
SOFTWARE Open Access

Cytoscape Automation: empowering
workflow-based network analysis
David Otasek1, John H. Morris2, Jorge Bouças3, Alexander R. Pico4 and Barry Demchak1*

Abstract

Cytoscape is one of the most successful network biology analysis and visualization tools, but because of its interactive
nature, its role in creating reproducible, scalable, and novel workflows has been limited. We describe Cytoscape Automation
(CA), which marries Cytoscape to highly productive workflow systems, for example, Python/R in Jupyter/RStudio. We expose
over 270 Cytoscape core functions and 34 Cytoscape apps as REST-callable functions with standardized JSON interfaces
backed by Swagger documentation. Independent projects to create and publish Python/R native CA interface libraries have
reached an advanced stage, and a number of automation workflows are already published.

Keywords:Workflow, Reproducibility, Cytoscape, Interoperability, REST, Microservice, Service-oriented architecture

Introduction
As a platform for network biologic analysis, Cytoscape [1]

has proven to be enormously popular, with over 17,600

downloads worldwide each month, 5000 startups each

day, and over 1000 direct citations per year. Investigators

can interactively explore complex *omics datasets via

analysis and visualization functions provided by Cytoscape

and a large and vibrant community of app contributors.

However, interactive use has proven inadequate for

precisely reproducing or sharing complex analyses or for

scaling to high volume or production analysis. Moreover,

while Cytoscape apps provide highly performant and

relevant network biology functionality, the specialized pro-

gramming talent and relatively long development times

they require can make them uneconomical for delivering

complex and evolving workflows. Finally, as an interactive

tool, Cytoscape is not positioned to add value to emerging

workflows that integrate one or more external data acqui-

sition and analysis tools (e.g., Galaxy [2], Taverna [3], and

libraries provided in repositories such as PyPI [4] and

Bioconductor [5]).

As shown in Fig. 1, Cytoscape Automation [6] is a new

Cytoscape feature that addresses these issues by extend-

ing the existing CyREST [7, 8] app, which empowers

bioinformaticians to create reproducible workflows

expressed in robust and well-known programming lan-

guages (e.g., Python, R, Javascript) using familiar program-

ming environments (e.g., Jupyter and RStudio). Under

Cytoscape Automation, workflows can use CyREST to

issue commands to Cytoscape and automation-enabled

apps via the REST protocol, which encodes data as JSON

documents. Both REST and JSON are already in wide use

in client/server computing, are accessible from most

programming languages, are immediately understood by

most bioinformaticians, and are easy to learn given the

massive body of relevant training materials, examples, and

extant community.

This paper focuses on using Cytoscape Automation

from Python and R because they are widely used and

understood by bioinformaticists and because they already

have well-documented repositories of bioinformatic func-

tions that enable researchers to create reliable, flexible,

and performant bioinformatic workflows quickly and eas-

ily. Our py2cytoscape [9] (for Python) and RCy3 [10] (for

R) libraries provide easy access to Cytoscape and app

functionality and are available in these repositories, too.

Library download statistics reported by GitHub, PyPI, and

Bioconductor indicate that researcher interest in Cytos-

cape Automation is strong—500 downloads/month for

py2Cytoscape and 800 downloads/month for RCy3.

Critically, Cytoscape Automation creates new standards

that encourage Cytoscape core and app authors to expose

Cytoscape functvionality via REST-based API calls backed

by state-of-the-art documentation based on the widely used

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: bdemchak@ucsd.edu
1Department of Medicine, University of California, La Jolla, San Diego, CA
92093, USA
Full list of author information is available at the end of the article

Otasek et al. Genome Biology (2019) 20:185

https://doi.org/10.1186/s13059-019-1758-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1758-4&domain=pdf
http://orcid.org/0000-0001-7065-7786
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:bdemchak@ucsd.edu

Swagger [11] documentation framework. Swagger is

purpose-built to improve workflow author productivity in a

REST context by presenting complete CyREST endpoint

documentation, organizing endpoints by category, and

assisting in workflow prototyping via an easy click-to-run

web-based interface.

As a result, novel network biologic workflows can now be

quickly and cheaply delivered as integrations of Cytoscape

functions, complex custom analyses, and best-of-breed ex-

ternal tools and language-specific libraries.

In this paper, we explain the key features of Cytoscape

Automation, including how they work, how Cytoscape

app developers can make automation-enabled apps, and

how workflow authors can leverage Cytoscape Automa-

tion to create and evolve their workflows. As a reference

material, we provide the substantial Cytoscape Automatic

Wiki [12], which contains articles on context, implemen-

tation details, FAQs, best practices, and sample scripts

and apps to help workflow authors become quickly pro-

ductive and help Cytoscape app authors produce new

automation-capable apps or upgrade existing ones.

As an illustration aid, we use the running example of

Cytoscape Diffusion [13], which uses network propagation

to find new nodes (e.g., genes) that are most relevant to a

set of well-understood nodes. Diffusion is particularly apt

because it shows how to define real-world CyREST end-

points that are well documented, consume network and

customization parameters, and produce actionable results.

In this paper, the “Design” section describes the compo-

nents of Cytoscape Automation and explains their use. The

“Implementation” section outlines the details of CyREST

construction, and the “Results” section presents concrete ex-

amples of Cytoscape Automation benefits. The “Discussion”

section compares Cytoscape Automation to other biological

workflow environments. Finally, the “Future development”

section calls for additional contributions that can expand

Cytoscape Automation to improve workflow economics

even further.

Note that this paper describes CyREST v3.8, which is in-

cluded with Cytoscape v3.7.0 as a core app, meaning that it

is automatically synchronized with Cytoscape by the

Cytoscape developer team. Cytoscape Automation requires

CyREST v3.8, and we highly recommend that users running

Cytoscape versions earlier than v3.7.0 upgrade to v3.7.0. As

CyREST evolves, it will be disseminated in new Cytoscape

releases and via the Cytoscape App store. CyREST follows

semantic versioning guidelines [14], thereby guaranteeing

that updates will not break the workflows or automation-

enabled apps as it evolves. We highly recommend that

independent app developers conform their apps’ evolution

to semantic versioning principles, too.

Design
The leap from the original CyREST implementation to

address the broader scope of the Cytoscape Automation

initiative required new features and upgraded approaches

in a number of technical areas:

❶ New CyREST access to Cytoscape apps

❷ New CyREST access to Cytoscape Command script

operations

❸ Improved documentation infrastructure and content

standards

❹ New interactive CyREST call prototyping

❺ Consistent mechanisms for calling CyREST and

receiving return values

❻ Improved coverage of core Cytoscape functionality

Figure 2 shows the relationship between the Cytoscape

Desktop and Cytoscape Automation workflows. The

Fig. 1 Overview of the Cytoscape Automation ecosystem. Reproducible workflows (as Python/R/Javascript or Cytoscape Command scripts) and datasets
control Cytoscape through Cytoscape Automation. Results can be created either directly from Cytoscape or from Python/R/Javascript themselves

Otasek et al. Genome Biology (2019) 20:185 Page 2 of 15

Cytoscape Desktop includes both the Cytoscape core (in-

cluding CyCommands and CyREST) and apps sourced

from the Cytoscape App store. Automation workflows

execute outside of Cytoscape but use CyREST to leverage

Cytoscape features. Figure 2 is annotated to show the

components important in each facet of the Cytoscape

Automation design, which are described in this section.

Note that for a workflow to access Cytoscape function-

ality, Cytoscape must be running and accessible via HTTP

calls from the workflow execution environment.

Note that calling a CyREST endpoint requires the use

of REST interface functions found in most modern lan-

guages. While all CyREST endpoints are accessible in this

manner, we have created harmonization libraries for R

and Python (described in the “Implementation” section) to

enable quick and easy access to common Cytoscape Auto-

mation features. However, direct CyREST calls are re-

quired for all other endpoints, including those supplied by

Cytoscape apps—see the “Python and R Harmonization

Libraries” section for details.

New CyREST access to Cytoscape apps ❶

A large part of Cytoscape’s utility to researchers is provided

by apps—their inclusion in Cytoscape Automation, facili-

tated by CyREST, greatly expands the functionality that can

be leveraged via scripting workflows. Apps that support

automation (called Automation Apps) can expose function-

ality either via a Function or Command interface [15].

A Function interface enables a script to pass complex

parameters and receive return results of arbitrary length

and complexity. While Functions can be called from

scripting languages such as Python, R, and Javascript,

they cannot be called from the Cytoscape Command

Tool [16].

To create a Function in an existing app, the app author

must add a new function that defines a CyREST endpoint

using JAX-RS [17] annotations and which executes app-

related code—most likely code that implements existing

app functionality. The JAX-RS annotations define the end-

point name, the HTTP protocol [18], and the parameters

to be passed. For example:

This defines the diffuse_with_options endpoint that

accepts three parameters (networkSUID, networkView-

SUID, and diffusionParameters) and returns a CIRe-

sponse structure. The @PUT annotation defines the

HTTP method (as PUT), and the @Path annotation de-

fines the endpoint path (/diffusion/v1/{networkSUID}/

Fig. 2 Relationship between the Cytoscape Desktop (including CyREST, Cytoscape apps and Cytoscape core) and Cytoscape Automation
workflows. Dotted lines indicate command/data flows that pre-date Cytoscape Automation. Solid lines indicate flows created for Cytoscape

Automation. New components are in green

Otasek et al. Genome Biology (2019) 20:185 Page 3 of 15

views/{networkViewSUID}/diffuse_with_options), which

the client appends to CyREST’s base URL (http://local-

host:1234) when calling diffuse_with_options. The

@Produces and @Consumes annotations define the PUT

payload and response as JSON [19].

An actual CyREST URL that calls diffuse_with_options

might appear as http://localhost:1234/diffusion/v1/53/

views/744/diffuse_with_options and would include JSON

corresponding to the DiffusionParameters class as the

HTTP PUT payload. For diffuse_with_options, a sample

DiffusionParameters payload is:

As shown in Fig. 2, at runtime, CyREST’s JAX-RS con-

nector parses the URL to extract the networkSUID and

networkViewSUID values and parses the PUT payload

to create a DiffusionParameters instance. JAX-RS calls

the diffuse_with_options function with these values, which

performs a diffusion operation and returns a CIResponse

instance. Finally, JAX-RS encodes the CIResponse into

JSON and returns it to the caller.

The process for exposing app features as Commands

is different, as explained below.

New CyREST access to Cytoscape Command script

operations ❷

A Command interface enables a script to execute Cytos-

cape Commands analogous to commands executed

within a Unix or Windows terminal, and they offer simi-

lar argument structure and execution. Command execu-

tions can pass simple parameters and can return results

of predefined length.

Users can execute Commands as single lines (via

Cytoscape’s Command Tool [16]) or as scripts (either

via Cytoscape Tools → Execute Command File

menu or on the Cytoscape command line via the -S

parameter). Scripting languages such as Python, R,

and Javascript can execute them via CyREST using an

HTTP POST operation and passing Command pa-

rameters as a JSON object. The endpoint path begins

with /v1/commands and is followed by the Command

namespace and the command name. A fully formed

URL and POST payload for the diffuse_advanced

Command is:

http://localhost:1234/v1/commands/diffusion/diffuse_

advanced

As shown in Fig. 2, the Commands system leverages

the Cytoscape Tunable/Task system [20] (i.e., CyCom-

mands Manager and Cytoscape Core) originally defined

to collect execution parameters via a dialog box and

then execute a Java function. The function consumes the

parameters, performs the Command operation, and pos-

sibly returns a result as a fetchable task state.

To create a Command in an existing app, the app

author must first register the Command’s namespace

and name in a TaskFactory via the app’s CyActivator.

The name must be the name of a public function

within the app, and the app author must add @Tun-

able annotations to the function to define Command

parameters.

If an app already exposes a function as a Tunable/Task,

enabling the function to be called as a Command can be

as simple as registering the TaskFactory with a suitable

namespace and name. If an app does not use Tunable/

Tasks, it may be easier to expose app features as Functions

(as described above).

Note that in CyREST previous to Cytoscape v3.6,

Commands were available via an HTTP GET operation,

where parameters passed on the URL (e.g., ?time = 0.1)

and the result form and content was not JSON, and

they varied with the Command. The GET form has

been deprecated in favor of POST to allow more parame-

ters and to enable JSON-structured parameters and return

results.

Improved documentation infrastructure and content

standards ❸

In the process of implementing Python and R support li-

braries and providing support for researchers producing

scripting workflows, we found that the coverage and qual-

ity of CyREST’s Miredot-based [21] API documentation

was a major impediment to productivity. We replaced

Miredot with the popular Swagger [11] framework, which

organizes CyREST endpoints by category, provides for

more complete documentation, and presents an easy

click-to-run web interface. This allowed us to more rigor-

ously define and enforce the documentation standards

that define an endpoint contract, including the context,

purpose, caveats, parameters, and return results for each

endpoint. Swagger also facilitates the documentation of

structures (called models) pertinent to parameters and re-

turn results.

To access Swagger for Functions, use Cytoscape’s

Help → Automation → CyREST API menu. For Com-

mands, use Help → Automation → CyREST Com-

mand API.

For each Function and Command implemented in

Cytoscape Core, we audited the documentation to verify

that it contained meaningful and actionable content for

each Swagger section according to best practices.

Otasek et al. Genome Biology (2019) 20:185 Page 4 of 15

Similarly, Automation App authors wrote their Swagger

page documentation to the same standards.

For Functions, the CyREST Swagger Connector (see

Fig. 2) synthesizes an endpoint’s Swagger documentation

from text embedded in annotations attached to endpoint

code. For Functions, a basic contract is defined by the

@ApiOperation and @ApiParam annotations, which de-

scribe the endpoint generally and its parameters specifically.

For the diffuse_with_options Function, these annotations

might appear as follows:

In the @ApiOperation annotation, the value attribute

contains a short description; the notes attribute contains

the context, purpose, and caveats, and the response

attribute identifies the model (i.e., class) for the return

result. The @ApiParam annotation applies to each param-

eter, whether it is part of the URL (e.g., networkSUID and

networkViewSUID) or the PUT payload (e.g., diffusionPara-

meters). The value attribute describes the parameter, while

the required attribute indicates whether the parameter must

be present. Additional annotations describe possible results

and models.

Figure 3 shows a sample Swagger page corresponding

to the diffusion_with_options Function above.

For Commands, the CyREST Swagger and Commands

Connectors (see Fig. 2) synthesize a similar page from

OSGi properties and annotated fields within a TaskFac-

tory. Command-level descriptions, for example, are syn-

thesized from attributes supplied in the TaskFactory

properties when the task is created in CyActivator:

Parameter-level descriptions are synthesized using @Tun-

able annotations applied to variables within each TaskFactory:

New interactive CyREST call prototyping ❹

A significant cost in most workflow authoring processes is

experimentation with library functions to determine what

types of calls achieve workflow goals. The Swagger docu-

mentation system addresses this in an innovative way by

enabling a user to formulate and submit a CyREST end-

point call directly from the endpoint’s Swagger page.

Using the example in Fig. 3, once the user fills the end-

point’s parameter values, provided by the included Ex-

ample Value, clicking on the Try it out! button results in a

well-formed diffuse_with_options call to Cytoscape, which

performs a diffusion and returns a result (as shown in

Fig. 4). If the diffusion fails, an error result is returned. By

experimentation, and without any programming skills, a

user can quickly understand and productively use a CyR-

EST endpoint, which informs the correct composition of a

REST call using the workflow language’s REST interface.

Note that parameters for some endpoints are references

to Cytoscape objects represented by SUIDs (e.g., POST

/diffusion/v1/{networkSUID}/views/{networkViewSUID}/

diffuse_with_options). A user can discover Cytoscape

SUIDs by using Swagger to execute query endpoints

(e.g., GET /v1/networks/currentNetwork).

Consistent mechanisms for calling CyREST and receiving

return values ❺

To improve workflow author productivity, we created

conventions for the data returned by CyREST endpoints

and we revitalized the Python and R harmonization li-

braries (called py2cytoscape and RCy3).

But for minor exceptions, all CyREST endpoints now

return their results in a standard JSON data structure

called CIResponse [22], which has two main elements:

data and errors. If the endpoint is successful, the end-

point returns its result in data and leaves errors empty—

the exact result is endpoint-dependent and is described

in the endpoint’s Swagger page. For example:

Otasek et al. Genome Biology (2019) 20:185 Page 5 of 15

If the endpoint fails, it leaves data empty and returns

errors, where errors[0] describes the endpoint error, and

subsequent errors entries describe failures in any nested

services that caused the endpoint failure, similar to a

Java stack trace. For example:

The status contains an HTTP status describing the

error. Type contains a URN unique to the endpoint and

error (shortened here for readability, but actually containing

“urn:cytoscape:ci:diffusion-app:v1:diffuse_with_options:2”),

and the message describes the error in prose. If the

caller needs to take action for one type of error as

compared to another, it should compare the type value,

not the message content. The link value is returned but is

not used.

The separation of data and errors enables callers to

centralize their CyREST calling code, thereby easing

coding and maintenance burden on workflow and

harmonization library authors. A centralized CyREST

Fig. 3 Sample Swagger page for diffuse_with_options, including markups for key areas. The Try it out! button calls Cytoscape to execute this CyREST function

Otasek et al. Genome Biology (2019) 20:185 Page 6 of 15

caller should return the data value and throw an excep-

tion if an error is received.

Improved coverage of core Cytoscape functionality ❻

Under Cytoscape Automation, the exposure of Cytos-

cape’s API via CyREST expanded from 113 available op-

erations to 157. These new operations, as well as the

data they consume and produce, are consistent with pre-

vious implementations. This API consistency follows the

same Semantic Versioning [23] best practices laid out

for Cytoscape core development.

Implementation
The technical foundation of Cytoscape Automation is

CyREST, which was first implemented by [7]. While

Cytoscape Automation includes CyREST, it also

includes harmonization libraries that enable Python

and R workflows to easily make CyREST calls. In this

section, we describe the implementation of all of these

components. While Swagger is integral to Cytoscape

Automation, too, it is a separate (free) product maintained

separately.

Defining endpoints

Originally, CyREST used an embedded Grizzly HTTP

server [24] to publish Java resources annotated using the

Jersey JAX-RS library [25] as REST endpoints. CyREST

continues to support app Functions defined by JAX-RS-

based endpoint annotations, though the Grizzly server

and Jersey library were replaced by the OSGi JAX-RS

Connector library (see Fig. 2) combined with the Jetty

server contributed by Cytoscape’s Karaf [26] compo-

nent. This connector library listens for services regis-

tered within the OSGi environment (e.g., Cytoscape

Automation-enabled apps), recognizes any that have

been provided with JAX-RS annotations, and then

processes them the same way as CyREST’s internal

JAX-RS resources.

By definition, Cytoscape apps have the capability to

register services within Cytoscape’s OSGi environment.

As described in the “Design” section above, adding REST

endpoints is a matter of creating JAX-RS-annotated clas-

ses and methods and registering them as services. When

the app registers services with OSGi, the OSGi JAX-RS

Connector library recognizes the annotated endpoints

and adds them to its Cytoscape Automation repository

as Functions.

Cytoscape apps are also capable of registering

Cytoscape Commands. A Cytoscape Command is an

implementation of the Cytoscape TaskFactory inter-

face which is registered as a service with OSGi. Any

command added to Cytoscape’s CyCommand Man-

ager is available to the Commands Connector, which

consumes HTTP parameters, and passes them to the

CyCommand Manager to perform the Command

operation.

Fig. 4 Sample Swagger results from using the Try it out! button to execute a CyREST call. The page shows the CyREST call that incorporates user-

specified parameter values and the JSON-formatted call results

Otasek et al. Genome Biology (2019) 20:185 Page 7 of 15

Interfacing to Swagger

As described above, an app author should provide Swag-

ger annotations to define the Swagger documentation

for app Functions (as described in the “Design” section

above). The Swagger Connector (see Fig. 2) harvests

these annotations when the user requests via Cytoscape’s

Help → Automation → CyREST API menu and then

composes a Swagger-defined JSON object that repre-

sents both the endpoint category list and the end-

point documentation pages themselves. To display the

app’s functions in a Swagger page, Cytoscape launches

a browser to load the Swagger UI (hosted by Cytos-

cape itself as http://localhost:1234/v1/swaggerUI/swag-

ger-ui/index.html), providing the JSON object as a

parameter (as the http://localhost:1234/v1/swagger.

json URL).

A parallel mechanism offers Swagger documentation

for Commands, accessible via Cytoscape’s Help →

Automation → CyREST Command API menu. App

authors should provide OSGi properties and

TaskFactory-annotated fields to define the Swagger

documentation for app Commands. The CyCommands

Manager provides this documentation to the Com-

mands Connector, which translates that documenta-

tion to Swagger-defined JSON. To display the app’s

Commands in a Swagger page, Cytoscape launches a

browser to load the Swagger UI mentioned, this time

providing the command JSON as a parameter (as the

http://localhost:1234/v1/commands/swagger.json URL).

Note that Swagger document shows pages for all end-

points that were defined when the JSON object was re-

trieved by the Swagger UI. If the user installs or

uninstalls additional apps, the user can refresh the

browser window to re-fetch and view the corresponding

updated Swagger JSON object.

Note, too, that the Swagger JSON object is available to

any application that would like to enumerate the end-

points exposed by CyREST.

Upward compatibility with previous CyREST

While Cytoscape Automation incorporates CyREST end-

point conventions described above, endpoints supplied

by previous CyREST versions did not. Particularly,

they did not return results in the CIResponse structure

(described in the “Design” section).

The older CyREST Function endpoints returned a

variety of JSON. To provide better and more uniform

service, CyREST now offers the option of wrapping

these endpoints’ return values in a CIResponse struc-

ture if the caller sets the CIWrapping: true HTTP

header in the REST call. For example, the old-style

response for GET http://localhost:1234/v1/networks.

names is shown in green, and the CIResponse wrap-

per is shown in red:

Also, all Command endpoints previously used the

HTTP GET method, which relies on endpoint parameters

being supplied as part of the REST URL. (Current conven-

tions call for using the POST/PUT methods, which allow

parameters to be expressed as JSON and passed as the

HTTP payload.) The GET-based Command endpoints

returned unformatted plaintext and could not effectively

convey the details of any errors encountered.

CyREST continues to support the original GET

Command endpoints, and any data they return,

though the GET endpoints are deprecated. For every

Command, a POST method using JSON parameters

and JSON return (wrapped in a CIResponse object)

has been added. The default Command Swagger refer-

ences these POST methods exclusively to encourage

their use while CyREST still supports the deprecated

GET implementation.

Calling endpoints

Cytoscape Automation simplifies Python- and R-based

access to CyREST endpoints via harmonization librar-

ies separately created, documented, and maintained by

the Cytoscape community. The harmonization librar-

ies provide language-specific and language-appropriate

access to Cytoscape by wrapping one or more CyR-

EST endpoints. As we add more CyREST endpoints,

we believe the Cytoscape community will add func-

tionality to take advantage of them. (Until new func-

tionality is added to the libraries, direct CyREST calls

via language-specific REST libraries remain necessary,

as described below.)

The Python library (called py2cytoscape [27]) is avail-

able via PyPI. The lead developer is Jorge Boucas.

The R library (called RCy3 [28]) is available via

BioConductor. The lead developer is Alexander Pico.

CyREST endpoints not covered by harmonization li-

braries can be called directly using REST protocols

documented via Swagger. Endpoints contributed by

installable apps (e.g., aMatReader) can either be called

directly or, if implementing Commands (e.g., Diffusion),

by generalized functions included in the harmonization

libraries.

For example, a call to an aMatReader app function in

Python would be made directly using CyREST, while a

call to a Diffusion app function could be made either

directly or via py2cytoscape:

Otasek et al. Genome Biology (2019) 20:185 Page 8 of 15

A call to the same aMatReader app function in R would

be made directly using CyREST, while a call to a Diffusion

app function could be made either directly or via RCy3:

For apps that implement Commands, we provide a

standard way to call their functions without necessitating

the app-specific harmonization libraries, thus

diminishing the need for direct CyREST calls. We also

encourage app authors or community members to create

and disseminate customized or extended app-specific li-

braries as well.

Workflow examples

The Cytoscape community has created and published a

number of sample workflows [29] based on both the

Python and R harmonization libraries.

The following are the Python examples [30]:

Advanced cancer networks and data—retrieve dis-

ease networks from a public database and apply gene

expression and tumor mutation datasets for network

analysis and visualization. Network files and images

are generated in multiple formats for sharing and

publishing.

Network Assisted Genomic Analysis (NAGA)—re-

prioritizes significant single nucleotide polymorphisms

(SNPs) to genes using network diffusion methods includ-

ing random walk and heat diffusion.

Advanced View API—demonstrates how users can

manipulate Cytoscape network views directly from

Python code.

The following are the R/notebook examples [31]:

Cytoscape Automation with RCy3—three use cases are

demonstrated including querying existing interaction

databases with a set of genes to create a network, creat-

ing a correlation network using aMatReader, and a basic

enrichment analysis.

Cancer networks and data—retrieve disease net-

works from a public database and apply gene expres-

sion and tumor mutation datasets for network

analysis and visualization. Network files and images

are generated in multiple formats for sharing and

publishing.

AP-MS network analysis—describes how to use data

from an affinity purification-mass spectrometry experi-

ment to generate relevant interaction networks, enrich-

ing the networks with information from public

resources, analyzing the networks, and creating effective

visualizations.

The following are the examples from the 2017 CyREST

Challenge [32]:

Konig_SBML_Time_Course_Python—Python-based dy-

namic visualization of SBML kinetic models in

Cytoscape.

Grimes_CFN_CCCN_R—R-based visualization of a

cluster-filtered network (CFN) and a co-cluster correl-

ation network (CCCN).

Isserlin_PPI_network_pipeline_R—R-based visualization

of all interactions in a ligand-receptor network.

In the future, we hope to provide a standard way for

workflow authors to create and disseminate workflows

they create.

Otasek et al. Genome Biology (2019) 20:185 Page 9 of 15

Results
Cytoscape Automation was first released as part of

Cytoscape v3.6 on November 15, 2017, and has been

downloaded and installed over 300,000 times since then.

In that period, Cytoscape was started over 550,000 times.

Additionally, demand for our Cytoscape Automation

workshops has been brisk. To date, though, we have no

statistics on workflows created, workflows executed, or

CyREST endpoints called. We hope to collect these in

the future. However, since updating RCy3 to work with

CyREST and releasing as version 2.0 in April 2018, it

has risen to rank near the top 200 packages in Biocon-

ductor, averaging ~ 800 downloads per month (up from

~ 200). py2cytoscape sees about 500 downloads/month

from GitHub and the PyPI Python package index.

External workflows enabled

The Cytoscape community has used Cytoscape Automa-

tion to create Python and R workflows that successfully

load network data, profile it, perform complex layouts

and styles, then return renderings.

Figure 5a shows one result of the Python “advanced

cancer networks and data” workflow referenced above. It

loads ovarian cancer and breast cancer disease networks

by calling Cytoscape’s String app [33], determines a rele-

vant gene neighborhood by calling Cytoscape’s Diffusion

app [34], and ends up with a styled and laid out subnet-

work of critical breast cancer genes.

Figure 5b shows the result of the R “Isserlin_PPI_net-

work_pipeline_R” workflow referenced above. It is a

ligand-receptor network showing a number of interac-

tions. The workflow reads ligands and receptors from

Biomart by calling R libraries. Interactions are fetched

from iRefIndex, Biogrid, and Pathway Commons and

removes duplicate interactions. After expression analysis,

it constructs a representative JSON-encoded network,

sends it to Cytoscape, performs a different force-directed

layout on each cell type, and creates styles to differentiate

cell types, protein types, and significance.

The two workflows demonstrate that Cytoscape and its

apps can be integrated with Python and R best-of-breed li-

braries to create novel and repeatable results. Because

these workflows are defined by code, they can be audited

and evolved in an orderly and predictable manner. As-

suming consistent input data, correct and consistent re-

sults are attained on every run (though, not necessarily

identical results if non-deterministic algorithms such as

some layouts are in the workflow). Without Cytoscape

Automation, attaining these qualities would have required

a new Cytoscape app that would have required specialized

Java coding skills and several weeks to develop.

Both workflows show how multiple Cytoscape steps can

be staged in sequence to reproduce multiple repeatable re-

sults. Figure 5a is actually one of ten different images pro-

duced by the “advanced cancer networks and data”

workflow, which performs over 40 different Cytoscape op-

erations and a number of intermediate calculations. The

workflow executes in under 2 min on a common worksta-

tion. If performed by hand (as would be necessary without

Cytoscape Automation), the time required would have been

over 20 min, and given the complexity of assessing attribute

values and styling networks by hand, it is unlikely that even

a skilled Cytoscape operator could have produced all im-

ages consistently. This demonstrates how Cytoscape Auto-

mation enables workflows that are practically impossible

under human operation and does so in a timely manner.

Note that additional R-oriented vignettes are available

at the RCy3 Bioconductor site.

Note that these workflows use languages common in

data sciences, but a different class of workflows can be

Fig. 5 Results of Cytoscape Automation workflow execution in Python and R. a Uses multiple Cytoscape apps to load and analyze two data sets, then
combines them to show critical genes. b Uses multiple R libraries and analyses to create a network that is then laid out and styled in Cytoscape

Otasek et al. Genome Biology (2019) 20:185 Page 10 of 15

written in Javascript and deployed inside of web apps

running inside standard browsers. For example, the

NDEx website [35] uses direct Javascript-based calls to

CyREST endpoints in order to enable a user to down-

load a network from the NDEx database into a running

Cytoscape instance—the transfer is initiated when the

user clicks on a network page’s Cytoscape icon. From

there, a user can use Cytoscape to explore, analyze, and

visualize shared networks, thus sparing the NDEx authors

from having to duplicate Cytoscape features in the NDEx

website. In this mode, Cytoscape Automation achieves ap-

plication integration not previously economical.

Cytoscape Automation apps

In December 2017, we launched a campaign calling on

all Cytoscape app writers to upgrade their existing apps

to enable Automation calls, referring them to an exten-

sive Wiki and FAQ document written to inform and en-

able their work. To date, Automation features have been

added to 4 core apps (delivered with Cytoscape, listed in

underlined italics) and 34 App Store apps:

aMatReader cyChart eXamine RINalyzer

AutoAnnotate CyNDEx-2 GeneMANIA RINspector

BridgeDb Cyni Toolbox ID Mapper setsApp

cddApp Cyrface KEGGScape stringApp

chemViz2 CyTargetLinker MCODE structureViz2

ClueGO CytoCopteR Omics Visualizer Synapse Client

clusterMaker2 Diffusion PathLinker WikiPathways

copycatLayout DisGeNET-app PSFC WordCloud

CyAnimator enhancedGraphics ReactomeFIPlugIn yFiles

cyBrowser EnrichmentMap

While each app documents its endpoints via Swagger

pages, significant discussion and examples are presented

in separate publications in F1000 Research’s Cytoscape

Automation app collection [36].

Note that core apps follow semantic versioning

guidelines, thereby guaranteeing that updates will not

break workflows supported in previous versions. To the

extent that other apps follow these guidelines, they

commit to the same guarantee.

Discussion
Existing biological workflow systems (e.g., Galaxy, Taverna,

GenePattern [37], bioKepler [38], and implementations of

Common Workflow Language [39]) are capable of

executing workflows on networks, but they do not leverage

functionality available in Cytoscape and its apps. Their forte

is the execution of a wide range of biological analysis tools

and in a portable and scalable way across a variety of

software and hardware environments. In contrast,

Cytoscape Automation leverages a wide range of network-

specialized Cytoscape and app features using a single

Cytoscape instance running on a workstation, though a

wide range of biological analysis tools can also be executed.

Cytoscape Automation and workflow systems

In most workflow systems (including general programming

languages such as Python, R, and Javascript and biological

workflow engines such as Galaxy, Taverna, and CWL

engines), workflows are constructed by calling a utility or

library function, using its result in some calculation or

transformation (called interstitial code), passing the result

to a different utility or library function, and so on. Often,

the workflow itself maintains state as variables, and the

utilities and library functions are stateless—their output

depends solely on their inputs. Workflows based on

Cytoscape Automation are different because Cytoscape

maintains network state and Cytoscape Automation

functions create, query, or change networks—workflows

calling Cytoscape Automation functions have state shared

between the workflow and Cytoscape.

Cytoscape Automation functions support sequential

calls in a single thread of execution, emulating operations

performed by a human—the function does not return a

result to its caller until the function is finished. Additionally,

functions implemented entirely within the Cytoscape core

are guaranteed to execute without soliciting input from a

user, thereby enabling unsupervised execution. Functions

implemented in Cytoscape apps should provide this

guarantee, but that choice is left to the app author. (Note

that the workflow itself remains free to solicit user or other

external input as appropriate.)

While workflow systems are free to execute Cytoscape

Automation workflows comprised of multiple parallel

threads, Cytoscape Automation itself makes no guarantees

regarding the order of function execution or termination

and does not guarantee that function executions will not

conflict with each other. For example, executing a network

layout at the same time as updating network attributes may

produce an unpredictable layout. Similarly, simultaneous

calls to update network attributes may have unpredictable

(and harmful!) effects on the network attributes.

As a rule of thumb, workflows should themselves serialize

all operations performed on a single network. Simultaneous

execution involving different networks will produce

consistent and correct results without being serialized.

Functions implemented in Cytoscape apps should support

these rules, too, but doing so requires the author to have

written them to be re-entrant (e.g., independent of global

variables).

While Cytoscape Automation does not directly

support checkpointing or re-execution features found in

some workflow engines, it can assist a workflow author

in simulating these features. The state of all networks

Otasek et al. Genome Biology (2019) 20:185 Page 11 of 15

can be saved and restored to/from a local file (using the

POST and GET operations on the /v1/session endpoint)

or to/from an NDEx repository (using the POST and

GET /cyndex2/v1/networks endpoints). Note that restor-

ing a network changes all Cytoscape IDs associated with

collections, networks, views, nodes, edges, and every

other property, thereby invalidating any IDs maintained

as state by a workflow—a workflow author should take

care to refresh this state via appropriate Cytoscape

Automation queries after a restore operation.

Cytoscape Automation does not provide history,

provenance, and other metafunctions associated with

workflow execution. It relies on the workflow system to

provide these features.

The following example shows how a general purpose

language (e.g., Python) can be used to create a workflow

that shares state with Cytoscape and use interstitial code

to perform novel functions and create new Cytoscape

state. Cytoscape is called to create a network of ovarian

cancer genes from the STRING database, then interstitial

code fetches STRING’s gene annotations from Cytoscape

and creates a list of genes in the top 25th quantile of top

scoring diseases. Finally, Cytoscape is called again to

create a network using that gene list:

Systems that define a workflow as a pipeline of

functional blocks linked together by data flows (e.g.,

GenePattern [37], as shown in Fig. 6) are challenged to

maintain state or provide interstitial code such as the

top quartile calculation. To the extent such systems

enable the authorship of new functional blocks,

Cytoscape Automation workflows can be implemented

using a general purpose language and then incorporated

(and reused) as a functional block.

Note that GenePattern Notebook [40] is a new

Jupyter-based workflow system that can use general

programming languages to orchestrate existing ana-

lyses and use their results to create complex control

flows and data-dependent processing. GenePattern

Notebooks can use Cytoscape Automation (including

the py2cytoscape harmonization library) to create

Cytoscape workflows and integrate them with other

analytics.

Workflow publishing

Biological workflow systems vary in how they envision

their communities sharing workflows. GenePattern

Notebook provides a web-based repository that allows

users to check in a workflow and then share it with

others or the public. Such notebooks can be imported

directly within the GenePattern Notebook development

system. Taverna enables sharing through the myExperi-

ment [41] social network. Other systems advise that

workflows be stored and shared in a version control sys-

tem (VCS) such as GitHub.

Common practice in the Cytoscape Automation

community is to store workflows and artifacts in GitHub

and reference them from academic papers or include

them as supplementary material as appropriate. This is

particularly feasible because such workflows are

contained in easily readable text files for which GitHub

viewers (e.g., nbviewer) are available, GitHub enables

sharing and versioning of workflows, GitHub has

become a common tool in many biologists’ toolbelt, and

Fig. 6 A three-step GenePattern workflow shown by the GenePattern Pipeline Editor. The Illumina Expression File Creator step creates a GCT file
from a zip of Illumina IDAT files. The Preprocess Dataset step normalizes the GCT data, and the Hierarchical Clustering step performs clustering on

genes. The second step was created by GenePattern staff to avoid adding parameters to the first or third steps

Otasek et al. Genome Biology (2019) 20:185 Page 12 of 15

GitHub can be readily searched. The 2017 CyREST

Challenge produced several such examples.

A working example is a 2019 Bader Lab pathway

enrichment analysis paper [42] where R-based Cytoscape

Automation is delivered as supplementary material

(protocol 3), and the full workflow is delivered in the

GitHub repository named in its “Data availability” sec-

tion. Note, too, that the paper’s “Procedure” section re-

cites a long list of manual steps, much of which can be

replaced in a less ambiguous, more reproducible way by

automated workflows.

User experience

Cytoscape Automation functionality is delivered in all

Cytoscape downloads (over 17,600 per month), and in

the interests of privacy, usage of individual features is

not counted. Furthermore, given the typically long lag

between research and paper publishing, we are only

now starting to see published papers that leverage

automation. Instead, we infer user interest and feedback

through automation library downloads, tutorial attendance,

and online posts.

Since the original Cytoscape Automation tutorial at

the ISMB/Prague 2017, six more major multi-hour

public tutorials have been delivered by the National

Resource for Network Biology (nrnb.org). All tutorials

were well and enthusiastically attended, with an average

attendance of 40, and most of the class completed class

exercises without difficulty.

Since January 2018, the Cytoscape help desk has

tallied 68 threads relating to Cytoscape Automation, out

of 710 total threads (approximately 9.5% of total

worldwide support). In the same period, 76 issues were

posted on the project’s GitHub, and 49 were closed

(64%).

Note that the definition of the RCy3 harmonization

library for automation (~ 800 downloads per month) was

designed by a working group of 13 users and 5

Cytoscape core developers. The Cytoscape Automation

design was responsive to the RCy3 design, and two users

(e.g., Isserlin [42]) have since published research papers

in which Cytoscape Automation was part of their

methodology. They chose to implement Cytoscape

Automation workflows because they already knew the

workflow languages (Python and R) and were already

using them and associated libraries to implement parts

of their experiment protocol. Their workflows also

reproduced their Cytoscape-focused steps and auto-

mated numerous tedious and error-prone steps via both

Cytoscape Automation calls and interstitial code.

Finally, as further evidence of its usefulness in

reproducibility, Cytoscape Automation is currently used

to test automation-enabled apps (Diffusion [43] and

CyNDEx-2 [44]) as well as Cytoscape itself.

Future development
Cytoscape Automation features will continue towards

providing frictionless interaction between all

components of Cytoscape’s ecosystem of authors,

services, and applications, particularly in the following

areas:

Additional apps - Upgrade additional core and store apps to support
Automation calls

App Store
support

- Improve identification of Automation-supporting
apps

- Provide documentation of API calls in the app’s store
page

- Provide access to app-specific R and Python
harmonization libraries

Workflow
publishing

- Create a repository of workflows for use and
evolution

App testing
harness

- Create a workflow-based framework for testing Auto-
mation endpoints

While Cytoscape core developers will improve the

infrastructure components, most value will be contributed

by the Cytoscape community as it enables Automation in

more apps and creates workflows that leverage Automation.

Note that the execution of Cytoscape functionality (as

both core features and apps) without requiring user

intervention is a milestone in the path to our long-term

goal of creating the so-called headless Cytoscape, which

can execute as a stand-alone service independent of a

keyboard, mouse, or display.

Summary
In this paper, we showed how Cytoscape Automation

extends Cytoscape to enable reproducible, shareable,

and extensible network biology workflows that can be

economically built using common programming languages

(e.g., Python, R, and Javascript) in common environments

(e.g., Jupyter and RStudio).

The key to Cytoscape Automation is its improvements

to facilities already offered in CyREST. We created

standards that (1) enable Commands and Cytoscape

apps to be called through CyREST and (2) encourage

high-quality documentation of CyREST endpoints using

state-of-the-art documentation systems (such as Swag-

ger) and interactive call prototyping. As a result, there

are now 34 Cytoscape apps that can be called via CyR-

EST, and over 150 Cytoscape Functions and 120 Com-

mands have been documented.

Using the specific examples in this paper and on the

Cytoscape Wiki, an app author can add Cytoscape

Automation to an existing app, and a bioinformatician

can create novel network biologic workflows as

orchestrations of Cytoscape functions, complex custom

analyses, and best-of-breed external tools and language-

specific libraries.

Otasek et al. Genome Biology (2019) 20:185 Page 13 of 15

http://nrnb.org

We expect that Cytoscape Automation will enable the

exchange and rapid evolution of workflows that

integrate Cytoscape-based network analysis and

visualization. The services, software, and documentation

resources that comprise the Cytoscape Automation eco-

system will play an integral role in making these work-

flows scalable, replicable, and of high value.

Additional file

Additional file 1: Review history. (DOCX 13 kb)

Acknowledgements

Sample workflows were contributed by Ruth Isserlin, Mark Grimes, and
Matthias König, winners of the 2017 CyREST Competition. RCy3 was created
by Alexander Pico, Tanja Muetze, Georgi Kolishovski, and Paul Shannon.
Py2cytoscape was created by Keiichiro Ono and Jorge Bouças. The entire
Cytoscape core development team improved the Cytoscape Commands
documentation, and the greater Cytoscape app developer community
created the collection of Automation-enabled apps. The authors particularly
appreciate the reviewers’ thorough and insightful comments and sugges-
tions, all of which substantially improved this article.

Review history

The review history is available as Additional file 1.

Authors’ contributions

DO implemented the Cytoscape Automation (including CyREST and Wiki
material). SM implemented the Commands portions of Cytoscape. AP and JB
implemented the R and Python harmonization libraries. DO, AP, and BD
authored this paper. BD led and supervised the Cytoscape Automation
project. All authors have seen and agreed to the final content of the
manuscript.

Funding

This work was supported with funding from the National Resource for
Network Biology (NRNB) award number P41 GM103504 and National Human
Genome Research Institute (NHGRI) award number R01 HG009979, both
assigned to Trey Ideker.
We confirm that the funders had no role in the study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials

CyREST software is available as part of Cytoscape: https://cytoscape.org/
download.html [45]
Latest source code of cyREST: https://github.com/cytoscape/cyREST [46]
Fixed source code reference for CyREST (v3.8): https://doi.org/10.5281/
zenodo.2798856 [47]
The Cytoscape Automation examples: http://automation.cytoscape.org [12]
The Cytoscape Automation FAQ and Wiki: http://automation.cytoscape.org [12]
The Cytoscape Automation RCy3 harmonization library source: https://github.
com/cytoscape/RCy3 [48]
The Cytoscape Automation RCy3 official release: https://www.bioconductor.
org/packages/release/bioc/html/RCy3.html [10]
The Cytoscape Automation py2cytoscape harmonization library source:
https://github.com/cytoscape/py2cytoscape [9]
The Cytoscape Automation Python official release: https://pypi.org/project/
py2cytoscape [27]
License for cyREST, py2cytoscape, and all example workflows: MIT: http://
opensource.org/licenses/MIT [49]

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1Department of Medicine, University of California, La Jolla, San Diego, CA
92093, USA. 2University of California, San Francisco, San Francisco, CA 94143,
USA. 3Bioinformatics Core Facility, Max Planck Institute for Biology of Ageing,
Cologne, Germany. 4Gladstone Institutes, San Francisco, CA 94158, USA.

Received: 21 February 2019 Accepted: 9 July 2019

References

1. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.
Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res. 2003;13:2498–504.

2. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, et al.
The Galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2016 update. Nucleic Acids Res. 2016;44:W3–W10.

3. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al.
The Taverna workflow suite: designing and executing workflows of Web
Services on the desktop, web or in the cloud. Nucleic Acids Res. 2013;41:
W557–61.

4. PyPI – the Python Package Index. In: PyPI. Available: https://pypi.org/. [cited
10 May 2018]

5. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.
Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol. 2004;5:R80.

6. Cytoscape Automation Overview. Available: https://github.com/cytoscape/
cytoscape-automation. [cited 18 Apr 2018]

7. Ono K, Muetze T, Kolishovski G, Shannon P, Demchak B. CyREST:
turbocharging Cytoscape access for external tools via a RESTful API.
F1000Res. 2015;4:478.

8. Richardson L, Amundsen M, Ruby S. RESTful Web APIs: services for a
changing world. “O’Reilly Media, Inc.”; 2013.

9. Bouças J. py2cytoscape. In: Github. Available: https://github.com/cytoscape/
py2cytoscape. [cited 10 May 2018]

10. Pico A, Muetze T, Shannon P, Isserlin R, Pai S, Gustavson J, et al.
RCy3. In: Bioconductor. Available: https://bioconductor.org/packages/
release/bioc/html/RCy3.html. [cited 10 May 2018].

11. World’s Most Popular API Framework | Swagger. In: World’s Most
Popular API Framework | Swagger. Available: https://swagger.io/.
[cited 10 May 2018]

12. Pico A, Hanspers K, Isserlin R, Otasek D, Demchak B. Cytoscape
Automation. In: GitHub. Available: http://automation.cytoscape.org.
[cited 16 May 2019]

13. Carlin DE, Demchak B, Pratt D, Sage E, Ideker T. Network propagation
in the cytoscape cyberinfrastructure. PLoS Comput Biol. 2017;13:
e1005598.

14. Preston-Werner T. Semantic Versioning 2.0.0. In: Semantic Versioning.
Available: https://semver.org/. [cited 18 Apr 2018]

15. Cytoscape Automation FAQ - What is the difference between
Commands and Functions? In: Google Docs. Available: https://docs.
google.com/document/d/1QTrT-9ylhI4OX5DkauMo2ujLIqeg3
WDUDwl77KLtfVY/edit#bookmark=id.2sda98tk63j8. [cited 18 Apr 2018]

16. Command Tool — Cytoscape user manual 3.6.0 documentation.
Available: http://manual.cytoscape.org/en/3.6.0/Command_Tool.html.
[cited 18 Apr 2018]

17. JSR 370: JavaTM API for RESTful Web Services (JAX-RS 2.1) Specification.
Available: https://www.jcp.org/en/jsr/detail?id=370. [cited 18 Jul 2019]

18. Gourley D, Totty B, Sayer M, Aggarwal A, Reddy S. HTTP: the
definitive guide. Sebastopol: “O’Reilly Media, Inc.”; 2002.

19. Bassett L. Introduction to JavaScript object notation: a to-the-point guide to
JSON. Sebastopol: “O’Reilly Media, Inc.”; 2015.

20. Morris J. Cytoscape 3.3 Developers Tutorial. In: Cytoscape 3.3
developers tutorial; 2015. Available: http://www.cgl.ucsf.edu/home/
scooter/Cytoscape3DevTut/slides.pdf. [cited 10 May 2018].

21. Miredot | REST API Documentation Generator for Java. In: Miredot |
REST API Documentation Generator for Java. Available: http://www.
miredot.com/. [cited 10 May 2018]

Otasek et al. Genome Biology (2019) 20:185 Page 14 of 15

https://doi.org/10.1186/s13059-019-1758-4
https://cytoscape.org/download.html
https://cytoscape.org/download.html
https://github.com/cytoscape/cyREST
https://doi.org/10.5281/zenodo.2798856
https://doi.org/10.5281/zenodo.2798856
http://automation.cytoscape.org
http://automation.cytoscape.org
https://github.com/cytoscape/RCy3
https://github.com/cytoscape/RCy3
https://www.bioconductor.org/packages/release/bioc/html/RCy3.html
https://www.bioconductor.org/packages/release/bioc/html/RCy3.html
https://github.com/cytoscape/py2cytoscape
https://pypi.org/project/py2cytoscape
https://pypi.org/project/py2cytoscape
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
https://pypi.org/
https://github.com/cytoscape/cytoscape-automation
https://github.com/cytoscape/cytoscape-automation
https://github.com/cytoscape/py2cytoscape
https://github.com/cytoscape/py2cytoscape
https://bioconductor.org/packages/release/bioc/html/RCy3.html
https://bioconductor.org/packages/release/bioc/html/RCy3.html
https://swagger.io/
http://automation.cytoscape.org
https://semver.org/
https://docs.google.com/document/d/1QTrT-9ylhI4OX5DkauMo2ujLIqeg3WDUDwl77KLtfVY/edit#bookmark=id.2sda98tk63j8
https://docs.google.com/document/d/1QTrT-9ylhI4OX5DkauMo2ujLIqeg3WDUDwl77KLtfVY/edit#bookmark=id.2sda98tk63j8
https://docs.google.com/document/d/1QTrT-9ylhI4OX5DkauMo2ujLIqeg3WDUDwl77KLtfVY/edit#bookmark=id.2sda98tk63j8
http://manual.cytoscape.org/en/3.6.0/Command_Tool.html
https://www.jcp.org/en/jsr/detail?id=370
http://www.cgl.ucsf.edu/home/scooter/Cytoscape3DevTut/slides.pdf
http://www.cgl.ucsf.edu/home/scooter/Cytoscape3DevTut/slides.pdf
http://www.miredot.com/
http://www.miredot.com/

22. CIResponse. Available: https://github.com/cytoscape/cytoscape-
automation/wiki/App-Developers:-Cytoscape-Function-Best-
Practices#ciresponse. [cited 10 May 2018]

23. Preston-Werner T. Semantic Versioning 2.0.0. Available: https://semver.org/.
[cited 10 May 2018]

24. Project Grizzly. 13 Apr 2018. Available: https://javaee.github.io/grizzly/. [cited
10 May 2018]

25. Jersey - RESTful Web Services in Java. 10 Apr 2018. Available: https://jersey.
github.io/. [cited 10 May 2018]

26. Apache Karaf. Available: http://karaf.apache.org/. [cited 10 May 2018]
27. Bouças J. py2cytoscape. In: PyPI. Available: https://pypi.org/project/py2

cytoscape/. [cited 16 May 2019]
28. RCy3. In: Bioconductor. Available: https://www.bioconductor.org/

packages/release/bioc/html/RCy3.html. [cited 16 May 2019]
29. Cytoscape Automation for Script Writers. Github; Available: https://

github.com/cytoscape/cytoscape-automation/tree/master/for-scripters.
[cited 16 May 2019]

30. Python Notebooks. Github; Available: https://github.com/cytoscape/
cytoscape-automation/wiki#python-notebooks. [cited 16 May 2019]

31. Workshops and Use Cases. Github; Available: https://github.com/
cytoscape/cytoscape-automation/wiki#workshops-and-use-cases. [cited
16 May 2019]

32. 2017 CyREST Challenge. Available: https://github.com/cytoscape/cytoscape-
automation/tree/master/for-scripters/challenge-2017. [cited 6 May 2019]

33. Morris J, Jensen L, Doncheva N. stringApp. Available: http://apps.cytoscape.
org/apps/stringapp. [cited 10 May 2018]

34. Ono K, Sage E, Carlin D. Diffusion. Available: http://apps.cytoscape.org/apps/
diffusion. [cited 10 May 2018]

35. NDEx WebApp v2.4.0. Available: http://ndexbio.org. [cited 16 May 2019]
36. F1000Research. The Cytoscape Automation App article collection. Available: https://

f1000research.com/gateways/cytoscapeapps/automation. [cited 7 May 2019]
37. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0.

Nat Genet. 2006;38:500–1.
38. Altintas I, Wang J, Crawl D, Li W. Challenges and approaches for distributed

workflow-driven analysis of large-scale biological data: vision paper. Proceedings
of the 2012 Joint EDBT/ICDT Workshops. New York: ACM; 2012. p. 73–8.

39. Amstutz P, Crusoe MR, Tijanić N, Chapman B, Chilton J, Heuer M, et al. Common
workflow language. 2016;v1:0. https://doi.org/10.6084/m9.figshare.3115156.v2.

40. Gene Pattern Notebook – GenePattern Notebook. Available: http://
genepattern-notebook.org/. [cited 9 May 2019]

41. Roure DD, Goble C, Stevens R. Designing the myExperiment virtual
research environment for the social sharing of workflows. Third IEEE
International Conference on e-Science and Grid Computing (e-Science
2007); 2007. p. 603–10.

42. Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, et
al. Pathway enrichment analysis and visualization of omics data using g:
Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc. 2019:482–517.
https://doi.org/10.1038/s41596-018-0103-9.

43. diffusion. Github; Available: https://github.com/cytoscape/diffusion. [cited 16
May 2019]

44. cy-ndex-2. Github; Available: https://github.com/cytoscape/cy-ndex-2. [cited
16 May 2019]

45. Ono K. Download Cytoscape. In: Cytoscape.org. Available: https://cytoscape.
org/download.html. [cited 3 Jul 2019]

46. Otasek D, Ono K. cyREST. In: Github. Available: https://github.com/
cytoscape/cyREST. [cited 3 Jul 2019]

47. Otasek D, Ono K. CyREST: REST API App for Cytoscape. In: Zenodo. 2018.
doi:https://doi.org/10.5281/zenodo.2798856.

48. Pico A. RCy3. In: Github. Available: https://github.com/cytoscape/RCy3.
[cited 3 Jul 2019]

49. opensource.org. The MIT License | Open Source Initiative. Available: https://
opensource.org/licenses/MIT. [cited 3 Jul 2019]

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Otasek et al. Genome Biology (2019) 20:185 Page 15 of 15

https://github.com/cytoscape/cytoscape-automation/wiki/App-Developers:-Cytoscape-Function-Best-Practices#ciresponse
https://github.com/cytoscape/cytoscape-automation/wiki/App-Developers:-Cytoscape-Function-Best-Practices#ciresponse
https://github.com/cytoscape/cytoscape-automation/wiki/App-Developers:-Cytoscape-Function-Best-Practices#ciresponse
https://semver.org/
https://javaee.github.io/grizzly/
https://jersey.github.io/
https://jersey.github.io/
http://karaf.apache.org/
https://pypi.org/project/py2cytoscape/
https://pypi.org/project/py2cytoscape/
https://www.bioconductor.org/packages/release/bioc/html/RCy3.html
https://www.bioconductor.org/packages/release/bioc/html/RCy3.html
https://github.com/cytoscape/cytoscape-automation/tree/master/for-scripters
https://github.com/cytoscape/cytoscape-automation/tree/master/for-scripters
https://github.com/cytoscape/cytoscape-automation/wiki#python-notebooks
https://github.com/cytoscape/cytoscape-automation/wiki#python-notebooks
https://github.com/cytoscape/cytoscape-automation/wiki#workshops-and-use-cases
https://github.com/cytoscape/cytoscape-automation/wiki#workshops-and-use-cases
https://github.com/cytoscape/cytoscape-automation/tree/master/for-scripters/challenge-2017
https://github.com/cytoscape/cytoscape-automation/tree/master/for-scripters/challenge-2017
http://apps.cytoscape.org/apps/stringapp
http://apps.cytoscape.org/apps/stringapp
http://apps.cytoscape.org/apps/diffusion
http://apps.cytoscape.org/apps/diffusion
http://ndexbio.org
https://f1000research.com/gateways/cytoscapeapps/automation
https://f1000research.com/gateways/cytoscapeapps/automation
https://doi.org/10.6084/m9.figshare.3115156.v2
http://genepattern-notebook.org/
http://genepattern-notebook.org/
https://doi.org/10.1038/s41596-018-0103-9
https://github.com/cytoscape/diffusion
https://github.com/cytoscape/cy-ndex-2
https://cytoscape.org/download.html
https://cytoscape.org/download.html
https://github.com/cytoscape/cyREST
https://github.com/cytoscape/cyREST
https://doi.org/10.5281/zenodo.2798856
https://github.com/cytoscape/RCy3
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT

	Abstract
	Introduction
	Design
	New CyREST access to Cytoscape apps ❶
	New CyREST access to Cytoscape Command script operations ❷
	Improved documentation infrastructure and content standards ❸
	New interactive CyREST call prototyping ❹
	Consistent mechanisms for calling CyREST and receiving return values ❺
	Improved coverage of core Cytoscape functionality ❻

	Implementation
	Defining endpoints
	Interfacing to Swagger
	Upward compatibility with previous CyREST
	Calling endpoints
	Workflow examples

	Results
	External workflows enabled
	Cytoscape Automation apps

	Discussion
	Cytoscape Automation and workflow systems
	Workflow publishing
	User experience

	Future development
	Summary
	Additional file
	Acknowledgements
	Review history
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

