, and treatment. This includes the minimum sporozoite
load necessary for infection, whether sporozoite load affects the length and severity of the
schizogenous phase, determining the host immune responses to the parasite and what
mitigates it, identifying C. felis virulence factors, developing C. felis strain banks, and
determining how treatment timing effects outcome, to mention a few. Research of this
caliber would require significant funds; however, funding opportunities for researching this
organism (especially basic research) are currently limited. Additionally, there is no in vitro
experimental system available for C. felis, so investigating many of these questions requires
the use of deliberately infected cats, raising ethical concerns. As such, much of the current
knowledge about C. felis assumes that it is similar to related Piroplasmidae species. These
assumptions may be partially, or wholly, inaccurate. A good starting point would be to
investigate: (1) the risk factors associated with acute cytauxzoonosis infection, (2) whether
the incidence of acute cytauxzoonosis is changing over time, and (3) the prevalence of
C. felis carrier cat populations.
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