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CYTOCHALASINS USEFUL IN PROVIDING 
PROTECTION AGAINST NERVE CELL 

INJURY ASSOCIATED WITH 
NEURODEGENERATIVE DISORDERS 

FIELD OF THE INVENTION 

The present invention relates to a novel therapeutic use of 
certain compounds to protect nerve cells from injury and 
death. The compounds include cytochalasin D and related 
analogs, and cytochalasin E and related analogs. 

BACKGROUND OF THE INVENTION 

Nerve cell injury and death leads to a number of. neuro 
degenerative disorders such as AlZheimer’s disease and 
stroke. 

The leading cause of dementia and the fourth leading 
cause of death in the developed World is AlZheimer’s disease 
Which afflicts an estimated 10% of the population over 65 
years of age in the United States. AlZheimer’s disease 
imposes a tremendous ?nancial burden on afflicted individu 
als because they require prolonged care. 

Affected individuals are at ?rst forgetful. As this progres 
sive disorder gradually Worsens, these affected individuals, 
although able to recall occurrences in the distant past, are 
unable to remember recent events. Subsequently, speech, the 
ability to calculate, visuospatial orientation, judgement, and 
social behavior become progressively abnormal. Eventually, 
profound dementia sets in and frequently the individual dies 
of superimposed infections. The duration of diseases ranges 
from 3 to 10 years. 

The diagnosis of AlZheimer’s disease is usually made on 
the basis of clinical history, neurological examination and 
laboratory tests that help to exclude other disorders, some of 
Which are potentially treatable. Unfortunately, other than 
direct examination of brain tissue obtained by cerebral 
biopsy or at autopsy, no tests to establish a diagnosis of 
AlZheimer’s disease presently exist. 

At autopsy, the brains of individuals With AlZheimer’s 
disease are usually slightly smaller than normal for their age. 
Microscopic examination discloses four characteristic 
pathological features that are essential for the diagnosis of 
AlZheimer’s disease: neuro?brillary tangles, loss of speci?c 
population of nerve cells, senile plaques and deposits of 
amyloid. 

Neuro?brillary tangles, that is, ?brillar inclusions Within 
cell bodies of affected neurons, consist of abnormal ?la 
ments thought to be derived in part from cytoskeletal 
elements normally present in nerve cells. Neuro?brillary 
tangles consist of abnormal accumulations of cytoskeletal 
and other proteins Whereas senile plaques consist of aggre 
gates of amyloid [3-peptide Major components of 
neuro?brillary tangles are the microtubule-associated pro 
tein tau, and ubiquitin, a “heat-shock” protein involved in 
targeting proteins for proteolytic degradation. Postransla 
tional alterations in tau such as phosphorylation, and disas 
sociation of tau from microtubules may promote the assem 
bly of tau into the abnormal straight and paired helical 
?laments that characteriZe neuro?brillary tangles. Although 
the mechanism leading to neuro?brillary degeneration is not 
clear, several observations suggest a role for dysregulation 
of neuronal calcium homeostasis With resultant elevations of 
intracellular free calcium concentration, [Ca2+]i. Among the 
evidence supporting this hypothesis is: experimentally 
induced elevations of [Ca2+]i in hippocampal neurons (in 
vitro and in vivo) can elicit antigenic, biochemical and 
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ultrastructural changes in cytoskeletal proteins (tau and 
spectrin) similar to those seen in neuro?brillary tangles; 
neurons vulnerable to neuro?brillary degeneration bear high 
levels of glutamate receptors; aggregated AB can be neuro 
toxic and can render neurons vulnerable to excitotoxicity by 
a mechanism that involves destabiliZation of [Ca2+]i homeo 
stasis. In addition, studies indicate that mitogen-activated 
protein (MAP) kinases can phosphorylate tau in a manner 
very similar to that observed in the paired helical ?laments 
of AlZheimer’s disease, and MAP kinases are knoWn to be 
activated glutamate and elevation of [Ca2+]i. 

Degeneration and death of certain populations of nerve 
cells occur in certain brainstem nuclei, the basal forebrain, 
the amygdala, the hippocampus and neocortex. In the brain, 
speci?c populations of nerve cells use speci?c neurotrans 
mitters. Also, neurochemical studies have shoWn that the 
brains of individuals With AlZheimer’s disease exhibit a 
selective reduction in markers for certain neurotransmitter 
systems. 
The third characteristic brain abnormality associated With 

AlZheimer’s disease is the presence of abundant senile 
plaques, composed of several elements: abnormal neurites 
(enlarged ?lament-containing axons and terminals), extra 
cellular amyloid ?brils and non-neuronal reactive cells. The 
presence of plaques correlates With the presence of dementia 
and With the severity of loss of certain neurotransmitter 
markers, particularly cholinergic enZymes. 

LocaliZed in plaques and around cerebral blood vessels, 
amyloid is composed of a 4-kilodalton protein designated 
amyloid [3-peptide. The amyloid [3-peptide is a 40—42 amino 
acid peptide arising from a much larger membrane-spanning 
[3-amyloid precursor protein (695—770 amino acids) Which is 
a transmembrane glycoprotein that accumulates as diffuse 
(unaggregated) and compact (aggregated) plaques in the 
brain of victims of AlZheimer’s disease. The diffuse plaques 
are not associated With neuronal pathology, Whereas com 
pact AB is surrounded by degenerative neurites With char 
acteristic cytoskeletal pathology. Cell culture studies have 
shoWn that AB can be directly neurotoxic, and can render 
neurons vulnerable to excitotoxicity and oxidative injury. 
The mechanism of AB toxicity is related to its secondary 
structure and appears to involve free radical-mediated dam 
age to the plasma membrane and disruption of cellular 
calcium homeostasis resulting in elevated rest [Ca2+]i and 
increased [Ca2+]i responses to depolariZation and excitatory 
amino acids. 
The major pathWay for [3-amyloid precursor protein 

([3APP) metabolism involves an enZymatic cleavage Within 
the AB sequence and obviates deposition of amyloidogenic 
AB. On the other hand, AB is released from brain cells at loW 
levels and is present in the cerebrospinal ?uid at nanomolar 
concentrations indicating an alternative processing pathWay 
of BAPP. Acleavage of [3APP at the N-terminus of AB leaves 
behind a C-terminal fragment of [3APP Which contains 
potentially amyloidogenic AB. Some cases of inherited 
AlZheimer’s disease have been linked to mutations in [3APP 
Which may alter processing of [3APP in a Way that leads to 
increased production of AS. The link betWeen altered 
metabolism of [3APP and neuronal injury in AlZheimer’s 
disease is supported by studies shoWing that synthetic AB 
peptides can be directly neurotoxic to primary cultures of 
hippocampal and cortical neurons, and can render neurons 
vulnerable to glutamate excitotoxicity, glucose deprivation, 
and oxidative injury. The neurotoxicity of AB is dependent 
upon its ability to form aggregates Which accumulate at 
plasma membranes and disrupt cellular calcium homeosta 
sis. The mechanism Whereby AB disrupts calcium regulation 


























	Cytochalasins Useful in Providing Protection Against Nerve Cell Injury Associated with Neurodegenerative Disorders
	Recommended Citation

	US5830910.pdf

