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As part of a biomarker discovery effort in peripheral blood, we acquired an immunological profile of cell-surface
markers from healthy control and untreated subjects with relapsing^remitting MS (RRMS). Fresh blood from
each subject was screened ex vivo using a panel of 50 fluorescently labelled monoclonal antibodies distributed
amongst 56 pools of four antibodies each. From these 56 pools, we derived an immunological profile consisting
of 1018 ‘features’ for each subject in our analysis using a systematic gating strategy. These profiles were inter-
rogated in an analysis with a screening phase (23 patients) and an extension phase (15 patients) to identify
cell populations in peripheral blood whose frequency is altered in untreated RRMS subjects. A population
of CD8lowCD42 cells was identified as being reduced in frequency in untreated RRMS subjects (P=0.0002),
and this observation was confirmed in an independent sample of subjects from the Comprehensive Longitu-
dinal Investigation of MS at the Brigham & Women’s Hospital (P=0.002). This reduction in the frequency
of CD8lowCD42 cells is also observed in 38 untreated subjects with a clinically isolated demyelination
syndrome (CIS) (P=0.0006). We also show that these differences may be due to a reduction in the
CD8lowCD56+CD32CD42 subset of CD8low cells, which have a natural killer cell profile. Similarities between
untreated CIS and RRMS subjects extend to broader immunological profiles: consensus clustering of our data
suggests that there are three distinct populations of untreated RRMS subjects and that these distinct pheno-
typic categories are already present in our sample of untreated CIS subjects. Thus, our large-scale immuno-
phenotyping approach has yielded robust evidence for a reduction of CD8lowCD42 cells in both CIS and RRMS
in the absence of treatment as well as suggestive evidence for the existence of immunologically distinct subsets
of subjects with a demyelinating disease.
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Introduction
Profiling of peripheral blood has received much of the
attention in biomarker discovery since this tissue is easily
sampled and may reflect the manifestation of a disease
process that occurs within tissues for which biopsy is not
practical (e.g. CNS tissue). One illustration of this approach
is the discovery of an interferon response signature in the
peripheral blood mononuclear cells (PBMCs) of systemic
lupus erythematosus patients (Baechler et al., 2003). How-
ever, the RNA expression profiling approach used in that
study has not yet yielded a robust profile for multiple
sclerosis (MS), an inflammatory demyelinating disease of
the central nervous system (De Jager and Hafler, 2004). We
have chosen to apply a flow cytometric analysis approach to
biomarker discovery because it produces data at the single
cell level and therefore enables us to assess differences in
cell populations within a sample of blood and to measure
the distribution of markers within each cell population.

Cytometric interrogation using combinations of antigens
has been performed for decades in MS, starting with the
first application of anti-CD4 and anti-CD8 antibodies that
highlighted a reduced CD4/CD8 ratio in MS (Reinherz
et al., 1980). However, there is, as yet, no diagnostic test
that is clinically useful in MS, and the disease remains a
diagnosis of exclusion. Application of cytometric analysis
on a large scale is just now beginning but has already
shown promise, as illustrated in a recent study that identif-
ied markers correlating with MS disease activity on mag-
netic resonance imaging (MRI) (Rinaldi et al., 2006). We
have applied a large-scale cytometric approach to investi-
gate peripheral blood from untreated subjects with
relapsing–remitting MS (RRMS). Second, we have also
analysed blood from subjects with a clinically isolated
demyelinating syndrome (CIS). CIS is defined by the
occurrence of a single episode of inflammatory demyelina-
tion (Miller et al., 2005), and many subjects with CIS go on
to demonstrate clinical or imaging evidence of a second
episode of demyelination and therefore fulfill a diagnosis of
MS (McDonald et al., 2001). We report that both CIS and
RRMS subjects demonstrate a reduction in the frequency
of CD8lowCD4� cells when compared to healthy control
subjects. This cell population is one that is increased in
frequency with daclizumab treatment in MS (Bielekova
et al., 2006). These cytometric profiles of peripheral blood
have also uncovered the population structure of our patient
sample, a structure consisting of three subgroups of subjects
with RRMS or CIS. These observations further highlight the
shared pathophysiology of these two clinical entities.

Material and Methods
Study design
This study uses data acquired in the MS Registry, a project that
includes the prospective collection of flow cytometric data from
untreated subjects with RRMS and healthy control subjects. Our
study consists of a screening phase (Phase 1) in which cell

populations are identified as demonstrating evidence of associa-
tion to a diagnosis of MS. This screen was followed by an exten-
sion of the study (Phase 2), in which additional subjects were
analysed to identify those cell populations presenting robust
differences between healthy control subjects and subjects with MS.
In Phase 3, a different flow cytometric data set, generated by the
Comprehensive Longitudinal Investigation of MS at the Brigham
& Women’s Hospital (CLIMB), was used to independently repli-
cate the major finding of the MS Registry Phase 2 analysis.

Secondary analyses were performed to explore the frequency of
a cell population in subjects with CIS, to analyse the population
structure of the patient samples, and to predict a diagnosis of MS.

Human subjects
In the screening phase (Phase 1 of the study), 23 untreated RRMS
subjects and 17 healthy control subjects were assayed, and to
validate results from our screen, we assayed an additional 15
untreated RRMS subjects and 15 healthy control subjects in the
extension phase of the analysis (Phase 2). Another 11 subjects with
CIS were recruited in parallel with the screening phase of the MS
study (Fig. 1). All untreated subjects with RRMS met the following
inclusion criteria: (i) age greater than 18 years; (ii) diagnosis
of MS per the McDonald criteria (McDonald et al., 2001);
(iii) no disease-modifying treatment or steroids in the preceding
4 weeks (steroids), 12 weeks (Glatiramer Acetate, Interferon b1a
or b1b and methotrexate) or 24 weeks (cytoxan and mitoxan-
trone); and (iv) no evidence of progressive disease, as defined by
progressive functional decline with deficits lasting 6 months or
more. There were no exclusion criteria for subjects meeting the
inclusion criteria. The untreated subjects with CIS met the same

Fig. 1 Distribution of the dates of blood draws for all subjects
with a complete immunological profile that are included in our
analysis. Phase 1 subjects refer to those subjects used in screening
phase of our analysis; Phase 2 subjects are the additional subjects
collected for the extension analysis Colours: Black (RRMS Phase1),
Red ((Healthy Control Phase 1),Green (CIS), Navy Blue (RRMS
Phase 2), and Light Blue (Healthy Control Phase 2).
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inclusion criteria, except for (ii): instead, these subjects with CIS
had a history of a single episode of inflammatory demyelination
documented by a neurologist and had two or more periventricular
or ovoid hyperintense T2 lesions of43 mm on MRI (Miller et al.,

2005). All subjects were recruited sequentially through the
Partners MSCenter in Boston, MA. All RRMS subjects and 11
CIS subjects have a complete immunophenotypic profile; data on
these subjects were collected in a single time window that overlaps
data collection for control subjects. An additional 27 CIS subjects

were recruited later using the same inclusion criteria but only data
from pool ‘a1’ (Supplementary Table 1a) was gathered from these
individuals. All of the untreated subjects with MS or CIS that were
enrolled into the MS Registry were used in the analysis; no subject
was excluded. The untreated subjects with RRMS include subjects

who had either declined treatment or were in between treatment
for their MS. All CIS and RRMS subjects were recruited into
the MS Registry at the time of a routine clinical visit scheduled
every 6 months to monitor changes in the clinical examination
of our patients. Healthy control subjects were recruited through

the Partners Healthcare RSVP for Health database (http://
www.rsvpforhealth.org/) of individuals who are interested in
participating in medical research. All healthy control subjects are
over 18 years of age. All subjects are of self-declared European
(‘white’) ancestry. The clinical features of our subject sample are

presented in Table 1.
In Phase 2 of the study, a more detailed matching protocol was

instituted: each healthy control subject was matched on gender
and age within 5 years to a subject with MS. In addition, healthy
control blood samples were collected within two days of the

sampling of the matched subject with MS. All of the healthy
control subjects used in Phase 2 were also recruited from the
Partners Healthcare RSVP for Health resource and were of self-
declared European ancestry. The inclusion and exclusion criteria
remained the same (see the Phase 1 criteria described earlier).

The independent replication sample set used in Phase 3 was
drawn from data gathered prospectively as part of the CLIMB.
These subjects with MS were also in the relapsing–remitting phase
of their disease and were untreated at the time of sampling. All of

these subjects met the McDonald criteria for a diagnosis of MS
(McDonald et al., 2001) as well as the inclusion criteria described

for the Phase 1 described earlier. The clinical profile of this subject
sample is presented in Table 1. The healthy control subjects in
this case were collected from laboratory personnel who are self-
reported as being free of inflammatory disease. All of the CLIMB
subjects used here are of self-declared European ancestry.

All MS subjects analysed in this study (whether they were
enrolled in the MS Registry or CLIMB) were recruited from the
Partners MS Center in Boston. None of the CLIMB subjects are
duplicates of the MS Registry subjects.

Human samples
At the time of enrolment into the MS Registry, �7 ml of blood
was collected from each subject and processed to capture flow
cytometric data. Samples were collected between 09:00 and 15:00
from our Partners MS Center in Boston, MA, USA. In addi-
tion, 15 of the 17 healthy control subjects enrolled in Phase 1
were assayed serially: at enrollment, 6 months later, and finally
12 months later. This longitudinal component of the project was
used in our quality control (QC) analysis to select the flow
cytometric parameters that are robust to variation over time and
would therefore be more informative in an analysis for which the
samples were collected over 18 months. Each subject’s blood
sample underwent staining with the fluorescently labelled antibody
pools within 2 h of blood collection. Sample staining, processing
and fixation were completed within 4 h of blood collection; the
median time to flow cytometry was 6 h following sample collec-
tion, with a range of 4–24 h. The details of the staining and flow
cytometry procedures are presented below.

CLIMB blood samples were likewise completely processed,
stained and fixed within 4 h of phlebotomy. Flow cytometry was
performed within 24 h of sample collection.

MS Registry sample preparation
and flow cytometry
Samples of whole blood were stained with each combination of
four fluorescently conjugated monoclonal antibodies listed in
Supplementary Table 1a. The source of each antibody is listed in
Supplementary Table 1b. The four antibodies in the pools of each
well were pre-mixed and diluted to a final volume of 1.5 ml,

Table 1 Clinical features of subjects included in our analyses.

Clinical variable MS Registry CLIMB

Phase 1
MS
n=23

Phase 1
Healthy
n=17

Phase 2
MS
n=15

Phase 2
Healthy
n=15

CIS
n=38

Phase 3
MS
n=16

Phase 3
Healthy
n=18

Mean age 40.4 46.8 43.9 39.2 35.5 44.9 37.3
Gender ratio (F :M) 1.88 :1 7.5 :1 1.5 :1 1.5 :1 7:1 7:1 8 :1
Disease duration 10.4 ^ 12.9 ^ 2.7 8.6 ^
Mean age of symptom onset 30.0 ^ 31.0 ^ 32.7 36.3 ^
Mean EDSS score 1.43 ^ 1.53 ^ 0.77 1.07 ^
Benign MS (%) 34.7 ^ 13.3 ^ ^ 12.5 ^

Phase 1 subjects were used in our initial screen of flow cytometric features in the MS Registry. Phase 2 subjects include those subjects
recruited at a later time and added to the Phase 1 subjects for the extension analysis. Eleven CIS subjects were collected in parallel
with Phase 1 subjects and have a complete immunologic profile of 1018 features; an additional 27 CIS subjects were collected later and
only the CD8low cell population was measured in these subjects. There is no significant difference between the demographics of the
two groups of CIS subjects. Phase 3 subjects were recruited as part of a different study, CLIMB. Benign MS is defined as an EDSS
score52 at 10 years after the onset of symptoms.Glossary: F= female; M=male.
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and batches of approximately 100 plates were prepared by distrib-
uting 15 ml of each antibody pool to the corresponding wells. The
amount of each of the antibodies in each well was typically either
1.5 or 2.5ml. Antibody pool plates were typically used within
2 months and kept tightly sealed at 4�C until used. 85 ml of blood
were added to wells, mixed and incubated at ambient temperature
for 10 min. After incubation, cells were washed twice with
Dulbecco’s phosphate-buffered saline (w/o Ca2+ and Mg2+), and
red blood cells were lysed. Cells were then fixed by distributing
180ml of BD fluorescence activated cell sorter (FACS) Lysis Buffer
to the wells and incubating at 37�C for 10 min prior to
centrifugation. Cells were then re-suspended in 100 ml of BD
FACS Lysis Buffer and transferred to Costar cluster tubes for data
acquisition by flow cytometry. Samples were analysed by flow
cytometry using a FACSCaliburTM FACS and CellQuestTM Pro
software (both from BD Biosciences, San Jose, CA, USA). Total
event collection ceased when 30 000 events were collected in the
total leukocyte gate.

CLIMB sample preparation and flow cytometry
Blood samples were collected at the Partners MS Center, and
processing was completed within 4 h. PBMCs were isolated by
centrifugation over Ficoll–Hypaque density gradient and washed 3
times in PBS containing 1% fetal calf serum. After the final wash,
cells were re-suspended in Staining Buffer (100 000 cells/100 ml).
Cells were incubated for 20 min with different combinations of
fluorescent antibodies then washed twice and re-suspended in
staining buffer for data acquisition by FACSCalibur (Beckman
Dickinson, BD). CD4 FITC-labelled and CD8 Cychrome-labelled
antibodies were purchased from BD Biosciences (cat#555246 and
555368, respectively).

Data pre-processing
We used the FlowJo software suite v6.4.2 (Treestar, Ashland OR,
USA) to extract 5 parameters from the MS registry and CLIMB
data: for each gated cell population, we captured (i) the frequency
of the gated cells in the parental cell population, (ii) mean
fluorescence intensity (MFI), (iii) median fluorescence intensity
(MedFI), (iv) mean channel value (MCV) and (v) geometric mean
fluorescence intensity (GMFI).

The systematic gating protocol we followed is as follows: data
from each blood sample are first projected in two dimensions
(forward and side scatter), and three gates were placed as illus-
trated by Supplementary Fig. 1. Gate 1 captures mostly lympho-
cyte populations; Gate 2 captures monocytes and activated
lymphocytes; and Gate 3 captures predominantly granulocyte
populations. Each gated cell population is then projected onto two
dimensions using two of the four antibodies found in each pool.
Using isotype control data, quadrants are placed to define positive
and negative cell populations for each dimension, and data are
acquired from each quadrant. For example, the proportion of
Gate 1 cells that are CD4 positive and CXCR2 negative was
captured as part of the data acquisition on pool ‘b1’ (Supple-
mentary Table 1a); in our database, this datum is stored with
the label ‘Gate 1/CD4posCXCR2neg’ to describe its source. Some
antibody combinations are found in multiple pools, so that
a number is attached to the end of the label to differentiate
the antibody pool from which it was extracted (e.g. ‘Gate
1/CD4posCCR7pos4’, the fourth independent assessment of this
antibody combination).

Cell populations found in each of the four quadrants from a 2D
projection were then projected in the remaining two dimensions
(two antibodies) of each pool, and the process of placing quad-
rants based on isotype data was repeated. Data were then extracted
from each quadrant to produce data features such as ‘Gate
1/CD19posCD4neg/CD14negCCR4pos’.

Thus, we instituted a systematic data extraction protocol
from each quadrant of successive 2D projections of our data.
Each antibody pool had data collected using a single sequence of
2D projections. Many quadrants therefore had few or no cells, and
we address the use of such data in our QC analysis (see subse-
quently). Specifically, quadrants with 30 or fewer cells were
excluded from the analysis pipeline since the quantity of cells
was deemed too small to generate robust data. A final check was
implemented on the results of the extension analysis: if a feature
originates from a gate that does not capture a clear, unique cell
population, it was not included in the final results table, Table 2.
One of the two features that failed this criterion is illustrated
in Supplementary Table 2b.

Of note, the anti-CD8 antibody data was processed slightly
differently. Prior to data extraction, we had decided to split the
CD8 dimension into three components to be able to analyse data
from the population of cells that express low levels of CD8
(CD8low) separately; an example of this gating strategy is shown in
Fig. 2A. Finally, the measurements involving the anti-CXCR3
antibody had to be eliminated because the anti-CXCR3 antibody
failed to stain one-half of the samples; this was due to a batch of
bad antibody.

QC analysis
Fifteen of the healthy control subjects were assayed longitudinally,
and these data were used to select the cytometric parameters that
are robust to variation over time. Specifically, these 15 healthy
control subjects were sampled at the time of enrolment, at
6 months, and at 12 months. At each time point, the peripheral
blood was interrogated with the same panel of antibodies, and
5 parameters were captured for each gated cell population:
frequency of the gated cells in the cell population found in the
preceding gate in the sequence of data processing, MFI, MedFI,
MCV and GMFI. Our systematic gating procedure included 4747
gates from which the five parameters were extracted.

To select the most robust parameters for our analysis, we
followed the following QC pipeline. First, we eliminated data from
all gates where the gated cell population consisted of less than
30 cells, as such low numbers of cells are unlikely to provide
accurate estimates of marker expression in true subpopulations of
PBMCs. This first processing step reduced the number of gates to
1018. Using these 1018 gated cell populations that met our initial
QC criterion of cell count, we compared the measurements
performed across the three time points (TP1-3) of each healthy
control subject. We calculated a correlation coefficient (r) corres-
ponding to the comparison of a given sample’s feature vector to
the two repeated feature vectors. Because of the lower mean
correlation coefficients (r= 0.51–0.60) in the 4 out of the 5 param-
eters relating to fluorescence intensity, we have limited our analysis
to the frequency variable which had a correlation coefficient across
the three time points averaging r= 0.77 (range r= 0.52–0.91). This
variability is likely to have both a technical component and
a biological component. To minimize technical variability in our
frequency parameter that may arise from differences amongst
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antibody batches and operators, we have included in our analysis
only those MS and healthy subjects whose sample collection time
overlapped during the course of the MS Registry project. Thus, in
the screening phase of our analysis (Phase 1), we use the third time
point (TP3) value for each healthy control in our comparison with
subjects with MS since these control samples were collected during
the time that the majority of the MS and CIS samples were
collected (Fig. 1). The extension phase subjects were recruited using
a strict clinical and temporal matching protocol that is described
earlier. At the end of our QC process, we therefore had a reduced
data set of 1018 different frequency measurements or ‘features’ for
each of our 81 subjects; these features were then loaded into our
analysis pipeline. Some of these features are captured in more than
one well; for example, four wells have both CD4 and CD8
antibodies. When redundant features are removed, we are left with
795 features in our data set.

Duplicate wells were not part of the experimental design.
However, we offer an estimate of the intra-plate variability of our
measurement by analysing data from the four wells that have both
the anti-CD4 and anti-CD8 antibodies. Details are presented in
Supplementaryl Table 2, the mean correlation coefficient (r) is
0.87 (range 0.78–0.97).

Analysis pipeline
In collecting our results, we used an analysis pipeline that consists
of three main steps. These steps are significance testing, dimen-
sionality reduction and prediction model building. The three steps
are derived from the GenePattern algorithms comparative marker
selection (CMS), non-negative matrix factorization (NMF) and
support vector machine (SVM) that have been tailored to work
together in a cross-validation loop (http://www.broad.mit.edu/
cancer/software/genepattern/) (Reich et al., 2006). The pipeline
can be replicated using the GenePattern environment.

Significance testing for each frequency feature
In the primary analysis of our data, we use CMS to perform a
permutation test on each feature to assess its correlation with class
(untreated RRMS or healthy) and to quantify that correlation. The
resulting P-value is reported for each feature in our data set. For the
replication data set from CLIMB, we used a Wilcoxon exact test.

Prediction analyses
For the prediction analyses, CMS is included in a loop as follows:
a random sample is removed from the data set, and the remaining

Table 2 Cell populations whose frequency is different in our comparison of untreated RRMS to healthy control subjects.

Cell subset Exploration
P-value

Extension
P-value

Exploration
Healthy
mean (%)

Exploration
MS
mean (%)

Extension
Healthy
mean (%)

Extension
MS
mean (%)

CD8low cell population
Gate 1/CD8lowCCR1neg 0.0539 0.0008 6.99 5.57 7.54 5.57
Gate 1/CD8lowCCR2neg 0.0199 0.0016 6.98 5.09 7 5.01
Gate 1/CD8lowCCR3neg 0.0184 0.0005 7.07 5.31 7.35 5.38
Gate 1/CD8lowCCR5neg 0.0269 0.0006 6.55 5.15 6.95 5.08
Gate 1/CD8lowCCR5neg2 0.0139 0.0006 6.54 5.11 6.66 4.9
Gate 1/CD8lowCCR7neg 0.0109 0.0013 6.49 4.77 6.32 4.45
Gate 1/CD8lowCD14neg 0.0555 0.0013 7.44 5.97 8.07 6.13
Gate 1/CD8lowCD14neg/CD4negCCR5neg 0.0835 0.0162 87.89 81.08 87.09 76.78
Gate 1/CD8lowCD14neg2 0.0163 0.0009 7.49 5.52 7.91 5.84
Gate 1/CD8lowCD14neg3 0.0674 0.0027 7.53 5.8 8.06 6.06
Gate 1/CD8lowCD27neg 0.0295 0.0006 4.84 3.67 5.38 3.84
Gate 1/CD8lowCD27neg2 0.0697 0.002 4.71 3.68 5.26 3.86
Gate 1/CD8lowCD27neg3 0.074 0.0025 4.83 3.72 5.16 3.71
Gate 1/CD8lowCD27neg4 0.0623 0.0034 4.86 3.78 5.44 3.96
Gate 1/CD8lowCD3neg 0.0215 0.0041 5.49 3.97 6.59 4.73
Gate 1/CD8lowCD4neg 0.0188 0.0011 7.08 5.36 8.11 5.71
Gate 1/CD8lowCD4neg2 0.0707 0.0007 6.73 5.47 7.55 5.42
Gate 1/CD8lowCD4neg3� 0.0126 0.0002 6.76 5 7.31 5.12
Gate 1/CD8lowCD4neg4 0.0427 0.0005 6.89 5.29 7.51 5.31
Gate 1/CD8lowCD56pos 0.0347 0.0052 6.4 4.89 7.19 5.46
CD4 cell population
Gate 1/CD4posCD19neg4 0.0419 0.0164 45.56 50.91 42.86 48.35
Gate 1/CD4posCXCR2neg 0.034 0.0043 43.16 50.04 40.46 47.77

The table lists those features for which evidence of association with RRMS was enhanced after the inclusion of additional samples in
the extension analysis and whose extension P-value was50.05. The features are arranged by alphabetical order within the two cell
populations (CD8low and CD4+) that we identify as being found at different frequency in cases and controls within our screen.We also
present the mean frequency value of each selected feature at both stages of the analysis in the healthy control and RRMS subjects. The
‘exploration’ analysis is performed with only Phase1 subjects; the ‘extension’ analysis is performed in the combined samples of Phase1and 2.
The ‘neg’ is used to denote cell populations for which a particular marker is absent; ‘pos’ is used to denote cell populations positive for a
particular marker. �Some features were independently measured in different wells of the experimental plates.When a feature has a
number as its last character, the number refers to the particular iteration of that feature on the experimental plate. For example,
‘CD8lowCD4neg3’ is the third of four independent measurements of the CD8lowCD4neg population.
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data is introduced into the pipeline as an n�m matrix, where
there are n features and m samples (m=M�1). Also associated
with this matrix is a class file, indicating which of the total c
classes to which each sample belongs. The matrix and class files
are introduced into CMS which performs a permutation test on
each feature to assess its correlation with class (untreated RRMS
or healthy) and to quantify that correlation. The original n�m
matrix is then reduced to a (cp) � m matrix, where p (specified by
the user) represents the p most distinguishing features according
to the permutation tests for each of the c classes.

The (cp) � m matrix is then introduced to the second compo-
nent of the pipeline: NMF. The details of NMF are described in
the NMF documentation on the GenePattern website (http://
www.broad.mit.edu/cancer/software/genepattern/) (Reich et al.,
2006). NMF finds patterns of feature expression in the data set.
The final output is a k�m matrix, where k is the number of
distinct patterns (‘meta-features’) set by the user and defined
by the algorithm. We found the optimal value of k to be 3, as
demonstrated using NMF consensus clustering (Fig. 3). The NMF
consensus clustering is an additional algorithm published in
Genepattern.

The last step in our pipeline is testing the k�m matrix for its
ability to predict a random sample. The random sample is the
original sample that we pulled out. We used a tailored version of a
SVM to execute this prediction. We employed the SVM published
in Genepattern. SVM is a supervised classification method that
finds the hyperplane in the data space that maximally divides the c
classes. Given a random sample with data in that space, it will use
this hyperplane to predict the class of the random sample.
A confidence score is associated with each call.

Once the SVM has predicted the removed sample’s class, the
pipeline has finished the first run of the loop. It sequentially
completes the loop M times, where M is the original population’s
sample size. After each sample has been removed and predicted once,
the prediction result is compiled and is comprised of the percent
correct calls and percent incorrect calls. Each sample is predicted
with a certain level of confidence, and, based on prior experience,
we have set an arbitrary threshold of confidence score 40.3 for a
prediction to be recorded. If this score is50.3, confidence is deemed
to be insufficient, and the algorithm records a ‘no call’.

Results
Identifying peripheral blood cell populations
whose frequency is altered in MS
In the screening phase of the analysis, we compared
the frequency of peripheral blood cell populations found
in 23 untreated RRMS subjects to that found in 17 healthy
control subjects. The frequencies of 1018 such cell popu-
lations were compared in this assessment. We term each
such frequency measurement in a distinct cell population
a ‘frequency feature’, and 1018 represents the number of
the frequency features that met our QC criteria. Of these
frequency features, 123 have a permutation test P-value
50.05 in this screening analysis. To identify those fea-
tures that may be truly differentiated between untreated
RRMS subjects and healthy control subjects, we performed
an extension analysis: we added data generated from
15 additional cases of untreated RRMS and 15 matched

Fig. 2 The CD8low population is decreased in frequency in
untreated subjects with RRMS. (A) Representative density plot
of a subject with RRMS outlining the gates used to capture the
CD8low and CD8+ cell populations. These flow cytometric data
were selected from ‘Gate 1’, the gate that captures the lymphocyte
population in our sample (see supplementary Fig. 1). (B) We
have plotted the frequency (%) of the CD8lowCD4� feature,
the most differentiated feature in our analysis, for each of the
healthy control (green), CIS (red) and RRMS (green) subjects.
The frequency is calculated based on the number of cells
found within Gate 1; thus, the denominator is the total number
of cells found within our lymphocyte gate.
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healthy control subjects to our analysis. Table 2 lists those
frequency features for which (i) evidence for association
with MS is enhanced after the addition of the extension
phase subjects and (ii) the permuted P-value 50.05 in this
extension analysis.

In reviewing the 22 features for which the evidence of
association is enhanced in the extension analysis, the feature
with the lowest permutation test P-value is the proportion

of lymphocytes that are ‘CD8lowCD4’ (P= 0.0002); that is,
on average, subjects with MS in our sample set have a
smaller proportion of lymphocytes (experimental Gate 1,
Supplementary Fig. 1) that express low levels of CD8 and
do not express CD4 (Table 2). Figure 2A illustrates the gate
used to define this CD8low population, a cluster of cells that
is distinct from the CD8+ population. The distribution of
our cytometric data for the CD8lowCD4� feature in subjects

Fig. 3 There are three subsets of subjects in our sample of untreated individuals with RRMS. (A) Consensus clustering of MS subjects
into different numbers of clusters. All 38 of the RRMS samples are used in this analysis. ‘k’ denotes the number of clusters being tested;
k=2^5 were tested. The cophenetic coefficient is a measure of how well the number of clusters fits the data, with 1.0 being maximal.
Each rectangle is a table, with each subject being listed in the same order on the X- and Y- axes, starting from the top left corner.
Each cell of the table contains the probability that a pair of subjects is part of the same cluster. The likelihood that two subjects are
part of the same cluster can be high (red colour) or moderate (yellow); a blue colour denotes the fact that a pair of subjects is unlikely
to be part of the same cluster. A green colour denotes that the algorithm is uncertain and chooses not to make a call (B) We have
plotted the cophenetic coefficient for each number or ‘k’ attempted and see that our data best fits a model with three separate subsets
of subjects (k=3). (C) We repeat the clustering analysis after adding 11 subjects with CIS to the pooled RRMS samples. The subjects
with CIS are marked with a black arrow.
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with MS and healthy control subjects is shown in Fig. 2B.
Interestingly, this CD8low population is the one that appears
to be present at a significantly higher frequency in healthy
subjects than in subjects with MS in 20 of the 22 selected
features in our screen. These 20 features are simply inde-
pendent measurements of the entire CD8low population in
different antibody pools located in different wells of the
experimental plates. In fact, the four independently mea-
sured CD8lowCD4� features in our data set are all found
within the 10 features with the lowest P-values. In merging
the information provided by these 20 features, this cell
population can be defined as being negative for CCR1,
CCR2, CCR5, CCR7, CD14, CD27 and CxCR2 expression
in various other antibody pools. However, antibody pool
‘a1’ (Table 2 and Supplementary Table 1a) provides a
positive association: the CD8lowCD56+ cell population is
reduced in RRMS subjects (Table 2).

In a secondary analysis, we carefully re-acquired the
frequency of the different subsets of CD8lowCD4� cells in
pool ‘a1’ by projecting these cells onto the CD3 and CD56
dimensions of staining (Supplementary Fig. 3). Most (mean
of 53%) of these cells fall into a CD8lowCD4�CD56+CD3�

cell population, and we find that its frequency is reduced in
untreated subjects with RRMS (P= 0.02) (Supplementary
Figs 3 and 4A). The smaller populations of CD8lowCD4�

CD56+CD3+ cells and CD8lowCD4�CD56�CD3+cells are
not significantly different when healthy and untreated
RRMS subjects are compared (Supplementary Fig. 3). The
CD8lowCD56+CD3�CD4� profile is consistent with the
profile of a natural killer (NK) cell population (Robertson
and Ritz, 1990).

Two other distinct lymphocyte populations captured
in Gate 1 (‘lymphocyte gate’) (Supplementary Fig. 1) also
appear in the features selected after the extension analysis
(Table 2). Both are CD4+ cell populations. First, the propor-
tion of CD4+CXCR2� cells in Gate 1 is greater in subjects
with MS than in healthy control subjects (P= 0.004); this
is probably the same cell population captured by the
CD4+CD19� feature given the similarity in the frequencies
of these two features in our healthy and MS subjects (Table 2).
The distribution of frequencies for these two features
amongst our subjects is presented in Supplementary Fig. 4.
These populations capture the majority of CD4+ lymphocytes
(Supplementary Fig. 2A). Given the screen’s results, we
re-acquired the frequency data for the different cell popula-
tions defined using anti-CD3, -CD4, and -CD8 antibodies
and confirm that, aside from the CD8low cell population, only
the CD4+ cell population displayed a modest difference in
frequency when healthy subjects are compared to untreated
RRMS subjects (Supplementary Fig. 5).

Replication of the CD8low cell
population finding
Since the CD8lowCD4� cell population was identified as
being reduced in frequency in untreated subjects with

RRMS by multiple independent measurements, we analysed
the same feature in data generated from an independent
study, the CLIMB. These data were collected from a set of
16 untreated RRMS and 18 healthy control subjects that
were not part of the MS Registry study, which generated
the data used in our screen. The CLIMB data were also
generated from blood samples ex vivo; the major distinction
between the two studies is that, in CLIMB, PBMCs are
extracted using a Ficoll gradient prior to staining. After
processing the CLIMB data using our cytometric data
gating protocol, we had four features that independently
measured the CD8lowCD4� population in different anti-
body pools. The mean of these four features is reported in
Table 3 and is consistent with the results of our extension
analysis of the MS Registry data: in both cases, the pro-
portion of CD8lowCD4� cells in the lymphocyte gate is
�5% in subjects with MS and �7.5% in healthy control
subjects (Tables 2 and 3). In this replication analysis using
CLIMB data, we therefore validate our observation that the
CD8low cell population is underrepresented in untreated
RRMS subjects when these are compared to healthy control
subjects (P= 0.0016).

The frequency of CD8low cells is also
reduced in CIS
The MS Registry also collected the frequency of the
CD8lowCD4� cell population in 38 subjects with CIS.
When these subjects that have experienced a single clinical
manifestation of inflammatory demyelination are compared
to our 32 healthy control subjects in a secondary analysis,
we observe a reduced frequency of CD8lowCD4� cells
amongst the CIS subjects (P= 0.0006)(Fig. 2B). The mean
frequency of this cell population is 5.6% in CIS subjects
and 8.1% in healthy control subjects. The frequency of the
CD8lowCD4� cell population in CIS subjects is similar to
that seen in the MS subjects (P= 0.79) (Table 2). Therefore,
CIS and RRMS subjects share at least one disturbance
in cell population frequency, suggesting the existence of a
shared pathophysiological process between these isolated
and remitting–relapsing inflammatory processes.

Population structure in subjects with
untreated RRMS or CIS
Clinical and pathological observations have long suggested
the existence of subsets of MS subjects that have distinct

Table 3 Independent replication of the CD8low association
to MS in CLIMB subjects

CLIMB study data

Cell subset Wilcox
exact
P-value

Healthy
mean

Untreated
RRMS
mean

Gate 1/CD8lowCD4neg 0.0016 7.50 5.10
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disease courses and manifestations (Lucchinetti et al. 2001;
Hauser and Oksenberg, 2006); however, clinical data alone
have had limited success in identifying these subsets,
especially early in the course of the disease. In an effort
to discover such subject subsets, we explored the immuno-
logical architecture of our population of untreated subjects
with RRMS. Using our MS Registry data set, we addressed
this question empirically using a consensus clustering
approach to estimate the number of subject clusters that
comprise our sample of untreated RRMS subjects. This
analysis returns three subject clusters as being the number
that best fits the data set containing all 38 MS subjects with
a complete immunological profile (screening and extension
phase samples) (Fig. 3A and B); we obtain the same result
when a non-redundant set of features (n= 795 out of the
1018 features of the complete profile) is used (Supplemen-
tary Fig. 6). The heatmap presented in Fig. 4 highlights the
differences in expression that discriminate these three
groups from each other. The features that best define
each subset of subjects are listed in Supplementary Table 3.
When the healthy control subjects are clustered into three
subsets using the same methodology, a different set of
distinguishing features is selected (data not shown).

In looking at these lists of features, one must be careful
in ascribing too much weight to the importance of

individual features selected in this analysis since our subject
sample remains relatively modest. With this caveat in mind,
we see that the MS1 subset is the one that is distinguished
by the frequency of CD8low and CD8 cell populations, while
the other two classes of subjects appear to be defined by
changes in the frequency of cells within our third gate
(large, very granular cells) (MS2 subset) or in the frequency
of CD14+ cell populations (MS3 subset) (Supplementary
Table 3).

Examination of clinical data related to these subjects
with MS is limited by our small sample size and revealed
no clinical phenotype that is significantly correlated to one
of the three subsets of subjects with untreated RRMS
(Supplementary Table 4). The only suggestive result is the
lower mean disease duration of subjects in the MS1 subset
(P= 0.016). All samples were collected after a routine
clinical visit, which occurs every 6 months for most patients
at the Partners MS Center. None of these untreated RRMS
subjects reported new symptoms or displayed clinical evi-
dence of disease activity at these visits, and thus clinically
evident bouts of CNS inflammation do not contribute to
the population structure observed in our sample of subjects.

CIS subjects share at least one altered immunological
feature, the proportion of cells that are CD8low, with RRMS
subjects (Fig. 2B). However, a feature by feature analysis
may often miss a broader pattern of modest differences,
and so, to explore the relationship of CIS and RRMS
immunological profiles more formally, we repeated the
consensus clustering process described above on a pooled
sample set containing all CIS and MS cases. This analysis
finds that the 11 subjects with CIS that have a complete
immunophenotypic profile are distributed proportionally
among the three RRMS subgroups (Fig. 3C), suggesting
that the population structure of subjects with RRMS reflects
differences in immunological profiles that are present at
the earliest stages of inflammatory demyelination, in cases
of CIS.

Predicting a diagnosis of MS
While our primary analysis has found frequency features
that are different between healthy and untreated RRMS
subjects, these differences are not sufficient, on an individual
feature basis, to distinguish these two subject categories.
As seen with the CD8lowCD4� feature in Fig. 2B, the range
of frequencies observed in healthy and untreated RRMS
subjects overlap considerably. However, many modest differ-
ences can be powerful in discriminating subjects of two
distinct classes, and we therefore implemented a tailored
version of a cross-validation SVM to predict healthy control
subjects from untreated RRMS subjects. We could not
effectively segregate healthy control subjects from the RRMS
subjects if the latter are pooled together into one phenotypic
class (data not shown). However, once we acknowledge
the MS population structure, the results of our prediction
improved. In our small data set, the MS2 subgroup was most

Fig. 4 A heatmap highlights the difference in expression patterns
between the three subsets of subjects with RRMS. In this heatmap,
each column is an individual subject, with subjects grouped
together based on the MS subset (MS1^3) to which they have been
assigned by consensus clustering. Each row is a single feature.
For each MS subset, the 20 features that are most differentiated
in that subset were selected for inclusion in this heatmap.
The exact nature of each feature is listed in SupplementaryTable 3.
Each cell is coloured along a gradient with red denoting high
relative expression and blue low expression.
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clearly distinguished from the pooled control samples
(100% specificity, 94% sensitivity), and the MS1 and MS3
subgroups also displayed improved but still only modestly
successful predictions over the pooled sample of subjects
with MS (Supplementary Table 5). Thus, the panel of
markers used in our analysis is not optimal for use in a
diagnostic tool, but it does highlight the need to address MS
population structure when designing future experiments
with different panels of markers.

Discussion
We have applied rigorous statistical methods to unbiased
analyses of cytometric data from healthy subjects and
subjects with inflammatory demyelinating diseases; these
analyses implicate one cell population in this family of
diseases and uncover the architecture of our population of
untreated subjects with RRMS or CIS. Specifically, we have
validated the role of the CD8low cell population that is
reduced to the same extent in CIS and RRMS subjects when
they are compared to healthy control subjects. We also
present evidence suggesting that these two categories of
demyelinating disease share a similar population structure:
both CIS and RRMS subjects appear to be distributed
amongst three distinct clusters of subjects defined by
different immunological profiles.

The reduced proportion of CD8low cells in subjects with
MS was discovered by multiple independent assessments in
our initial screen of whole blood stained for cytometric
analysis. This finding was then confirmed by both (i) an
extension of the original analysis and (ii) replication in an
independent set of data generated from subjects in CLIMB.
Furthermore, the same observation is made when healthy
control subjects are compared to subjects with CIS. Thus,
this decrease in CD8low cells is an early event in demy-
elinating diseases and is not an artefact of the way cells
were stained in the MS Registry project. The observed
difference, while statistically robust, is modest and is not
sufficient to serve as a biomarker by itself (Fig. 2B). None-
theless, because it can be effectively captured using two
common antibodies (anti-CD4 and anti-CD8) that are used
routinely in clinical laboratories, it could become a rela-
tively simple and valuable component of diagnostic algo-
rithm containing other clinical and radiological information
for use by neurologists. In the future, as part of a broader
diagnostic algorithm, this biomarker may be particularly
useful to study individuals ‘at risk’ of developing MS
(such as first degree relatives), if a reduction in this cell
population predates the onset of the disease process.

The primary goal of the MS Registry, biomarker dis-
covery, was therefore successfully accomplished; a measure-
ment of the frequency of the CD8lowCD4� cell population
in peripheral blood shows promise in possible future
clinical application. However, this result is also important
in what it reveals about the immunology of demyelinating
diseases: it targets the CD8lowCD4� cell population for

future exploration. In particular, it is intriguing that the
same CD8lowCD4� cell population was found to be
increased in frequency after treatment with daclizumab
(anti-IL2Ra) in a recent Phase 2 trial (Bielekova et al.,
2006). In this daclizumab trial, the expansion of the CD8low

cell population after treatment correlated with decreased
brain inflammation and decreased survival of activated
T cells. Thus, correction of the deficit in CD8low cells that
we find to be robustly associated with untreated RRMS
and CIS subjects may be an important and early target for
treatment in demyelinating diseases.

In our secondary analysis, we demonstrate that it is the
CD56+CD3� subset of CD8lowCD4� cells that appears to
drive the observation of reduced frequency in this popu-
lation; in the daclizumab trial, it is also this CD8low

CD56+CD4�CD3� subset of cells that appears to increase
in frequency in response to treatment. This combination of
markers suggests that these are NK cells that may have
regulatory properties (Freud and Caligiuri, 2006). Further
investigation will now be targeted at better characterizing the
phenotype and function of these CD8lowCD4� cells to see
which subset of NK cells may be implicated and how
dysfunctional they may be in subjects with a demyelinating
disease. Using different marker combinations, many investi-
gators have assessed the role of NK cells in MS, and, while
some early studies were negative, the propensity of the
evidence available to date suggests that NK cell frequency is
reduced in MS and that they may be dysfunctional (Segal,
2007). Comparisons of our data with these other studies are
challenging at this point given the limited NK markers that
we had in our panel and the heterogeneity of NK cell
populations. Nonetheless, a CD56bright NK cell population
has also been reported to be elevated in frequency during the
last trimester of pregnancy, a time of reduced MS relapses, in
women with MS (Airas et al., 2008). Similarly, an increased
proportion of circulating CD56bright NK cells has been noted
in subjects with RRMS following treatment initiation with
IFN-b (Saraste et al., 2007). Finally, in vitro data suggest that
CD56+ NK cells may help to regulate the activation of MBP-
reactive T cells from subjects with (Takahashi et al., 2004).
These small studies reinforce the suggestion that the
frequency of CD56+ NK cells may have a role in MS.
Thus, our novel description of a robust association between
reduced CD8lowCD4� cell population frequency and a
diagnosis of RRMS or CIS may be mediated at least in
part by a deficit in CD56+ NK suppressive function that
increases the likelihood of an autoimmune reaction.

Looking beyond the CD8low cell population, similarities
between CIS and RRMS may extend to broader phenotypic
profiles defined by our cytometric data; the underlying
population structure identified by our consensus clustering
method may be similar among CIS and RRMS subjects.
The three subsets of subjects observed in both sets of
samples suggest that population structure in inflamma-
tory demyelinating diseases may be related to very
early events in the pathophysiology of central nervous
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system inflammation: different triggers and/or immune
dysfunction that occur early may eventually produce similar
clinical manifestations that we define as RRMS. Since none
of the included subjects displayed clinical manifestations of
CIS or RRMS at the time of sampling, the subsets of
subjects described here do not appear to be related to
clinically evident episodes of inflammation.

The consensus clustering analysis that we present here
suggests that collecting large immunological profiles may be
one method with which to classify subjects with demyelin-
ating diseases. However, independent replication of this
observation is needed; further experimental work in larger
sets of samples is required both to validate this approach
and to select the optimal array of markers to be included in
the profile. Our sample size, while substantial for this form
of data, remains relatively small to powerfully explore the
question of which cell populations are critical in defining
each MS subset. In particular, technology and costs limit
the number or different markers and marker combinations
that we can assess: only 50 different antigens were assessed
in 55 combinations of four antibodies in this project. Thus,
while we have uncovered evidence of population structure
in MS, we have not defined the key markers of each subset.
In addition, our best estimate, based on our data, is that
three major subsets of subjects exist in our data set, but
much larger data sets will be more accurate in estimating
the full distribution of subject subsets and in perhaps
revealing rarer subsets. Such large studies would also refine
the analysis of clinical variables that may be associated with
different subsets of subjects. In general, immunological
profiling appears to be one platform that will contribute
significantly to the process of biomarker development, a
process that must eventually integrate other forms of data
such as imaging and genetic data in the development of
effective diagnostic and prognostic models for MS and CIS.

In summary, our analyses direct us in three different
directions: (i) to the exploration the use of the CD8low cell
population in diagnostic and prognostic algorithms, (ii) to
more detailed phenotypic categorization of CD8low cells in
CIS and RRMS and (iii) to the validation and refined
characterization of population structure in subjects with
demyelinating diseases. Our data suggest that the next
phase of studies must be much larger to powerfully assess
this population structure, must target subjects early in their
disease when they may have a clearer immunological
profile, and must also contain new markers and new com-
binations of markers so that we may refine the cytometric
signature of each subject subset.
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