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Cytoscape is an open source software project for integrating biomolecular interaction networks with
high-throughput expression data and other molecular states into a unified conceptual framework. Although
applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in
conjunction with large databases of protein–protein, protein–DNA, and genetic interactions that are increasingly
available for humans and model organisms. Cytoscape’s software Core provides basic functionality to layout and
query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular
states; and to link the network to databases of functional annotations. The Core is extensible through a
straightforward plug-in architecture, allowing rapid development of additional computational analyses and features.
Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with
changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of
a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic
gene regulatory models.

[The Cytoscape v1.1 Core runs on all major operating systems and is freely available for download from
http://www.cytoscape.org/ as an open source Java application.]

Computer-aided models of biological networks are a cornerstone
of systems biology. A variety of modeling environments have
been developed to simulate biochemical reactions and gene tran-
scription kinetics (Endy and Brent 2001), cellular physiology
(Loew and Schaff 2001), and metabolic control (Mendes 1997).
Such models promise to transform biological research by provid-
ing a framework to (1) systematically interrogate and experimen-
tally verify knowledge of a pathway; (2) manage the immense
complexity of hundreds or potentially thousands of cellular com-
ponents and interactions; and (3) reveal emergent properties and
unanticipated consequences of different pathway configurations.

Typically, models are directed toward a cellular process or
disease pathway of interest (Gilman and Arkin 2002) and are
built by formulating existing literature as a system of differential
and/or stochastic equations. However, pathway-specific models
are now being supplemented with global data gathered for an
entire cell or organism, by use of two complementary ap-
proaches. First, recent technological developments have made it
feasible to measure pathway structure systematically, using high-
throughput screens for protein–protein (Ito et al. 2001; von Me-
ring et al. 2002), protein–DNA (Lee et al. 2002), and genetic in-
teractions (Tong et al. 2001). To complement these data, a second
set of high-throughput methods are available to characterize the
molecular and cellular states induced by pathway interactions
under different experimental conditions. For instance, global
changes in gene expression are measured with DNA microarrays
(DeRisi et al. 1997), whereas changes in protein abundance (Gygi
et al. 1999), protein phosphorylation state (Zhou et al. 2001), and

metabolite concentrations (Griffin et al. 2001) may be quantified
with mass spectrometry, NMR, and other advanced techniques.
High-throughput data pertaining to molecular interactions and
states are well matched, in that both data types are global (pro-
viding information for all components or interactions in an or-
ganism); high-level (outlining relationships among pathway
components without detailed information on reaction rates,
binding constants, or diffusion coefficients); and coarse-grained
(yielding qualitative data, such as the presence or absence of an
interaction or the direction of an expression change, more
readily than precise quantitative readouts).

Motivated by the explosion in experimental technologies
for characterizing molecular interactions and states, researchers
have turned to a variety of software tools to process and analyze
the resulting large-scale data. For molecular interactions, general-
purpose graph viewers such as Pajek (Batagelj and Mrvar 1998),
Graphlet (www.infosun.fmi.uni-passau.de/Graphlet/), and da-
Vinci (www.informatik.uni-bremen.de/daVinci/) are available to
organize and display the data as a two-dimensional network; spe-
cialized tools such as Osprey (http://biodata.mshri.on.ca) and
PIMrider (pim.hybrigenics.com) provide these capabilities and
also link the network to molecular interaction and functional
databases such as BIND (Bader et al. 2001), DIP (Xenarios and
Eisenberg 2001), or TRANSFAC (Wingender et al. 2001). Simi-
larly, for gene expression profiles and other molecular states, nu-
merous programs such as GeneCluster (Tamayo et al. 1999), Tree-
View (Eisen et al. 1998), and GeneSpring (www.silicongenetics.
com) are available for clustering, classification, and visualization.
However, a pressing need remains for software that is able to
integrate both molecular interactions and state measurements
together in a common framework, and to then bridge these data
with a wide assortment of model parameters and other biological
attributes. Moreover, a flexible and open system will be required
to facilitate general and extensible computations on the interac-
tion network (Karp 2001). It is through these compu-
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tations that high-level interaction data may ultimately interface
with, and drive development of, low-level physico-chemical
models.

To address these needs, we have developed Cytoscape, a
general-purpose modeling environment for integrating biomo-
lecular interaction networks and states. We first provide an over-
view of Cytoscape’s core functionality for representation and in-
tegration of biomolecular network models. We then describe
three case studies of existing research projects in which the Cy-
toscape platform is applied to concrete biological problems or
extended to implement new algorithms and network computa-
tions.

METHODS AND RESULTS

Cytoscape Core Functionality and Architecture
The central organizing metaphor of Cytoscape is a network
graph, with molecular species represented as nodes and intermo-
lecular interactions represented as links, that is, edges, between
nodes. Cytoscape’s Core software component provides basic
functionality for integrating arbitrary data on the graph, a visual

representation of the graph and integrated data, selection and
filtering tools, and an interface to external methods imple-
mented as plug-ins. Figure 1 illustrates key features through
screenshots, whereas Figure 2 provides a schematic of their in-
terrelationships.

Data Integration
Data are integrated with the graph model using Attributes. These
are (name, value) pairs that map node or edge names to specific
data values. For example, the node named “GAL4” may have an
attribute named “expression ratio” whose value is 3.41. Attribute
values may assume any type (e.g., text strings, discrete or con-
tinuous numbers, URLs, or lists) and are either loaded from a data
repository or generated dynamically within a session. Graphical
browsers allow the user to examine all attributes on the currently
selected nodes and edges (Fig. 1c).

Transfer of Annotations
Whereas an attribute is a single predicate of a node or edge, an
Annotation represents a hierarchical classification (i.e., an ontol-

Figure 1 Tour of Cytoscape core functionality. (a) Available network layout algorithms are accessed via the menu system; an example hierarchical
layout is shown. (b) The data attribute-to-visual mapping control is used to integrate a variety of heterogenous data types on the network. Here, gene
expression data are mapped to node color for the condition named “gal80R,” in which color is interpolated between green (negative values) and red
(positive values) through gray as the midpoint. Node colors in a are derived using this mapping. (c) Attributes are displayed for selected nodes and edges
in a browser window. As shown, multiple attributes and genes may be displayed in a custom tabular format. (d) Annotations are transferred to node
and edge attributes by choosing the desired ontology and hierarchical level from a list of those available.
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ogy, formally, a directed acyclic graph) of progressively more
specific descriptions of groups of nodes or edges. Annotations
typically correspond to an existing repository of knowledge that
is large, complex, and relatively static, such as the Gene Ontol-
ogy database (GO Consortium 2001). For example, the term
“hexose metabolism,” defined at level 6 of the GO Biological
Process Ontology, spans several more specific processes at level 7,
such as galactose metabolism and glucose metabolism. Cytos-
cape integrates annotations with other network data types by
transferring the desired levels of annotation onto node or edge
attributes. Using the Annotation controller (Fig. 1d), it is possible
to have many levels of annotation all active and on display at the

same time, each as a different attribute on the nodes or edges of
interest.

Graph Layout
One of the most fundamental tools for interpreting molecular
interaction data is visualization of nodes and edges as a two-
dimensional network (Tollis et al. 1999). Cytoscape supports a
variety of automated network layout algorithms, including
spring-embedded layout, hierarchical layout, and circular layout.
Among these, the spring embedder is the most widely used method
for arranging general two-dimensional graphs (Eades 1984). It
models a mechanical system in which edges of the graph corre-
spond to springs, creating an attractive force between nodes that
are far apart, and a repulsive force between nodes that are close
together. Network layout for Figure 1a was performed using a
hierarchical layout algorithm, and for Figures 3 and 4 using a
spring embedder.

Attribute-to-Visual Mapping
Whereas layout determines the location of the nodes and edges
in the window, an attribute-to-visual mapping allows data at-
tributes to control the appearance of their associated nodes and
edges. Cytoscape supports a wide variety of visual properties,
such as node color, shape, and size; node border color and thick-
ness; and edge color, thickness, and style; a data attribute is
mapped to a visual property using either a lookup table or inter-
polation, depending on whether the attribute is discrete valued
or continuous. Figure 1b shows an example in which expression
ratio attributes are mapped to node colors. By visually superim-
posing molecular states on the interaction pathways hypoth-
esized to regulate those states, attribute-to-visual mappings di-
rectly connect observed data to an underlying model.

Graph Selection and Filtering
To reduce the complexity of a large molecular interaction net-
work, it is necessary to selectively display subsets of nodes and

Figure 2 Schematic overview of the Cytoscape Core architecture. The
Cytoscape window is the primary visual and programmatic interface to
Cytoscape and contains the network graph and attribute data structures.
Core methods that operate on these structures are graph editing, graph
layout, attribute-to-visual mapping, and graph filtering. Annotations are
available through a separate server.

Figure 3 Screening DNA-damage phenotypes against a scaffold of molecular interactions. A large molecular interaction network was integrated with
1615 yeast deletion phenotypes gathered systematically in response to MMS exposure. (a) Cytoscape’s filter toolbox was first used to show only those
proteins required for viable growth in MMS (i.e., MMS-essential proteins) and their immediate network neighbors. (b) The filtered network was then
searched using the ActiveModules plug-in to identify interaction complexes containing significant numbers of MMS-essential proteins. One such region
is shown, along with its corresponding p-value. Dark gray nodes represent MMS-essential proteins.
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edges. Nodes and edges may be selected according to a wide
variety of criteria, including selection by name, by a list of names,
or on the basis of an attribute. More complex network selection
queries are supported by a filtering toolbox that includes a Mini-
mum Neighbors filter, which selects nodes having a minimum
number of neighbors within a specified distance in the network;
a Local Distance filter, which selects nodes within a specified
distance of a group of preselected nodes; a Differential Expression
filter, which selects nodes according to their associated expres-
sion data; and a Combination filter, which selects nodes by ar-
bitrary and/or combinations of other filters.

The Cytoscape Core is written in Java and has been released
under an LGPL Open Source license; graph structures and some
layout algorithms (hierarchical and circular) are implemented
using the yFiles Graph Library (www.yworks.de).

Customizing Cytoscape Through Plug-ins
Plug-in modules provide a powerful means of extending the Core
to implement new algorithms, additional network analyses, and/
or biological semantics.6 Plug-ins are given access to the Core
network model and can also control the network display. Al-
though the Cytoscape Core is Open Source, plug-ins are sepa-
rable software that may be protected under any license the plug-
in authors desire.

To illustrate the power of this architecture to address differ-
ent biological problems within the Cytoscape environment, we
explore three case studies of existing plug-ins: a plug-in that ex-
amines the overlap between node attribute values and the struc-
ture of molecular interaction network to identify significant in-
teraction pathways (Fig. 3, explored in Case Study 1); a plug-in
that organizes the network layout according to putative func-
tional attributes of genes (Fig. 4, explored in Case Study 2); and
a plug-in that uses the Systems Biology Markup Language (Hucka
et al. 2002) to enable lower-level stochastic simulation of net-
work models (Fig. 5, also explored in greater detail at http://
www.cytoscape.org/plugins/SBW/). The first plug-in has been in-
strumental in two previously published research projects (Begley
et al. 2002; Ideker et al. 2002), whereas the second and third
plug-ins are at earlier stages of research and development.

Case Study 1: Using the ActiveModules Plug-in to Map Cellular Pathways
Responding to Genetic Perturbations and Environmental Stimuli
Active modules are connected subnetworks within the molecular
interaction network whose genes show significant coordinated
changes in mRNA-expression (or other) state over particular ex-
perimental conditions. Determining active modules reduces net-
work complexity by pinpointing just those regions whose states
are perturbed by the conditions of interest, while removing false–
positive interactions and interactions not involved in the pertur-
bation response. The remaining subnetworks represent concrete
hypotheses as to the underlying signaling and regulatory mecha-
nisms in the cell. This approach has been implemented as the
ActiveModules plug-in to Cytoscape (implemented in C++ and

6Biological semantics vary widely within the biological community as well as
from project to project. If biological semantics were in the Cytoscape Core, we
would be faced with a difficult question; which semantics should we use?
Cytoscape avoids this problem by leaving it to plug-in writers to adopt seman-
tics adequate to the problem at hand. Of course, there is often substantial
biological significance associated with data in the Core. For example, the core
may represent a node (an abstract concept free of biological semantics) whose
label is GCN4 (a text string with significance to yeast biologists as an important
transcription factor) or we might use the Core to define node attributes en-
titled “expression ratio” or “cellular compartment.” In this way, great freedom
and flexibility—the ability to accommodate new biological problems—is
gained by not inscribing the notion of specific biological entities directly into
the semantics of Cytoscape’s Core.

Figure 4 Function-guided layout of the Halobacterium inferred protein
network facilitates simultaneous exploration of large discrete databases.
(a) The largest connected component of the Halobacterium network is
shown; red, green, and blue edges indicate phylogenetic interactions,
protein–protein interactions inferred from yeast, and domain-fusion
events, respectively (see text). Node colors indicate mRNA expression
changes in a phototrophy deficient strain relative to the parent, in which
red is induced and green is repressed. (b) Attribute-based layout was used
to organize the network according to major functional classes. The cluster
predominantly involved with amino-acid metabolism is selected for fur-
ther exploration (shaded nodes), with edges hidden for clarity. (c) A
highly connected subnetwork within the amino-acid metabolism cluster
reveals the effect of suppression of phototrophy on amino-acid metabo-
lism and highlights interactions with nucleotide metabolism and other
pathways.
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linked to Java through a JNI bridge) and is available at www.
cytoscape.org.

The approach is described in full in Ideker et al. (2002),
where it is applied to identify network modules associated
with gene expression changes in galactose-induced yeast cul-
tures. The ActiveModules plug-in has also been used to screen
for pathways and protein complexes important for cellular re-
covery to DNA damage—see Figure 3 and Begley et al. (2002)
for more details. Both applications demonstrate how Cyto-
scape’s integrated modeling environment may be used to map
transcriptional and signaling pathways in a systematic, top-down
fashion.

Case Study 2: Using an Attribute-Based Layout Algorithm to Construct
and Analyze a Combined Functional/Physical Network
for Halobacterium
Halobacterium NRC-1 is an extremely halophilic archaeon with a
fully sequenced genome. The hallmark of Halobacterium is its
ability to effectively switch from aerobic to anaerobic growth.
During the anaerobic period, it derives energy from two major
sources, phototrophy—that is, energy from light (Oesterhelt and

Stoeckenius 1973), and fermentation of arginine (Ruepp and
Soppa 1996).

To better define the systems-level relationships between
these important energy transduction pathways, Cytoscape was
used to construct a global Halobacterium protein interaction net-
work integrated with functional attributes and expression pro-
files (Fig. 4a; Baliga et al. 2002). Interactions in this network were
inferred from three sources:

1. Domain-fusion interactions. A domain-fusion interaction (En-
right et al. 1999) was inferred from the observation that the
orthologs of two separate proteins in Halobacterium were co-
valently fused as domains within a single protein in the ge-
nome of another species. Domain-fusion data spanning 44
genomes were obtained from the Predictome Web site (http://
predictome.bu.edu), resulting in 1460 interactions of this type
among 526 halobacterial proteins.

2. Phylogenetic interactions. Proteins with the same pattern of
presence/absence in the genomes of many sequenced organ-
isms often have similar functions (Pellegrini et al. 1999); this
phylogenetic interaction implies functional association but
not necessarily physical interaction. Phylogenetic interaction
data were also obtained from the Predictome Web site, con-

necting a total of 276 proteins with 486
interactions of this type.

3. Inferred protein–protein interactions. The
yeast two-hybrid protein–protein inter-
action network was mapped onto halo-
bacterial orthologs of yeast proteins as
defined by the COG database (Tatusov et
al. 2001) to infer 2169 putative protein–
protein interactions among 406 Halobac-
terium proteins.

In total, 929 of the 2413 proteins en-
coded in the Halobacterium genome could
be connected with 5022 interactions of
these three types. This global network was
then annotated with two sets of node at-
tributes, representing functional classifica-
tions and gene expression ratios. Functional
classification attributes were taken from the
Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (Kanehisa et al. 2002),
whereas mRNA expression ratios were
drawn from data measured in response to
knockout of the bat gene, a transcriptional
regulator of phototrophy (Baliga et al.
2002).

To better understand the relationship
between network interactions and protein
functions, we used an attribute-based lay-
out algorithm to visually organize proteins
in the network into tightly connected clus-
ters on the basis of their functional at-
tributes (Fig. 4b). This algorithm, originally
implemented as a plug-in7, invokes the ba-
sic spring-embedder algorithm (see Cytos-
cape Core Functionality and Architecture),
but uses additional attractive forces be-
tween nodes having the same value of a se-
lected attribute. The overall effect is to par-
tition the graph into high-level regions on
the basis of attribute value, then to group
nodes in each region on the basis of edge
connectivity. For example, the nodes la-

Figure 5 Cytoscape and the Systems Biology Workbench stochastically simulating gene regula-
tion. In collaboration with the ERATO Systems Biology Workbench (SBW) project (Hucka et al.
2002), we developed a plug-in that allows Cytoscape to read and simulate SBML-encoded bio-
chemical models. A Cytoscape network view of the SBML model is shown (left), accompanied by
a user interface to the simulator (top, right) and an x-y plot of stochastic simulation results (bottom,
right). In the x-y plot, the top curve shows the concentration of the N protein, which regulates
genes expressed early in � phage life cycle. Details are available at http://www.cytoscape.org/
plugins/SBW/.
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beled gatA and gatB2 (Fig. 4c) are associated with the attribute
“Translation,” and thus appear together as a module in the same
region of the network. Because attributes can represent a wide
variety of biological data, attribute-based layout also makes it
possible to visually organize the network according to subcellular
localization, gene expression ratio, or any other desired biologi-
cal attribute. By superimposing expression ratios on the network,
it becomes clear that the proteins associated with Amino Acid
Metabolism not only have the largest number of network inter-
connections, but are also the most differentially expressed in a
bat knockout.

Case Study 3: Stochastic Simulation of � Phage Life Cycle Using the
Systems Biology Workbench
In collaboration with members of the ERATO Systems Biology
Workbench (SBW) project, we implemented a plug-in that allows
Cytoscape users to read biochemical models encoded in the Sys-
tems Biology Markup Language (Hucka et al. 2002) and to run
simulations through SBW. This makes low-level biochemical
models and simulators accessible through Cytoscape. Figure 5
shows a model of gene regulation of � phage (Gibson and Bruck
2001) displayed in Cytoscape, with controls and results plotted
from the Gibson simulator. Details of the simulation are available
at http://www.cytoscape.org/plugins/SBW/.

DISCUSSION
Cytoscape is a general-purpose, open-source software environ-
ment for the large scale integration of molecular interaction net-
work data. Dynamic states on molecules and molecular interac-
tions are handled as attributes on nodes and edges, whereas static
hierarchical data, such as protein-functional ontologies, are sup-
ported by use of annotations. The Cytoscape Core handles basic
features such as network layout andmapping of data attributes to
visual display properties. Cytoscape plug-ins extend this core
functionality and may be released under separate license agree-
ments if desired. We have described several projects that Cyto-
scape has supported to-date:

● Use of the ActiveModules plug-in to identify pathways and
protein complexes activated by galactose gene knockouts and
by DNA damage

● Inference and attribute-based layout of a combined physical/
functional interaction network for Halobacterium

● Access to stochastic/kinetic simulation tools through SBML

An immediate future priority is to establish direct connec-
tions between Cytoscape and interaction databases such as DIP
(Xenarios and Eisenberg 2001), expression databases such as GEO
(www.ncbi.nlm.nih.gov/geo), and annotation ontologies such as
GO (GO Consortium 2001). Currently, these data must be exter-
nally parsed into annotations or attributes. One solution to this
problem is data federation, in which a relational database man-
agement system serves as middleware providing transparent ac-
cess to a number of heterogenous data sources.

A second, longer-term direction is to further explore mecha-
nisms for bridging high-level interaction networks with lower-
level, physico-chemical models of specific biological processes.
Whereas Cytoscape focuses on high-level representation of com-
ponents and interactions, low-level models are addressed by on-
going software development projects such as Ecell (Tomita et al.
1999), VirtualCell (Loew and Schaff 2001), Gepasi (Mendes

1997), and the Systems Biology Workbench (Hucka et al. 2002).
We have illustrated one strategy for transitioning from high-to
low-level models, in which a large molecular interaction network
is screened to identify subnetworks of interest using either gene
expression or genomic phenotyping (Case Study 1). These top-
down pathway mapping approaches greatly reduce the size and
scope of the modeling problem to a single subnetwork, providing
an entry point for lower-level modeling efforts. Subnetworks of
interest may then be developed into lower-level models, as
shown in Figure 5 for the Systems Biology Workbench.

Perhaps most importantly, Cytoscape’s future directions
will ultimately depend on the needs and efforts of an active re-
search community. Whereas Cytoscape will continue to be sup-
ported and developed by our own research groups, it will also be
driven by an active community of users and developers who
contribute functionality and expertise through plug-ins, core im-
provements, and parallel versions.
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