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atherosclerosis. It is implicated in the formation of early fatty streaks, when the endothelium is activated and

expresses chemokines and adhesion molecules leading to monocyte/lymphocyte recruitment and infiltration into the

subendothelium. It also acts at the onset of adverse clinical vascular events, when activated cells within the plaque

secrete matrix proteases that degrade extracellular matrix proteins and weaken the fibrous cap, leading to rupture

and thrombus formation. Cells involved in the atherosclerotic process secrete and are activated by soluble factors,

known as cytokines. Important recent advances in the comprehension of the mechanisms of atherosclerosis

provided evidence that the immunoinflammatory response in atherosclerosis is modulated by regulatory pathways,

in which the two anti-inflammatory cytokines interleukin-10 and transforming growth factor-� play a critical role.

The purpose of this review is to bring together the current information concerning the role of cytokines in the

development, progression, and complications of atherosclerosis. Specific emphasis is placed on the contribution of

pro- and anti-inflammatory cytokines to pathogenic (innate and adaptive) and regulatory immunity in the context of

atherosclerosis. Based on our current knowledge of the role of cytokines in atherosclerosis, we propose some novel

therapeutic strategies to combat this disease. In addition, we discuss the potential of circulating cytokine levels as

biomarkers of coronary artery disease.

I. INTRODUCTION

Atherosclerosis is a pathological condition that un-

derlies several important adverse vascular events includ-

ing coronary artery disease (CAD), stroke, and peripheral

arterial disease, responsible for most of the cardiovascu-

lar morbidity and mortality in the Western world today.

Epidemiological studies indicate that the prevalence of

atherosclerosis is increasing all over the world due to the

adoption of Western life-style and is likely to reach epi-

demic proportions in the coming decades (72, 412).

The earliest visible lesion in the development of

atherosclerosis is the fatty streak. This comprises an

area of intimal thickening composed of macrophages

distended by lipid droplets (known as foam cells), lym-

phocytes, and smooth muscle cells. The American

Heart Association (AHA) Committee on Vascular Le-

sions provided a classification of human atheroscle-

rotic lesions which correlate the histological lesion

types, from type I to type VI, with corresponding clin-

ical syndromes (648, 649). This classification should not

be understood as an orderly, linear pattern of plaque

progression (704). Plaques develop as a result of the

accumulation of low-density lipoproteins (LDL) in the

subendothelial space, followed by the diapedesis of

leukocytes and formation of foam cells, proliferation of

smooth muscle cells, and production of connective tis-

sue. The landmark work of Seymour Glagov showed

that the arterial wall can remodel itself in response to

plaque growth by increasing its external diameter to

accommodate the plaque without narrowing of the lu-

men (234). Thrombosis is the ultimate stage in the

disease process that is responsible for clinically observ-

able adverse events implicating coronary, cerebrovas-

cular, and peripheral vascular beds (394). Studies indi-

cate that in patients with atherothrombotic disease

plaque formation is likely to be widespread throughout

the vasculature, often affecting more than one vascular

bed (93).

A. Historical Perspective

Even though atherosclerosis is reaching epidemic
proportions nowadays, it is not in any way a disease
specific to the modern times; it was already present in
antiquity. Sir Marc Ruffer was able to identify in 1911
degenerative arterial changes suggestive of atherosclero-
sis in the left subclavian artery from an Egyptian mummy
(583). Later on, paleopathologist A. T. Sandison, using
modern technical methods for tissue fixation, confirmed
that Egyptian mummies had histological evidence of ath-
erosclerosis with lipid deposits, reduplication of the in-
ternal elastic lamina, and medial calcification in arteries
(593).

Atherosclerosis is nowadays recognized as a chronic
inflammatory disease of large arteries (235, 265, 395, 417,
578). Remarkably, the very first description of the cause
of angina pectoris referred to inflammation. Yet, the belief
in this notion was subjected to peaks and troughs from
early dates up to recent times.

According to the historian J. O. Leibowitz (381), the
Italian surgeon and anatomist Antonio Scarpa
(1752–1832) was the first to present an anatomopathologi-
cal description of arterial wall degeneration in full detail.
In his 1804 monograph on aneurysms, Scarpa opposed the
view that a dilatation of the aorta was the intrinsic cause
of an aneurysm leading to rupture. He emphasizes that
“. . . especially the internal coat is subject, from slow
internal cause, to an ulcerated and steatomatous disorga-
nization, as well as to a squamous and earthy rigidity and
brittleness,” introducing the concept of an underlying
metabolic disorder in the process of atherosclerosis,
rather than the theory of inflammation that already pre-
vailed at that time, the expression “heart abscess” being
frequently used to describe heart pathology (reviewed in
Ref. 381).

The term atheroma, derived from Greek and meaning
“porridge,” was first proposed by Albrecht von Haller in
1755 to designate the degenerative process observed in
the intima of arteries. London surgeon Joseph Hodgson
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(1788–1869) published in 1815 his Treatise on the Dis-

eases of Arteries and Veins in which he claimed that
inflammation was the underlying cause of atheromatous
arteries. But thereafter, most of pathologists of the 19th
century following Carl Rokitanski (1804–1878) aban-
doned the view that inflammation was an etiological fac-
tor and considered that atherosclerosis was a degenera-
tive process, with intimal proliferation of connective tis-
sue and calcification, best described by the term
arteriosclerosis proposed in 1833 by French pathologist
Jean Lobstein (1777–1835). However, German pathologist
Rudolf Virchow (1821–1902), a leading authority of his
day in pathology and the greatest contributor to the no-
tion of thrombosis, considered atheroma as a chronic
inflammatory disease of the intima, that he called
“chronic endarteritis deformans”. In his opinion, the
accumulation of lipids was a late manifestation of ath-
eroma (701). Finally, the Leipzig pathologist Marchand
in 1904 first used the term atherosclerosis, which since
has been widely adopted, instead of arteriosclerosis, to
designate the degenerative process of the intimal layer
of the arteries.

Until the beginning of the 20th century, the theories
put forward to explain the pathogenesis of atherosclero-
sis remained purely descriptive and were based on the
anatomical observation of human atherosclerotic vessels.
A first revolution in the mechanistic assessment of ath-
erosclerosis was initiated in 1908 when the Russian sci-
entist Alexander Ignatowski showed that experimental
atherosclerosis could be induced in rabbits by feeding
them a diet of milk and egg yolk (301). Soon thereafter, in
1913, N. Anitschkov and S. Chalatov reproduced experi-
mental atherosclerosis by adding pure cholesterol to rab-
bit food (21). This gave rise to the lipid theory of athero-
sclerosis that predominated for most of the 20th century.
The next significant leap only came during the 1970s when
Brown and Goldstein showed that the LDL receptor that
they had discovered, a cell surface protein that binds LDL
and removes them from blood (reviewed in Ref. 88), is not
involved in macrophage foam-cell formation and pro-
posed that a macrophage receptor that recognized acety-
lated LDL plays a key role in this process (237). Subse-
quently, during the 1980s, the central role of oxidized LDL
(oxLDL) in the pathogenesis of atherosclerosis was ex-
posed by Daniel Steinberg and his group (650), and a
number of scavenger receptors mediating their uptake by
macrophages were identified (reviewed in Ref. 387). The
model of the Watanabe heritable hyperlipidemic (WHHL)
rabbit, introduced in 1980 (726) was particularly useful in
establishing the role of oxLDL in atherogenesis. A second
revolution occurred at the beginning of the 1990s when
mouse models of atherosclerosis, apolipoprotein E
(apoE)- and LDL receptor (LDLr)-deficient mice, were
derived by homologous recombination techniques (304,
306, 543, 784). In contrast to the previous models, mice

lacking functional apoE or LDLr genes were shown to
develop widely distributed arterial lesions that progress
from foam cell-rich fatty streaks to fibro-proliferative
plaques with lipid/necrotic cores, typical of the spectrum
of human lesions (305, 487, 564). The possibility of abol-
ishing the expression of a single gene of interest, or of
overexpressing it, in these mouse models opened a new
era of atherosclerosis research at a mechanistic level.

B. Atherosclerosis as an

Immunoinflammatory Disease

A ripple in the lipid theory appeared in the mid 1970s,
when Russel Ross developed his popular “response to
injury” hypothesis of atherogenesis, postulating that ath-
erosclerotic lesions arise as a result of focal injury to the
arterial endothelium, followed by adherence and aggrega-
tion of platelets (580). During the resulting release reac-
tion, platelet-derived growth factor (PDGF) is secreted
from the platelets and promotes the proliferative re-
sponse of smooth muscle cells (SMC). Uncontrolled exu-
berant SMC proliferation was believed to eventually
cause artery occlusion. SMC were considered at that time
to be the main promoter of atherosclerotic lesion forma-
tion. Instead, it has since been clearly established that
SMC proliferation in the plaque is rather modest, and
actually tends to be beneficial since it contributes to
plaque stabilization (158, 731). In addition, the endothe-
lium actually remains morphologically intact during the
development of atherosclerosis (197, 578), although it is
activated and directly involved in the immunoinflamma-
tory response. Poole and Florey (547) were the first to
observe that soon after initiation of cholesterol feeding in
rabbits, monocytes adhere to the endothelium and mi-
grate through the yet intact endothelial monolayer. Mi-
chael Gimbrone first proposed the concept of endothelial
dysfunction that acknowledged the central role of the
normal endothelium in protecting against atherosclerosis
while hypothesizing that its cellular functions were al-
tered, “activated” in the disease (232). Ross revisited his
“response to injury” theory in 1986 (579) considering that
“subtle endothelial injury” was the primum movens in
atherosclerosis, and published in 1999 in the New En-

gland Journal of Medicine a remarkable review entitled:
“Atherosclerosis: a chronic inflammatory disease” (578).
The view that atherosclerosis is indeed a chronic inflam-
matory disease initiated by monocyte/lymphocyte adhe-
sion to activated endothelial cells (EC) is now widely
accepted and substantiated by experimental and clinical
observations. Several excellent reviews have been pub-
lished on the theme of atherosclerosis and inflamma-
tion since the founding Ross review (52, 235, 265, 395,
417, 578).

Instrumental in the change of opinion regarding the
role of inflammation and immunity, rather than SMC pro-
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liferation, in the pathogenesis of atherosclerosis was the
precise identification of the cell components of human
atherosclerotic plaques using modern immunohistochem-
ical techniques by Göran Hansson and colleagues (316).
Histologically, the lipid-laden foam cells of the fatty
streak, which characterizes the plaque at an early stage,
are derived from macrophages. In time, the lipid/necrotic
core is covered with fibrous tissue composed mainly of
�-actin positive SMC, and thus forms the fibrolipid
plaque. Rather large amounts of T lymphocytes, �20%,
are found as well, surrounding the plaque and in the
fibrous cap, pointing to a role of immunity in athero-
sclerosis (268, 316).

Also determinant in the understanding of the patho-
genesis of atherosclerosis were the works by the pathol-
ogists Michael Davies (158, 159) and Erling Falk (198),
later confirmed and extended by the group of Renu Vir-
mani (704), in their quest for the causes of acute coronary
syndromes. Their works emphasized that coronary ath-
erosclerotic plaques exist under two major phenotypes:
1) stable plaques, characterized for the most part by a
thick fibrous cap isolating a relatively small lipid core
from the lumen, which are associated with a very low risk
of thromboembolic complications; and 2) unstable (or
vulnerable) plaques, most of which are characterized by a
large lipid core covered by a thin fibrous cap prone to
rupture and thrombus formation, and which are thought
to be associated with a higher risk for thromboembolic
complications (218). Analysis of culprit atherosclerotic
lesions in patients with acute myocardial infarction re-
vealed that inflammation is crucially determinant in pre-
cipitating plaque rupture and some forms of superficial
plaque erosion (157, 353, 690).

Virmani uncovered another mechanism of coronary
thrombosis occurring in unruptured noninflammatory
plaques, described as plaque erosion (199, 703). Eroded
plaques differ from ruptured plaques in that they have a
base rich in proteoglycans and SMCs. These lesions are
more often seen in younger individuals and women, they
are associated with less luminal narrowing and less cal-
cification, and they are less likely to have foci of macro-
phages and T cells compared with ruptured plaque (199).
We recently provided experimental evidence that endo-
thelial apoptosis might be a major determinant of plaque
erosion (182, 679).

Inflammation, which “is a complex set of interactions
among soluble factors and cells that can arise in any
tissue in response to traumatic, infectious, postischemic,
toxic or autoimmune injury” (493) appears to be involved
at all stages of atherosclerosis. It is implicated in the
formation of early fatty streaks, when the endothelium is
activated and expresses chemokines, including monocyte
chemotactic protein (MCP)-1 and interleukin (IL)-8, and
adhesion molecules, including intercellular adhesion mol-
ecule (ICAM)-1, vascular adhesion molecule (VCAM)-1, E-

and P-selectin, leading to monocyte/lymphocyte recruit-
ment and infiltration into the subendothelium (265). It
also acts at the onset of adverse clinical vascular events,
when activated cells within the plaque secrete matrix
proteases that degrade extracellular matrix proteins and
fragilize the fibrous cap, leading to rupture and thrombus
formation (399). Cells involved in the atherosclerotic pro-
cess include vascular (endothelial and smooth muscle)
cells, monocytes/macrophages, lymphocytes (T, B, NKT),
dendritic cells, and mast cells. They secrete or are stim-
ulated by soluble factors including peptides, glycopro-
teins, proteases, and a set of cytokines.

The purpose of this review is to bring together the
current information concerning the role of cytokines in
the development, progression, and complications of ath-
erosclerosis. Specific emphasis is placed on the contribu-
tion of pro- and anti-inflammatory cytokines, in modulat-
ing innate, adaptive, and regulatory immunity in the con-
text of atherosclerosis. In addition, we discuss the
potential of the circulating cytokine levels as biomarkers
of (coronary) artery disease. Finally, we propose some
novel therapeutic strategies targeting the cytokine net-
work to combat atherosclerosis.

II. THE ATHEROSCLEROTIC

CYTOKINE NETWORK

A. Cytokine Families

Stanley Cohen introduced for the first time the word
cytokine in 1974 (132, 133). Until then the term lympho-

kine, proposed by Dudley Dumonde in 1969, had been
used to designate lymphocyte-derived factors and more
generally proteins secreted from a variety of cell sources,
affecting the growth or function of many types of cells,
collectively (181). At the second International Lympho-
kine Workshop held in 1979, the name interleukin was
proposed to characterize proteins with “the ability to act
as communication signals between different populations
of leukocytes” (473). Later on in 1989, Balkwill and Burke
(33) defined cytokine as “one term for a group of protein
cell regulators, variously called lymphokines, monokines,
interleukins, interferons (we should add “chemokines”),
which are produced by a wide variety of cells in the body,
play an important role in many physiological responses,
are involved in the pathophysiology of a range of diseases,
and have therapeutic potential.”

Nowadays, the cytokines consist of more than 50
secreted factors involved in intercellular communication,
which regulate fundamental biological processes includ-
ing body growth, lactation, adiposity, and hematopoiesis
(77). Cytokines are clustered into several classes: inter-
leukins (33 have been identified to date), tumor necrosis
factors (TNF), interferons (IFN), colony stimulating fac-
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tors (CSF), transforming growth factors (TGF), and che-
mokines. They are especially important for regulating
inflammatory and immune responses and have crucial
functions in controlling both innate and adaptive immu-
nity. The predominant actors in adaptive immunity, helper-
T (Th) cells, have been categorized on the basis of the
pattern of cytokines that they can secrete, resulting in
either a cell-mediated immune response (Th1) associated
with IL-2 and IFN-� secretion, or a humoral immune
response (Th2), associated with IL-4, IL-5, IL-10, and IL-13
secretion.

Cytokines are categorized according to the structural
homology of their receptors as class I or class II cytokines
(77, 369) (Table 1). Most ILs, CSFs, and IFNs belong to
one of these two classes of cytokines, which mediate their
effects through the Janus kinase-signal transducers and
activators of transcription (JAK-STAT) pathway. Three
other major cytokine families encompass the IL-1 family
(including IL-1�, IL-1�, IL-1ra, and IL-18), TNF family, and
TGF-� superfamily (Table 1). IL-1 and TNF family mem-
bers activate the nuclear factor-�B (NF-�B) and mitogen-
activated protein (MAP) kinase signaling pathways, while
TGF-� superfamily members activate signaling proteins
of the Smad family.

The TGF-� superfamily is composed of many multi-
functional cytokines including TGF-�1–2-3, activins, in-
hibins, anti-Müllerian hormone (AMH), bone morphoge-
netic proteins (BMPs), and myostatin (540). TGF-� family
members are secreted as inactive complexes bound to the
latency-associated peptide (LAP), a protein derived from
the NH2-terminal region of the TGF-� gene product. The
LAP forms covalent bonds with the latent TGF-� binding
proteins (LTBPs), high-molecular-weight proteins of
which four different isoforms exist (571). The resulting
large latent complexes are sequestered within the extra-
cellular matrix. Proteases in the extracellular matrix can
digest LTBP, dissociating LAP from TGF-�.

Cytokines share a number of specific features.
1) They show pleiotropic activities: a cytokine can

trigger several different cellular responses depending on
cell type, timing, and context.

2) They act synergistically: the association of two
cytokines (for example, IL-12 and IL-18, TNF-� and IFN-�,
MCP-1 and IL-8) markedly amplifies their activity. This
also holds true when a cytokine induces the expression of
(an)other cytokine receptor(s).

3) They act in an autocrine, paracrine, or juxtacrine
manner: cytokines can stimulate on the cells that produce
them, or adjacent cells, or they can intervene through
direct cell-cell interaction. This local mode of action sets
cytokines apart from classical hormones.

4) They commonly share cytokine receptor subunits:
for example, several members of the IL-2 family (IL-7,
IL-9, IL-15, IL-21) share the IL-2 receptor �-chain, the IL-6
family cytokines share the gp130 subunit, and the three

IFN-� isoforms utilize a heterodimeric receptor com-
posed of its specific receptor subunit IFN-�R (or IL-28R�)
and the subunit IL-10R2 of the IL-10R, also shared with
IL-10 and the IL-10-related cytokines, IL-22 and IL-26.

One must admit that many of these properties are
also shared by growth factors. However, one difference is
that the production of growth factors, including PDGF,
epidermal growth factor (EGF), fibroblast growth factor
(FGF), and vascular endothelial growth factor (VEGF),
tends to be constitutive and is not as tightly regulated as
that of cytokines. Also, the target cells of growth factors
are mainly nonimmune.

Cytokines are often classified according to their pro-
(TNF, IL-1, IL-12, IL-18, IFN-�) or anti-inflammatory (IL-4,
IL-10, IL-13, TGF-�) activities. In light of the data obtained
from experimental and clinical studies, described below,
regarding the pathophysiological role of cytokines in ath-
erosclerosis, we propose to cluster cytokines as pro- or
antiatherogenic (Table 2).

B. Cytokine-Associated Signaling Pathways

1. NF-�B

The NF-�B pathway is one of the main signaling
pathways activated in response to proinflammatory cyto-
kines, including TNF-�, IL-1, and IL-18, as well as follow-
ing activation of the Toll-like receptors (TLR) by the
pattern recognition of pathogen-associated molecular pat-
terns (PAMPs). Activation of this pathway plays a central
role in inflammation through the regulation of genes en-
coding pro-inflammatory cytokines, adhesion molecules,
chemokines, growth factors, and inducible enzymes such
as cyclooxygenase-2 (COX2) and inducible nitric oxide
synthase (iNOS) (166). NF-�B is a dimeric transcription
factor formed by the hetero- or homodimerization of pro-
teins of the Rel family, including p50 and p65. In its
inactive form NF-�B is bound to inhibitor of �B (I-�B�/�)
in the cytoplasm. Proinflammatory cytokines and patho-
gens act through distinct signaling pathways that con-
verge on the activation of an I�B kinase (IKK) complex
containing two kinases IKK1/IKK� and IKK2/IKK�, and
the regulatory protein NEMO (NF-�B essential modifier,
also named IKK�) (762); IKK activation initiates I�B�/�
phosphorylation at specific NH2-terminal serine residues
(782). Phosphorylated I�B is then ubiquitinated, leading
to its degradation by the 26S proteasome. This releases
NF-�B dimers from the cytoplasmic NF-�B-I�B complex,
allowing them to translocate to the nucleus (Fig. 1). Once
in the nucleus, NF-�B binds to �B enhancer elements on
specific genes promoting transcription. Targets genes of
NF-�B include I�B�, the synthesis of which ensures that
NF-�B is transiently activated. This negative-feedback
regulation gives rise to oscillations in NF-�B translocation
(496).
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TABLE 1. Cytokine classification
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Class I cytokines
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RMSOMSO STAT3
5TATS/3TATS1KAJ)LPG(rotpecerekil-031pg13-LI

Hematopietic cytokines
3TATS2kyT/2KAJ/1KAJRsfcgFSC-G

R6-LI6-LI
gp130 JAK1/JAK2/Tyk2 STAT3

R11-LI11-LI
IL-12 IL-12R 3TATS2kyT/2KAJ2
IL-23 3TATS2KAJR32-LI
IL-27 IL-27R ??

-Chain users (IL-2 family)
R2-LI2-LI 5TATS3KAJ/1KAJ

IL-15
R7-LI7-LI 5TATS3KAJ/1KAJ

TSLP
R9-LI9-LI 5TATS3KAJ/1KAJ
R12-LI12-LI ?3KAJ/1KAJ

IL-4 family
R4-LI4-LI 5TATS1KAJ

IL-13
IL-3

R3-LIFSC-MG 5TATS2KAJ
IL-5

Class II cytokines

IFN family
Type I

IFN- IFNAR1 2TATS/1TATS2kyT/1KAJ2RANFI
IFN-
IFN- 1 (IL-28A)
IFN- NFI)B82-LI(2 R1(IL-28R ) 2TATS/1TATS2kyT/1KAJ2R01-LI
IFN- 3 (IL-29)

Type II
IFN- IFN-GR1 1TATS2KAJ/1KAJ2RGNFI

IL-10-related cytokine family
1R01-LI01-LI 5TATS/3TATS/1TATS2kyT/1KAJ2R01-LI
1R02-LI91-LI 3TATS2kyT/1KAJ2R02-LI
1R02-LI02-LI 3TATS2kyT/1KAJ2R02-LI
1R22-LI22-LI 5TATS/3TATS/1TATS2kyT/1KAJ2R01-LI

1R02LI42-LI 3TATS2kyT/1KAJ1R22-LI
1R02-LI62-LI 3TATS/1TATS2kyT/1KAJ2R01-LI

TNF superfamily

TNF- -FN)57p(2RFNT/)55p(1RFNT B/JNK/p38/ERK
Lymphotoxin -FN)57p(2RFNT/)55p(1RFNT B/JNK/p38/ERK

saFLsaF NF- B/JNK
04DC)451DC(L04DC NF- B/JNK
KNARLKNAR NF- B/JNK/p38/ERK

-FNR-LIARTLIART B/JNK/p38/ERK

TGF family

TGF- -FGT3/2/1 -R1/ TGF- 3damS/2damSIIR-
3damS/2damSIIRtcA/IRtcAAnivitcA

IL-1 family

-FNPcAR1-LI/IR1-LI1-LI B/JNK/p38/ERK
R81-LI81-LI /IL-18R NF- B/JNK/p38

?23-LI NF- B/p38
2TS33-LI NF- B/p38/ERK

CLC, CT-1-like factor; LIF, leukemia inhibitory factor; CNTF, ciliary neurotrophic factor; CT-1, cardiotrophin-1; OSM, oncostatin M; G-CSF,
granulocyte-colony stimulating factor; TSLP, thymic stromal lymphopoietin; RANK, receptor activator of NF- B; RANKL, RANK ligand; ActRI,
activin type I receptor; IL-1RAcP, IL-1 receptor accessory protein.
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NF-�B is a redox-sensitive transcription factor, and
the intracellular redox status of the cell is extremely
important in the regulation of NF-�B activity (reviewed in
Ref. 311). Antioxidants, such as aspirin, N-acetylcysteine
(NAC), and flavonoids can therefore inhibit the activation
of NF-�B. A number of natural constitutive or inducible
pathways inhibiting NF-�B activity also exist (see review
in Ref. 669). For example, A1 and A20, two cytoprotective
genes, are induced in response to inflammatory stimuli to
protect EC from exaggerated activation and from under-
going apoptosis even when NF-�B is blocked (139). A20
terminates NF-�B activation by promoting reaccumula-
tion of I�B through its interaction with proteins involved
in TNF-� signaling upstream of I�B degradation (375).
Consequently, A20-deficient mice fail to terminate TNF-
induced NF-�B activity, having a persistently active IKK
complex that prevents reaccumulation of I�B protein, are
hypersensitive to TNF-�, and suffer from severe inflam-
mation. The inducible form of the heme oxygenase (HO-1)
is another example of endogenous anti-inflammatory
pathway induced in response to inflammatory stimuli.
HO-1 can be upregulated in human EC by TNF and IL-1
(674), and HO-1 possesses potent antiapoptotic and anti-
inflammatory properties (742). HO-1 deficiency in humans
is associated with the presence of severe and persistent
endothelial damage (761). The anti-inflammatory proper-
ties of HO-1 seem to be related to an inhibitory action on
P- and E-selectin expression on EC (688).

Activated NF-�B has been identified in SMC, macro-
phages, and EC of human atherosclerotic lesions (78, 82,
480). Enhanced endothelial activation of NF-�B has been
shown to occur in LDLr-deficient mice very early on fol-
lowing a high-fat diet, in regions of the proximal aorta
with high probability for atherosclerotic lesion develop-
ment (262). Furthermore, supershift analysis in cells iso-
lated from human carotid atherosclerotic plaques, com-
posed in majority of macrophages and SMC, demonstrate
that activated NF-�B consists of p65, c-Rel, and p50, but
not relB or p52 subunits (480). NF-�B activation in these
cells controls the expression of proinflammatory cyto-
kines TNF-�; IL-6 and IL-8; matrix metalloproteinases
(MMP)-1, -3, and -9; and tissue factor (TF), as shown by
their selective inhibition following blockade of the NF-�B
pathway by overexpression of I�B� or dominant-negative
IKK-2 (480). Interestingly, in this study NF-�B inactivation
did not affect the expression of the anti-inflammatory
cytokine IL-10 or the matrix metalloproteinase inhibitor
TIMP-1.

The actual in vivo role of the NF-�B pathway has
recently been addressed in experimental models of ath-
erosclerosis. Kanters et al. (324), using LDLr-deficient
mice with a cell-specific deletion of IKK2 preventing
NF-�B activation in macrophages, unexpectedly found
increased atherosclerotic lesion formation and inflamma-
tion in these animals. This result was associated with a
significant reduction in the anti-inflammatory and anti-
atherogenic cytokine IL-10, suggesting that a certain level
of NF-�B activation is required to modulate the inflam-
matory reaction and counteract proatherogenic re-
sponses (Fig. 2). This finding is in favor of a central role
for NF-�B in the induction of “protective” antiapoptotic
and anti-inflammatory genes, critical to the resolution of
the inflammatory process (374). However, the detrimental
effect of NF-�B inhibition in atherogenesis is likely to
depend on how NF-�B activity is inhibited. In a subse-
quent study, Kanters et al. (323) examined the effects of
hematopoietic NF-�B1 (the p50 subunit of NF-�B) defi-
ciency in the development of atherosclerotic lesions,
transplanting bone marrow from mice deficient in NF-�B1
into irradiated LDLr�/� mice. Instead of promoting the
formation of larger inflammatory lesions, as was the case
with specific IKK2 deficiency in macrophages, hemato-
poietic NF-�B1 deficiency was associated with a signif-
icant decrease in lesion size, despite enhanced accu-
mulation of T and B lymphocytes within the lesions.
This could be explained, at least in part, by the obser-
vation that in contrast to IKK2 deficiency, NF-�B1 de-
ficiency did not alter the inflammatory balance in favor
of a proatherogenic phenotype. Despite increased
TNF-� expression by NF-�B1-deficient macrophages,
other major proatherogenic molecules such as MCP-1
were downregulated, whereas critical antiatherogenic
factors such as IL-10 were significantly upregulated.

TABLE 2. Pro- and antiatherogenic cytokines

Proatherogenic Cytokines Antiatherogenic Cytokines

TNFR family
TNF-�
Lymphotoxin
Osteoprotegerin
CD40L

IL-1 family
IL-1 IL-1ra
IL-18 IL-18BP

Class I cytokines
IL-2
IL-4
IL-6 IL-6
IL-12 IL-9

Class II cytokines
IFN-� IL-10

Hematopoietic factors
M-CSF

Chemokines/chemokine receptors
IL-8/CXCR2
MCP-1/CCR2
Fractalkine/CX3CR1
RANTES
MIF

Bone-associated cytokines
Osteopontin

TGF-� family TGF-�

TNF, tumor necrosis factor; IFN, interferon; TGF, transforming
growth factor.
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Decreased MCP-1 production and increased IL-10 ex-
pression may have contributed to the limitation of
plaque size despite enhanced accumulation of T cells.
Another plausible explanation for reduced lesion devel-
opment in NF-�B1-deficient animals could be a defect
in the uptake of oxLDL by macrophages, as character-
istic foam cells were absent in NF-�B1-deficient le-
sions. Moreover, both scavenger receptor class A
(SR-A) expression and uptake of oxLDL were signifi-
cantly reduced in NF-�B1-deficient macrophages stim-
ulated ex vivo with lipopolysaccharide (LPS), although
in vivo relevance of this in vitro effect remains to be
determined. In summary, NF-�B appears to be at the

crossroads of the inflammatory response in atheroscle-
rosis, fine-tuning the response of the vessel wall to
injury (Fig. 2).

2. JNK/AP-1

AP-1 (activator protein-1) is a transcription factor
consisting of homodimers or heterodimers of Fos (c-Fos,
FosB, Fra-1 and Fra2), Jun (c-Jun, JunB, JunD), or ATF
subunits which recognize either 12-O-tetradecanoylphor-
bol-13-acetate (TPA) response elements or cAMP re-
sponse elements (CRE) (626). Jun proteins can ho-
modimerize, but Fos proteins can only form stable dimers

FIG. 1. Principal signaling pathways involved in atherogenesis. Proinflammatory cytokines (IL-1, IL-18) and pathogens (represented as
pathogen-associated molecular patterns, PAMP), as well as nonpathogen activators of TLR, act through distinct signaling pathways that converge
on the activation of NF-�B. MyD88 functions as an adaptor between receptors of the TLR or IL-1R families and downstream signaling kinases.
Following association of MyD88 with IL-1-associated kinase IRAK-4, IRAK-4 is autophosphorylated, dissociates from the receptor complex, and
interacts with TNF-receptor-associated factor-6 (TRAF-6), which also mediates CD40 signaling. Once activated, TRAF6 associates with the MAP3
kinase TAK1 (716). From TAK1, two signaling pathways diverge; one ultimately leads to NF-�B activation and the other to MAP kinase activation.
In its inactive form, NF-�B is bound to inhibitor of �B (IK-�B�/�) in the cytoplasm and consists of an I�B kinase (IKK) complex containing two
kinases IKK� and IKK�, and the regulatory protein IKK� (also named NEMO); IKK activation initiates I�B�/� phosphorylation. Phosphorylated I�B
is then ubiquitinated, leading to its degradation by the 26S proteasome. This releases NF-�B dimers from the cytoplasmic NF-�B-I�B complex,
allowing them to translocate to the nucleus. JNK phosphorylation is mediated by two MAPK kinases (MAPKKs), MKK4 and MKK7, that they can
cooperatively activate JNK. Both kinases are required for full activation of JNK by environmental stressors, and MKK7 is essential for JNK activation
by TNR engagement. Tyrosine phosphorylation activates the cytosolic inactive STATs, resulting in their nuclear translocation and gene activation.
This pathway was originally found to be activated by IFNs, but a number of cytokines, growth factors, and hormonal factors also activate JAK and/or
STAT proteins. IFN-� utilizes JAK1 and JAK2, and usually activates STAT1. TGF-�-triggered signals are transduced by proteins belonging to the
Smad (for vertebrate homologs of Sma and Mad) family. The type I receptor recognizes and phosphorylates Smad2 and Smad3, which associates
with Smad4, forming complexes that participate in DNA binding and recruitment of transcription factors. Smad3 may also have antagonistic
properties, as it plays a critical role in TGF-�-dependent repression of vascular inflammation by inhibiting AP-1 activity. Smad7 inhibits Smad2 and
Smad3 phosphorylation.
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with Jun. Phosphorylation of c-Jun by c-Jun NH2-terminal
kinases (JNKs) results in enhanced transcriptional activ-
ity of complexes containing AP-1 dimers (734).

JNK belongs to the family of stress-activated pro-
tein kinases that also includes the p38 protein kinases.
Three highly related but distinct gene products, JNK1,
JNK2, and JNK3, can be expressed as a total of 10
isoforms as a result of variable mRNA splicing (259).
JNK1 and JNK2 show a broad tissue distribution,
whereas JNK3 is expressed predominantly in neurons
but also in cardiac smooth muscle and the testes (770).
Targeted deletion of the genes coding for JNK1 or JNK2
results in abnormal thymocyte selection (588) and loss
of T-lymphocyte differentiation and effector function
(179). JNK3 knockout mice show resistance to neuro-
nal apoptosis, directly implicating JNK in at least
some specific instances of programmed cell death (678,
768).

JNK phosphorylation is mediated by two MAPK ki-
nases (MAPKKs), MAP2K4 (or MKK4) and MAP2K7 (or
MKK7), that they can cooperatively activate JNK (Fig. 1).

Gene disruption studies in mice demonstrate that both
MAP2K4 and MAP2K7 are required for full activation of
JNK by environmental stressors and that MKK7 is essen-
tial for JNK activation by TNF (677).

Many proinflammatory genes, including those en-
coding TNF-�, IL-2, IL-6, E-selectin, ICAM-1, VCAM-1,
MCP-1, COX2, and MMPs-1, -9, -12, and -13 (500), are
regulated by the JNK pathway, through interaction of
AP-1 with other cis-acting sequences in their promoters
and with certain transcription factors that bind to these
sequences (Fig. 2).

A recent study showed that atherosclerotic lesions
were significantly reduced in JNK2-deficient apoE�/�

mice, but not in JNK1-deficient apoE�/� mice, compared
with apoE�/� mice (568). JNK2 expression in leukocytes,
rather than in vascular cells, appeared to be responsible
for this effect. Indeed, transplantation of apoE�/�

JNK2�/� bone marrow into apoE�/� mice reduced ath-
erosclerosis to an extent similar to that of apoE�/�

JNK2�/� mice transplanted with apoE�/� JNK2�/� bone
marrow, whereas apoE�/�JNK2�/� mice transplanted

FIG. 2. Cross-talks between proinflammatory/proatherogenic and anti-inflammatory/antiatherogenic signal transduction pathways. Inhibitory
Smads such as Smad7 downstream of IFN-� signaling associate with activated receptors and interfere with Smad2 and Smad3 binding. It is
noteworthy that like IFN-�, the anti-inflammatory cytokine IL-10 also activates JAK and/or STAT proteins. However, the IL-10/IL-10R interaction
activates JAK1 and Tyk2, leading to STAT3 and SOCS3 activation, which is central for the anti-inflammatory responses of IL-10 in macrophages. The
inflammasome may be a central link between apoptosis and inflammation in pathological conditions. NF-�B may have a dual role in atherosclerosis,
being proatherogenic through its proinflammatory properties, and antiatherogenic through its antiapoptotic activities.
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with apoE�/� bone marrow showed atherosclerotic le-
sions equivalent to those of apoE�/� mice transplanted
with apoE�/� bone marrow (568).

3. JAK/STAT

The class I and II cytokines induce homodimerization
and activation of their cognate receptors, resulting in the
activation of associated JAK kinases (JAK1, JAK2, JAK3,
and Tyk2) (Table 1) (520a). The activated JAKs phosphor-
ylate the receptor cytoplasmic domains, which creates
docking sites for SH2-containing signaling proteins.
Among the tyrosine phosphorylated substrates are mem-
bers of the STAT family of proteins (Table 1) (520a).
Receptor engagement and tyrosine phosphorylation acti-
vate the cytosolic inactive STATs, resulting in their nu-
clear translocation and gene activation. This pathway was
originally found to be activated by IFNs, but a number of
cytokines, growth factors, and hormonal factors also ac-
tivate JAK and/or STAT proteins (Fig. 1). In particular,
IL-6 binds to the IL-6 receptor �-chain and gp130, which
activate JAK1 and STAT3. IFN-� utilizes JAK1 and JAK2,
and usually activates STAT1. It is noteworthy that the
anti-inflammatory cytokine IL-10 also activates JAK
and/or STAT proteins (reviewed in Ref. 481). The IL-10/
IL-10R interaction activates JAK1 and Tyk2, which are
associated with the IL-10R1 and IL-10R2, respectively.

STAT3 can be activated by a number of cytokines,
especially those of the IL-6 family, mediating the expres-
sion of several acute-phase response genes. Yet, STAT3
appears to play a critical negative role in controlling
inflammation, as shown in mice with STAT3 deletion in
specific cell types, including keratinocytes (594), T cells
(666), macrophages/neutrophils (664), cardiomyocytes
(309), or endothelial cells (322), STAT3 deficiency being
embryonically lethal. STAT3-deficient T cells show se-
verely impaired IL-6-induced cell proliferation, due to the
lack of IL-6-mediated prevention of T-cell apoptosis (666).
STAT3 deletion in mice within the macrophage/neutrophil
lineage results in chronic inflammation and pathological
colitis with age, due to the enhancement of the Th1 re-
sponse by blockade of IL-10 signaling (664). Removal of
STAT3 from hematopoietic progenitors also results in
increased proinflammatory cytokine production, inflam-
matory bowel disease, and an expanded macrophage pop-
ulation (732). Interestingly, STAT3-deficient macrophages
and neutrophils show increased production of inflamma-
tory cytokines in response to LPS, which cannot be re-
duced by IL-10 (664). STAT3 activation by IL-10 is there-
fore central for anti-inflammatory responses in macro-
phages and neutrophils (Fig. 2). It is noteworthy that mice
with conditional STAT3 deletion in endothelium also
show exaggerated inflammation and leukocyte infiltration
in multiple organs upon LPS challenge (322). An endothe-
lium-derived soluble factor that is dependent on STAT3 is

likely to control IFN-� production during LPS-induced
inflammation (322).

In terms of immunoregulation, STAT4 and STAT6 are
crucially important for the differentiation of Th cells. IL-4
activates STAT6 and promotes the differentiation of Th2
cells (634). Conversely, IL-12 activates STAT4 and drives
the differentiation of naive T cells into Th1 cells that
produce IFN-� (325). In atherosclerosis, the Th cell re-
sponse is of the Th1 type, characterized by abundant
secretion of IFN-� (264). Yet, Th2 profile does not neces-
sarily offer protection against atherosclerosis and might
even be proatherogenic (see sect. VIB3). Therefore, tar-
geting STAT4 and STAT6 could be of use in the treatment
of atherosclerosis. Interestingly, statins, which are be-
lieved to exert beneficial effects in cardiovascular disease
beyond cholesterol lowering (350), have been reported to
inhibit Th1-mediated disease and to block activation of
STAT4 (386, 492, 778) and induction of major histocom-
patibilty complex (MHC)-II expression by IFN-� (366).
Other drugs, including rapamycin and lisofylline, have
also been reported to block STAT4 activation (127, 771).
Interestingly, a recent study showed that rapamycin re-
duces atherosclerosis in apoE�/� mice, with concomitant
decreased expression of IL-12p40, IFN-� and IL-10 mRNA,
and enhanced expression of TGF-�1 (190). Pentoxifylline,
a methylxanthine derivative of lisofylline, has been re-
ported to have protective effects against atherosclerosis
in apoE�/� mice, associated with a reduced Th1 polariza-
tion of Th lymphocytes (373).

Cytokine signaling by the JAK/STAT pathway is reg-
ulated, in part, by a family of endogenous JAK kinase
inhibitor proteins termed suppressors of cytokine signal-
ing (SOCS) (748). The SOCS family consists of eight mem-
bers [SOCS-1 to SOCS-7 and cytokine-inducible SH2 pro-
teins (CIS)] all sharing a central SH2 domain and a COOH-
terminal SOCS box. Both SOCS1 and SOCS3 inhibit JAK
tyrosine kinase activity; SOCS1 directly binds to the acti-
vation loop of JAKs through the SH2 domain, while
SOCS3 binds to cytokine receptors (Fig. 2). SOCS1 regu-
lates INF� signaling, and deficiency leads to lethal dis-
ease, which is characterized by exaggerated effects of
IFN-�. Interestingly, mice lacking both SOCS-1 and IFN-�,
though saved from the lethal perinatal syndrome ob-
served in SOCS-1-deficient mice, develop a variety of
chronic infections or inflammatory lesions as adults (466).
In contrast, SOCS2 regulates growth hormone, and SOCS-
knockout mice show gigantism. SOCS3 is preferentially
expressed in Th2 cells and plays an important role in
regulating the onset and maintenance of Th2-mediated
allergic immune disease (619).

Very little is known regarding the role of SOCS in
atherosclerosis. It has been reported that SOCS-1 inhibits
IFN-�-induced CD40 expression in macrophages by
blocking IFN-�-mediated STAT-1 activation, and in so
doing suppressing IFN-�-induced TNF-� secretion and
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subsequent NF-�B activation (733). Inasmuch as the
CD40/CD40L pathway actively participates in plaque de-
velopment and progression (reviewed in Ref. 605), mim-
ics or inducers of SOCS1 might be useful to attenuate the
effects of IFN-� in the context of atherosclerosis.

4. Smads

TGF-�-triggered signals are transduced by proteins
belonging to the Smad (for vertebrate homologs of Sma

and Mad) family. Smads serve as substrates for TGF-�
receptors type I and II, in which the cytoplasmic domain
possesses serine/threonine kinase activity (453). The type
I receptor recognizes and phosphorylates Smad2 and
Smad3, which associates with Smad4, forming complexes
that participate in DNA binding and recruitment of tran-
scription factors (Fig. 1). Smad3 may also have antago-
nistic properties, as it plays a critical role in TGF-�-
dependent repression of vascular inflammation by inhib-
iting AP-1 activity (Fig. 2) (200, 201). In addition to these
agonistic Smads, inhibitory Smads (I-Smad) such as
Smad6 and Smad7, which associate with activated recep-
tors and interfere with Smad2 and Smad3 binding, are
present. Expression of Smad7 is induced by IFN-� as a
negative regulator of the TGF-�/Smad pathway (684). Re-
cent advances in the study of atherosclerosis point to an
important role of TGF-� signaling in the protection
against excessive plaque inflammation, loss of collagen
content, and induction of regulatory immunity (see below
and reviews in Refs. 243, 444, 445). Immunohistochemis-
try and RT-PCR anlaysis of human plaques reveal Smad2,
Smad3, and Smad4 expression in macrophages of fibro-
fatty lesions and in SMC of fibrous caps (320). We also
detected phosphorylated Smad2 in the aortic sinus of
apoE�/� mice, indicative of TGF-� activity in atheroscle-
rotic lesions (438).

5. TLR/Myd88 signaling pathways

At least 10 TLRs (TLR1–10) recognize different
PAMPs associated with different classes of pathogens
(review in Refs. 303, 665). For example, TLR4 recognizes
LPS, which is unique to Gram-negative bacteria, and TLR2
recognizes peptidoglycan found in Gram-positive bacte-
ria. TLR9 recognizes unmethylated CpG motifs, which are
abundant in prokaryotic genomes and virus DNA. TLR3
recognizes double-stranded RNA (dsRNA) produced dur-
ing viral infections. TLRs are characterized by a 150-
amino acid intracytoplasmic domain named TIR (Toll/IL-
1R/R), which they share with members of the IL-1 recep-
tor (IL-1R) family and plant disease resistance (R) genes,
and by an extracellular domain composed of NH2-termi-
nal leucine-rich repeats (LRRs) flanked by characteristic
cysteine clusters on the COOH-terminal (CF motif) or
NH2-terminal (NF motif) side of the LRRs. Upon stimula-
tion, TLRs and the IL-1R family activate the transcription

factors NF-�B and AP-1, leading to production of proin-
flammatory cytokines. TIR domains play a critical role in
TLR signaling. They allow homophilic interactions with
the cytoplasmic factor MyD88 that also contains a TIR
domain (Fig. 1). MyD88, which is recruited to the recep-
tors after stimulation, contains an NH2-terminal death
domain that enables it to bind the death domain-contain-
ing serine-threonine kinases of the IL-1R-associated ki-
nases (IRAK) family (reviewed in Ref. 312). As a result,
MyD88 functions as an adaptor between receptors of the
TLR or IL-1R families and downstream signaling kinases.
Following association of MyD88 with IRAK-4, IRAK-4 is
autophosphorylated, dissociates from the receptor com-
plex, and interacts with TNF-receptor-associated factor
(TRAF)-6. Once activated, TRAF6 activates a heterodimer
composed of two ubiquitination proteins called Uev1A
and Ubc13, which triggers its association with the MAP3
kinase TAK1 (716). From TAK1, two signaling pathways
diverge; one ultimately leads to NF-�B activation and the
other to MAP kinase activation. Studies using MyD88-
deficient mice showed that this factor is essential for the
NF-�B-dependent induction of TNF-� and IL-6 in re-
sponse to TLR agonists (331). Interestingly, analysis of
MyD88 mutant mice unexpectedly pointed to the exis-
tence of a MyD88-independent pathway downstream of
some TLRs. Indeed, TLR4- or TLR3-mediated activation
of NF-�B and AP-1 by LPS and dsRNA, respectively,
was not abolished but only delayed in MyD88-deficient
mice (13, 331).

Recently, enhanced expression of TLR4 was detected
in murine (apoE�/� mice) and human carotid and coro-
nary atherosclerotic plaques (186, 760). TLR1 and TLR2
expression has also been found in human carotid (186)
but not in coronary plaques (760). Human epidemiological
data demonstrate that an Asp299Gly TLR4 polymorphism,
which attenuates receptor signaling, is associated with a
decreased risk of atherosclerosis and acute coronary
events (18, 64, 335). Functional TLR4 expression has also
been correlated with the development of aortic intimal
hyperplasia in a mouse model of artery injury (699), and
TLR4 activation by LPS increases atherosclerotic plaque
formation in the apoE3*Leiden atherosclerotic mouse
model (287).

Interestingly, TLR4 appears to be involved in several
aspects of the inflammatory response even in the absence
of infection, by recognizing endogenous ligands produced
during inflammation. Extracellular matrix components,
including the type III repeat extra domain A of fibronec-
tin, low-molecular-weight oligosaccharides of hyaluronic
acid, and polysaccharide fragments of heparan sulfate,
provoke immunostimulatory responses similar to those
induced by LPS, via TLR4 (315, 517, 673). Moreover, fi-
brinogen (642) and minimally modified LDL (mmLDL)
(471) are able to induce the production of chemokines
and cytokines from macrophages through recognition by
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TLR4. Together, these recent findings indicate that TLR4
may exert LPS-independent atherogenic activities (468,
469). Two lines of evidence support this hypothesis: 1)
oxLDL enhances TLR4 expression in macrophages (760),
and 2) TLR4 or its intracellular adaptor protein, MyD88,
reduces atherosclerosis in uninfected apoE-deficient
mice, concomitant with a marked reduction in macro-
phage infiltration and MCP-1 expression in the atheroscle-
rotic lesions (54), and decreased circulating levels of IL-12
and MCP-1 (470).

Remarkably, CD4�CD25� Treg cells selectively ex-
press TLR4–5-7–8 (110). This is of particular importance
given the role that Treg cells play in atherosclerosis, as we
recently reported (8, 437; see sect. VIC).

III. INDUCERS OF CYTOKINE PRODUCTION

IN ATHEROSCLEROSIS

A. Initial Trigger(s)

According to the classical view of inflammation, cy-
tokines are produced by cells of the innate immune sys-
tem (monocytes, neutrophils, NKT cells) in response to
microbial infection, toxic reagents, trauma, antibodies, or
immune complexes (493). In the host, TLRs and intracel-
lular proteins (NOD1 and NOD2, for “nucleotide-binding
oligomerization domain”) act as sensors of the conserved
molecular motifs present on a wide range of different
microbes, the PAMPs. Hence, cytokines are secondary
mediators of inflammation and not the primary triggers.
An etiologic role for infectious agents in atherosclerosis,
especially Chlamydia pneumoniae and cytomegalovirus
(CMV), has been repeatedly evoked (396) since the first
seroepidemiologic evidence of an association of the chla-
mydia TWAR strain with acute myocardial infarction and
chronic coronary disease was reported in 1988 (589).
However, the most recent clinical trials, including Weekly
Intervention with Zithromax for Atherosclerosis and its
Related Disorders (WIZARD) (511), Azithromycin in
Acute Coronary Syndrome (AZACS) (114), Antibiotic
Therapy After Acute Myocardial Infarction (ANTIBIO)
(781), Pravastatin or Atorvastatin Evaluation and Infec-
tion Therapy (PROVE-IT) (108), and Azithromycin and
Coronary Events Study (ACES) (250), assessing the po-
tential benefits of antibiotic therapy with the goal of tar-
geting Chlamydia pneumoniae showed no effect of treat-
ment in patients with CAD. Moreover, experimental stud-
ies showed that infection is not necessary for initiation or
progression of atherosclerosis in apoE-deficient mice.
Atherosclerosis develops identically in germ-free animals
and in animals raised with ambient levels of microbial
challenge (749). One must therefore conclude that patho-
gens do not serve as etiologic agents for atherosclerosis,
even though one cannot rule out a role in disease exac-

erbation. Several reports indicate that inoculation of ath-

erosclerosis-prone mice with high doses of C. pneu-

moniae fosters atherosclerosis (292, 475). Yet, the athero-

genic effect of C. pneumoniae requires elevated serum

cholesterol levels (292).

Atherosclerosis clearly does not develop in any ani-

mal model without a significant level of plasma choles-

terol, and the dominant role of cholesterol is also well

established in humans. While hypertension, diabetes, and

smoking are factors that dramatically increase the risk of

atherosclerosis, it is not rare to have clinically significant

atherosclerosis in the absence of these risk factors. In

contrast, below a certain level of cholesterol (150 mg/dl),

atherosclerosis is practically absent in human popula-

tions (106), and risk gradually increases with increased

plasma cholesterol levels (647). Moreover, primary and

secondary clinical trials have established the efficacy of

lowering cholesterol with statins for prevention of cardio-

vascular disease (256, 694). It is therefore tempting to

hypothesize that the primary trigger of cytokine release in

atherosclerosis has a link with cholesterol. Atherogenic

cholesterol exists mainly in the form of LDL, which are

the main culprit in CAD. In fact, several lines of evidence

support the hypothesis that oxidized lipids, including ox-

LDL, are the most likely triggering factors for cytokine

production.

Quantitative analysis of atherosclerosis in fetal aorta

showed that fatty streaks are already present at this early

stage of life, lesions being more abundant in fetus from

hypercholesterolemic mothers than from normocholes-

terolemic mothers (489). Interestingly, qualitative analy-

sis of lesions depicted similar distribution of native LDL,

oxLDL, and macrophages in lesions of offspring from

both hypercholesterolemic and normocholesterolemic

mothers. The presence of macrophages alone, without

native LDL or oxLDL, or their association with native

LDL, was almost never observed, and most of the lesions

contained both oxLDL and macrophages. A few lesions

with native LDL or oxLDL without macrophages were

also present. This seminal study allows us to describe the

exact chronology of events leading to fatty streak for-

mation in humans, starting with native LDL uptake by

the arterial intima, followed by LDL oxidation and,

finally, monocyte recruitment after endothelial activa-

tion by oxLDL.

C3H mice, which do not develop atherosclerotic le-

sions either when fed an atherogenic diet or when crossed

with the atherosclerosis prone apoE�/� mice, do not re-

spond to in vivo administration of oxLDL, in contrast to

C57BL/6 mice (391). Their EC are not activated in the

presence of oxLDL, whereas cells from C57BL/6 mice

express M-CSF, MCP-1, and VCAM-1 in the same condi-

tions. Yet, C3H EC respond perfectly well to activation by

the proinflammatory cytokines IL-1 and TNF-� (628, 629).
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oxLDL behaves as a potent inflammatory agent. In
vivo administration of oxidized LDL to C57BL/6 mice
causes rapid induction of circulating M-CSF and upregu-
lation of genes encoding JE (the murine analog of MCP-1)
as well as other inflammatory proteins in various tissues
(392). OxLDL stimulates the expression of adhesion mol-
ecules on EC (337). OxLDL has chemoattractant activity
on monocytes, promotes their differentiation into macro-
phages, but inhibits their mobility (555, 556). Binding of
oxLDL to CD36 triggers the release of proinflammatory
cytokines in macrophages (310). In addition, incubating
human blood mononuclear cells with oxLDL results in
T-lymphocyte activation, as assessed by increased expres-
sion of IL-2 receptors and HLA-DR antigens on T lympho-
cytes (215).

Oxidation of LDL generates many “neo-self determi-
nants” that induce an active immune response (288) and
may challenge the regulatory pathways responsible for
immune homeostasis. Both humoral and cellular immune
responses can profoundly affect atherosclerotic develop-
ment and progression (268).

The amount of lipid retained in macrophages de-
pends on unregulated uptake of oxidized lipoproteins by
scavenger receptors, as first identified by Brown and
Goldstein (87), counterbalanced by degradation and
efflux.

Altogether these findings point to a role of oxLDL as
a very early trigger of vascular inflammation. LDL accu-
mulation and modification in the subendothelium trigger
monocyte and lymphocyte recruitment. Thereafter, acti-
vated macrophages and lymphocytes secrete abundant
amounts of cytokines that in turn can activate EC, SMC,
and macrophages/lymphocytes to foster cytokine produc-
tion, leading to a self-perpetuating inflammatory process
that becomes less dependent on the presence of oxLDL.
This might explain why oxLDL, while instrumental in
triggering the early atherosclerotic events, are less critical
in upholding the inflammatory environment. This might
also explain in part the efficiency of antioxidant therapies
in the prevention of atherosclerosis when these therapies
are administered at the very beginning of the atheroscle-
rotic process in animal models, but their failure to do so
in most secondary or primary prevention clinical trials in
humans (reviewed in Ref. 743), where treatment is admin-
istered at later stages of the disease when secondary
inflammatory mediators become as important as the ini-
tial oxidative-related stimulus. It is noteworthy that ath-
erosclerotic plaques do not regress, or regress very
slowly, in cholesterol-fed rabbits following short-term
withdrawal of cholesterol feeding and normalization of
cholesterol plasma levels (2, 155). It is only after a pro-
longed cholesterol withdrawal period that decrease in
plaque size, together with reduced vascular inflammation
and plaque stabilization, is observed (7, 347, 697). In
humans, aggressive lipid lowering treatment using statins

has been shown to be very effective in limiting plaque

development and reducing plaque progression (142, 143,

505, 506, 777). The cytokine network may thus serve as a

final common proinflammatory pathway regardless of the

initiating event and provides a supplemental therapeutic

target, especially in late stages of the disease.

Several oxidized lipids and/or phospholipids are lipid

bioactive mediators and may serve as primary triggers of

the atherosclerotic process. Bioactive lipids have been

identified in the atherosclerotic plaque, including the po-

tent inflammatory mediator platelet activating factor

(PAF), PAF-like lipids, oxidized phospholipids (oxPL),

and lysophosphatidylcholine (lysoPC) (494). Like oxLDL,

PAF induces TNF-� production by monocytes (71, 213)

and MHC class II dependent IFN-� secretion by T lym-

phocytes (213). Oxidized phospholipids upregulate tissue

factor expression in EC (62), as well as in SMC (146).

Similarly, lysoPC can enhance IFN-� secretion and gene

expression in human T lymphocytes (503) and stimulate

the production of IL-1� in macrophages (407). It also

stimulates ICAM-1 and VCAM-1 expression (362, 793) and

induces the release of IL-6 and IL-8 (662) in EC and MCP-1

in EC (663) and SMC (575).

Lipid oxidation products such as lysoPC, 4-hydroxy-

2-nonenal (4HNE), and oxysterols are contained in oxLDL

(662). Oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-

phosphorylcholine (OxPAPC), which is present in mini-

mally modified LDL, is a PAF-like lipid that is found in

atherosclerotic plaques. OxPAPC, but not native PAPC, is

able to stimulate EC to bind monocytes and to secrete

MCP-1, IL-8, and growth-related oncogene (GRO)-� (376,

565, 773; see review in Ref. 382). Individual lipids identi-

fied in OxPAPC include 1-palmitoyl-2-(5-oxovaleroyl)-sn-

glycero-3-phosphorylcholine (POVPC), 1-palmitoyl-2-

glutaroyl-sn-glycero-3-phosphorylcholine (PGPC), and

epoxy-isoprostane-PC (727, 728). Oxidized 1-palmitoyl-2-

linoleoyl-sn-glycero-3-phosphorylcholine (PLPC) also

promotes monocyte-endothelial interactions (4). More-

over, epoxyisoprostane and epoxycyclopentenone phos-

pholipids have been identified in OxPAPC that induce

MCP-1 and IL-8 in EC (653). Oxidized phospholipids can

upregulate tissue factor both in EC (62) and in SMC (146).

Interestingly, it has been shown that OxPAPC inhib-

its the binding of LPS to LPS-binding protein and CD14,

which are required for presenting LPS to TLR-4 (61). It is

therefore likely that upon acute bacterial inflammation

oxidized phospholipids exert anti-inflammatory proper-

ties by inhibiting NF-�B pathway, while under conditions

of chronic inflammation, the pro-inflammatory activity of

lipid oxidation products becomes more pathologically rel-

evant (382).

Eicosanoids are well-known lipid mediators of in-

flammation. They comprise a variety of compounds [pros-

taglandins, thromboxanes, leukotrienes (LT), hydroxy-
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and epoxy-fatty acids, lipoxins, and isoprostanes] that are
derived from arachidonic acid. Leukotrienes are a class of
eicosanoids that are derived through the action of the
5-lipoxygenase (5-LO). 5-LO is pivotal for the generation
of both proinflammatory (LTB4 and LTC4) and anti-inflam-
matory (lipoxins) mediators. However, in contrast to their
inhibitory effects on PMN and eosinophils, lipoxins are
potent stimuli for peripheral blood monocytes, stimulat-
ing monocyte chemotaxis and adherence (428). Recent
biologic and genetic findings implicate the 5-LO pathway
in atherosclerosis (162, 279, 461, 552). Mehrabian et al.
(461) reported that heterozygotes for the 5-LO gene on the
LDLr�/� background had considerably reduced aortic le-
sions, compared with the advanced lesions observed in
5-LO�/�LDLr�/� mice, despite equivalent hypercholester-
olemia. 5-LO pathway also promotes pathogenesis of hy-
perlipidemia-dependent aortic aneurysm (787). Further-
more, clinical findings showed that variant alleles of 5-LO
genes were associated with a significant increase of ca-
rotid intima thickness (184). Most recently, a significant
association was drawn between the gene encoding 5-LO
activating protein (FLAP) and myocardial infarction by
analysis of single-nucleotide polymorphism haplotype in
humans (279).

Another significant recent discovery is the chemotac-
tic activity of LTB4 on activated CD4� and CD8� T cells
expressing the LTB4 receptor, BLT1 (239, 522, 661). It was
found that both Th1- and Th2-polarized CD4� T cells and
antigen-specific CD4� T cells, but not naive T cells, ex-
press BLT1 (661). Therefore, the antiatherogenic effects
of the blockade of LTB4/BLT1 pathway (6, 280) might
result in part from decreased Th1/Th2 cells recruitment in
the plaque.

B. Secondary Triggers

Once inflammation has been triggered and cytokine
release is initiated at the onset of atherosclerotic lesion
development, a number of factors that are found in the
atherosclerotic plaque can participate in maintaining and
amplifying cytokine production (Table 3).

1. HSP

Evidence suggests that the inflammatory component
of atherosclerosis might, at least in part, involve immune
reactivity to heat shock proteins (HSPs) (446, 544, 737).
Animal models of atherosclerosis have shown a very early
role for HSP60 in the development of the disease (see
review in Ref. 738). HSP60 might be an important autoan-
tigen in atherosclerosis and might play a role similar to
that of oxLDL in triggering an autoreactive T-cell re-
sponse. Rabbits (757, 758) or mice (226) immunized with
mycobacterial HSP65, which has a high degree of se-
quence homology with mammalian HSP60, develop en-

hanced early atherosclerotic lesions. High levels of auto-
antibodies specific for human HSP60 have been reported
to be associated with CAD (792).

Besides their role as autoantigens, HSPs can act as an
amplifier of the cytokine production. Although HSPs are
typically regarded as intracellular proteins, HSP60 and
HSP70 are present in the sera of clinically normal individ-
uals (546, 759), and enhanced levels of circulating HSP60
are associated with early atherosclerosis in clinically nor-
mal subjects (546, 759), as well as with peripheral vascu-
lar disease (749). Elevated HSP60 levels also predict the
progression of atherosclerosis in hypertensive patients
according to the European Lacidipine Study on Athero-
sclerosis (ELSA) (545). HSP60, HSP70, HSP90, and gp96
are capable of inducing the production of proinflamma-
tory cytokines by macrophages, and they can stimulate
the activation and maturation of dendritic cells as well,
via CD14/TLR2 and CD14/TLR4 receptor complex-medi-
ated signal transduction pathways, in a manner similar to
the effects of LPS and bacterial lipoprotein (714). In par-
ticular, chlamydial and human HSP60 induce TNF-� and
MMP production by macrophages (351) and stimulate
E-selectin, ICAM-1, and VCAM-1 expression on EC (349).
HSP60 also markedly enhances IL-6 production by EC,
SMC, and macrophages (349). However, recent evidence
suggests that the reported cytokine-inducing effects of
HSPs may in part be due to contaminating LPS and LPS-
associated molecules (see review in Ref. 680).

TABLE 3. Primary and secondary triggers of cytokine
release in atherosclerosis

Primary: bioactive lipid mediators
Oxidized low-density lipoprotein
4-Hydroxy-2-nonenal (4HNE)
Oxysterols
Oxidized phospholipids (oxPL)

Lysophosphatidylcholine (lysoPC)
Oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine

(oxPAPC)
Platelet activating factor (PAF)

Secondary
Heat shock proteins
Immune complexes
Infectious agents
Defective clearance of apoptotic cells
Matrix metalloproteinases
Inflammasome
Oxygen radicals
Angiotensin II
Advanced glycated end products
Proinflammatory cytokines
Toll-like receptor endogenous ligands
Mechanical factors

Hypertension
Disturbed flow

Adipokines
Leptin
Resistin

Platelet products
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2. Immune complexes

OxLDL is a major autoantigen involved in atheroscle-

rosis (reviewed in Ref. 52), and both oxLDL and anti-

oxLDL antibodies are present in atherosclerotic lesions

(526, 775). Immune complexes consisting of oxLDL and

anti-oxLDL may be ingested by macrophages via Fc-�

receptors, leading to their activation and subsequent re-

lease of inflammatory cytokines, oxygen-activated radi-

cals, and MMPs (702). Immune complexes may also in-

duce dendritic cell maturation and the production of im-

munostimulatory cytokine via ligation of the Fc-�

receptors.

3. Infectious agents

We have previously indicated why infectious agents

are unlikely to be etiological factors in atherogenesis.

However, they may participate in exacerbating the inflam-

matory process associated with atherosclerosis. Chla-

mydia pneumoniae can infect EC, SMC, and macro-

phages, resulting in the production of large amounts of

chlamydial HSP60 during chronic, persistent chlamydial

infections. Chlamydia pneumoniae induces the expres-

sion of the adhesion molecules E-selectin, ICAM-1, and

VCAM-1 in EC (329, 349) and stimulates the production of

TNF-�, IL-1�, IL-6, MMP-2, and MMP-9 in macrophages

(330, 349, 351, 499). In addition, Chlamydia pneumoniae

is a potent inducer of IL-18 and IFN-� production in

peripheral blood mononuclear cells, the latter depending

on the release of endogenous IL-18, IL-12, and IL-1� but

not on TNF-� (499). Chlamydia pneumoniae-induced

synthesis of TNF-� and IL-1� involves TLR2-mediated

signals, whereas stimulation of IL-18 production is medi-

ated through MyD88-dependent pathways independent of

TLR2 or TLR4 (498, 499).

A role for viruses in atherosclerosis was proposed in

the 1970s by Catherine Fabricant showing that Marek’s

disease virus induces atherosclerosis in hypercholester-

olemic chickens (196). Other herpes viruses such as her-

pes simplex virus (HSV) and CMV can contribute to ath-

erosclerosis (90). In the human aorta, EC and SMC appear

to be a primary site of infection with CMV, suggesting that

the vasculature may serve as a reservoir for CMV (527).

Interestingly, the production of IL-6 and IL-8 has been

shown to be enhanced in CMV-infected SMC and EC (14,

172). Likewise, infection of SMC with human CMV in-

duces strong production of chemokines, RANTES (regu-

lated upon activation, normal T expressed and presum-

ably secreted), and IP-10 (IFN-inducible protein 10) (249).

One of the most relevant contributions of herpes viruses

to atherosclerosis could be through their potential to

initiate the generation of thrombin by having essential

phospholipids and TF activities on their surface (656).

4. Defective clearance of apoptotic cells

A variety of mechanisms are involved in apoptotic
cell recognition by phagocytes. Innate recognition of non-
self involves CD91-calreticulin complex (binding to C1q
or to mannose binding lectin which recognizes apoptotic
cell-associated molecular patterns by phagocytes), CD14
and �2-integrins (which bind the inactivated complement
fragment iC3b) (reviewed in Ref. 596). Recognition of
altered self (oxidized epitopes) is achieved through scav-
enger receptors, or ligation to bridging proteins, like Gas6
and milk fat globule epidermal growth factor 8 (MFG-E8),
which bind Mer kinase receptor and �v�3-integrin, respec-
tively, on phagocytes (596). Apoptosis is a mechanism of
cell death that does not generate an inflammatory re-
sponse, since appropriate clearance of apoptotic bodies
by professional phagocytes induces the release of the
anti-inflammatory cytokines IL-10 and TGF-� (596). How-
ever, intrinsic defects in the clearance of apoptotic cells
are associated with spontaneous and persistent tissue
inflammation and autoimmunity. This may be due to re-
duced production of immunoregulatory cytokines due to
defective phagocytosis and/or to the immunogenic and
proinflammatory potential of the unremoved apoptotic
cells (53). For instance, impaired clearance of apoptotic
cells has been described in patients with cystic fibrosis
and bronchiectasis (691) and has also been linked to the
pathogenesis of systemic lupus erythematosus (SLE)
(668). Interestingly, a recent study by Grainger et al. (246)
provided evidence that apoE deficiency results in im-
paired clearance of apoptotic cell debris. This in turn was
associated with a systemic increase in proinflammatory
markers in apoE�/� mice, including TNF-� and fibrino-
gen, which was independent of lipoprotein metabolism
(246). With regard to atherosclerotic plaques, we have
shown that apoptotic microparticles accumulate in the
lipid core (442), most likely as a result of reduced
capacities of clearance of apoptotic cells by foam mac-
rophages that are in an oxidant-rich environment (443,
592). Defect in the clearance of apoptotic cells/micro-
particles may promote and perpetuate proinflammatory
cytokine production.

5. Cellular microparticles

Microparticles (MPs) are plasma membrane-derived
vesicles shed from the plasma membrane of stimulated or
apoptotic cells. They are now acknowledged as cellular
effectors involved in fundamental physiological processes
including intercellular communication, hemostasis, and
immunity (reviewed in Refs. 296, 482). MPs are ideal links
between inflammation, thrombosis, and atherosclerosis.
MPs express a number of proinflammatory and prothrom-
bogenic molecules and could play an important role in the
dissemination of these factors to sites remote from the
site of their production. MPs are a source for IL-� secre-
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tion (427) and are rich in aminophospholipid substrates of

secretory phospholipase A2 for the generation of lyso-

phosphatidic acid, a potent proinflammatory mediator

and platelet agonist (209). Platelet-derived MPs enhance

monocyte arrest on activated endothelium or atheroscle-

rotic carotid arteries, through P-selectin, GPIIb/IIIa, and

JAM-A-dependent deposition of RANTES (457, 604),

and/or increased endothelial expression of ICAM-1 and

monocyte expression of CD11a/CD18 and CD11b/CD18

(36). The induction of monocyte-endothelial adhesion

could also be mimicked by arachidonic acid isolated from

MPs, suggesting a role for MP-associated bioactive lipids

in transcellular communications. These effects of MPs

may have contributed to the accelerated atherosclerosis

in mice injected with activated platelets (604). P-selectin/

PSGL-1 also enhances the production of leukocyte-de-

rived MP and the recruitment of these MPs to thrombi

(reviewed in Ref. 711). In addition, platelet-derived MPs

express CD40L, which has been involved in thrombus

stabilization (19). Others have shown that leukocyte MP

formation was enhanced by inflammatory stimuli (464).

Purified leukocyte-derived MPs in turn induced EC IL-6

and IL-8 release, MCP-1, and tissue factor expression

(465), suggesting a potential role in the perpetuation of

endothelial cell activation. MMPs have been observed in

endothelium, platelet, monocyte, and T lymphocyte-de-

rived MPs (177) and may contribute, in conjunction with

other factors such as tissue factor, to the proangiogenic

potential of these cell fragments. MPs are abundantly

present in the lipid core of human atherosclerotic plaques

(442) where they are responsible for tissue factor activa-

tion and may contribute to plaque inflammation. MPs also

circulate at high levels in the peripheral blood of patients

with acute coronary syndromes (433) and are suggested

to play an important role in endothelial dysfunction (76)

in addition to their potential role as carriers of blood-

borne tissue factor (231), involved in blood thromboge-

nicity.

6. MMPs

Several studies have indicated that MMPs can di-

rectly or indirectly affect the activity of various cytokines

that participate in inflammation and repair processes,

including IFN-�, VEGF, EGF, FGF (see review in Ref.

532). Of particular interest in the context of atheroscle-

rosis are the effects of MMPs on TGF-�, IL-1�, and TNF-�.

Proteolysis of extracellular matrix by MMPs is one of the

mechanisms that can release active TGF-� from inactive

complexes. In both cells and tissue explant models,

MMP-3 (429), MMP-9 (779), and MMP-14 (328) have been

shown to activate TGF-�. By activating TGF-� in vivo,

MMPs would restrain, rather than augment, inflammation.

This might, at least in part, account for reduced macro-

phage infiltration in atherosclerotic lesions of MMP-3-
deficient apoE�/� mice (637).

IL-1� also requires caspase-1-dependent proteolytic
processing for activation. MMP-2, MMP-3, and MMP-9 can
cleave and activate the IL-1� precursor (606). Further-
more, beyond activating IL-1�, MMP-3 can actually de-
grade the biologically active cytokine (606), which can
also be inactivated in vitro by MMP-1, MMP-2, and MMP-9
(308). Altogether, these data indicate a potential dual role
for MMPs in the modulation of cytokine activity, being
involved in both activation and inactivation processes.

Similarly, TNF-� is regulated by MMP activity. TNF�,
which is produced as a 26-kDa membrane-associated pro-
tein, is cleaved by TNF-� converting enzyme (TACE) into
a soluble 17.5-kDa cytokine. TACE is a member of the
disintegrin family of metalloproteinases (ADAM17) (55,
483), and the release of active TNF-� is dramatically
reduced in cells derived from ADAM17-deficient mice,
indicating that ADAM17 plays a key role as a TNF-�
convertase in vivo (788). However, even if ADAM17 is the
main modulator of the generation of TNF-� activity,
MMP1 and MMP-9 are able to cleave proTNF even though
they do not produce active TNF-� (477).

7. Inflammasome

Caspases are a family of cysteine proteases that fulfill
a critical role in the execution of apoptosis. Moreover, a
subfamily of caspases, known as inflammatory caspases,
is involved in innate immunity, caspase-1 being the pro-
totypic member. Other members include human
caspase-4 and -5, and mouse caspase-11 and -12, all of
which contain an NH2-terminal caspase recruitment do-
main (CARD). Activation of the inflammatory caspases
requires the assembly of a unique intracellular complex,
designated the inflammasome, that proceeds to cleave
and activate IL-1� and IL-18 (452, 681). Of note, caspase-
1�/� mice have defects in the production of IL-1� and
IL-18 but only subtle defects in apoptotic pathways (358,
390). Evidence is now accumulating that members of the
CATERPILLER [CARD, transcription enhancer, R (pu-
rine)-binding, pyrin, lots of leucine repeats] gene family,
and, in particular, of the NALP subfamily, are important
players in this signaling process. When NALP1 is activated
by factors that are yet unknown, it interacts with an
adaptor protein ASC (apoptosis-associated specklike pro-
tein containing a CARD) through homologous pyrin do-
main (PYD) to induce the assembly of a complex com-
posed of NALP1, ASC, caspase-1, and caspase-5. This
brings the caspases in close proximity to each other,
thereby inducing their activation (681). Upon activation of
caspase-1, the 31-kDa IL-1� precursor and the active
caspase-1 colocalize to the inner surface of the cell mem-
brane and caspase-1 cleaves the precursor (640). The
active 17-kDa IL-1� is then released into the extracellular
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compartment. Caspase-1-dependent processing of the 24-

kDa IL-18 precursor is believed to be similar to that of

IL-1� (176). Interestingly, a single amino acid mutation in

the NALP-3 gene has been reported in humans with

Muckle-Wells syndrome, a rare autosomal dominant dis-

ease characterized by recurrent fevers, neutrophilia, ele-

vated acute-phase proteins and arthritis (3). This muta-

tion in NALP-3 results in a high state of activation of

caspase-1 in LPS-stimulated monocytes and increased re-

lease of IL-1� compared with cells from patients without

the mutation. Inflammasome-related proteins might rep-

resent novel pharmacological targets to prevent exagger-

ated production of IL-1 and/or IL-18, and thereby combat

inflammatory diseases.

8. Oxygen radicals

Cells present in the atherosclerotic plaque can pro-

duce reactive oxygen species (ROS) such as O2
�, H2O2,

and �OH in response to activation by a number of molec-

ular actors of atherosclerosis, including cytokines

(TNF-�, IL-1), growth factors (PDGF), vasoactive pep-

tides (angiotensin II), platelet-derived products (throm-

bin, serotonin), and mechanical factors (cyclic stretch,

laminar and oscillatory shear stress) (252). Major sources

of ROS include normal products of mitochondrial respi-

ration, NADPH oxidases, NO synthases, cyclooxygenases,

lipoxygenases, cytochrome P-450 monooxygenase, and

xanthine oxidase. These enzymes are all expressed in the

atherosclerotic plaque, but evidence suggests that

NADPH oxidase-like activity appears to be the major

contributing enzymatic source of ROS in the vascular

wall, generating superoxide anion in endothelial and

smooth muscle cells (41, 253). The production of ROS

activates reduction-oxidation (redox)-sensitive signaling

pathways that regulate inflammatory gene expression.

ROS have been viewed previously as general messen-

gers for signal-induced NF-�B activation (612). However,

recent evidence supports the notion that ROS themselves

are not direct activators of NF-�B (273). In fact, ROS may

oxidize NF-�B subunits and thus impair the DNA binding

and transcriptional activities of NF-�B (504). At the acti-

vation level, the ubiquitination and degradation of NF-�B

inhibitor, I�B�, is dependent on the kinase activity of IKK

complexes. IKK� and IKK� contain a redox-sensitive cys-

teine residue (Cys-179) that may be sensitive to oxidative

modification by ROS (582). This would explain the oxida-

tive inactivation of IKK� kinase activity observed in cells

exposed to ROS (354). In contrast, ROS are potent acti-

vators for JNK through oxidative inactivation of the en-

dogenous JNK inhibitors, such as JNK phosphatases and

glutathione S-transferase (124). Thus ROS may act as

unfair brokers between NF-�B and JNK, inhibiting one

but promoting the other, and creating a new form of

cross-talk between these two important stress-responsive
systems (785).

9. Angiotensin II

A large body of evidence indicates that angiotensin II
(ANG II) has significant proinflammatory activity in the
vascular wall, inducing the production of ROS, inflamma-
tory cytokines, and adhesion molecules. ANG II stimu-
lates ICAM-1 and VCAM-1 expression in EC and SMC
(144, 535, 553, 682), as well as E- and P-selectin expres-
sion in EC (15, 242). ANG II also enhances the functional
adhesion of monocytes to EC (1, 336) and stimulates
MCP-1 production in SMC and monocytes (122, 217, 283,
584). Furthermore, ANG II participates in the vascular
synthesis of IL-8 and its homologs macrophage inflamma-
tory protein (MIP)-2 and KC, as well as IP-10 (178, 284,
520, 658). Interestingly, one study, that needs to be con-
firmed, reported that ANG II can elicit the synthesis of
MCP-1 and RANTES in rat glomerular EC via AT2 rather
than AT1 receptors (745).

The proinflammatory effects of ANG II are generally
considered to be AT1 receptor dependent and are medi-
ated, at least in part, through NF-�B and AP-1. A number
of studies clearly indicated that inhibition of NF-��

blocks ANG II-induced expression of inflammatory agents
including MCP-1 (283), IL-6 (263), and VCAM-1 (553).
NF-�B activation appears to be downstream of the
NAD(P)H oxidases, inasmuch as antioxidant treatment
interferes with its activation by ANG II (163). Moreover,
angiotensin IV, a NH2-terminal degradation product of
ANG II, has recently been found to activate, via AT4

receptors, the NF-�B pathway in cultured vascular SMC,
and to upregulate proinflammatory genes, such as
ICAM-1, IL-6, TNF-�, MCP-1, and PAI-1 (195).

In agreement with in vitro observations, in vivo stud-
ies clearly indicate that ANG II can stimulate proinflam-
matory cytokine expression and promote inflammation
and atherosclerosis. Chronic infusion of ANG II in
apoE�/� mice enhances the vascular expression of
TNF-�, IL-6, and IL-1� as well as chemokines and chemo-
kine receptors including RANTES, MCP-1, CCR1 (C-C
chemokine receptor 1), CCR2, and CCR3 (501). In addi-
tion, ANG II treatment increases atherosclerotic lesion
size and promotes unstable plaque phenotype (501). Even
though these effects might partly be attributed to ANG
II-induced blood pressure elevation, it is noteworthy that
blockade of MCP-1, by transfection with a dominant neg-
ative of the MCP-1 gene into skeletal muscles, limited
ANG II-induced progression and destabilization of athero-
sclerotic plaques and suppressed the induction of proin-
flammatory genes (501). Interestingly, genetic disruption
of the AT1 receptor in apoE�/� mice leads to inhibition of
atherosclerotic lesion formation, irrespective of blood
pressure or plasma cholesterol levels (724), and treatment
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of apoE�/� mice with an AT1 antagonist inhibits MCP-1
and MIP-1 expression, together with monocyte/macro-
phage infiltration (178). In humans, it has been shown that
elevated plasma levels of MCP-1 in patients with cardio-
vascular disease are reduced by an ACE inhibitor or an
AT1 antagonist (356, 557). Remarkably, hypertensive pa-
tients display an enhanced ANG II-dependent monocyte
activation and adhesion to EC compared with normoten-
sive subjects (180).

Besides its inflammatory effects on vascular cells,
ANG II can also modulate adaptive immunity. ANG II
triggers the proliferation of splenic lymphocytes through
AT1 receptor activation (491) and promotes an immune
switch toward a Th1 response. Rats infused with ANG II
show an increased IFN-� and decreased IL-4 expression in
splenocytes (625). Similarly, splenocytes from hyperten-
sive apoE�/� mice with high ANG II produce more IFN-�
than those from hypertensive mice with normal ANG II or
normotensive apoE�/� mice (459).

Recently, hyperresponsive cross-linked ANG II-in-
duced AT1 receptor homodimers have been identified,
which are covalently bound by the transglutaminase ac-
tivity of intracellular factor XIIIA (1). High levels of cross-
linked AT1 dimers were present on monocytes of hyper-
cholesterolemic apoE-deficient mice, and inhibition of
ANG II generation or of intracellular factor XIIIA activity
suppressed both the appearance of cross-linked AT1 re-
ceptor dimers and symptoms of atherosclerosis. Intrigu-
ingly, levels of factor XIIIA activity and AT1 receptor
dimers are significantly higher in monocytes derived from
hypertensive patients than in monocytes derived from
normal subjects and correlate with an enhanced ANG
II-dependent monocyte adhesion to EC (1). Furthermore,
factor XIIIA activity and the levels of AT1 dimers in hy-
pertensive patients could be reduced or normalized by
chronic treatment with an ACE inhibitor. These findings
point to a significant contribution of covalent dimeriza-
tion of AT1 receptors in pathogenic events that drive
lesion formation.

10. AGEs

Advanced glycation end products (AGEs), the prod-
ucts of nonenzymatic glycation and oxidation of proteins
and lipids, accumulate in the vessel wall especially in
diabetes but also in euglycemia, in the latter case driven
by oxidant stress (767). AGEs may exert their pathogenic
effects by engaging cellular binding sites/receptors. A
number of cell surface interaction sites for AGEs have
been identified, including macrophage scavenger recep-
tors type II, OST-48, 80K-H, galectin-3, CD36, and receptor
for AGE (RAGE) (see review in Ref. 767). The interaction
of AGEs with macrophages has been shown to activate
macrophages in an NF-�B-dependent fashion, leading to

the induction of PDGF, insulin-like growth factor (IGF)-I,
and proinflammatory cytokines, such as IL-1� and TNF-�
(286, 706). Binding of AGEs to endothelial RAGE results
in the depletion of cellular antioxidant defense mecha-
nisms (e.g., glutathione, vitamin C) (51) and the genera-
tion of ROS (767). As a consequence of the increased
cellular oxidative stress, AGE-activated EC express the
procoagulant tissue factor and adhesion molecules such
as E-selectin, ICAM-1, and VCAM-1 (38, 39, 51, 194).

In addition to AGEs, RAGE is a signal transduction
receptor for S100/calgranulins that can also activate EC,
SMC, and peripheral blood mononuclear cells (PBMC),
including T cells, and trigger the generation of proinflam-
matory cytokines and adhesion molecules (286, 767). For
example, incubation of EC with EN-RAGE (extracellular
newly identified RAGE-binding protein) or S100B also
causes VCAM-1 induction (286). Atherosclerotic lesions in
diabetic apoE�/� mice display accelerated accumulation
of AGEs and S100/calgranulins and enhanced expression
of RAGE compared with nondiabetic apoE�/� mice (343).
Administration of murine soluble RAGE (sRAGE) sup-
presses the increased lesion area and complexity associ-
ated with diabetes (92, 531). In parallel, the treatment
induces a reduction in the levels of tissue factor, VCAM-1,
AGEs/S100/calgranulins, and nuclear translocation of
NF-�B in the aorta of sRAGE-treated mice compared with
untreated diabetic animals (343, 531).

11. Proinflammatory cytokines

The fact that cytokines favor their own production is
a well-recognized phenomenon. Not only does IL-1 induce
IL-1 (175) and TNF-� induce TNF-� (168), but these main
directors of the inflammatory process induce a large panel
of cytokines and other inflammatory mediators acting in a
signaling cascade on target cells, as well as within auto-
crine loops (164, 720). Negative regulatory loops have also
been described with IL-10 (170). In the late 1980s and
early 1990s, observations made in experimental models of
endotoxinemia led to the conclusion that TNF-� was a
prerequisite for the induction of many other inflammatory
cytokines (see review in Ref. 113). Injection of LPS in
experimental animal models or in human volunteers led
to the appearance of TNF-� in the bloodstream before any
other cytokines could be detected. Moreover, experi-
ments conducted with anti-TNF-� antibodies indicated
that blocking TNF-� in bacterial or endotoxin-induced
shock models led to a dramatic decrease in the levels of
other cytokines measured in the bloodstream. However,
while TNF-� may help in perpetuating sustained levels of
proinflammatory cytokines, it does not appear to be a
prerequisite for their induction in atherosclerosis. Even
though the expression of proinflammatory cytokines is
significantly decreased in apoE�/� mice deficient in
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TNF-� compared with apoE�/� mice, it is not totally
abolished (515).

Of importance, the immunoinflammatory pathway re-
lated to CD40 and its ligand (CD40L) mediates proathero-
genic biological responses, such as the expression of
cytokines, chemokines, growth factors, matrix metallo-
proteinases, and procoagulants on EC, SMC, and macro-
phages, suggesting a major role in atherosclerosis (see
sect. VA).

12. TLR endogenous agents

As discussed above, TLRs have been involved in the
development of atherosclerosis. Activation of TLRs
through PAMPs is a well-recognized pathway that leads to
the production of cytokines by macrophages and vascular
cells. For instance, LPS-associated TLR4 signaling pro-
motes a proinflammatory phenotype in vascular SMC,
inducing the release of MCP-1 and IL-6 and the expression
of IL-1� (769). Dendritic cells are also present in the
atherosclerotic plaque (59), and after TLR activation,
CD1b� dendritic cells secrete high levels of IL-12p40,
TNF-�, and IFN-�, but no IL-10 (355). However, in the
context of atherosclerosis, it is important to envision the
potential role of TLR activation by nonpathogenic endog-
enous agents. Accordingly, a recent study reported that
mmLDL is able to stimulate early gene and protein ex-
pression of TNF-�, IL-6, MCP-1, and MIP-2 in macro-
phages through the TLR4/MyD88, PI3K/Akt, and ERK1/2
pathways, and in the absence of NF-�B activation (471).
Also, ox-PAPC, a bioactive component of oxidized li-
poproteins, interacts with TLR4 to induce IL-8 in EC
through interaction with CD14 (715).

13. Mechanical factors

A) SHEAR STRESS. Blood flow-induced shear stress has
long been recognized as critically important in atherogen-
esis (111, 148). Atherosclerotic lesions preferentially de-
velop in areas of disturbed or oscillatory flows, including
arterial bifurcations, branch ostia, and curvatures. The
vascular endothelium is extremely sensitive to changes in
blood flow (160, 380); in vitro experiments suggest that
physiological levels of shear stress are anti-inflammatory
and antiadhesive, while low or oscillatory shear stress
promotes oxidative and inflammatory transformations in
EC, with enhanced monocyte adhesion, VCAM-1, ICAM-1,
and E-selectin expression (116, 478). Flow is able to block
TNF-mediated endothelial VCAM-1 expression by inhibit-
ing JNK and p38 MAP kinases (765), a process that in-
volves decreased expression of thioredoxin-interacting
protein (766). Also, transcriptional profiling studies iden-
tified the Kruppel-like factor (KLF)-2 as a flow-induced
anti-inflammatory transcription factor, being inhibited by
IL-1� and induced by laminar shear stress in cultured EC

(620). In vivo, lesion-prone areas of disturbed flow show
constitutive activation of NF-�B (262) and a greater pro-
pensity for LPS-induced VCAM-1 and E-selectin expres-
sion than areas of laminar flow.

B) HYPERTENSION. Epidemiological investigations clearly
pointed out that hypertension is a powerful cardiovascu-
lar risk factor. Besides being associated with exaggerated
atherosclerosis, elevated blood pressure levels have been
found to be highly predictive of atherosclerosis-associ-
ated cardiovascular events, including ischemic coronary
disease, stroke, and peripheral arterial disease (321). In
human subjects, carotid artery intima-media thickness,
measured with high-resolution B-mode ultrasound, is
highly correlated with blood pressure levels and accu-
rately reflects cardiovascular risk (517a). Experimental
studies have demonstrated that hypertension increases
the rate of atherosclerotic plaque development in hyper-
cholesterolemic rabbits (128), monkeys (755), and, as
shown more recently, in mouse models of atherosclerosis
(345, 459). Hypertension occurs under several conditions,
some linked to the activation of the renin-angiotensin
system and characterized by elevated circulating ANG II,
some with normal ANG II levels. Interestingly, by using
hypertensive apoE�/� mice with either elevated plasma
ANG II levels (two-kidney, one-clip model of renal hyper-
tension), or normal plasma ANG II levels (one-kidney,
one-clip renal hypertension), Mazzolai et al. (459) found
that both forms of hypertension led to a similar increase
in atherosclerotic plaque size compared with normoten-
sive animals. However, the atherosclerotic plaques of hy-
pertensive animals with high ANG II showed signs of
instability, including higher macrophage content, lower
collagen and SMC accumulation, and larger lipid core
than plaques from hypertensive apoE�/� mice with nor-
mal ANG II, which were of a comparatively more stable
phenotype (thicker fibrous cap, less inflammatory cell
infiltration, and smaller lipid core). In addition, hyperten-
sive apoE�/� mice with high ANG II showed enhanced
systemic inflammation compared with hypertensive mice
with normal ANG II, as evidenced by increased serum IL-6
levels and white blood cell counts.

Several mechanisms can account for hypertension-
induced atherosclerosis. Pressure-induced stretch of the
vessel wall increases endothelial permeability to LDL and
accentuates LDL accumulation in the intima, which is
central to the atherogenic process (467). In addition, hy-
pertension may promote or aggravate vascular inflamma-
tion. Indeed, mechanical strain stimulates the expression
of ICAM-1 in EC (126) and MCP-1 in SMC (109), which is
in good agreement with in vitro studies in organ culture of
mouse carotid artery showing that high intraluminal pres-
sure activates NF-�B (383). Moreover, high blood pres-
sure in vivo upregulates the arterial expression of MCP-1
(109), ICAM-1, and P-selectin (717).
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14. Adipokines

A large body of evidence links obesity with acceler-

ated atherosclerosis (460). Adipose tissue is an active

endocrine and paracrine organ that releases a large num-

ber of cytokines and bioactive mediators, designated adi-

pokines. These products influence not only body weight

homeostasis but also inflammation, coagulation, and fibri-

nolysis, which ultimately affects atherosclerosis and its

clinical complications. Adipokines with proinflammatory

activities include TNF-�, IL-6, plasminogen activator in-

hibitor-1 (PAI-1), angiotensinogen, leptin, and resistin

(372). Increased production of these proteins by adipose

tissue in obesity is likely to raise circulating levels of

acute-phase proteins and inflammatory cytokines leading

to a state of chronic low-grade inflammation that charac-

terizes the obese.

Leptin, which shares structural and functional simi-

larities with the IL-6 family of cytokines (783), enhances

the production of TNF-�, IL-6, and IL-12 from LPS-stimu-

lated monocytes/macrophages (411). Leptin also plays an

important role in the regulation of adaptive immunity.

Leptin alters the Th1/Th2 balance in favor of a Th1 re-

sponse associated with increased IL-2 and IFN-� as well

as decreased IL-4 production (414). Moreover, recent ob-

servations provided evidence that serum leptin levels are

negatively correlated with the percentage of circulating

CD4�CD25� regulatory T cells in patients with autoim-

mune disease such as multiple sclerosis (454). This in vivo

observation is substantiated by experimental findings

showing that the number of Treg is increased in leptin-

deficient (ob/ob) and leptin receptor-deficient (db/db)

mice (454). However, ob/ob LDLr�/� mice have been

shown to develop more atherosclerotic lesions than wild-

type LDLr�/� mice (271, 463). Yet, leptin deficiency

causes marked hypercholesterolemia and lesions of ob/ob

LDLr�/� mice appear to be much smaller than those

usually observed in mice of similar age (22–26 wk old)

having equivalent cholesterol levels (�10–12 g/l) (per-

sonal observation). It would be important to examine

whether this finding could be attributed to a better regu-

latory T-cell response in the leptin-deficient mice. This

interpretation is consistent with the recent finding that

leptin administration enhances atherosclerotic lesion de-

velopment in apoE�/� mice (63).

Resistin is another adipokine with potent inflam-

matory activities. Resistin seems to be expressed at

much higher levels in mononuclear leukocytes, macro-

phages, and bone marrow cells than in human adipose

cells (536). Resistin stimulates the production of

TNF-�, IL-6, and IL-1 in human PBMC (70). It is note-

worthy that plasma resistin levels are correlated with

markers of inflammation [soluble TNF receptor (sTNFR)-2

and IL-6] and are predictive of coronary atherosclerosis in

humans (567). Taken together, these data indicate that

leptin and resistin may represent a novel link between

metabolic signals, inflammation, and atherosclerosis.

On the contrary, adiponectin exerts potent anti-

inflammatory properties. It inhibits TNF-induced ex-

pression of adhesion molecules in vascular EC (523),

blocks lipid accumulation in macrophages, and sup-

presses the expression of class A scavenger receptors

(524). Adiponectin also upregulates the expression of

IL-10 in human monocyte-derived macrophages and in-

creases TIMP-1 expression through IL-10 induction

(361). Plasma adiponectin levels are reduced in pa-

tients with CAD (523), and overexpression of adiponec-

tin in apoE�/� mice inhibits the progression of athero-

sclerosis (764), an effect that appears to be mediated by

adiponectin-induced IL-10 production (361).

15. Platelet products and coagulation factors/others

Thrombin is a serine protease that has a central

role in hemostasis and thrombosis. It is generated in

the process of activation of the coagulation cascade.

Once formed, thrombin cleaves fibrinogen to produce

the fibrin mesh of the blood clot. Thrombin also acts on

cells through cleavage of specific receptors, which be-

long to the family of protease-activated receptors

(PARs), including PAR-1 and PAR-3. In addition to

these procoagulant effects, thrombin participates in

inflammation and repair of injured tissues. It stimulates

the secretion of other inflammatory mediators. It

causes mast cell degranulation and release of histamine

(562) and promotes production of IL-1 by activated

macrophages (318). Thrombin can also induce, in a

PAR-1-dependent way, the expression of E-selectin,

ICAM-1, and VCAM-1 and enhances neutrophil and

monocyte adhesion to the endothelium (247, 326, 327).

In addition, thrombin stimulates endothelial production

of IL-6 (449), IL-8 and MCP-1 (134, 247), and macro-

phage migration inhibitory factor (MIF) expression

(633).

5-Hydroxytryptamine (5-HT), known as serotonin, is

a well-characterized neurotransmitter and vasoactive

amine. 5-HT is synthesized and released by mast cells,

basophils, platelets, and enterochromaffin cells. En-

hanced extracellular levels of this amine during inflam-

mation and platelet activation are well documented (456).

5-HT inhibits TNF-� production but increases the secre-

tion of IL-1�, IL-6, IL-12p40, and IL-8 in LPS-stimulated

monocytes (131, 183).

Mast cells have been reported to likely play a role

in the progression of heart failure, atherosclerosis, and

plaque rupture of atheroma (367, 537). Mast cell

tryptase can stimulate the production of MCP-1 and

IL-8 (136, 341).

534 ALAIN TEDGUI AND ZIAD MALLAT

Physiol Rev • VOL 86 • APRIL 2006 • www.prv.org

 o
n
 A

p
ril 7

, 2
0
0
6
 

p
h
y
s
re

v
.p

h
y
s
io

lo
g
y
.o

rg
D

o
w

n
lo

a
d
e
d
 fro

m
 

http://physrev.physiology.org


IV. CYTOKINES AND CYTOKINE RECEPTORS

IN HUMAN ATHEROSCLEROTIC PLAQUES

A. Cytokine Expression in Plaques

The first evidence that cytokines are expressed in the
atherosclerotic plaque stems from the observation in the
mid 1980s by Hansson and co-workers (317) that most of
the cells present in the plaque express the MHC class II
antigen HLA-DR, indicating that IFN-� must be produced
in the vicinity of these cells. This was demonstrated later
on by the same group (214, 267). By the late 1980s, im-
munohistochemistry, in situ hybridization, or RT-PCR
techniques had been used to identify in human athero-
sclerotic plaques, mainly from carotid endarterectomy
specimens, a number of growth factors and cytokines:
PDGF (581, 740), TNF-� (26, 35, 585, 676), IL-1 (611),
MCP-1 (CCL2) (495, 774), IFN-� (267), and M-CSF (130).
Thereafter, as novel cytokines were gradually discovered,
their expression in human atherosclerotic plaques was
studied and reported (Table 4).

In 1999, Hansson and colleagues (214) determined
the expression profiling of Th1 and Th2 cytokines in
advanced human atherosclerotic plaques. They found that

IL-2 was present in 50% of plaques, and IFN-� was de-
tected in some but not all of the IL-2-positive plaques. In
contrast, the expression of IL-4 and IL-5, Th2 cytokines,
and TNF-� (lymphotoxin-�), expressed by both Th1 and
Th2 cells, was very scarce, and IL-10 was not detected at
all. However, we (441) and others (687) have found that
IL-10 is produced in atherosclerotic lesions and correlates
with diminished expression of inflammatory mediators.
TGF-� was expressed abundantly in all plaques as previ-
ously reported (502). Comparisons between sections
stained for TGF-� and for cell type-specific antigens im-
plied that macrophages, T cells, and smooth muscle cells
expressed this group of cytokines. Among isoforms,
TGF-�2 was detected in high frequency and exhibited
stronger intensity of staining than TGF-�1 or TGF-�3. The
distribution of TGF-� overlapped with that of its transport
protein, LTBP. This suggested that TGF-� is actively se-
creted. Subsequent experiments in murine models of ath-
erosclerosis analyzing the role of IL-10 (104, 434, 542) and
TGF-� (236, 245, 420, 572) in this setting led to the con-
clusion that the balance between proinflammatory and
anti-inflammatory cytokines is decisive for disease devel-
opment and progression.

A group of noncollagenous matrix proteins originally
identified as important in bone mineralization, including
osteopontin (OPN), osteoprotegerin (OPG), and receptor
activator of NF-�B ligand (RANKL), are expressed by
macrophages, EC, and SMC in plaques (173, 230, 238,
508). They have pleiotropic effects that influence matrix
turnover, cell migration, and inflammation (248, 609).
OPN and OPG expression is greater in symptomatic than
in asymptomatic carotid atherosclerotic plaques, whereas
RANKL expression is similar (238). Remarkably, OPN,
also called early T-lymphocyte activation protein-1 (Eta-
1), is needed for Th1 responses and promotes IL-12 ex-
pression (29).

Better understanding of the time course of cytokine
gene expression is important for successful prevention of
plaque development and progression. However, this infor-
mation cannot be easily obtained in humans. A recent
study has addressed this issue in apoE�/� mice (695).
After 4 wk of a cholesterol-rich diet, the expression of the
proinflammatory cytokines was much more pronounced
than anti-inflammatory cytokines. This imbalance be-
tween pro- and anti-inflammatory cytokines might ac-
count for the progression of atherosclerosis.

B. Cellular Sources of Cytokines

1. Vascular cells

All cells present in the atherosclerotic plaques are
potentially able to elaborate a set of cytokines (Table 5;
Fig. 3). By the end of the 1980s, Peter Libby and his group
identified for the first time the capacity of human vascular

TABLE 4. Cytokines expressed in human
atherosclerotic plaques

TNF-� (26, 35, 585, 676)
IL-1 (611)
IL-2 (214)
IL-3 (mRNA expression) (86)
IL-6 (586, 618)
IL-8 (CXCL8) (22, 586, 718)
IL-10 (441, 687)
IL-12 (687)
IL-15 (289, 750)
IL-18 (228, 435)
IFN-� (214, 267)
Oncostatin M (476)
TGF-�1, TGF-�2, TGF-�3 (58, 214)
Activin A, a member of the TGF-� superfamily (191)
Cyclophilin A, a potent chemoattractant for leukocytes (140, 314)
M-CSF (130)

Chemokines

MCP-1 (CCL2) (495, 774)
IFN-�-inducible CXC chemokines

Monokine induced by IFN-� (Mig/CXCL9) (424)
IFN-inducible protein 10 (IP-10/CXCL10) (424)
IFN-inducible T-cell �-chemoattractant (I-TAC/CXCL11) (424)
CXCL16/SR-PSOX (751)

MIP-1� (CCL3) (274, 739)
RANTES (CCL5) (274, 739)
Fractalkine (CX3CL1), the ligand of CX3CR1 (746)

Bone-associated cytokines

Osteopontin (OPN) (230, 508)
Osteoprotegerin (OPG) (173)
Receptor activator of NF-�B ligand (RANKL) (238)

Reference numbers are given in parentheses.
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cells to be both source and target of cytokines, showing
that IL-1� and IL-1� induced IL-1� production by human
SMC and EC (721, 722) and that TNF-� induced TNF-�
production by SMC (723). Of note, TNF-� is not expressed
by EC. IL-6 is constitutively released by SMC in culture,
and its production can rise to the point of representing
�4% of newly synthetized proteins in activated cells
(413). The proinflammatory repertoire of vascular cells
includes TNF-�, IL-1�, IL-6, IL-8, and IL-15 while the anti-

inflammatory repertoire is represented predominantly by
TGF-�. EC also express low levels of IL-1ra (171). Vascu-
lar cells do not seem to be able to express the anti-
inflammatory cytokines IL-10, IL-4, or IL-13. Moreover, the
response of EC to IL-4 and IL-13 favors inflammation, with
sustained expression of VCAM-1 (85, 601, 602) and P-
selectin (772).

EC are also important sources of hematopoietic
growth factors including stem cell factor (SCF), IL-3,

TABLE 5. Cellular sources of cytokines with potential activities in atherosclerosis

Cytokine Cell Source Cell Target Function

IL-1� Macrophages, lymphocytes, EC,
SMC

Many cell types Proinflammatory, stimulates endothelial and SMC activation

IL-1�
IL-2 Activated T cells Macrophages, T & B cells, NK

cells
T-cell growth factor, stimulates NK activity, stimulates Treg

cells
IL-3 T cells, mast cells Mast cells, hematopoietic

progenitors

Promotes proliferation and differentiation of mast cell

and hematopoietic cell lineages (granulocytic,

monocytic, megakaryocytic)

IL-4 Th2 cells, mast cells T & B cells, mast cells,
macrophages, hematopoietic
progenitors

Proliferation and differentiation of B cells (Ig switching to
IgG1 and IgE) and Th2 cells (anti-inflammatory by
inhibiting Th1 immune responses); stimulates VCAM-1

IL-5 T cells, mast cells, EC B cells Stimulates growth and differentiation of B cells, Ig
switching

IL-6 Macrophages, EC, SMC, T cells T & B cells, hepatocytes, EC,
SMC

Differentiation of myeloid cells, induction of acute phase
proteins, SMC proliferation

IL-7 Platelets Monocytes, T & B cells Proinflammatory

IL-8 Monocytes, EC, T cells Neutrophils, T cells, monocytes Proinflammatory, promotes leukocyte arrest
IL-9 Th2 cells T cells, B cells, mast cells,

eosinophils, neutrophils, and
epithelial cells

Promotes proliferation and differentiation of mast cells,
stimulates IgE production, inhibits monocyte activation,
stimulates TGF-� in monocytes

IL-10 Macrophages, Th2, Treg and B
cells, mast cells

Macrophages, T & B cells Anti-inflammatory, inhibits Th1 responses, promotes
proliferation and differentiation of regulatory T cells

IL-11 EC Hematopoietic progenitor cells Hematopoiesis

IL-12 Th1 cells T cells, macrophages Proinflammatory; promotes NK and cytotoxic lymphocyte
activity; induces IFN-�

IL-13 Th2 cells B cells Activation of Ig transcription

IL-14 EC, lymphocytes B cells B-cell growth factor

IL-15 EC, macrophages T & B cells, NK cells,

monocytes

Enhances neutrophil chemokine production, cytoskeletal

rearrangements, phagocytosis; delays apoptosis

IL-16 Mast cells, CD4� and CD8�

cells

CD4� CD4� T-cell growth factor; proinflammatory; enhances

lymphocyte chemotaxis, adhesion molecule, and IL-2

receptor and HLA-DR expression

IL-17 Human memory T cells, mouse Fibroblasts, keratinocytes,

epithelial and EC

Secretion of IL-6, IL-8, PGE2, MCP-1 and G-CSF, induces

ICAM-1 expression, T-cell proliferation

��TCR� CD4� CD8�

thymocytes

IL-18 Macrophages T cells; NK cells; myeloid,
monocytic, erythroid, and
megakaryocytic cell lineages

Proinflammatory, induces IFN-� and other Th1 cytokines,
promotes Th1 development and NK activity

GM-CSF Macrophages, EC, lymphocytes Hematopoietic stem cells,

neutrophils, macrophages

Growth and differentiation of granulocytes, macrophages

M-CSF Macrophages, EC, lymphocytes Hematopoietic stem cells,
neutrophils, macrophages

Growth and differentiation of macrophages

TNF-� Macrophages, T & B cells, NK
cells, SMC

Many cell types Proinflammatory, fever, neutrophil activation, bone
resorption, anticoagulant, tumor necrosis

TGF-� Platelets, macrophages, Th3,
Treg & B cells, SMC

Many cell types Anti-inflammatory; profibrotic; promotes wound healing,
angiogenesis; suppresses Th1 & Th2 immune responses

IFN-� Th1 cells, NK cells, SMC (?) Macrophages, lymphocytes, NK
cells, EC, SMC

Proinflammatory, promotes Th1 immune
responses/secretion of Th1-associated cytokines, inhibits
extracellular matrix synthesis by SMC

CD40L Platelets, T cells, NK cells, EC,
SMC

Macrophages, lymphocytes, NK
cells, EC, SMC

Proinflammatory, promotes Th1 immune
responses/secretion of Th1-associated cytokines,
stimulates MMP secretion

Cytokines in italics have a yet unknown role in atherosclerosis.
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GM-CSF, G-CSF, and M-CSF (447). IL-15, a cytokine im-
plied in T-cell migration, has been shown to be produced
by EC in response to IFN-� (519). In addition, EC express
the chemokines I-309/CCL1, MCP-1/CCL2, MCP-4/CCL13,
monokine induced by IFN-� (Mig)/CXCL9, IFN-inducible
T-cell chemoattractant (I-TAC)/CXCL11, and MIF (re-
viewed in Ref. 729). Chemokines produced by SMC in-
clude MCP-1/CCL2, Eotaxin/CCL11, Mig/CXCL9, stromal
cell-derived factor (SDF)-1/CXCL12, (scavenger receptor
that binds phosphatidylserine and oxidized lipoprotein)
SR-PSOX/CXCL16, Fractalkine/CX3CL1, and MIF (re-
viewed in Ref. 729). SMC constitutively express mRNA for
the chemokine receptors CCR1 and CCR2, but not CCR3,
CCR4, CCR5, or CXCR1 (C-X-C chemokine receptor 1) or
CXCR2 (274).

2. Leukocytes

Macrophages are certainly the main source of cyto-
kines in the atherosclerotic plaque. Their repertoire is

huge, including the proinflammatory cytokines TNF-�,

IL-1, IL-6, IL-12, IL-15, and IL-18, as well as the anti-

inflammatory cytokines IL-10 and TGF-�. IL-32, a recently

discovered cytokine that activates typical cytokine signal

pathways of NF-�B and p38 MAP kinase (338), can be

added to this list. Macrophages have also been reported to

produce IFN-� after stimulation by a combination of IL-12

and IL-18, suggesting the possibility of an autocrine acti-

vation loop in macrophages (484). However, these results

were recently questioned by Schleicher et al. (600) who

showed that conventional techniques used to generate

peritoneal and bone marrow-derived macrophages in fact

contain small quantities of natural killer (NK) cells or

CD8� T cells, respectively, that are fully responsible for

the production of IFN-�. In the atherosclerotic plaque,

IFN-� can be produced by CD4� Th1 cells, CD8� T cells,

and NKT cells.

Macrophages express a number of chemokines: MCP-

1/CCL2, MCP-4/CCL13, IL-8/CXCL8, GRO-�/KC/CXCL1, Mig/

FIG. 3. Cytokines involved in atherogenesis. Cytokines are produced by several cell types, including inflammatory and vascular cells, as well
as adipocytes. IL-12 and IL-18 produced by macrophages are potent inducers of IFN-� and promote the differentiation of naive T cells into
proatherogenic Th1 cells. Macrophage or macrophage-derived cytokines also activate smooth muscle cells (SMC) and endothelial cells (EC) to
produce an array of proinflammatory mediators. On the other hand, the anti-inflammatory cytokines IL-10 and TGF-�, also produced by
macrophages, promote antiatherogenic Treg cell differentiation. Other anti-inflammatory mediators with potent antiatherogenic properties include
IL-1 receptor antagonist (IL-1ra) and IL-18 binding protein (IL-18BP). Interestingly, IL-4, the prototype of Th2 cells, has proinflammatory properties
on EC. Adipocytes produce both pro- and anti-inflammatory mediators. Leptin activates Th1 cells but inhibits Treg cell function. Adiponectin has
been shown to dampen macrophage activation.
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CXCL9, I-TAC/CXCL11, SDF1/CXCL12, SR-PSOX/CXCL16,
and MIF, whereas lymphocytes express RANTES/CCL5,
MIP1�/CCL3, MIP�/CCL4 (reviewed in Ref. 729). It is
noteworthy that chemokines may share a close evolution-
ary relationship with scavenger receptors in that chemo-
kines generally have scavenger receptor-like activity,
binding oxLDL through their receptor-binding domain
(631). This is especially the case for the transmembrane
protein SR-PSOX that is identical to the chemokine
CXCL16 (455, 630).

A variety of chemokine receptors have been found to
be differentially associated with Th cell subpopulations.
CCR5 and, to a lesser degree CXCR3, are preferentially
found on Th1 cells, whereas CCR4 is preferentially found
on Th2 cells (105). CCR4 and CCR8 seem to be specifi-
cally expressed by CD4�CD25� Treg cells (211, 300).

3. Platelets

Platelets have inflammatory actions and are a rich
source of chemokines, cytokines, and growth factors.
These factors are preformed and packaged in storage
granules and, when released, may participate in athero-
sclerosis. While IL-1� cannot be detected in resting plate-
lets, it is shed in its active form in microvesicles, after
activation with thrombin (402). Platelets are the main
source of circulating CD40L (551), and following ligation
with the CD40 receptor might be involved in inflammatory
cellular cross-talks (281).

From their �-granules, platelets secrete CXC chemo-
kines, such as platelet factor 4 (PF4/CXCL4) or epithelial
cell-derived neutrophil-activating peptide (ENA-78/
CXCL5), and precursors for the CXCR2 ligand neutrophil
attracting peptide (NAP)-2 (CXCL7), such as CTAP-III or
�-thromboglobulin, as well as CC chemokines, such as
MIP-1 or RANTES (see review in Ref. 729). The deposition
and immobilization of platelet-derived RANTES have
been shown to trigger enhanced recruitment of mono-
cytes on activated aortic endothelium (604, 710). RANTES
was revealed on the luminal surface of carotid arteries
with early atherosclerotic lesion in apoE�/� mice (710). In
fact, activated platelets can deliver RANTES and PF4 to
the endothelial lining of early atherosclerotic lesions, as
well as to the surface of monocytes via a mechanism
involving the platelet P-selectin (298, 604). The important
observation that the intermittent injection of activated,
but not P-selectin-deficient, platelets exacerbates lesion
formation in apoE�/� mice strongly suggests that mech-
anisms of P-selectin-mediated chemokine delivery partic-
ipate in the in vivo pathogenesis of native atherosclerosis
(298).

4. Mast cells

Mast cells are inflammatory cells best known for
their pivotal role in allergic diseases. They are also

present in the arterial wall, where they form part of the
inflammatory cell infiltrate and may contribute to athero-
sclerosis (319, 384, 404). Mast cells might be an additional
source of inflammatory cytokines within the plaque. They
are able to produce copious amounts of presynthesized
TNF-� within their granules, in addition to de novo syn-
thesis and secretion of TNF-� following stimulation (240).

C. Biological Effects of Cytokines

1. Effects on endothelial permeability

Alteration of endothelial permeability is an important
feature during inflammatory conditions and is associated
with leukocyte transendothelial migration and accumula-
tion within the tissues (see Table 6). The intercellular
junction complex and its interactions with the cytoskele-
ton are important for the maintenance of endothelial per-
meability (43). A number of proinflammatory cytokines,
such as TNF-� and IFN-�, have been shown to alter the
distribution of adhesion receptors involved in cell-cell
adhesion, namely, vascular endothelial (VE)-cadherin-
catenin complexes, and prevent the formation of F-actin
stress fibers (744). This results in restructuring of the
intercellular junction leading to loss of endothelial per-
meability and favoring leukocyte transmigration. Com-
plete alteration in intercellular junction organization dur-
ing inflammatory conditions may require the interplay
between inflammatory cell adhesion and secretion of
proinflammatory mediators (185).

2. Activation of adhesion molecule

and chemokine expression

Since the initial discovery that cytokines induce
ELAM and VCAM-1 expression on EC (47, 150), many

TABLE 6. Biological effects of cytokines

Effects on endothelial permeability (185, 744)
Activation of adhesion molecule expression (47, 150)
Induction of chemokine release (424)
Modulation of scavenger receptor expression (291, 363, 388)
Modulation of lipid metabolism (472, 751)
Activation of 15-lipoxygenase expression in cultured macrophages

(621, 754, 756)
Effect of SMC migration/proliferation (266, 267, 400, 670, 723, 776)
Regulation of immune response (Th1/Th2/Treg) (34, 145, 431)
Conversion of CD4� naive T cells into CD4� regulatory T cells (120,

207, 251, 707)
Oxidation of LDL (induction cell oxidant stress) (204, 458)
Stimulation of MMP expression (500)
Modulation of extracellular matrix expression (17)
Modulation of endothelial of SMC progenitor differentiation (370, 389,

686)
Regulation of neovessel formation (63, 69, 192, 423)
Promotion of intraplaque neovascularization (705)
Induction of apoptosis (79, 80, 222, 223)
Stimulation of microparticle release (464)
Modulation of endothelial procoagulant activity (193, 216, 451)
Modulation of fibrinolysis (PAI-1) (597)
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cytokines, including, IL-1, TNF-�, and IFN-�, have been
implicated in the induction of an array of adhesion mol-
ecules and chemokines in the vascular wall. IL-1 and
TNF-� stimulate membrane expression of leukocyte ad-
hesion molecules ICAM-1, ICAM-2, VCAM-1, E-selectin,
and P-selectin by EC. These molecules interact with spe-
cific ligands expressed by neutrophils, lymphocytes, and
circulating monocytes. VCAM-1 plays an important role in
atherogenesis (151). It selectively promotes the adhesion
of mononuclear cells on the vascular endothelium that
constitutively express its ligand very late antigen (VLA)-4.
VCAM-1 is present in human advanced coronary athero-
sclerotic lesions but is barely expressed by EC being more
prevalent in intimal SMC and plaque microvessels (397,
509, 510). Cytokines also play an important role in the
induction of chemokines by vascular cells, particularly,
IL-8 and MCP-1 that are involved in monocyte adhesion
and migration into the inflamed vessel wall in atheroscle-
rosis. Other chemokines, such as IP-10, Mig, and I-TAC,
are IFN-� inducible and potently chemoattract activated T
lymphocytes. These chemokines are expressed in athero-
sclerotic plaques (424) and may play an important role in
T-lymphocyte infiltration and activation in atherosclero-
sis.

3. Modulation of scavenger receptor expression

and lipid metabolism

Proinflammatory cytokines have contrasting effects
on the expression of the various scavenger receptors.
Lectin-like oxidized LDL receptor (LOX)-1, which is de-
tectable in EC, intimal macrophages, and SMC of ad-
vanced atherosclerotic plaques, can be induced by proin-
flammatory stimuli such as TNF-�, in addition to its in-
duction by oxidized LDL and other stimuli (363). TNF-�
and IFN-� have been shown to increase scavenger recep-
tor expression and function in cultured rabbit aortic SMC
(388). However, TNF-� and IFN-� appear to inhibit scav-
enger receptor SR-A surface expression in macrophages,
principally by destabilization of scavenger receptor
mRNA (291). This effect of TNF-� may account for the
increased scavenger receptor activity, as assessed by
acetylated LDL uptake by peritoneal macrophages, in
mice deficient for TNF p55 receptors (613). Regarding
IFN-�, recent studies confirmed and extended its role in
lipid metabolism. IFN-� induced foam cell formation
through upregulation of SR-PSOX (751), the scavenger
receptor for phosphatidylserine and oxLDL, which has
been involved in Ox-LDL uptake and subsequent foam cell
transformation in macrophages (472). Interestingly, SR-
PSOX is identical to the chemokine, CXCL16 that ligates
CXCR6, expressed in intimal macrophages of human ath-
erosclerotic plaques (751). IFN-� inhibits apoE (81) and
the ATP-binding cassette transporter A1 (ABCA1) (530),
resulting in decreased cholesterol efflux from macro-

phages (530). Thus IFN-� could serve as a molecular link
between lipid metabolism and immune activity (751). In
contrast, TGF-� enhances cholesterol efflux through up-
regulation of ABCA1 (27) and apoE (794). NF-�B activity
has also been reported to affect scavenger receptor ex-
pression and function, as suggested by studies in p50
(NF-�B1)-deficient mice showing reduced uptake of ox-
LDL in macrophages from these mice, associated with a
reduction in the expression of SR-A (323). IL-4 and IL-13
are activators of 15-LO expression in cultured macro-
phages (621) through phosphorylation of protein kinase C
(PKC)-� and p38 MAPK acting on STAT1 and STAT3 (754,
756), which may affect lipid oxidation. IL-4 augments
acetylated LDL-induced cholesterol esterification in mac-
rophages through SR-A (141).

Interestingly, adipokines may significantly modulate
scavenger receptor expression. Treatment of apoE�/�

mice with adiponectin (516) or overexpression of globu-
lar adiponectin in apoE�/� mice (764) was associated
with decreased expression of SR-A and TNF-�, which may
have contributed to the reported reduction of atheroscle-
rosis in mice with elevated adiponectin levels (516, 764).
Thus modulation of scavenger receptor expression and
function by various cytokines may greatly affect lipid
metabolism in an inflammatory context.

Besides their effects on scavenger receptor expres-
sion and lipid transport in macrophages, cytokines mod-
ulate the ability of monocytes/macrophages to oxidize
LDL. IFN-� inhibits the macrophage-induced oxidation of
LDL (129, 206), whereas TNF-� (458), IL-4, and IL-13 (204)
enhance the ability of cell-mediated oxidation.

4. Effect of SMC migration/proliferation

In addition to classic survival and growth factors
such as PDGF, cytokines have been shown to differen-
tially affect SMC migration and proliferation. One of the
first cytokines to be studied in this context was IL-1. IL-1
is a potent mitogen for human SMC, even though it also
induces in the short term the production of endogenous
prostanoids with growth-inhibitory properties, suggesting
both positive and negative, temporally distinct, effects on
SMC proliferation (400). An important debate occurred
regarding the role of IFN-� on SMC proliferation. Initial in
vitro and in vivo studies using models of mechanical
injury in T-cell competent or deficient animals reported a
cytostatic effect of this T cell-derived cytokine on SMC
(266, 267, 723). In contrast, others have reported a pro-
moting effect of IFN-� on SMC in culture (776) and a lack
of effect of T-cell deficiency on injury-induced neointima
formation using athymic rnu/rnu rats (202). A carefully
conducted study has shown that IFN-� indeed elicits SMC
proliferation and intimal hyperplasia in a model of trans-
plantation of pig or human arteries into the aorta of
immunodeficient mice (670). IFN-� was not found to be
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directly mitogenic, but potentiated the proliferative effect
of PDGF-BB under low-serum conditions and upregulated
PDGF-� receptors (670).

5. Modulation of extracellular matrix remodeling

Pro- and anti-inflammatory cytokines produced dur-
ing atherosclerosis significantly affect the expression of
MMPs and their inhibitors TIMPs, acting synergistically
with other cytokines, growth factors, or oxidized lipids to
induce substantial remodeling of many components of the
extracellular matrix (see Ref. 500 for review). The pro-
duction of type I and III collagen by SMC is slightly
increased by IL-1 and TNF-�, whereas TGF-� is a potent
inducer of collagen synthesis. In contrast, IFN-� inhibits
collagen synthesis (17). The proinflammatory IL-1 and
TNF-� induce a broad range of MMPs in vascular cells,
including MMPs-1, -3, -8, and -9. Cell contact with T-
lymphocyte membranes and addition of recombinant
CD40 ligand further upregulates a broad spectrum of
MMPs in EC and SMC. Proinflammatory cytokines, in-
cluding IL-1 and TNF-�, upregulate macrophage met-
alloelastase MMP-12, which favors monocyte migration,
and MT1-MMP (MMP-14) and MT3-MMP (MMP-16) ex-
pression, which could lead to significant basement mem-
brane turnover through activation of constitutive vascular
MMP-2. Of note, the Th2-type cytokine IL-4 induces the
elastolytic MMP-12 (632). MMP-9 expression in macro-
phages can be further upregulated by IL-18 and TNF-�. As
in vascular cells, CD40 ligation further upregulates MMP
expression in macrophages. In contrast, anti-inflamma-
tory cytokines inhibit MMP expression. IL-10 and TGF-�,
the most relevant anti-inflammatory cytokines in athero-
sclerosis, inhibit an array of MMPs, including MMP-9 and
MMP-12. The activity of MMPs is negatively regulated by
endogenous TIMPs, including TIMP-1, -2, and -3 constitu-
tively expressed by SMC (reviewed in Ref. 500). Even
though TIMP-1 is upregulated in response to CD40 liga-
tion, TIMP-1 and -2 are unaffected by IL-1 or TNF-� (220,
425). In addition, TIMPs may be upregulated by IL-10 and
TGF-�. Therefore, in plaque areas in which proinflamma-
tory cytokine expression prevails over that of IL-10 and
TGF-�, an imbalance between matrix degradation and
synthesis might compromise fibrous cap structure and
precipitate its rupture.

6. Mobilization of vascular progenitor cells

Since the initial isolation and characterization of pu-
tative progenitor endothelial cells (28), a number of
growth factors and cytokines have been shown to affect
their mobilization, homing to injured tissues, prolifera-
tion, and function (389). Cytokines play a critical role in
stem cell mobilization (reviewed in Refs. 370, 686). One of
the most important and clinically relevant molecules for

mobilization of CD34� T cells is G-CSF. It induces pro-
teinase production by leukocytes, allowing disengage-
ment of stem cells from the stromal bone marrow. More-
over, SDF-1 is released into the circulation leading to
attraction and exit of CXCR4� cells from the bone mar-
row (272). VEGF, SDF-1, and placenta growth factor
(PlGF)-induced stem cell mobilization is dependent on
MMP-9 (278), which is required for the cleavage of mem-
brane-bound Kit ligand (278). Lack of endothelial nitric
oxide synthase (eNOS) in the stromal bone marrow mi-
croenvironment leads to defective mobilization. The phe-
notype of eNOS-deficient mice recapitulated that of MMP-
9-deficient mice and was rescued by exogenous adminis-
tration of soluble Kit ligand, which bypasses the
requirement for MMP-9-mediated cleavage of mKit (5).

7. Regulation of neovessel formation/promotion

of intraplaque neovascularization

EC, SMC, as well as inflammatory cells (monocytes/
macrophages and T lymphocytes) fully participate in the
angiogenic process by expressing or inducing the produc-
tion of cytokines, chemokines, and adhesion molecules
that may affect endothelial cell survival, proliferation,
migration, and activation. As in atherosclerosis, positive
and negative regulators of the inflammatory response
greatly affect neovascularization. It appears that (unfor-
tunately?) most proinflammatory and proatherogenic me-
diators enhance neovessel formation, and vice versa, par-
ticularly in a postischemic setting. On the other hand,
most anti-inflammatory and antiatherogenic mediators in-
hibit the neovascularization process. This tradeoff has
been referred to as the Janus phenomenon (192) and may
have important clinical implications given the risk of com-
promising postischemic tissue repair while inducing
plaque stabilization (by inhibiting the inflammatory/angio-
genic mediators), or the risk of favoring plaque progres-
sion/destabilization while promoting tissue functional re-
cover after ischemia (by promoting proangiogenic but
also proatherogenic pathways). This could be the case for
the growth factors VEGF, PlGF, FGF-2, the cytokines
IL-1� and TNF-�, the chemokines CCL2 and CXCL8, or
even leptin, which all have proinflammatory, proathero-
genic, and proangiogenic properties (63, 69, 192, 423). On
the other hand, IL-10, CXCL9 (Mig), CXCL10 (IP-10), or
adiponectin are anti-inflammatory, antiatherogenic, and
antiangiogenic mediators. However, CXCL9 and CXCL10
may also recruit high numbers of lymphocytes to the
ischemic tissue, which may promote neovascularization.
Interestingly, exceptions to the Janus phenomenon have
been reported. eNOS is a potent proangiogenic mediator
(5), previously shown to limit atherosclerosis develop-
ment (346). However, the promotion of superoxide pro-
duction rather than NO by eNOS under certain patholog-
ical conditions may exaggerate atherosclerosis (357). In
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our view, an important exception to the fact that proin-

flammatory cytokines are also proangiogenic is the IL-18

(and potentially IL-12) pathway. As discussed below,

IL-18 is a major proinflammatory/proatherogenic cyto-

kine. Inhibition of endogenous IL-18 significantly reduced

atherosclerosis in mice (436). Interestingly, the same ther-

apeutic strategy resulted in the stimulation of postisch-

emic neovascularization, identifying an important target

for modulation of atherogenesis while promoting post-

ischemic tissue repair.

Pathological examination of coronary lesions made

by the group of Renu Virmani (352) revealed that in-

traplaque hemorrhage is an important process in the evo-

lution of the plaques from a stable phenotype to high-risk

unstable lesions. The source of red blood cells within the

plaques is believed to be leaky immature microvessels

that are present around and within the plaque (352). Areas

of intraplaque neovascularization are infiltrated with T

lymphocytes (705), suggesting a major role for T-cell-

derived cytokines in plaque angiogenesis.

8. Induction of apoptosis

Apoptotic cell death occurs during the development

and progression of the atherosclerotic plaque. All cell

types are involved, with a high predominance of apoptotic

macrophages in the lipid core. Macrophage apoptosis may

contribute to enlargement of the lipid core, whereas

plaque SMC apoptosis may induce a thinning in the fi-

brous cap, favoring its rupture (348, 405, 443). The distri-

bution of apoptosis is heterogeneous within the plaque,

being more frequent in regions rich in inflammatory cells

and proinflammatory cytokines and much less abundant

in regions characterized by a significant production of

anti-inflammatory cytokines (441). A number of proin-

flammatory cytokines have been shown to induce SMC

and macrophage apoptosis in culture, particularly the

association of IL-1, TNF-�, and IFN-� and promotion of

Fas-FasL killing (222, 223). Also, macrophages themselves

induce SMC apoptosis through direct and autocrine

mechanisms involving TNF-�, inducible NO, and Fas/FasL

interactions (79, 80). Importantly, although physiological

programmed apoptosis is essentially a noninflammatory

process, apoptosis induced during pathological condi-

tions might per se contribute to disease progression

through its inflammatory potential. This could be the case

of apoptosis induced through caspase-1 activation, which

also releases the active forms of the proinflammatory

cytokines IL-1� and IL-18 (339, 667). Other proinflamma-

tory caspases include caspase-4, -5, and -13. Caspase-1

and caspase-5 associate with PYCARD/ASC and NALP1

and together form the inflammasome, which results in the

activation and processing of IL-1� and IL-18.

9. Modulation of procoagulant activity

and fibrinolysis

The antithrombotic properties of EC are deeply al-
tered by IL-1 and by TNF-� and endotoxin (193, 216, 451).
They can increase the tissue procoagulant activity and
suppress the anticoagulant activity mediated by the
thrombomodulin-protein C system, by decreasing gene
transcription of thrombomodulin and protein C receptor.
Downregulation of protein C pathway limits protein C
activation and thus promotes thrombus formation. In ad-
dition, vascular heparin-like molecules are reduced by
inflammatory cytokines (344). Downregulation of antico-
agulant mediators may in turn affect inflammation.
Thrombomodulin has direct anti-inflammatory activities
on the endothelium, inhibiting MAPK and NF-�B path-
ways (138), and activated protein C has been shown to
inhibit NF-�B in monocytes. On the other hand, proin-
flammatory cytokines modify the fibrinolytic properties of
EC; they decrease the production of tissue plasminogen
activator (tPA), and they increase the production of the
inhibitor of tissue plasminogen activator (PAI-1). PAI-1
levels rise substantially in response to an inflammatory
challenge (597). The increased PAI-1 levels severely im-
pair the ability to remove the thrombus. In addition, in-
flammatory mediators like IL-6 increase platelet produc-
tion and thrombogenicity (99).

10. Regulation of immune response

For dendritic cell maturation and Th1/Th2/Treg de-
velopment/maintenance, see section VI.

V. CYTOKINE AND CYTOKINE RECEPTOR-

ASSOCIATED MODULATION OF PLAQUE

DEVELOPMENT AND STABILITY

The generation of a number of mouse models of
experimental atherosclerosis using apoE�/� or LDLr�/�

mice crossed with mice deficient in genes encoding cyto-
kines or cytokine receptors has been instrumental in our
understanding of their role in atherosclerosis develop-
ment and progression (Table 7) (see review in Refs.
521, 709).

A. Proinflammatory Cytokines

1. TNF-�

Experimental studies using TNF-deficient apoE�/�

mice showed that atherosclerotic lesion size in the
aortic sinus of TNF-��/�apoE�/� mice is significantly
smaller than that of apoE�/� mice, associated with
decreased expression of ICAM-1, VCAM-1, and MCP-1
(515). Surprisingly, antiatherogenic property of TNF-�

CYTOKINES IN ATHEROSCLEROSIS 541

Physiol Rev • VOL 86 • APRIL 2006 • www.prv.org

 o
n
 A

p
ril 7

, 2
0
0
6
 

p
h
y
s
re

v
.p

h
y
s
io

lo
g
y
.o

rg
D

o
w

n
lo

a
d
e
d
 fro

m
 

http://physrev.physiology.org


TABLE 7. Effect of cytokine deletion on atherosclerosis in murine models of atherosclerosis

Cytokine Age(w) Sex Chol. Lesion Size Mac T Cells SMC Collagen Reference Nos.

IL-1�
IL-1��/�apoE�/� 12 ? NC �33% ND ND ND ND 342
IL-1��/�apoE�/� 24 ? NC �32% ND ND ND ND 342

IL-1ra
IL-1ra�/�apoE�/� 16 M NC �30% NC ND NC ND 307
IL-1ra�/�apoE�/� 32 M NC NC �90% ND �15% ND 307
TgIL-1raxLDLr�/�HFD 14(4 � 10) ? �40% NC ND ND ND ND 169
IL-1ra�/�(cholate) 16(4 � 12) ? �25% �50% ND ND ND ND 169
IL-1ra�/�(cholate) 16(4 � 12) ? �60% �180% ND ND ND ND 169
ReIL-1ra�apoE�/� 12 M/F NC �74%/�56% ND ND ND ND 189
TgIL-1raxapoE�/�HFD 20(10 � 10) M �70% �53% ND ND ND ND 462
TgicIL-1raxapoE�/�HFD 20(10 � 10) M �90% �67% ND ND ND ND 462

IL-2
RecIL-2�apoE�/� ? ? ? �24% ? ? ? ? 685
Anti-IL-2�apoE ? ? ? �43% ? ? ? ? 685

IL-4
IL-4�/�(cholate) 20(5 � 15) F NC NC NC NC ND ND 227
IL-4�/�apoE�/� 30 M/F NC �34%/�23% NC NC ND ND 156
IL-4�/�apoE�/� 45 M/F NC NC/NC NC NC ND ND 156
BMT IL-4�/�

�LDLr�/� 46(42 � 4) F NC NC(AS) NC NC ND ND 340
�67%(aorta)

IL-5
BMT IL-5�/�

�LDLr�/� 28(12 � 16) F NC �18%(AS) ND ND ND ND 53
�54%(aorta)

IL-6
RecIL-6�C57BL6 24(3 � 21) M NC �400% ND ND ND ND 294
RecIL-6�apoE�/� 9(3 � 6) M NC �89% ND ND ND ND 294
RecIL-6�apoE�/� 24 M NC �138% ND ND ND ND 294
IL-6�/�apoE�/� 53 F NC �85% ND ND ND ND 187
IL-6�/�apoE�/� 53 � 4 M �64% �87%(aorta) �67% �50% ND �20% 598

IL-9
RecIL-9 � LDLr�/� ? ? NC �65% ND ND ND ND 359

IL-10
IL-10�/�(C57BL6) (cholate) 24(8 � 16) F NC �200%(SPF) ND ND ND ND 434

�3000%(CONV) NC �350% ND �75% 434
IL-10�/�(C57BL6) (cholate) 15 ? NC �150%(SPF) ND ND ND ND 542
IL-10TgC57BL6 (cholate) 15 ? NC �60% ND ND ND ND 542
IL-10�/�apoE�/� 16 M/F NC NC/�180% NC NC NC ND 104
IL-10�/�apoE�/� 48 M/F �36% NC/NC NC NC NC ND 104
BMT IL10Tg�LDLr�/� 30(10 � 20) M NC �47% �50% No T cell ND �30% 541
BMT IL-10�/�

�LDLr�/� 32(18 � 14) F NC �35% �61% �116% NC �49% 548
AdIL-10syst�LDLr�/� 20(12 � 8) F �40% �56% – ND ND ND 708
AdIL-10local�LDLr�/� 20(12 � 8) F NC �50% – ND ND ND 708
AdIL-10�apoE�/� 13 M NC �61% NC �89% No SMC NC 488

IL-12
IL-12�/�apoE�/� 30 M/F NC �48%/�59% �40% NC ND ND 156
IL-12�/�apoE�/� 45 M/F NC NC/NC NC NC ND ND 156
RecIL-12�apoE�/� 21 M NC �100% ND � ND ND 377
Apobec1�/�LDLr�/�12/15Lox�/�

(IL-12 deficient)
15 M/F NC �39%/NC ND ND ND ND 786
34 M/F NC �43%/�48% ND ND ND ND 786

IL-18
IL-18�/�xapoE�/� 24 M �50% �35% – �38% �160% ND 188
RecIL18bp�apoE�/� 23 M NC �25% �50% �67% �100% �85% 436
RecIL-18�apoE�/� 16 M NC �120% � �350% ND ND 735
RecIL-18�apoE�/�/IFN�/� 16 M NC NC ND NC ND ND 735
AdIL-18�apoE�/� (carotid

collar model) 18 F NC NC �23% ND NC �44% 167
RecIL-18�apoE�/�/SCID 14 F NC �187% � ND ND ND 672

TNF-�
TNF-��/� (cholate) 22(6 � 16) F �46% NC ND ND ND ND 614
TNFRp55�/� (cholate) 24(6 � 18) F NC �130% ND ND ND ND 613, 614
TNFRp75�/� (cholate) 24(6 � 18) F NC NC ND ND ND ND 614
TNFR p55�/�/p75�/� (cholate) 24(6 � 18) F NC �130% ND ND ND ND 614
TNFbp�apoE�/� HFD 13(8 � 5) M/F NC/NC NC/�30% NC ND NC ND 189
TmTNF�C5BL/6 (cholate) 29(9 � 20) M NC �44% �81% ND � ND 107
TNF-��/� diet 29(9 � 20) M NC �94% – ND ND ND 107
TNF-��/�apoE�/� HFD 14(4 � 10) ? �40%(NS) �50%(aorta) NC �50%(NS) ND ND 83
TNF-��/�apoE�/� HFD 44(4 � 40) ? NC �60%(aorta) NC �50%(NS) ND ND 83
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has also been reported. It has been shown that TNF-
R1(p55)-deficient C75BL/6 mice fed an atherogenic diet
developed larger lesions than did wild-type C75BL/6
mice, suugesting that TNF-R1 signaling has protective
action against atherosclerosis (613, 614). In contrast,
the same group found that deficiency in TNF-� or in
TNFR2(p75) did not affect lesion development,
whereas deficiency in lymphotoxin-� (TNF-�) was as-
sociated with smaller lesions (613, 614). One possible
explanation for a favorable effect of TNF-� on athero-
sclerosis is that TNF-� downregulates scavenger recep-
tor gene and protein expression in macrophages (291,
692), leading to decreased LDL uptake by macrophages
and foam cell formation. However, it is noteworthy that
the lack of effect of TNF-� deficiency was observed
despite a significant 46% increase in cholesterol levels
in TNF-��/� mice compared with wild-type animals
(614). In these conditions of increased cholesterol lev-
els, an absence of effect of TNF-� on the atheroscle-
rotic process should have resulted in enhanced lesion
development. The most likely reason for the discrep-
ancy between previous studies analyzing the role of
TNF-� on experimental atherosclerosis in mice is the
difference in the underlying mechanism of atherogene-
sis between apoE�/� mice fed a normal chow diet and
C57BL/6 mice fed an atherogenic diet containing
cholate. Schreyer et al. (613) employed TNFR1�/�

C57BL/6 mice fed an atherogenic diet, whereas Ohta et
al. (515) used TNF-��/� apoE�/� mice fed a normal

chow diet. In support of a deleterious effect of TNF-� in

atherosclerosis, Canault et al. (107), exploring the role

of a noncleavable transmembrane form of TNF-� (tm

TNF-�) in the development of early atherosclerotic

lesions, found that the order of the severity of athero-

sclerotic lesions in C57BL/6 mice fed a cholate-contain-

ing high-fat diet was wild-type mice � tm TNF-� mice �

TNF-��/� mice.

2. IL-1

The pathogenic role of IL-1 has been investigated in

apoE�/� mice fed a cholesterol-rich diet receiving subcu-

taneous administration of recombinant human IL-1ra

(189), and in LDLr�/� mice (169) or apoE�/� mice (462)

crossed with transgenic mice expressing high levels of

IL-1ra. Overexpression of IL-ra increased total cholesterol

levels by �50%, and in spite of this decreased the size of

atherosclerotic lesions by 50–70%. In contrast, IL-1ra

knockout C57BL/6J mice fed a cholesterol/cholate diet

had a threefold decrease in non-HDL cholesterol and a

trend toward increased foam-cell lesion area compared

with wild-type littermate controls (169). Taken together,

these results clearly indicate that IL-1 contributes to ath-

erosclerosis in mice. Further evidence for an important

role of IL-1� in atherosclerosis is provided by experi-

ments showing that IL-1� deficiency in apoE�/� mice

hampers lesion development (342).

TABLE 7—Continued

Cytokine Age(w) Sex Chol. Lesion Size Mac T Cells SMC Collagen Reference Nos.

rec sTNFRI�apoE�/� 32(7 � 25) M �62%(NS) �75% NC �240% ND ND 83
BMT TNF�apoE HFD 35(10 � 25) M � F NC �83% ND ND ND ND 83
TNF-��/�apoE�/� 12 M/F NC/NC �20%/�32% ND ND ND ND 515
TNF�/�apoE*3Leiden HFD 28(8 � 20) F NC NC NC NC NC NC 67

TNF-�
Lymphotoxin��/� (cholate) 22(6�16) F �20%(NS) �63% ND ND ND ND 614

IFN-�
IFN-�R�/�xapoE�/� HFD 17(5 � 12) F � �60% � � ND � 260
recIFN-��apoE�/� HFD 23(16 � 7) M NC �100% � �170% ND � 736
IFN-��/�xapoE�/� HFD M NC � � ND 735
IFN-��/�xapoE�/� HFD F NC NC NC NC ND 735
INF��/�xLDLr�/� 8 M/F NC �75% � � ND �(?) 95
INF��/�xLDLr�/� 20 M/F NC �43% NC NC NC NC 95
BMT IFN-��/�

�LDLr�/� HFD 15(9 � 6) M/F NC �80% NC NC NC � 507
BMT IFN-��/�

�LDLr�/� HFD 21(9 � 12) M/F NC NC NC NC NC � 507
TGF-�

TGF-�1�/� (cholate) 20(8 � 12) F NC �500% � ND � ND 245
AbTGF-��apoE�/� HFD 15(6 � 9) M NC �82% �30% NC NC �54% 438
sTGF-�RII�apoE�/� 17(5 � 12) M NC NC �15% �177% NC NC 421
sTGF-�RII�apoE�/� 29(17 � 12) M NC �37% NC �145% NC �50% 421
BMT CD2-dnTGF-RII�LDLr�/

� HFD 22(12 � 10) M NC �29% NC �75% �33% �29% 236
CD2-dnTGF-RIIxapoE�/� 12 F �26% �300% � � NC � 572

NC, no change; ND, not determined; SPF, specific-pathogen free; CONV, conventional environment; Tg, transgenic; icILra, intracellular IL-1ra;
HFD, high-fat diet: in the age column, first is age of animals at death; in parentheses, age at the start of diet � duration of diet. Cholate indicates
HFD containing cholate. BMT, bone marrow transplantation: in the age column, first is age of animals at death; in parentheses, age at the start of
diet � duration of diet. AS, aortic sinus; NS, not statistically significant; Mac, macrophage.
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3. IL-2

IL-2 has long been recognized as a T-cell growth
factor, but deficiency of IL-2 has surprisingly no conse-
quences. Mice lacking either IL-2 (610) or its receptors
(IL-2R�/CD25 and IL-2R�) have normal development of T
cells but show severe lymphoproliferative disease (364).
These data have been interpreted to indicate that IL-2 has
an essential role in controlling self-tolerance. Indeed, a
crucial function of IL-2 is to act as the primary growth
factor for Treg cells (432, 623). Even though IL-2 is ex-
pressed in atherosclerotic plaques, its direct role in
atherogenesis has not been studied. Only one study re-
ported that intraperitoneal injections of IL-2 or anti-IL-2
antibody in apo-E�/� mice fed an atherogenic diet in-
creased or decreased, respectively, lesion size (685).
These results would indicate that IL-2 is an atherogenic
cytokine in apoE�/� mice. However, in the absence of
information on the effect of IL-2 on lipid profiles and on
the composition of atherosclerotic lesions, it is premature
to conclude on the definitive role of IL-2 in atherosclero-
sis, given the function of IL-2 in immune tolerance.

4. IL-6

IL-6 has been shown to enhance fatty lesion develop-
ment in mice (294). IL-6 treatment of C57Bl/6 mice at
supraphysiological concentrations resulted in an about
fivefold increase in fatty streak size, whereas treatment of
apoE�/� mice on low- or high-fat diets resulted in about
twofold increases (294), suggesting that IL-6 is a
proatherogenic cytokine. However, 1-yr-old IL-6�/�apoE�/�

mice show enhanced plaque formation (187, 598). Serum
cholesterol levels were found increased in one study
(598), but not in the other (187). Increased atherosclerosis
in IL-6�/�apoE�/� mice was associated with reduced col-
lagen content in the plaques, blunted synthesis, and re-
lease of IL-10 and diminished recruitment of inflammatory
cells into the atherosclerotic plaque (598). At 1 yr of age,
mice showed more calcified lesions (187). In younger
16-wk-old IL-6�/�apoE�/� mice, no significant difference
in fatty streaks was detected compared with IL-6�/�

apoE�/� mice. Therefore, the role of IL-6 in atherosclero-
sis appears ambivalent. Similarly, IL-6 can be viewed as a
proinflammatory cytokine but may also be regarded as an
anti-inflammatory cytokine as it induces the synthesis of
IL-1ra and release of soluble TNFR leading to reduced
activity of proinflammatory cytokines (37, 675, 753). It
also inhibits macrophage SR-A (393).

5. IL-12/IL-18/IFN-�

Previous studies have shown that IFN-� plays a major
role in atherosclerosis. IFN-� receptor deficiency was
associated with a reduction in atherosclerotic lesion size
in apoE�/� mice (260), and cholesterol diet-induced ath-

erosclerosis in LDLr�/� mice was significantly reduced in
the absence of IFN-� (95). Moreover, IFN-� administered
intraperitoneally promoted atherosclerosis in apoE�/�

mice (736). It has been suggested that IFN-� may affect
atherosclerosis in a gender-specific manner, IFN-� being
proatherogenic only in males (735). However, two studies
show conflicting results showing effects of IFN-� on ath-
erosclerosis in female mice (95, 260).

IFN-� is a Th1 cytokine that is produced by T and NK
cells following synergistic activation by IL-12 and IL-18.
Interestingly, IL-12 and IL-18 have both been shown to be
pro-atherogenic. IL-12 appears to intervene in the athero-
sclerotic process during the early phase of the disease in
apoE�/� mice (156). Thirty-week-old IL-12�/�apoE�/�

mice showed increased lesions, while 40-wk-old mice had
lesions of equivalent size compared with wild-type
apoE�/� mice (156). Also, a selective defect of IL-12
synthesis by macrophages due to 12/15-lipoxygenase de-
ficiency reduced plaque formation in Apobec1�/�LDLr�/�

(786), and injection of IL-12 in apoE�/� mice promoted
lesion development (377). IL-18 administration increased
lesion size in apoE�/� mice (735), and overexpression of
its endogenous inhibitor IL-18 binding protein (IL-18BP)
reduced atherosclerosis with profound changes in plaque
composition leading to a more stable plaque phenotype
(436). Furthermore, IL-18-deficient apoE�/� mice repro-
duced findings observed in apoE�/� mice in which IL-18
signaling was blocked by overexpression of IL-18BP, with
smaller and more stable lesions compared with apoE�/�

mice (188). It has been suggested that the proatherogenic
effect of IL-18 is in fact mediated by IFN-� because the
promotion of atherosclerosis by exogenous IL-18 admin-
istration was ablated in IFN-�-deficient apoE�/� mice
(735). However, the proatherogenic effect of IL-18 can
occur in the absence of T cells (671). Intraperitoneal
injection of IL-18 in SCID/apoE�/� mice led to larger
lesions and increased circulating IFN-� compared with
mice injected with saline solution. NK cells were the most
likely source of IFN-� since the possibility that it was
produced by macrophages has been recently questioned
(600), and the production of IFN-� by SMC activated with
a combination of IL-12 and IL-18 appears to be low and
occasional (228).

6. CD40/CD40L

CD40 is widely expressed on several cell types in-
cluding leukocytes and vascular cells. The CD40 receptor
is activated following ligation with CD40L(CD154). A
large variety of immunological and vascular cells express
CD40 and/or CD40L (reviewed in Ref. 605). Both CD40
and CD40L are present in human atherosclerotic plaques.
Platelets are a major source of CD40L. CD40L is cryptic in
resting platelets but rapidly translocates to the platelet
surface after stimulation by agonists, including ADP,
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thrombin, or collagen. CD40L, expressed at the platelet
membrane, is cleaved and shed from the platelet surface
in a time-dependent manner, over a period of minutes to
hours, generating a soluble fragment, soluble CD40L
(sCD40L). Although it may also be shed from stimulated
lymphocytes, it is estimated that �95% of circulating
CD40L is derived from platelets (19). Interestingly, only
membrane CD40L on the surface of platelets (281) but not
platelet-derived sCD40L (282) can activate EC and up-
regulate adhesion molecules, proinflammatory cytokines
and chemokines in vitro. This might limit vascular inflam-
mation following the cleavage of CD40L from the surface
of activated platelets (282). However, the important role
for CD40/CD40L interactions in the atherosclerosis has
been clearly established in apoE�/� and LDLr�/� mice.
Administration of antibody to CD40L, when given early in
the development of atherosclerosis, was shown to inhibit
atherosclerotic lesion initiation in LDLr�/� mice (426).
However, in CD40L�/�apoE�/� mice, advanced plaques,
but not initial lesions, were markedly reduced and dis-
played a more stable phenotype, associated with a re-
duced macrophage and T-lymphocyte content, compared
with plaques in wild-type apoE�/� mice (421). Recent
studies aimed at evaluating the respective role of vascular
and leukocyte CD40L in promoting atherosclerosis
showed that CD40L deficiency on hemopoietic cells did
not affect atherosclerosis, suggesting that CD40L expres-
sion on nonhematopoietic cell types could be responsible
for the proatherogenic effects of CD40L (40, 644).

7. Osteopontin

OPN, also known as Eta-1 (early T lymphocyte acti-
vation 1), is a pleiotropic cytokine critical for the gener-
ation of Th1 immunity (29). It can be categorized as a
proinflammatory proatherogenic cytokine. With the use of
OPN-deficient apoE�/� mice infused with ANG II, it has
been shown that OPN promotes the development of ath-
erosclerosis and abdominal aortic aneurysms (89). OPN
appears to specifically promote early inflammatory mech-
anisms associated with macrophage recruitment in ath-
erosclerotic lesions.

8. MIF

MIF plays an important role in both innate and adap-
tive immunity (100). It is an integral component of the
host antimicrobial alarm system and stress response that
promotes the proinflammatory functions of immune cells.
Recent in vivo studies applying neutralizing MIF antibod-
ies in models of injury-induced carotid manipulation in
apoE�/� and LDL-r�/� mice have provided evidence for a
role of MIF in atherosclerosis and restenosis (125, 603).
Moreover, deficiency of MIF in LDLr�/� mice reduced
atherosclerosis, associated with reduced SMC prolifera-

tion, cysteine protease expression, and elastinolytic and
collagenolytic activities. (528).

B. Anti-inflammatory Cytokines

The concept of a cascade of proinflammatory cyto-
kines followed by production of anti-inflammatory cyto-
kines has contributed to the dissemination of the idea that
the inflammatory process can be separated into a first set
of events linked to the inflammatory response and a sec-
ond one later on, linked to the anti-inflammatory response
involved in the resolution of inflammation. Because ath-
erosclerosis is a chronic inflammatory disease, we have
put forward the idea that endogenous anti-inflammatory
cytokines should intervene in the atherosclerotic process
to dampen inflammation.

1. IL-10

IL-10 is a pleiotropic cytokine produced by Th2-type
T cells, B cells, monocytes, and macrophages that inhibits
a broad array of immune parameters including Th1 lym-
phocyte cytokine production, antigen presentation, and
antigen-specific T-cell proliferation (712). IL-10 has also
potent anti-inflammatory properties on macrophages (68)
and plays an active role in limiting the inflammatory re-
sponse in the vessel wall (669). The role of endogenous
IL-10 has been clearly established in mouse models of
atherosclerosis. We and others have shown that IL-10
deficiency in C57BL/6 mice fed an atherogenic cholate-
containing diet promotes early atherosclerotic lesion for-
mation, characterized by increased infiltration of inflam-
matory cells, particularly activated T cells, and by in-
creased production of proinflammatory cytokines (434,
542). Similar results have been reported in IL-10�/�

apoE�/� mice fed a chow diet (104). Consistent with a
protective role of IL-10 in atherosclerosis, systemic or
local overexpression of IL-10 by adenoviral gene transfer
in a model of collar-induced carotid atherosclerosis in
LDLr�/� mice was found highly efficacious in preventing
atherosclerosis (708), and overexpression of IL-10 by ac-
tivated T lymphocytes reduced atherosclerosis in
LDLr�/� mice (541). More recently, using a model of
chimeric LDLr �/� mice in which bone marrow cells were
deficient for IL-10, we provided evidence that leukocyte-
derived IL-10 is instrumental in the prevention of athero-
sclerotic lesion development and in the modulation of
cellular and collagen plaque composition, at least in part,
through a systemic immune response modulation (548).

2. IL-4/IL-13

IL-4 is produced by Th2 lymphocytes, eosinophils,
basophils, and mast cells. It promotes synthesis of IgE
and allergic response. The effects of IL-4 are generally
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considered as anti-inflammatory. However, a growing
body of evidence indicates that IL-4 may play a role in
atherosclerosis through induction of inflammatory re-
sponses, such as upregulation of VCAM-1 (219, 379, 416)
and MCP-1 (378, 573). Consistent with this hypothesis,
transplantation of bone marrow stem cells from IL-4-
deficient mice in LDLr�/� mice decreased atherosclerotic
lesion formation in a site-specific manner (340). Similarly,
IL-4�/�apoE�/� mice had reduced atherosclerosis in the
aortic arch, but not in the aortic sinus, compared with
apoE�/� mice (156). In contrast, IL-4 deficiency in
C57BL/6 mice fed an atherogenic diet did not affect the
development of early lesions (225). However, the same
group found that fatty streak formation in IL-4�/� mice
immunized with HSP65 or Mycobacterium tuberculosis

was significantly reduced compared with lesions in wild-
type C57BL/6 mice (227).

IL-4 and IL-13 share a common predominant receptor
signaling chain IL-4R�. As a result, it is expected that
IL-13 affects atherosclerosis in a similar way as does IL-4.
However, no studies are currently available to confirm
this hypothesis.

3. TGF-�

TGF-� is a potent anti-inflammatory, immunosup-
pressive and pro-fibrotic cytokine, with major effects on
the biology of SMC (see review in Ref. 243). TGF-�1-
deficient mice die in utero or in the perinatal period
because of widespread uncontrolled inflammation (360,
636). The anti-inflammatory and profibrotic properties of
TGF-� are highly suggestive of a potential antiatherogenic
role for this cytokine. Indeed, Grainger et al. (244) first
showed that serum active TGF-� is markedly depressed in
patients with advanced atherosclerosis (244), and that
TGF-�1 heterozygous mice fed a cholate-supplemented
atherogenic diet displayed increased endothelial activa-
tion and macrophage infiltration in the aortic sinus (245).
The critical role of TGF-� for SMC matrix production and
plaque stability in atherosclerosis was thereafter demon-
strated by studies using apoE�/� mice. We have shown
that treatment of apoE�/� mice with neutralizing antibod-
ies to TGF-�1, TGF-�2, and TGF-�3 accelerates the de-
velopment of atherosclerosis, with lesions displaying in-
creased inflammatory cells and decreased collagen con-
tent (438). TGF-� may therefore reduce inflammation but
also contributes to matrix production within lesions. In
agreement with this hypothesis, treatment of apoE�/�

mice with a soluble TGF-�-receptor II protein (TGF-RII:
Fc) that inhibits TGF-� signaling resulted in larger
plaques, with an increased frequency of macrophages and
T cells and decreased collagen content in the atheroscle-
rotic lesions (419, 420). Moreover, intraplaque hemor-
rhages were frequently observed. We and others estab-
lished later on that specific inhibition of TGF-� signaling

in T cells leads to the development of atherosclerotic
plaques with a phenotype that may potentially increase
plaque vulnerability to rupture, strongly suggesting an
important protective role of endogenous T-cell TGF-�
activity against vulnerability to atherosclerosis (236, 572).
Bone marrow transplantation from transgenic mice that
express a dominant negative TGF-� receptor type II under
a T-cell-specific promoter into LDLr�/� mice resulted in
increased differentiation of spleen-derived T cells toward
both Th1 and Th2 phenotypes (236). Moreover, athero-
sclerotic plaques of these mice showed increased T-cell
infiltration and expression of MHC class II, along with a
decrease in SMC and collagen content. Consistent with
these findings, apoE�/� mice with disrupted TGF-� sig-
naling in T cells exhibited markedly larger atherosclerotic
lesions, with a �100-fold increase in aortic IFN-� expres-
sion compared with apoE�/� littermates (572). The im-
portant role of T-cell-TGF-� signaling in atherosclerosis
suggests that regulatory pathways in adaptive immunity
are essential in modulation of the development and pro-
gression of the disease (see sect. VIC).

C. Chemokines/Chemokine Receptors

Recruitment of inflammatory cells in the intima is an
essential step in the development and progression of ath-
erosclerosis. This process depends on the local produc-
tion of chemokines where inflammatory cells are at-
tracted and on the expression of chemokine receptors by
these cells.

1. MCP1/CCR2

One of the earliest studies to link chemokines with
atherosclerosis in vivo showed that mmLDL injected into
mice increased production of JE, the mouse homolog of
MCP-1 (392). LDLr�/� and apoE�/� mice have since been
used to confirm this link showing increased expression of
MCP-1/JE and/or its receptor, CCR2 (560). Other studies,
in CCR2-deficient apoE�/� mice, showed a reduction in
aortic lesion area compared with apoE KO alone, even
though lipid levels remained high (74, 161). In another
model of atherosclerosis, using mice overexpressing apo-
lipoprotein B, deletion of the MCP-1 gene protected
against monocyte recruitment (241). MCP-1-deficient
LDLr�/� mice also showed reduced macrophage recruit-
ment, suggesting that the role of MCP-1 in atherosclerosis
is to attract CCR2-bearing monocytes into the vessel wall
(258). These studies therefore indicate a proof of princi-
ple for the role of MCP-1 in atherosclerotic lesions.

2. Fractalkine/CX3CR1

Fractalkine (CX3CL1) is the unique member of the
CX3C subfamily and is expressed in both a soluble and
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membrane-bound form on the surface of inflamed endo-
thelium, which confers to it special properties among the
other members of the chemokine family (42). Interest-
ingly, whereas soluble CX3CL1 was reported to recruit
lymphocytes and monocytes (42, 529), immobilized forms
of CX3CL1 and CX3CL1-expressing human umbilical vein
EC have been shown to directly mediate the rapid capture
and firm adhesion of leukocytes expressing its receptor
CX3CR1 under physiological flow conditions (205, 302).
In contrast to cell adhesion mediated by the chemokine
KC (murine CXCL1) through its receptor CXCR2, the
CX3CL1-induced firm adhesion is uniquely mediated by
direct binding of the chemokine to CX3CR1 and does not
require the upregulation and activation of integrins, sug-
gesting that CX3CL1 and CX3CR1 mediate a novel path-
way for leukocyte trafficking (205, 302). Studies in our
group and others suggested that CX3CR1 plays a central
role in atherogenesis (135, 385). CX3CR1 deficiency in
apoE�/� mice, even when restricted to one allele, de-
creased the development of atherosclerosis with a
marked reduction in macrophage accumulation (135).

3. IL-8/CXCR2

While high levels of circulating chemokines are asso-
ciated with poor outcome, they contribute towards deac-
tivating circulating leukocytes and limiting their recruit-
ment towards inflammatory foci. This was first illustrated
when Gimbrone et al. (233) showed that IL-8 inhibits
neutrophil adhesion to cytokine-activated EC and pro-
tects these cells from neutrophil-mediated damage. Neu-
trophil migration into inflamed compartments is severely
impaired in transgenic mice showing high levels of circu-
lating IL-8 (639), and a similar observation was reported
for monocyte deactivation to chemoattraction in MCP-1
transgenic mice showing high levels of circulating MCP-1
(587). Injection of IL-8 in rabbits and rats significantly
reduced in vivo neutrophil migration towards inflamma-
tory foci (275). Similarly, an altered response of neutro-
phils to IL-8 was reported in human endotoxemia (18),
and an altered chemotaxis to GRO-�, GRO-�, GRO-� and
ENA-78, but not to IL-8 of neutrophils was reported in
septic subjects and associated with a decreased expres-
sion CXCR2 (147). Boisvert et al. (69) showed that the
murine homolog of the IL-8 receptor also participates in
monocyte/macrophage accumulation in LDL receptor KO
mice.

4. RANTES/CCR5

RANTES is a chemokine that mediates the trafficking
and homing of T lymphocytes, monocytes, basophils, eo-
sinophils, and NK cells via different chemokine receptors
(CCR1, -3, -4, and -5). It has been implicated in cardiac
inflammatory disorders after organ transplantation or ar-
terial injury (710, 780). Its role in atherosclerosis has been

suggested by studies showing that treatment of LDLr�/�

mice with N-methionylated RANTES (Met-RANTES), a
functional CC chemokine antagonist, reduced the extent
of atherosclerotic lesions, associated with decreased leu-
kocyte infiltration (695). Of note, levels of CCR5 and
CCR2 were significantly decreased in Met-RANTES-
treated mice. Therefore, the effects of Met-RANTES could
not be solely attributed to the functional inhibition of
RANTES activity, but possibly to blockade of CCR2 and
CCR5 activities. The latter is however unlikely since
CCR5 deficiency in apoE�/� mice does not seem to be
protective in the early stages of atherosclerosis (365).

5. MIF

It has recently been proposed to group mediators
with similar functional patterns, which cannot be struc-
turally classified into the known chemokine subfamilies,
as a family termed “chemokine-like” (165). MIF, a pleio-
tropic inflammatory T cell and macrophage cytokine, be-
longs to this subfamily. MIF is involved in immune-medi-
ated diseases, including septic shock and chronic inflam-
mation (reviewed in Ref. 100). A key regulatory role for
MIF has been shown in the pathogenesis of immunologi-
cally induced kidney disease, suggesting that MIF may be
important in immune-mediated disease (368). Consistent
with this hypothesis, an upregulation of MIF has been
observed in EC, SMC, and macrophages during progres-
sion of atherosclerosis in humans (98) and in hypercho-
lesterolemic rabbits (401). Moreover, inhibition of MIF in
apoE�/� mice by treatment with neutralizing MIF anti-
bodies resulted in a shift in the cellular composition of
neointimal plaques toward a more stable phenotype with
reduced macrophage and increased SMC content (603), as
well reduced circulating levels of inflammatory markers
such as fibrinogen, MIF and IL-6 (97).

D. Hematopoietic Factors/M-CSF

Macrophages are the predominant cells in athero-
sclerotic plaques. They are derived from circulating
monocytes that adhere to the endothelium and then mi-
grate to the subendothelial space. Macrophages are in-
volved in the formation of the plaque, as evidenced by the
decreased atherosclerosis in apoE�/� mice deficient in
macrophage-stimulating factor (op/op mice), which have
decreased blood monocyte differential count (643). It is
thus likely that macrophages that enter the intima follow-
ing primary LDL accumulation to scavenge cholesterol
overload, activate EC through cytokine release, which in
turn increase endothelial permeability to LDL, triggering a
vicious circle.

One important finding is that macrophages in the
plaque can multiply in situ in the vessel wall (576). Mono-
cyte-colony stimulating factor (M-CSF), a factor of differ-
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entiation and proliferation of stem cells into monocytes,
is locally produced by the endothelial and smooth muscle
cells from the human atheromatous plaque (577).

E. Platelet-Derived Factors

Platelets were first believed to participate in athero-
genesis because they can promote the proliferative re-
sponse of SMC through the release of PDGF after adher-
ence and aggregation at focal sites endothelial denudation
(580). This turned out to be an erroneous view of athero-
genesis. The role of platelets in the initiation of plaque
formation has since been revisited, and a large body of
evidence indicates that platelets participate in vascular
inflammation and may promote atherosclerotic plaque
formation. Circulating activated platelets bind to mono-
cytes to form platelet monocyte aggregates. The interac-
tions of activated platelets with monocytes and athero-
sclerotic arteries lead to the delivery of the platelet-de-
rived chemokines RANTES (CCL5) and PF4 (CXCL4) to
the monocyte surface and endothelium of atherosclerotic
arteries (298). In addition, activated platelets injected into
apoE�/� mice enhance the development of atheroscle-
rotic lesions compared with mice injected with the super-
natant of activated platelets (298). The effect of activated
platelets on atherosclerosis is shown to require platelet
P-selectin, as the development of atherosclerotic lesions
is not affected by the injection of activated platelet lack-
ing P-selectin. P-selectin is also expressed by the acti-
vated EC and allows leukocyte adhesion to EC (298).
However, the main circulating mass of P-selectin is car-
ried in the platelets and is stored in platelet �-granules.
When the platelets become activated, P-selectin is ex-
pressed at the outer membrane of the platelets, and this
allows formation of platelet-leukocyte complex. P-selec-
tin can be shed and released in the plasma from both
sources. The role of platelet versus endothelial P-selectin
in the development of atherosclerotic plaques has been
investigated by using chimeric mice with bone marrow of
P-selectin�/� apoE�/� mice or wild-type apoE�/� mice
transplanted to the recipient from either genotype (96).
Endothelial P-selectin is crucial for the promotion of ath-
erosclerotic lesion growth because in its absence only
relatively small lesions developed. However, platelet P-
selectin also contributed to the lesion development be-
cause lesions in wild-type recipients receiving transplants
with wild-type platelets were 30% larger than those receiv-
ing P-selectin-deficient platelets and were more fre-
quently calcified (96).

In addition to their effects in early atherosclerosis, as
shown above by experimental studies, platelets contrib-
ute to the progression of late atherosclerosis. The endo-
thelium over established human plaques often shows fo-
cal endothelial loss, with adhesion of a platelet monolayer

(137, 157). Incorporation of platelets in plaques after rup-
ture or erosion participate in their episodic expansion.

VI. CYTOKINES AND ADAPTIVE IMMUNITY

IN ATHEROSCLEROSIS

A. Role of T/B Cells in Atherosclerosis

Adaptive immunity develops when specific molecular
epitopes on antigens are recognized by antigen receptors
with high specificity and affinity, such as T-cell receptors
(TCR) and B-cell receptors (BCR), generated by somatic
rearrangements in blast cells. A number of data from
humans and mice showed oligoclonal expansion of T cells
within atherosclerotic lesions owing to the preferential
expression of a limited number of TCR-variable gene
segments (103, 652). This suggests that a limited set of
candidate antigens mediates the specific T-cell prolifera-
tion, the most likely immunodominant antigen being ox-
LDL. Further studies aimed at the elucidation of the direct
role of T and B cells in atherosclerosis. There is now
ample evidence from experimental studies that the adap-
tive immune system affects the development of athero-
sclerosis. The net effect of a deficiency in both T and B
cells is a 40–80% reduction in atherosclerotic lesion de-
velopment, as shown in apoE�/� or LDLr�/� crossed into
a recombination activating gene (Rag)-deficient back-
ground (153, 154, 563, 646) or crossed with severe com-
bined immunodeficiency (SCID) mice (790). The protec-
tive effect is observed when the mice are examined at the
early stages of plaque development (646), but also at later
stages in the absence of severe hypercholesterolemia
(153). The effect may vary according to the site of the
lesion, immunodeficiency being protective in the aortic
root but not in the thoracic and abdominal aorta (153,
154) or in the brachiocephalic trunk (563). Transfer of
CD4� T cells from atherosclerotic apoE�/� mice into
apoE�/� x SCID�/� mice enhances atherosclerotic lesion
development to a level similar to that of immunocompe-
tent controls (790), indicating a proatherogenic role for T
cells.

Natural killer T (NKT) have also been shown to en-
hance fatty streak development (30, 430, 486, 683). NKT
cells can recognize lipid antigens presented by CD1 mol-
ecules. CD1 deficient mice on apoE�/� or LDLr�/� back-
ground showed significant reduction in early fatty streak
development, whereas treatment with �-galactosylcer-
amide, a potent and specific NKT cell activator, resulted
in an increase in lesion size associated with increased
IFN-� and IL-4 production. The influence of CD1d-re-
stricted NKT cells on lesion size was transient, suggesting
that these cells contribute to early fatty streak develop-
ment but are dispensable for plaque progression.

On the other hand, B cells appear to exert a protec-
tive effect. Induction of humoral immunity by immuniza-
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tion of hypercholesterolemic apoE�/� mice with oxLDL

reduces lesion size in association with the production of

high levels of IgM type anti-oxLDL antibodies, probably

from B1 cells (16, 212, 224, 525, 789). These cells appear

to be stimulated by IL-5 produced by MDA-LDL-specific

Th2 cells, generated in response to immunization. The

group of Joseph Witztum (627) has shown that the IgM

type anti-oxLDL antibodies recognize similar oxidation-

specific epitopes on apoptotic cells and are structurally

and functionally identical to classic “natural” antiphos-

phorylcholine antibodies that provide protection against

pneumococcal infection (627). Immunization of LDLr�/�

mice with Streptococcus pneumoniae induces high circu-

lating levels of oxLDL-specific T15 IgM, indicating molec-

ular mimicry between epitopes of ox-LDL and S. pneu-

moniae and leads to a reduction in the extent of athero-

sclerosis, confirming the protective role of this humoral

immune response in murine cholesterol-induced athero-

sclerosis. Splenectomy-induced increase in atherosclero-

sis in cholesterol-fed apoE�/� mice is abrogated by the

transfer of purified B cells from the spleens of atheroscle-

rotic apoE�/� (but not from the spleens of nonatheroscle-

rotic mice), suggesting a protective immunity provided by

splenic B cells that were “educated” by prior in vivo

exposure to atherosclerotic antigens (102).

Besides the possibility of direct B-cell stimulation by

thymus-independent antigens leading to IgM-dominated

responses, adaptive immunity requires the presentation of

antigen by an antigen presenting cell (dendritic cell and

macrophage) to the antigen-specific TCR (signal 1) and

typically additional costimulatory signals (signal 2), such

as the interaction between CD40L with CD40 or that of

CD80/CD86 (B7-1/2) with CD28 (Fig. 4). These costimula-

tory molecules are present in regions of atherosclerostic

plaques of mice and humans (66, 377) and are required, at

least for initial development of atherosclerotic lesions

(94, 421, 426), and in the case of CD40/CD40L, for the

perpetuation of plaque inflammation (418, 605) in mouse

models of atherosclerosis. The role of costimulators in

the human atherosclerosis is unknown. The best-estab-

lished role for costimulators is in the activation of naive T

cells, in which they function to reduce the threshold

antigen concentration that can activate them (700). Pro-

longed exposure to higher doses of antigen, as could be

the case in the extended course of atherosclerosis devel-

opment in humans, may well override the need for co-

stimulation. It is therefore tempting to speculate that

while costimulation may be necessary for the initiation of

pathogenic immune responses in atherosclerosis, this role

may become dispensable during disease progression. We

believe that it will be important to examine whether at

this stage of disease development, other critical roles of

costimulators prevail, such as the contribution to regula-

tory T-cell function (see below).

B. Cytokines and Pathogenic Immune Response

in Atherosclerosis

1. Cytokines and DC maturation

Dendritic cells (DCs) are specialized antigen present-
ing cells (APCs) that are potent stimulators of both T and
B cell-mediated immune responses. DC maturation re-
quires the coordinated action of a number of cytokines
and growth factors (reviewed in Ref. 34). Several mole-
cules including CD40, TNFR, and IL-1R have been shown
to activate DCs and to trigger their transition from imma-
ture antigen-capturing cells to mature APCs. The balance
between proinflammatory and anti-inflammatory signals
in the local microenvironment, including TNF, IL-1, IL-6,
IL-10, and TGF-�, greatly affect DC maturation, and CCR7
plays a critical role in the homing of DCs to lymph nodes
(208, 554). Distinct subsets of DCs elicit distinct T-helper
responses (34). IL-12 production by DCs plays a critical
role in Th1 differentiation as DCs from IL-12�/� mice fail
to induce Th1 responses (431). IL-6, IL-13, and OX40-
ligand (OX40-L), a cell surface molecule belonging to the
TNF superfamily (TNFSF) also know as TNFSF4 (719),
may play a role in DC-induced Th2 differentiation (34).
However, DCs exhibit considerable plasticity. Particu-
larly, the anti-inflammatory cytokines IL-10 and TGF-�
can convert DCs from cells inducing Th1 to cells inducing
Th2 or regulatory T cells (see below). DCs have been
identified in atherosclerotic plaques and may cluster with
T cells within the lesions (60). DCs showed impaired
migratory function in hypercholesterolemic mice due to
inhibitory signals generated by PAF and oxLDL (410).
Whereas these abnormal migratory properties directly
affect the atherosclerotic process is still unknown.

2. Cytokines and Th1 differentiation

Following the demonstration of a pathogenic role for
T cells in atherosclerosis, several groups have been in-
volved in the characterization of the pathogenic T-cell
subsets. Most of the T cells in atherosclerotic plaques are
of the CD4� T cells expressing ��-TCR, which interacts
with MHC class II molecules. The CD4� T cells are the
main cytokine-secreting T cells, although the cytotoxic
CD8� killer cells may also produce cytokines, such as
TNF-�, lymphotoxin, and IFN-�. Characterization of the
Th cell type in atherosclerosis was based on the cytokines
secreted by the T cells, which are traditionally divided
into Th1 cells, responsible for cell-mediated immunity and
secreting IFN-� and IL-2, and Th2 cells, which secrete
IL-4, IL-5, IL-10, IL-13, and provide help for antibody pro-
duction by B cells. Th1 and Th2 cells have a common
precursor, and cytokine microenvironment is one of the
primary determining factor for Th-cell lineage develop-
ment. IL-12 and TCR activation are required for the induc-
tion of Th1 cells, whereas IL-4 is essential for the induc-
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tion of antigen-specific Th2 cells. IL-12 originates from
macrophages and dendritic cells of the innate immune
response, but the initial sources and mechanisms of IL-4
production remain poorly understood. IL-12 activates the
transcription factor STAT4 and a unique Th1 transcription
factor, T-box expressed in T cells (T-bet), leading to up-
regulation of IFN-� and downregulation of IL-4 and IL-5
expression in T cells. IL-4 drives Th2 cell differentiation
through STAT6, which activates the transcription factor
Gata3, leading to upregulation of IL-4 and IL-5 and down-
regulation of IFN-�. Counterregulation between T-bet and
Gata3 has been suggested, resulting in inhibition of devel-
opment of the other T-cell subset (660). Based on these
T-cell subset specificities, most CD4� T cells of athero-
sclerotic plaques of mice and humans have been shown to
be of the Th1 cell type, producing IL-2 and IFN-� (re-
viewed in Ref. 751), which is consistent with the high

levels of IL-12 expression within the plaques. Subsequent
studies have clearly shown a critical pathogenic role for
the Th1 response in atherosclerosis at the cell-type level
(transfer of Th1 cells) (790), the cytokine production level
(IL-12, IL-18, and IFN-�) (260, 377, 436, 735, 736), and even
at the level of Th1 cell commitment, as shown more
recently using the LDLr�/�

� T-bet�/� mice (94). These
results provide convincing elements to incriminate Th1
responses in the promotion of plaque development.

3. Cytokines and Th1/Th2 paradigm

Because of the crucial roles of Th1 and Th2 in the
modulation of the immune response in many immunoin-
flammatory diseases, a model has emerged in which Th2-
biased responses were proposed to antagonize proathero-
genic Th1 effects and thereby confer atheroprotection.

FIG. 4. Development and maintenance of pathogenic and regulatory immunity in atherosclerosis. Candidate antigens [oxidized lipoproteins
(oxLDL), heat shock proteins (HSP), phosphorylcholine (PC), apoptotic bodies. . . ] may induce Th1, Th2, or both Th1 and Th2 pathogenic responses.
Maturation of the antigen presenting cell (APC) is necessary for T-cell priming. The CD40/CD40L pathway is critical for Th1 differentiation. IL-6 and
IL-13 contribute to the induction of Th2 cell type. Both IFN-� (Th1) and IL-4 (Th2) have been shown to promote atherogenesis. Production of IL-5
by Th2 cells is important for protective antibody production by B lymphocytes in response to immunization with oxLDL. Distinct subsets of APCs,
called “tolerogenic” cells, induce the differentiation of the regulatory T-cell subset (Treg). The development of CD4�CD25�Foxp3� Treg cells occurs
in the thymus and requires TCR and CD28 engagement among other yet unknown factors. Interestingly, production of IL-2 by pathogenic Th1 cells
is essential for the survival and maintenance of this Treg subset in the periphery. Other Treg cells of the Tr1 type may not express Foxp3 and are
mainly induced in the periphery in response to antigen stimulation. Both types of Treg cells use IL-10 and/or TGF-� to suppress the proliferation
of pathogenic T cells in vivo. IL-6, produced in response to TLR stimulation, may contribute to the inhibition of Treg function.
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Data supporting an antiatherogenic effect of Th2 re-
sponses are based on several, seemingly convincing find-
ings: 1) IL-10, one of the Th2-related cytokines, is ex-
pressed in atherosclerotic plaques (441, 687) and inhibits
oxLDL-induced production of IL-12 by human monocytes
in vitro (687); 2) endogenous IL-10 is protective against
atherosclerosis in several experimental models (434, 542,
708); 3) mice producing T cells that were engineered to
overexpress IL-10 under the control of the IL-2 promoter
show a reduction in IFN-� production and a switch in IgG
production toward a Th2-related IgG1 phenotype, associ-
ated with a significant decrease in atherosclerotic lesion
formation (541); and 4) mice in which Th2 responses
prevail over Th1 may show reduction in early fatty streak
formation (295).

However, these data are not as straightforward as
they may seem to be, and may be opposed by several
other findings. 1) Even though IL-10 is a Th2-related cy-
tokine, it is not specific of Th2 cells and has even been
shown to inhibit Th2 responses (145, 257). 2) Mice over-
expressing IL-10 under the IL-2 promoter, discussed
above, have been previously shown to be unable to mount
Th2 responses (261). 3) Deficiency in IL-4, the prototypic
Th2-related cytokine, has been associated with a decrease
in atherosclerotic lesion formation (340), suggesting a
proatherogenic role of Th2. 4) Prolonged hypercholester-
olemia in animal models of atherosclerosis is associated
with a switch of the autoimmune response toward a Th2
cell type, producing IL-4 (795), which contribute to plaque
progression, since deficiency in IL-4 at these advanced
stages greatly hampers plaque progression (156). 5) With
the use of apoE�/�

� IL-12�/� and apoE�/�
� IL-4�/�

mice, it has been clearly shown that both Th1 and Th2
play roles throughout the development of atherosclerosis,
Th1 being predominant during the initiation of lesion
formation with a switch toward a proatherogenic Th2
response in the chronic phase of plaque development
(156). Therefore, even though atherosclerosis occurs
mostly in a Th1-related pathogenic context, no direct and
solid evidence is available suggesting that promotion of
Th2 responses would invariably lead to limitation of dis-
ease progression. The attractive concept of Th1 and Th2
controlling in a Yin-Yang fashion the development of ath-
erosclerosis may be, at least in some circumstances,
overly simplistic. However, this does not exclude a cer-
tain level of counterregulation between Th1 and Th2 in
atherosclerosis, which may vary with the stage of disease
development and the vascular sites. For example, in the
study by Davenport et al. (156), while deficiency in IL-4
(and hence Th2 response) was associated with a decrease
in lesion size in the advanced stage of lesion development,
deficiency in IL-12 was associated with a trend toward
larger lesions in certain vascular sites, suggesting a po-
tential regulatory role for Th1 response at this advanced
disease stage. Given the available data, we would caution

about the extreme hazard associated with the promotion
of either a Th1 or a Th2 response to modulate atheroscle-
rosis, especially in humans. Indeed, a careful look at the
disease in humans shows that Th1- and Th2-related dis-
eases develop and perpetuate in the same patient. A sub-
stantial proportion of patients are affected both by coro-
nary atherosclerosis, a Th1-predominant disease, and ath-
erosclerotic aortic aneurysm, a Th2-predominant process
(149, 607, 633). In addition, the development of a Th2-
related disease (allergic asthma, for example) in a given
patient does not protect from the development of a Th1-
related disease (coronary atherosclerosis, for example). A
substantial proportion of patients, especially obese pa-
tients, frequently develop both allergic asthma and coro-
nary atherosclerosis. An objective interpretation of the
available data suggests that Th1- and/or Th2-mediated
responses may contribute to the development and pro-
gression of atherosclerosis. Therefore, we believe that
rather than focusing on a supposedly Th1/Th2 Yin-Yang in
atherosclerosis, we should aim at the identification of the
causes of Th1/Th2 dysregulation, which we believe could
be better explained by a dysfunction in the regulatory arm
of the immune response that controls both Th1 and Th2.
Our hypothesis is that in the context of atherosclerosis,
an imbalance exists between pathogenic T cells (Th1
and/or Th2) and so-called “regulatory T cells” in response
to “altered” self-antigens, leading to reciprocal and mu-
tual amplification of the innate and adaptive immune
responses, responsible for plaque development and
progression.

C. Immunological Tolerance and Regulatory

T Cells

1. Development and function of natural regulatory

T cells

The adaptive immune system of higher vertebrates
allows individual organisms to mount more efficient and
specific defensive immune reactions against unantici-
pated microbial antigens by the random generation, in
developing lymphocytes, of a diverse repertoire of
clonally distributed antigen receptors capable of recog-
nizing a multitude of antigens. This occurs through a
process of somatic cell gene rearrangement mediated by
the recombination-activating gene recombinase. How-
ever, due to the diversity of antigen recognition afforded
by the system, there is a considerable risk of self-antigen
recognition by self-reactive receptors, posing a concrete
risk of autoimmunity. Most solutions to this threat involve
the deletion or functional inactivation of autoreactive
lymphocytes (clonal deletion and anergy, respectively) in
the primary lymphoid organs or in the periphery. These
mechanisms are called “cell-intrinsic,” since they do not
affect other self-reactive clones. In addition to this “reces-
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sive” suppression, a unique “dominant” self-tolerance
mechanism has been identified over the past few years
and related to the generation of a population of T cells
with regulatory properties, the so-called “regulatory T
cells,” which actively suppress immune activation and
maintain immune homeostasis.

Most if not all naturally arising Treg cells are CD4�

single-positive cells and constitutively express the CD25
molecule (IL-2R�). They are produced in the normal thy-
mus where unique interactions between their TCRs and
self-peptide/MHC complexes expressed on the thymic
stromal cells are required for their development. CD25
expression on Treg cells is crucial for their generation,
survival, and function. Mice deficient in IL-2 or CD25
develop a lymphoproliferative disease with autoimmune
manifestations, a syndrome that can be rescued by IL-2
administration in IL-2-deficient mice. Interestingly, the
responder non-Treg cells are the main source of IL-2
production and are required for the activation and main-
tenance (and proliferation) of Treg cells. These in turn
suppress the pathogenic T cells by targeting the transcrip-
tional control of IL-2, leading to inhibition of IL-2 produc-
tion. Thus IL-2 mediates a feedback control mechanism
between pathogenic and Treg cells.

Costimulatory signals mediated by engagement of
CD28 by CD80/CD86 (B7) are essential for the develop-
ment and homeostasis of Treg cells (Fig. 4). Mice deficient
in CD28 or B7 molecules lack Treg cells and are at in-
creased risk of autoimmune diabetes (591). In turn, CD28
engagement promotes IL-2 production by nonregulatory
conventional T cells, maintaining a stable pool of Treg
(Fig. 4).

Even though IL-2 is a vital cytokine for Treg, recent
studies suggest that expression of the forkhead transcrip-
tion factor Foxp3, irrespective of CD25 expression or
MHC restriction, defines the naturally occurring Treg cell
lineage (207). The critical role of Foxp3 in the control of
autoimmune diseases is reflected by the observations that
Foxp3 is the mutated gene in the fatal human autoimmune
disorder “immune dysregulation, polyendocrinopathy, en-
teroathy, X-linked” (IPEX) and in the mouse, scurfy,
which develops a similar autoimmune syndrome (45,
741). Foxp3 appears to be crucial for both the develop-
ment and function of Treg cells and controls genes en-
coding Treg cell-associated molecules, such as CD25, cy-
totoxic T-lymphocyte antigen-4 (CTLA-4), and glucocorti-
coid-inducible tumor necrosis factor receptor (GITR)
(334). Transduction of Foxp3 in CD25� cells led to the
acquisition of Treg cell properties and CD25 expression in
some of the transduced cells, suggesting a central, but
probably not sufficient, role for Foxp3 in the development
and programming of Treg cell function. The current un-
derstanding is that Foxp3 is required for the development
of the Treg cell lineage, whereas production of IL-2 by
peripheral T cells expands the Treg cell population. The

precise molecular mechanisms behind the induction of
Treg cells by Foxp3 and the potential role of Foxp3 in the
maintenance of Treg cell function remain to be addressed.

Specific subsets of dendritic cells may be critical to
the generation of defined populations of Treg (23). Aber-
rant expression of T-cell receptor agonists by nonacti-
vated hematopoietic cells produces mostly CD4�CD25�

regulatory T cells, whereas expression on thymic stroma
yields predominantly antigen-specific CD4�CD25� Treg.
Interestingly, expression of thymic stromal lymphopoietin
(TSLP) in the human thymus induces tolerogenic thymic
dendritic cells with high expression of CD80 and CD86,
leading to the proliferation and differentiation of
CD4�CD25� thymic T cells into CD4�CD25� Foxp3� reg-
ulatory T cells (725).

2. Cytokines and regulatory T cells

Besides the role of IL-2 in the Treg cell development
and maintenance, two immunosuppressive cytokines,
TGF-� and IL-10, have been shown to mediate, at least in
part, Treg function in vivo. In fact, Treg cells appear to
use various modes of suppression in vivo. Depending on
the microenvironment and the immunopathology to be
suppressed, Treg cells may act through cell-cell contact-
dependent mechanisms, particularly engagement of
CTLA-4 on B7 molecules, through production of immuno-
suppressive mediators or both (707).

Recent studies have shown that at least part of the in
vivo regulatory function of natural Treg may be due to the
induction of IL-10 production in responder CD4�CD25� T
cells, which in turn become immunoregulatory cells able
to suppress certain forms of immunopathology (32, 174,
655). TGF-� mediates, at least in part, the suppressive
function of natural Treg in vivo and under certain culture
conditions in vitro (44, 120, 251). This TGF-�-dependent
suppressive activity of CD4�CD25� Treg cells is required
to inhibit pathogenic CD8� T cells in models of autoim-
munity or tumor rejection (120, 251), as shown in models
with defective TGF-� receptor II signaling in CD8� T
cells. TGF-�-dependent CD4�CD25� Treg cells are in-
duced in vivo after treatment by antibodies to CD3 and
mediate the restoration of self-tolerance in overt autoim-
mune diabetes (44), leading to limitation of disease pro-
gression (333). Whether TGF-�-dependent suppressive
function is also required for inhibition of CD4� T cell-
dependent immunity in particular settings remain to be
determined.

In addition to their role in mediating the suppressive
properties of naturally arising Treg cells, TGF-� and IL-10
mediate the development and function of adaptive Treg
cells induced in the periphery in response to antigen
stimulation. These Treg do not express CD25 and have
lower Foxp3 expression compared with natural
CD4�CD25� Treg cells (Fig. 4). The IL-10 producing Treg
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are known as Tr1 cells (255, 512, 698). These cells can be

generated by chronic antigenic stimulation or mucosal

administration of antigen (9, 654) in vivo or under certain

culture conditions in vitro (see below) (255, 512, 698). Tr1

cells also produce a significant amount of TGF-� in addi-

tion to IL-10. Other antigen-induced Treg cells, Th3 cells,

arise after oral administration of antigen in vivo and sup-

press immune pathology in several animal models

through the production of high concentrations of TGF-�

(123, 730).

The development of these regulatory cells may be

promoted in vitro and in vivo by a specific set of antigens

and under particular conditions (254). Particularly, ad-

ministration of antigens via the nasal route leads to IL-10-

dependent Treg (9, 654), whereas oral administration in-

duces the generation of TGF-�-dependent Treg (123). In

vitro culture of bone marrow cells in the presence of IL-10

induces the differentiation of a distinct subset of dendritic

cells (CD11clowCD45RBhigh) that display plasmacytoid

morphology and an immature-like phenotype, secrete

high levels of IL-10 after activation, and induce tolerance

through the differentiation of Tr1 cells in vitro and in vivo

(713). TGF-� and IL-10 production by apoptotic cells or

upon ingestion of these cells by macrophages leads to cell

deactivation and inhibition of self-reactive T cells (121,

221, 293, 299, 651). Apoptotic cells may also induce the

generation of tolerogenic dendritic cells (10–12, 595, 596),

potentially leading to the development of defined popula-

tions of Treg. Engulfment of apoptotic cells by dendritic

cells in a proinflammatory microenvironment suppressed

the upregulation of the costimulatory molecule CD86 and

inhibited IL-12 production, leading to a reduced ability to

stimulate T cells. Opsonization of apoptotic cells by the

complement C3 activation product iC3b induces tolerant

dendritic cells that are able to migrate to lymph nodes

(696). The ligation of iC3b to complement receptor type 3

(the iC3b receptor) on antigen-presenting cells results in

the sequential production of TGF-� and IL-10, which is

essential for the induction of tolerance (645). Moreover,

coengagement of CD3 and the complement regulator

CD46 in the presence of IL-2 induces a Tr1-specific cyto-

kine phenotype in human CD4� T cells (332), and trans-

genic expression of human CD46 in mice promotes a

regulatory T-cell response (448).

3. Regulatory T cells in atherosclerosis

The findings by several independent groups that two

of the major counterregulatory cytokines in atherosclero-

sis, IL-10 and TGF-�, are those required for the immuno-

regulatory functions of either natural or adaptive antigen-

induced Treg cells, led to the hypothesis that adaptive or

natural regulatory cells may play an important role in the

control of the atherosclerotic process (Fig. 5).

Given that immunization of mice with mHSP65 ag-
gravates the development of atherosclerosis, two studies
addressed the role of mucosal tolerance to HSP-65 (ex-
pected to induce Treg cells) in the development of exper-
imental atherosclerosis (269, 450). Harats et al. (269)
showed a reduction in lesion size after oral administration
of HSP-65 in LDLr�/� mice immunized with M. tubercu-

losis or fed an atherogenic diet (269), suggesting that
tolerance induction toward HSP may be protective
against atherosclerosis. Although oral feeding with
HSP-65 induced a specific immune suppression, the re-
duction in atherosclerosis could also be obtained with
nonsuppressive doses of oral HSP (269). The mechanisms
leading to lesion reduction have not been clearly delin-
eated, but the T-cell cytokine profile was switched toward
a Th2 phenotype with high production of IL-4. Maron et al.
(450) also showed a reduction in atherosclerosis after
nasal or oral feeding of HSP-65 while only nasal feeding
resulted in significant changes in the T-cell phenotype. No
HSP-specific IL-10 responses were detected in spleno-
cytes, but significant IL-10 production was observed fol-
lowing anti-CD3 stimulation in vitro. IL-10 production was
attributed to a switch toward a Th2 phenotype and could
not be related to changes in IFN-� production by T cells
(450). Taken together, the results of these two studies
suggest that mucosal administration of antigen reduces
plaque development. However, the mechanisms behind
this effect are not fully understood. Additional mechanis-
tic work is required to understand the potential role of the
regulatory immune response in this process.

We have recently used a different approach to ad-
dress the role of the regulatory immune response in ath-
erosclerosis. As our hypothesis implies that an imbalance
exists between the effector (Th1/Th2) and the regulatory
arms of the immune response, we suggested that supple-
mentation with Treg cells may lead to the induction of
immune suppression and a reduction in pathogenic T-cell-
mediated responses, ultimately altering plaque develop-
ment and/or composition. In a first step, we attempted to
provide a proof of concept that Tr1 cell therapy could
induce immunomodulation in vivo and limit plaque devel-
opment in a model of humanlike atherosclerosis. There-
fore, we generated in vitro, as previously described (255),
ovalbumin (OVA)-specific Tr1 cells and administered
these cells to apoE�/� mice. These antigen-specific clones
of Tr1 cells have been shown to induce both antigen-
specific and nonspecific bystander immune suppression
in vitro, and when introduced in vivo (255). We showed
that the clone of Tr1 cells, when transferred into mice
with their cognate antigen, induced a significant suppres-
sion of Th1 (and Th2)-mediated responses and led to an
increase in IL-10 production by stimulated peripheral T
cells (437). Interestingly, the induction of Tr1 responses
was associated with a significant reduction in atheroscle-
rotic plaque development and a marked reduction in the
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relative accumulation of inflammatory macrophages and
T lymphocytes with a preservation of SMC and collagen
contents. These results showed that modulation of the
peripheral immune response is achievable by transfer of
Tr1 cells with no specificity to a known plaque antigen
and leads to limitation of plaque development in apoE-
deficient mice. Many issues remain to be addressed, par-
ticularly those regarding the precise site(s), mode(s) of
action, and molecular mechanisms responsible for the
regulatory functions of the transferred Tr1 cells in this
setting, and whether specific and local immune suppres-
sion could be achievable by the development and transfer
of Tr1 cells specific for a known plaque antigen.

An important question that has not been addressed in
the above-mentioned experiments concerns the role of
endogenous natural Treg in the control of atherosclerosis.
A number of endogenous self- or altered self-antigens
(oxidized epitopes on apoptotic cells or ox-LDL, HSP, for
example) may induce the development of Treg cells with
atheroprotective properties. We have recently tested the

hypothesis that the natural repertoire of Treg cells, which
is responsible for the maintenance of immune homeosta-
sis, also limits the development of atherosclerosis. Ath-
erosclerosis in apoE�/�RAG-2�/� mice is exacerbated af-
ter transfer of splenocytes with Treg deficiency (from
CD28- or B7-deficient mice) compared with the transfer of
wild-type splenocytes, a process that is abrogated after
the reconstitution of a normal CD4�CD25� Treg cell com-
partment (8). Protection is associated both with enhanced
IL-10 production by CD4� T cells and TGF-�-dependent
Treg suppressive function, consistent with the critical
roles of these immunosuppressive cytokines in atheropro-
tection. We believe that innate or acquired impairment of
natural Treg cell function may promote atherosclerosis.

Defective clearance of apoptotic cells has been de-
scribed in atherosclerosis (25, 243, 615). Such a defect
may break immunological tolerance and alter both spe-
cific and bystander immune suppression, leading to exac-
erbation of plaque development. Impaired clearance of
dying cells appears to play a pathogenic role in the devel-

FIG. 5. Local and systemic effects of pathogenic and regulatory cells in atherosclerosis. Lymphoid organs are specialized in antigen presentation
and may be the major site of pathogenic or tolerogenic antigen presentation and T-cell priming in atherosclerosis. Antigen presentation may also
occur within the atherosclerotic plaque, which is rich in cells with antigen-presenting capacity (macrophages and dendritic cells). Continuous
trafficking of immune cells between the inflammed atherosclerotic artery and the lymphoid organs may be necessary to mount an adaptive immune
response. CD28 engagement and IL-2 production by pathogenic T cells are required for Treg cell survival and maintenance in the periphery. Treg
cells suppress the pathogenic response through IL-10, TGF-�, and/or cell-cell contact-dependent mechanisms. The precise mechanisms that drive
a pathogenic or a regulatory immune response in atherosclerosis are currently unknown.
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opment of autoimmunity (75, 549, 617, 668). Methods
aiming at the promotion of endogenous natural Treg cell
activity against atherosclerosis-related antigens or meth-
ods based on the transfer of antigen-specific Treg cells
hold great promise for the control of plaque development
and progression through the induction of a regulatory
atheroprotective immunity.

Cells other than CD4� T lymphocytes, such as CD8�,
NKT and B cells, may prove to exert potent regulatory
properties in atherosclerosis. An IL-10-producing regula-
tory B-cell subset characterized by CD1d upregulation has
been shown to be essential for the dampening of the
inflammatory response in a model of chronic intestinal
inflammation mediated by a Th2 pathway (474). It is
noteworthy in this regard that the protective role of B
cells in atherosclerosis has been shown to occur in a Th2
context (52, 102, 268).

VII. CYTOKINES AND CARDIOVASCULAR RISK

Once produced, cytokines are rapidly trapped by
neighboring cells via their high-affinity receptors. Accord-
ingly, measuring the levels of circulating cytokines is not
necessarily a perfect surrogate end point reflecting the
actual activity of the cytokine. Nevertheless, a variety of
plasma inflammatory markers have been shown to well
predict future cardiovascular risk. They can be useful for
risk stratification and also to identify those patients who
might benefit from targeted interventional therapy. Of
these markers, C-reactive protein (CRP), an acute-phase
protein, has been the most extensively studied, and there
is now robust evidence from primary prevention cohorts
and among patients presenting with ACS that elevated
CRP levels predict future cardiovascular events (see re-
view in Ref. 398). The production of CRP occurs almost
exclusively in the liver by the hepatocytes as part of the
acute phase response upon stimulation by IL-6, and to a
lesser degree by TNF-� and IL-1�, originating at the site of
inflammation. CRP activates the classical complement
cascade and mediates phagocytosis. In the 1990s, Berk,
Weintraub, and Alexander (46) showed that plasma CRP
levels are elevated in patients with “active” CAD com-
pared with those with stable CAD. In 1994, Attilio Maseri
and his group (408) established a link between CRP ele-
vation and cardiovascular events in patients with unstable
angina (UA). In the late 1990s, several studies linked
elevated high-sensitivity CRP (hsCRP) levels with future
cardiovascular events in different populations (reviewed
in Ref. 56). It is believed that classical cardiovascular risk
factors including LDL cholesterol, hypertension, smoking,
and diabetes can instigate the vascular release of proin-
flammatory cytokines and subsequent promotion of low-
grade inflammation. These proinflammatory cytokines in-
crease serum levels of CRP, supporting the concept that

CRP acts as an integrator for many inflammatory stimuli,
which in association with plasma LDL-cholesterol levels
can predict the cardiovascular risk (569). Of potential
clinical interest, the combination of an inflammatory
marker (CRP, SAA, sICAM-1, or IL-6) with lipid testing
improved upon risk prediction based on lipid testing
alone. Thus lipid and inflammatory parameters appear to
be assessing different biological pathways that carry sep-
arate prognostic value. In support of this hypothesis, the
PROVE-IT-TIMI 22 study recently established that the risk
of recurrent myocardial infarction (MI) or death from
coronary causes among patients with acute myocardial
syndromes (ACS) is best predicted by the combination of
LDL cholesterol and CRP levels (569).

A number of in vitro studies aimed at investigating
the direct inflammatory effects of CRP on vascular cells
emphasized the potential importance of CRP as an etio-
logical factor in inflammation and atherosclerosis (see
review in Ref. 313). Among other effects, recombinant
CRP has been shown to enhance the expression of
ICAM-1, VCAM-1, E-selectin, and MCP-1 in EC (533, 534).
However, several recent papers have clearly demon-
strated that most, if not all, of the in vitro effects of
recombinant CRP previously reported in the literature
were most likely artifactual and due to the presence of
sodium azide (406, 659, 689) or contamination by bacterial
products (539) in the commercial CRP preparation used
in the experiments. Morever, in vivo experiments assess-
ing the direct role of CRP on atherosclerosis in CRP
transgenic apoE�/� mice failed to observe any effect (285,
566), or reported a very small effect in male but not
female mice (538). There is even some evidence that CRP
might be protective against atherosclerosis (48, 616) and
has a clear anti-inflammatory activity that protects mice
from lethality due to LPS challenge (752). The protective
effect of CRP appears to be mediated by binding to Fc�RI
and Fc�RII resulting in enhanced secretion of IL-10 and
downregulation of IL-12 (479). It is therefore unlikely that
CRP is a mediator of atherosclerosis and its complica-
tions, even though it appears to be a strong independent
predictor of cardiovascular events.

A. TNF-�

In a study from the secondary prevention cholesterol
and recurrent events (CARE) trial, TNF-� has been asso-
ciated with an elevated risk of recurrent MI and cardio-
vascular death after a first MI (570). TNF-� levels are
correlated with ankle-brachial index, used to predict the
severity of peripheral arterial disease (91) and also cor-
relate with the burden of atherosclerosis as assessed by
carotid ultrasound among healthy middle-aged men (641).
However, other investigators have suggested that sTNFR
levels may be a better marker of atherosclerotic burden
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than TNF-� itself. A study that sought to determine
whether TNF-� and TNFR levels were associated with
carotid plaque thickness concluded that relative elevation
in TNFR levels, but not TNF-�, was associated with ca-
rotid atherosclerosis among individuals aged �70 yr
(112).

B. IL-2

A transient burst of T-cell activation has been de-
tected in patients with UA (101, 103, 497). Furthermore,
patients with UA are characterized by a perturbation of
the functional T-cell repertoire with a bias toward IFN-�
production (409). In an attempt to determine the relation-
ship between T-lymphocyte activation and CAD, plasma
levels of IL-2 have been measured in coronary patients.
Surprisingly, high levels of IL-2 and soluble IL-2 receptor
were found in those with stable but not UA (638).

C. IL-6

IL-6 levels appear to be predictive of future CAD
(270) and are elevated in patients with UA compared with
those with stable angina (50). Patients with persistently
elevated IL-6 levels demonstrate a worse in-hospital out-
come following admission with UA (49). Raised levels of
IL-6 are often found correlated to CRP levels, consistent
with IL-6 being the main stimulant for the hepatic produc-
tion of CRP (reviewed in Ref. 747).

In the fast revascularization during instability in cor-
onary artery disease (FRISC) II trial, IL-6 was an indepen-
dent predictor of mortality among patients presenting
with ACS, even when measurements with a hsCRP
method were included in the analysis (403). Interestingly,
elevated IL-6 levels appeared to have utility in terms of
directing subsequent care. Early invasive strategy in pa-
tients with elevated IL-6 levels led to a dramatic 65%
relative reduction in mortality at 1 yr (403). In contrast,
among patients with lower levels of IL-6, randomization to
an early invasive strategy did not confer any benefit over
a conservative strategy. This illustrates how inflammatory
biomarkers can be used for risk stratification and also to
identify those patients who might benefit from targeted
interventional therapy.

D. IL-7

A role for IL-7 has been suggested in the promotion of
clinical instability in CAD (152). This is based on the fact
that IL-7 plasma levels were significantly increased in
patients with stable angina and UA compared with
healthy controls. Increased release from activated plate-
lets appeared to be a major contributor to raised IL-7

levels in patients with CAD. In addition, IL-7 enhanced the
expression of several inflammatory chemokines in periph-
eral blood mononuclear cells in both healthy subjects and
patients with CAD, and aspirin reduced both spontaneous
and stimulated release of IL-7 from platelets (152).

E. IL-8

The prospective EPIC-Norfolk population study pro-
vided evidence that elevated plasma levels of IL-8 were
associated with an increased risk of CAD in apparently
healthy individuals (65). This relationship was indepen-
dent of traditional cardiovascular risk factors and also
independent of CRP levels. An earlier study also showed
that IL-8 levels may be useful clinical predictors of unsta-
ble CAD (574).

F. IL-18

Consistent with a role of IL-18 in plaque instability
(435), several observational studies showed that IL-18
levels are higher among patients with UA or MI than
among patients with stable angina or normal controls
(439, 490, 622, 763). Of note, ratio of IL-18 to its natural
inhibitor IL-18 BP were significantly higher among pa-
tients who had recent MI than among those who did not,
suggesting a relation between unopposed IL-18 activity
and recent MI (490). IL-18 was also identified as a strong
independent predictor of death from cardiovascular
causes in patients with CAD with stable or unstable an-
gina (57). Diabetic patients with high IL-18 had a greater
carotid intima-media thickness than those with normal
IL-18 (31). Furthermore, numbers of carotid plaques were
higher in diabetic patients with high IL-18 than in those
with normal IL-18. Moreover, IL-18 is raised in heart fail-
ure patients, in whom elevations correlate with poorer
cardiac functional class and higher TNF-� concentrations
(440, 485). IL-18 appears likely to participate in the patho-
physiology of congestive heart failure.

G. sCD40L

In light of the experimental data showing an impor-
tant role of CD40/CD40L in atherosclerosis, clinical stud-
ies were carried out to evaluate the value of sCD40L as a
biomarker of cardiovascular risk. It has been reported
that apparently healthy women with elevated levels of
CD40L have an increased risk of MI, stroke, or cardiovas-
cular death, a finding that remained after adjustment for
traditional cardiovascular risk factors (608). Further-
more, among patients with carotid atheroma, sCD40L
levels may predict the presence of lipid pool on high-
resolution carotid magnetic resonance imaging (56).
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Platelet stimulation is the major source of circulating
sCD40L, suggesting that the sCD40L levels may be of
greatest predictive value among those with ACS. Consis-
tent with this hypothesis, sCD40L levels identify patients
at risk of having recurrent ischemic events (277, 693). The
c7E3 Fab Antiplatelet Therapy in Unstable Refractory
Angina (CAPTURE) study demonstrated that elevated lev-
els of sCD40L identified the subgroup of patients with
ACS who are at highest risk of death or nonfatal MI over
6-mo follow-up (277). Moreover, the risk associated with
elevated sCD40 ligand levels was markedly attenuated by
randomization to treatment with the glycoprotein IIb/IIIa
receptor antagonist abciximab.

H. IL-10

We have seen that IL-10 is a potent antiatherogenic
cytokine. Measurement of IL-10 levels has thus been
sought in several clinical studies in an attempt to evaluate
its value as a predictor of adverse cardiac events. Patients
with UA who had cardiac events during a 3-mo follow-up
period showed lower levels of IL-10 on admission when
compared with patients with a noncomplicated evolution
(20). In the CAPTURE trial, elevated IL-10 serum levels
were associated consistently with a significantly im-
proved outcome of patients with ACS (276). The predic-
tive value of IL-10 serum levels was independent of ele-
vated troponin levels. Thus a reduced IL-10 serum level is
not only a marker of plaque instability favoring the devel-
opment of ACS but, more importantly, is indicative of a
poor prognosis even after the occurrence of an acute
ischemic event caused by plaque instability. In addition,
the beneficial effect of elevated serum levels of IL-10 was
restricted to patients with elevated CRP serum levels
indicative of an enhanced systemic inflammatory re-
sponse. These data support the concept established from
experimental data that the balance between pro- and
anti-inflammatory cytokines is a major determinant of
plaque instability and of patient outcome in ACS. In ad-
dition, increased IL-10 serum levels are associated with
improved systemic endothelial vasoreactivity in patients
with elevated CRP serum levels, demonstrating that the
pro- and anti-inflammatory balance is a major determi-
nant of the endothelial function (203).

I. M-CSF

M-CSF has emerged as one of the strongest risk
factors for adverse outcomes in patients with stable an-
gina (590). Significantly elevated M-CSF is a harbinger of
ACS in these patients. M-CSF levels were significantly
elevated in patients with ACS compared with patients
with stable angina, the pathophysiology of which may be
the aforementioned SMC loss caused by the activation of

MMPs in the plaque. Serum M-CSF levels determined 6 wk
after discharge in patients with severe unstable angina
were strong predictors of cardiac events during a 2-yr
follow-up (558). In contrast, admission or discharge cyto-
kine values were not predictive of long-term outcome.

VIII. THERAPEUTIC POTENTIAL

The inflammatory nature of atherosclerosis has
prompted efforts to prevent development and/or progres-
sion of disease by targeting inflammatory mediators, in-
cluding cytokines, chemokines, and MMPs. However,
given the long-life evolution of the disease, the benefit of
such approaches is likely to be lost after the withdrawal
of treatment, implying a need for the indefinite drug ad-
ministration, with the attendant risks of chronic adverse
side-effects, including immunosuppression. Based on our
current knowledge of the role of cytokines in the disease,
we would like, in conclusion, to propose some novel
therapeutic strategies to combat atherosclerosis.

A. Use of Anticytokines

Several natural endogenous inhibitors of IL-1, IL-18,
and TNF-� have been identified; these include IL-1ra,
soluble IL-1 receptors, IL-18BP, and soluble TNF-� recep-
tors. Although increased levels of these natural inhibitors
usually occur in sera and at sites of inflammation in
patients with inflammatory diseases, there might be lo-
cally an excess of these cytokines compared with their
respective natural inhibitors that favors their proinflam-
matory action. Therefore, a potential therapeutic maneu-
ver for treating atherosclerosis is to neutralize these im-
plicated cytokines. Biologic agents aimed at inhibiting the
proinflammatory activities of these cytokines thus far
have included cytokine receptor antagonists, anticytokine
monoclonal antibodies, and fusion molecules consisting
of soluble cytokine receptors combined with human fu-
sion protein constructs or polyethylene glycol. A success-
ful example of this approach is Etanercept, a soluble
TNFR fusion protein, the use of which has been shown to
be effective and safe in rheumatoid arthritis (reviewed in
Ref. 518). Nevertheless, blocking the bioactivity of proin-
flammatory cytokines, crucial activators of host defense,
has proven to be accompanied by an increased suscepti-
bility to infections. Caution is therefore warranted when
these treatments are given to patients.

B. Targetting Downstream Inflammasome

The molecular characterization of the molecular
complex, inflammasome, that activates the inflammatory
caspase-1 and caspase-5, opens the door to new therapeu-
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tic approaches for the treatment of autoinflammatory dis-
orders, characterized by recurrent inflammatory episodes
not mediated by autoantibodies or antigen-specific T cells
(297), by reducing IL-1� and IL-18 production, because of
the key roles of these two cytokines in many inflamma-
tory diseases, including atherosclerosis. Orally active in-
hibitors of caspase-1, including pralnacasan, are in clini-
cal trials in patients with rheumatoid arthritis, and de-
creased disease activity has been observed, particularly in
patients with elevated CRP levels (559). Treating inflam-
mation with an orally active, highly specific anticytokine
agent holds considerable promise in inflammatory dis-
eases like atherosclerosis.

C. Targetting the JAK/STAT Pathway

A selective JAK3 antagonist, designated CP-690 550,
has recently been developed (115). As predicted by stud-
ies in humans with mutations of JAK3 and its associated
receptor subunits, the drug is a potent immunosuppres-
sant. An important feature of this drug is that it has
selectivity for JAK3 and does not induce unacceptable
anemia, leukopenia, or thrombocytopenia, which would
be indicative of substantial JAK2 inhibition. Because
JAK3 has limited tissue expression, and its only meaning-
ful biological function is restricted to immune cells, a
JAK3 antagonist is not associated with widespread effects
in other organs; in this way, the selective JAK3 antagonist
distinguishes itself from other immunosuppressants. The
drug is effective in a preclinical model of renal allotrans-
plantation in nonhuman primates (73). As the drug moves
towards clinical trials in humans, it will be important to
determine its value in atherosclerosis.

D. Activation of the Natural Anti-inflammatory

Intracellular Pathway (SOCS)

SOCS1, when overexpressed, can inhibit signals from
most hematopoietic and inflammatory cytokines that uti-
lize the JAK/STAT pathway. Thus, although the main
physiological role of SOCS1 appears to be to control
IFN-�, this promiscuous activity implies that SOCS1 ago-
nists or mimetics might also prove beneficial in the con-
trol of inflammation mediated by multiple cytokines as
occurred in atherosclerosis. In a murine model of inflam-
matory arthritis, overexpression of SOCS3 by periarticu-
lar injection of a SOCS3 adenovirus reduced the severity
of inflammation and joint damage (635). SOCS3 is also
highly expressed in inflamed intestinal mucosa of patients
with ulcerative colitis and Crohn’s disease (415, 657).
Such diseases are driven by excessive STAT3 activation.
It is postulated that SOCS3 is a negative regulator of
inflammation in these diseases and that SOCS3 agonists
will reduce bowel inflammation. This suggests that small

molecule effectors of SOCS3 activity might be of great
interest in the treatment of atherosclerosis.

E. Stimulation of Treg Cells

An existing approach for the treatment of atheroscle-
rosis results from the identification of circulating autoan-
tibodies against oxidized LDL in humans (526) and from
the observation that an immunization with oxidized LDL
significantly reduces atherosclerosis. The atheroprotec-
tive effect of this approach is mediated through the in-
duction of antibodies against oxidized epitopes of oxLDL.
Specific immunoreactive antigenic epitopes in the apoli-
poprotein B-100 component of LDL have been recently
identified (210), and experimental observations have pro-
vided a proof of concept that active vaccination using
these antigenic epitopes may represent a novel therapeu-
tic approach for the prevention and treatment of athero-
sclerosis (599, 624).

In light of our recent findings on the role of Treg cells
in atherosclerosis (8, 437), treatments aimed at promoting
Treg cell generation such as Tr1 cells, CD4�CD25� cells,
or Th3 cells can represent an attractive tool for treating
and/or preventing atherosclerosis. This might be accom-
plished by promoting a regulatory immune response dis-
tinct from the humoral response that generates anti-ox-
LDL antibodies, which would limit the risk of inflamma-
tory complications associated with the induction of
autoantibodies.

Of note, studies in nonobese (NOD) diabetic mice
indicate that short-term treatment with monoclonal anti-
bodies against CD3 induces long-term remission of estab-
lished diabetes (118, 119) through the induction of
CD4�CD25� Treg cells (44). The CD3-specific monoclo-
nal antibodies used in these studies recognize the
�-chain of the CD3 complex, which is associated with
the TCR for antigen recognition (117). The precise
mechanisms involved in the CD3-specific antibody-in-
duced CD4�CD25� Treg cells are unknown, but Treg
cells from mice treated with CD3-specific antibodies pro-
duce high levels of TGF-�, and in vivo neutralization of
TGF-� prevents the remission of autoimmune diabetes in
NOD mice (44). Interestingly, use of a humanized anti-
CD3 antibody in patients with recent-onset type 1 diabe-
tes shows that short-term treatment preserves residual
�-cell function for at least 18 mo (333). Induction of
TGF-�-dependent Treg cells by using anti-CD3 antibodies
may limit the development and progression of atheroscle-
rosis in patients with high cardiovascular risk factors.

An alternative way to induce and maintain immune
tolerance in atherosclerosis would be to use peptide-
based therapeutic vaccines (371). Prolonged subcutane-
ous infusion of low doses of peptides can transform ma-
ture T cells into CD4�CD25� Treg cells, persisting for
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long periods of time, even in the absence of antigen, and
capable of stimulating specific immunological tolerance
upon encounter with antigen (24). Such strategy of deliv-
ering low doses of specific peptides for a long period of
time has been successfully used in experimental models
of allergy (84, 290). Also, peptide derived from HSPs for
the treatment of diabetes and rheumatoid arthritis has
provided encouraging results (550, 561). This prompted
us to evaluate the value of therapeutic vaccination using
specific atherosclerotic plaque peptides in murine models
of atherosclerosis.

F. Stimulation of Macrophage Emigration From

Atherosclerotic Lesions

It had been proposed by the beginning of the 1980s
that lipid-laden foam cells can migrate back from the
intima into the bloodstream by crossing the arterial en-
dothelium (229). Yet the molecular mechanisms respon-
sible for macrophage emigration from the atherosclerotic
plaque were totally unknown. Of note, recent in vitro and
in vivo studies exploring the mechanisms of monocyte
egress from the vessel wall revealed that PAF and lyso-
phosphatidic acid (LPA) inhibit monocyte transmigration
(410). Moreover, cells that emigrate from atherosclerotic
lesions to lymphoid organs, after transplantation of an
atherosclerotic aortic segment from an apoE�/� donor to
a C57BL/6 recipent, express high levels of the major his-
tocompatibility complex class II molecules I-Ab, CD11b,
and the M-CSF receptor CD115. Clearance of monocytes
from the atherosclerotic plaque by conversion into migra-
tory cells using a specific set of cytokines may bolster
plaque regression.

IX. CONCLUSION

Much has been learned about the role of cytokines in
atherosclerosis since their presence in the human athero-
sclerotic plaque was first discovered over 25 years ago.
Proinflammatory cytokines stimulate chemokines and ad-
hesion molecules, leading to early recruitment of mono-
cytes and lymphocytes in the intima. Furthermore, cyto-
kines exert potential noxious effects in late atherosclero-
sis when they activate MMPs in macrophages and
vascular cells and promote cell apoptosis, resulting in
weakened plaques that are more prone to rupture or
erosion. The balance between pro- and anti-inflammatory
cytokines has emerged as a major determinant of plaque
stability. Nonetheless, many aspects of plaque formation
and evolution remain unresolved. For one, most if not all
of our understanding of the molecular mechanisms of
atherogenesis are based on experiments in murine mod-
els of atherosclerosis. To what extent can the findings
obtained in apoE�/� or LDLr�/� mice be translated to

human atherosclerosis? Inasmuch as no model can repro-
duce plaque rupture or plaque erosion in humans, how
can the importance of cytokines be evaluated in these
settings? Atherosclerosis definitely proceeds from a local
inflammatory process. Yet, in atherosclerosis increased
expression of cytokines in the plaque usually parallels
that in spleen cells (541, 572, 791). Is atherosclerosis then
really a local or a systemic inflammatory disease (422)?

The upsurge in our understanding of the role played
by inflammation in atherosclerosis has significant impli-
cations for current and future therapeutic approaches for
primary and secondary prevention of atherothrombotic
events. The development of new treatments will focus on
strategies that decrease the inflammatory response and
tip the balance in favor of anti-inflammatory mediators
and, therefore, plaque stability. However, crucial ques-
tions still arise: Are there cytokines that are more specific
of atherosclerosis? Do they have site specificity: coronary
versus carotid versus peripheral arteries? Do cytokines
play a similar role in early and late atherosclerosis? We
have seen that future therapeutic approaches may include
agents that block proinflammatory cytokine signaling,
agents that augment the anti-inflammatory activity of
other cytokines, and agents that either block the tran-
scription of inflammatory mediating molecules or upregu-
late anti-inflammatory molecules. Yet, when and how long
to treat patients with CAD with such agents that trigger
the cytokine network remains to be resolved.
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