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The cytoskeleton underlies many aspects of cell physiology,  

including mitosis, cell division, volume control, cell stiffness, 

cell polarity, and extracellular matrix patterning. These events 

in turn impact development and tissue differentiation. The cyto-

skeleton receives, integrates, and transmits both intracellular 

and extracellular signaling cues. Most of these cues have to signal 

through a lipid bilayer before reaching the cytoskeleton. Thus, 

membrane–cytoskeleton interactions are central to deciphering 

how cytoskeletal remodeling is integrated throughout cells and 

tissues. Although signaling occurs across both the plasma and 

intracellular membranes, in this review we focus on the inter-

play between the cytoskeleton and the plasma membrane, which 

is predominantly composed of phospholipids (for a detailed  

review of plasma membrane lipid composition and localization, 

see Suetsugu et al., 2014).

Common to eukaryotic cytoskeletal networks is the fact 

that they are formed from proteins with the inherent ability to 

self-assemble into long polymers. These polymers exist in a dy-

namic equilibrium with a monomeric pool, resulting in constant 

turnover in the cell. The ensemble of regulatory proteins, which 

regulates these dynamics, acts as the interface between cellular 

signaling and cytoskeletal remodeling. Not surprisingly then, 
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many regulators of the cytoskeleton interact with membranes. 

However, it is still mostly unclear how these interactions work to 

regulate cytoskeletal dynamics and pattern speci�c subcellular 

networks in vivo. The cytoskeletal networks composed of actin, 

microtubules, and septins integrate various signals received at 

the membrane, and facilitate distinct functions in response. Actin 

has long been known to be intimately associated with mem-

branes, and two major forms of actin regulation have been linked 

to the plasma membrane: (1) modulation of the actin monomer 

pool by phosphoinositides; and (2) modulation of actin assembly 

factors by membrane-associated small GTPases, by membrane-

associated proteins, and by direct binding of assembly factors to 

the membrane. Also at the membrane, the actin-rich cortex in-

terfaces with the microtubule cytoskeleton to coordinate intra-

cellular events. Recent work has revealed mechanistic insights 

into this coordination with respect to spindle orientation, a criti-

cal event in development. To organize intracellular events,  

the membrane is compartmentalized, and this appears to be par-

tially mediated by septins. We discuss recent studies that are 

beginning to mechanistically probe these membrane-associated 

cytoskeletal networks.

Membrane regulation of actin dynamics

Cells simultaneously assemble, maintain, and disassemble dif-

ferent F-actin networks within a common cytoplasm; each are 

tailored to facilitate a particular fundamental process such as 

motility, polarization, division, or endocytosis (Chhabra and 

Higgs, 2007; Blanchoin et al., 2014). F-actin networks with 

speci�ed organization and dynamics are produced through the 

coordinated action of different overlapping sets of diverse actin-

binding proteins with an array of complementary properties that 

include actin monomer (G-actin) binding, assembly, end cap-

ping, bundling, and severing/disassembling (Blanchoin et al., 

2014). F-actin network assembly, organization, and dynamics 

are therefore controlled by the spatial and temporal regula-

tion of the activity of actin-binding proteins. The association 

of these actin-binding proteins with the membrane is multi-

faceted. In some cases, actin-binding proteins are modulated 

by binding directly to phosphoinositide lipids. In other cases,  

membrane-associated proteins modify the activity of actin-binding  

Many aspects of cytoskeletal assembly and dynamics can 
be recapitulated in vitro; yet, how the cytoskeleton inte-
grates signals in vivo across cellular membranes is far less 
understood. Recent work has demonstrated that the mem-
brane alone, or through membrane-associated proteins, 
can effect dynamic changes to the cytoskeleton, thereby 
impacting cell physiology. Having identified mechanistic 
links between membranes and the actin, microtubule, and 
septin cytoskeletons, these studies highlight the membrane’s 
central role in coordinating these cytoskeletal systems to 
carry out essential processes, such as endocytosis, spindle 
positioning, and cellular compartmentalization.
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Regulation of actin-binding proteins by association with and/or 

release from phosphoinositide lipids is an exciting possibility 

that could help explain the self-organization of diverse F-actin 

networks. However, the importance of phosphoinositide lipid 

regulation of most actin binding proteins has not been validated 

in vivo.

Membrane regulation of profilin

Cells maintain a reserve of up to hundreds of micromolar of 

unassembled G-actin monomers, which is available for rapid 

proteins. Subsets of actin-binding proteins are even integral 

membrane proteins.

Phosphoinositide lipids associate with diverse types of 

actin-binding proteins, and either inhibit or stimulate their ac-

tivity (for review see Saarikangas et al., 2010). The actin nu-

cleation promotion factors, WAVE and WASP, facilitate actin 

polymerization via the Arp2/3 complex upon binding PI(4,5)P2. 

In contrast, actin-capping protein, the F-actin–severing protein 

ADF/Co�lin, and the G-actin–binding protein pro�lin are  

all inhibited by binding PI(4,5)P2 (Saarikangas et al., 2010). 

Figure 1. Regulation of actin assembly by membrane lipids. (A) Membrane phosphoinositides such as PI(4,5)P2 and PI(3,4,5)P3 might control the spatial and 
temporal assembly of diverse actin filament networks by regulating profilin activity. Profilin bound to PI(4,5)P2 cannot associate with actin, which potentially 
could establish a pool of free actin monomers that might favor the nucleation of branched actin filaments by the Arp2/3 complex, which is activated by bind-
ing to the WASP V-CA domain (left). Alternatively, phosphorylated phospholipase C (PLC) releases profilin by hydrolyzing PI(4,5)P2, which could facilitate a 
pool of actin bound to profilin that might favor the elongation of unbranched actin filaments by formin (right) or Ena/VASP (not depicted). (B) Small activated 
GTPases of the Rho superfamily insert into the membrane via a covalent lipid modification. These GTPases recruit and activate a nucleation-promoting factor 
such as WASP/WAVE that further modulates Arp2/3 complex activity. F-BAR proteins interact with WASP and either activate or inhibit actin polymerization 
activity. These activities lead to diverse functions, as indicated in the text boxes. (C) Small activated GTPases of the Rho superfamily directly bind to and recruit 
formins to the membrane, where they activate actin polymerization. F-BAR proteins can further modulate actin dynamics by either activating or inhibiting formin 
activity at the membrane to drive processes such as membrane protrusion and cytokinesis. In eukaryotes, such as plants, that lack formins with obvious Rho-
binding domains, many formins bind directly to the membrane via an N-terminal PTEN domain (dark blue) that binds to PI(3,5)P2, driving polarized growth, 
or via an N-terminal transmembrane domain (red). Question marks designate hypothetical membrane-associated proteins that negatively or positively regulate 
formin-mediated actin polymerization.
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self-organization of diverse actin �lament networks by favoring 

particular actin assembly factors at discrete cellular locations 

(Neidt et al., 2009; Mouneimne et al., 2012; Ding and Roy, 2013). 

Further work is required to explore this exciting possibility.

Membrane regulation of actin assembly factors

Mechanistic insights for the role of the membrane are emerging 

in the case of the regulation of actin assembly factors. The most 

well-documented example of this is modulation of actin poly-

merization by small GTPases of the Rho superfamily. Most actin 

assembly factors are inherently inactive, but can be activated at 

the right time and place by small GTPase signaling cascades 

(Chesarone and Goode, 2009; Campellone and Welch, 2010). 

When activated, these small GTPases dock on the membrane 

due to exposure of a covalent lipid modi�cation that intercalates 

into the membrane. Many actin assembly factors have GTPase-

binding domains; binding to the active GTPase induces a confor-

mational change, usually relieving an auto-inhibited state (Fig. 1, 

B and C). In the case of Arp2/3 complex, the SCAR/WAVE com-

plex interacts with active GTPases and in turn activates the Arp2/3 

complex, which generates �laments. Recently, new insights have 

emerged with respect to control of actin assembly at speci�c 

membrane sites. The WAVE complex was found to interact with 

a sequence motif found on a large number of diverse membrane 

proteins, ranging from channels to cell adhesion molecules. Bind-

ing occurs on a conserved face of the WAVE complex, which 

when mutated in �ies leads to defects in the organization of the 

actin cytoskeleton (Chen et al., 2014). Future work is needed to 

sort out the signaling networks connected to this diverse set of 

membrane proteins and the speci�c physiological signals leading 

to activation of Arp2/3 complex-mediated actin polymerization.

While the details of speci�c membrane recruitment are 

still being sorted out, it is clear that small GTPases bind to and 

activate the SCAR/WAVE complex, which in turn activates 

the Arp2/3 complex. However, another actin assembly factor, 

the formins, are not always fully activated by binding small 

GTPases (Seth et al., 2006; Maiti et al., 2012). In fact, many 

formins have other mechanisms to bind to the membrane (for 

review see Cvrčková, 2013). For instance, in plants, formins 

do not have obvious GTPase-binding domains, and in fact, 

class I formins are integral membrane proteins themselves. 

Thus, regulation of these molecules at the membrane is likely 

mediated by interactions with proteins or speci�c lipids at the 

membrane (Fig. 1 C). In support of this, moss class II formins 

contain a PTEN domain that mediates binding to PI(3,5)P2 (van  

Gisbergen et al., 2012). Recruitment to PI(3,5)P2-rich mem-

brane domains and the ability to rapidly elongate actin �la-

ments is essential for formin function during polarized growth 

(Vidali et al., 2009; van Gisbergen et al., 2012). However, ex-

amination of formin molecules at the cell cortex demonstrated 

that only a fraction of these molecules generate actin �laments  

(van Gisbergen et al., 2012). Thus, additional molecules associ-

ated with PI(3,5)P2 at the membrane likely modulate the activ-

ity of this formin (Fig. 1 C).

Whether there is a common family of molecules in  

eukaryotes that regulates membrane activity of actin assem-

bly factors is unclear. However, a possible candidate class of  

polymerization upon activation of assembly factors and/or pro-

duction of free actin �lament ends (Pollard et al., 2000). Despite 

the effective critical concentration for actin assembly being 

only 0.1 µM, a higher concentration of unassembled actin is 

maintained in part by G-actin–binding proteins that prevent  

its de novo assembly. Pro�lin is the primary evolutionarily con-

served small G-actin–binding protein (Carlsson et al., 1977), 

which prevents actin �lament assembly by inhibiting the forma-

tion of actin dimer and/or trimer nuclei (Jockusch et al., 2007). 

Actin monomers bound by pro�lin can only be added to actin 

�laments that are assembled by actin assembly factors such as 

Arp2/3 complex, formin, and Ena/VASP (Dominguez, 2009). 

Pro�lin-bound actin was assumed to be equally incorporated 

into F-actin networks assembled by different nucleation factors. 

However, by simultaneously binding to G-actin and continu-

ous stretches of proline residues that are found on speci�c actin 

assembly factors such as formin and Ena/VASP (Ferron et al., 

2007), pro�lin signi�cantly increases the elongation rate of 

formin-assembled �laments (Romero et al., 2004; Kovar et al., 

2006). Conversely, pro�lin inhibits Arp2/3 complex–nucleated 

branch formation by competing with the nucleation-promoting 

factor WASP for G-actin (Suarez et al., 2015). As a result, pro-

�lin facilitates formin- and Ena/VASP-mediated actin assem-

bly over assembly by the Arp2/3 complex (Rotty et al., 2015; 

Suarez et al., 2015). It is therefore likely that the spatial and 

temporal regulation of pro�lin helps govern the type of F-actin 

network assembled, as pro�lin activity determines whether  

G-actin is incorporated into networks generated by one actin 

assembly factor over another (Fig. 1 A).

Diverse pro�lins also bind to membrane phosphoinositi-

des such as PI(3,4,5)P3 and PI(4,5)P2, which inhibits pro�lin’s 

interactions with G-actin and proline-rich stretches (Lassing 

and Lindberg, 1985, 1988; Lu et al., 1996; Lambrechts et al., 

2002; Moens and Bagatolli, 2007). Multiple hydrophobic re-

gions of pro�lin, including the actin- and proline-rich–binding 

regions, have been implicated in binding to phosphoinositides 

(Jockusch et al., 2007). Association of pro�lin with membrane 

phosphoinositides has been proposed to regulate the temporal 

and spatial levels of pro�lin-actin by two possible mechanisms 

(Fig. 1 A). One possibility is that external signal-mediated phos-

phorylation of phospholipase C hydrolyzes PI(4,5)P2, releasing 

membrane-bound pro�lin to presumably facilitate actin assembly 

by formin and Ena/VASP (Goldschmidt-Clermont et al., 1991). 

Second, sequestration of pro�lin to membrane regions with 

high concentrations of PI(4,5)P2 could increase the level of free  

G-actin, unbound to pro�lin, that might preferentially incorporate 

into branched actin �lament networks generated by the Arp2/3 

complex. Despite the proposal of these general hypotheses nearly 

25 years ago (Goldschmidt-Clermont et al., 1991), there is unfor-

tunately little in vivo evidence that phosphoinositide regulation  

of pro�lin occurs (Saarikangas et al., 2010). However, most higher 

eukaryotes express multiple pro�lin isoforms that associate 

with the particular ligands with signi�cantly different af�nities, 

such as actin- or proline-rich ligands like formin, which could 

tailor them for different cellular roles (Jockusch et al., 2007). 

Therefore, regulation by phosphoinositides would theoretically 

be a convenient way for individual pro�lin isoforms to facilitate 
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speci�c subsets of actin regulators may help to decipher the dis-

tinct F-actin domains at the cell cortex. Additionally, since 

BAR domain–containing proteins are found widely throughout 

eukaryotes (Ren et al., 2006), it is possible that these molecules 

may have been an early link between membranes and actin 

modulation that, with various elaborations, evolved differently 

in distinct lineages.

Connecting actin and microtubules to the 

membrane enables cortical force generation

The cell cortex in animal cells plays a fundamental role in cell 

division, migration, and polarization (Kunda et al., 2008; Pollard 

and Cooper, 2009; Stewart et al., 2011; Abu Shah and Keren, 

2014). The cortex integrates external stimuli—from extracellular 

matrix and neighboring cells—and transmits them into the cell 

to effect cytoskeletal changes crucial for development. A key 

component of the cortex is the thin F-actin shell underneath the 

cell membrane that is crucial for providing cortical stiffness and 

is a key determinant of cell shape (Pollard and Cooper, 2009; 

Guo et al., 2013). Perturbations in cortical F-actin architecture 

can alter the physical properties of the cortex, thereby affecting 

cell stiffness and strength. A recent study demonstrates that the 

bulk of the actin cortex is nucleated by the formin mDia1 and 

Arp2/3 complex (Bovellan et al., 2014), which suggests that 

�ne-tuning of F-actin cortical structure and mechanics may be 

mediated by adjusting the relative contribution of each actin as-

sembly factor.

Several studies (for reviews see Basu and Chang, 2007; 

Akhshi et al., 2014) show that changes in microtubule stability 

also positively and negatively regulate cortical F-actin structures, 

including formation of lamellipodia and stress �bers. Here we 

focus on the converse: regulation of microtubule function by 

the actin-rich cortex. An excellent example of this regulation is 

how these two elements set the orientation of the mitotic spin-

dle, which determines the plane of cell division, thereby im-

pacting cell fate and tissue organization. It has been known for 

quite some time that, during cell division, an intact cortical  

F-actin meshwork and an intact astral microtubule array are  

required for spindle orientation (O’Connell and Wang, 2000; 

Théry et al., 2005; Toyoshima and Nishida, 2007; Fink et al., 

2011; Luxenburg et al., 2011; Castanon et al., 2013). However, 

how the F-actin cortex is involved in this process, and how the 

membrane supports the underlying cytoskeletal organization to 

bring about spindle alignment toward a specialized cortical do-

main, remains unclear in many cellular systems.

The prevailing notion is that the F-actin network provides 

a platform for a cortical anchor, or a complex of anchoring pro-

teins, that could either mediate attachment (i.e., tethering) of 

astral microtubules or recruit force generators such as motor 

proteins that exert pulling forces on the microtubules emanat-

ing from the spindle. In this notion, the plus ends of astral mi-

crotubules would engage with these cortical platforms through 

so-called +TIPs (plus tip tracking proteins), including adeno-

matous polyposis coli protein (APC), CLASP, CLIP170, LIS1, 

dynactin, and dynein (Coquelle et al., 2002; Rogers et al.,  

2002; Reilein and Nelson, 2005; Siller and Doe, 2008; Ruiz-

Saenz et al., 2013). Data to support this idea has been found in 

membrane-associated molecules is the Bin-Amphiphysin-Rvs 

(BAR) domain–containing proteins (Aspenström, 2009; Suetsugu 

et al., 2010; Cvrčková, 2013). The positively charged BAR  

domains, which are found on many different proteins (Suetsugu 

et al., 2010), form -helical coiled-coils that fold up into a cres-

cent shape. These domains do not have high speci�city for a 

particular lipid, but rather through their structure can sense or 

participate in membrane bending (Suetsugu et al., 2010, 2014).

In yeast and animals, a family of proteins with an extended 

BAR domain, known as F-BAR proteins, are essential scaf-

folds upon which cytoskeletal proteins can assemble in order to 

generate speci�c subcellular structures and functions (Roberts-

Galbraith and Gould, 2010). During endocytosis, nucleation-

promoting factors for the Arp2/3 complex are recruited to the 

membrane by interacting with F-BAR proteins. F-BAR proteins 

not only recruit nucleation-promoting factors, but also modify 

their activity (Kamioka et al., 2004; Itoh et al., 2005; Tsujita  

et al., 2006; Takano et al., 2008; Henne et al., 2010; Roberts-

Galbraith and Gould, 2010; Wu et al., 2010). In budding yeast, 

two F-BAR proteins oppositely regulate Las17, a homologue of 

the WASP actin nucleation–promoting factor (Fig. 1 B). Early 

in endocytosis, Syp1 recruits WASP but maintains it in an in-

active state (Rodal et al., 2003; Sun et al., 2006; Boettner et al., 

2009; Feliciano and Di Pietro, 2012). Upon vesicle maturation, 

Bzz1 activates WASP activity (Sun et al., 2006), thereby induc-

ing a burst of actin polymerization mediated by the ARP2/3 

complex that promotes internalization of endocytic vesicles. 

Further physiological support for this model has come from 

studies in neurons (Dharmalingam et al., 2009) and animal cells 

(Tsujita et al., 2006).

F-BAR proteins also recruit formins to membranes. In �s-

sion yeast, the F-BAR proteins Cdc15 and Imp2 help recruit the 

essential cytokinesis formin Cdc12 to the division site (Chang 

et al., 1997; Carnahan and Gould, 2003; Ren et al., 2015). Simi-

larly, the budding yeast Cdc15 homologue Hof1p acts redun-

dantly with Rvs167 (a BAR domain–containing protein also 

containing a C-terminal SH3) to promote formation of the con-

tractile actin ring (Nkosi et al., 2013). Although F-BAR pro-

teins have clearly de�ned roles in recruiting formins, several 

recent studies have revealed how F-BAR proteins directly mod-

ulate formin activity. In mammals, the F-BAR protein srGAP2 

binds to and directly inhibits the actin-severing activity of the 

formin FMNL1, which is mediated by its formin homology 

(FH) 1 domain (Mason et al., 2011). During Drosophila mela-

nogaster embryogenesis, the F-BAR protein Cip4 binds to the 

formin Dia’s FH1 domain and inhibits the ability of Dia to pro-

mote actin assembly. Cip4 is a known activator of the WASP–

WAVE–Arp2/3 complex pathway. Thus, while Cip4 activates 

Arp2/3 complex activity, it can simultaneously inhibit Dia ac-

tivity (Yan et al., 2013). More recently, it was demonstrated in 

budding yeast that the SH3 domain of the F-BAR protein Hof1p 

dampens the actin nucleation activity of the formin Bnr1p with-

out displacing Bnr1p from the actin �lament end (Fig. 1 C;  

Graziano et al., 2014). These studies suggest that F-BAR pro-

teins may have a conserved role in regulating diverse sets of 

actin nucleation factors at the membrane. Thus, understanding 

how BAR domain–containing proteins interact with and regulate 
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conceivable that stabilization of membrane rigidity, as exempli-

�ed by ERMs, may represent a general mechanism for modulat-

ing pulling forces on astral microtubules (Fig. 2). It is therefore 

tempting to speculate whether the recently characterized human  

cortical actin–associated protein, MISP, which has a role in astral 

microtubule stability and spindle orientation (Zhu et al., 2013), 

would orchestrate actin cytoskeleton communication with the 

cell membrane and the astral microtubules in a similar manner. 

Deciphering how actin-dependent membrane rigidity is con-

trolled locally at speci�c regions of the cell cortex will surely 

constitute a major challenge to unraveling the mechanisms gov-

erning spatial and temporal regulation of oriented cell division.

Septins: links between polymer assembly 

and membrane function

An additional layer of membrane compartmentalization is pro-

vided by septins. Septins are a component of the cytoskeleton 

that directly bind to membranes in order to polymerize and in 

turn help organize cell membranes. Knowing how membranes 

specify septin assemblies at a particular place and time is essen-

tial to understand the mechanistic role of septins in cytokinesis 

and beyond.

Septins were �rst observed at the plasma membrane in 

budding yeast (Byers and Goetsch, 1976; Rodal et al., 2005; 

Ong et al., 2014). Early work found that human septins exhibit 

a preference for PI(4,5)P2 and proposed that a conserved poly-

basic sequence in septins links them to phospholipids (Zhang  

et al., 1999). More recently, recombinant budding yeast septins 

were assembled on lipid monolayers containing high levels 

(10–50%) of PI(4,5)P2 (Bertin et al., 2010). Interestingly, the 

presence of the lipids could promote �lament formation even 

several organisms, including Caenorhabditis elegans zygotes 

(Couwenbergs et al., 2007; Nguyen-Ngoc et al., 2007), Dro-

sophila neuroblasts (Siller et al., 2006), and cultured human cells 

(Kiyomitsu and Cheeseman, 2012). These studies have identi-

�ed an evolutionarily conserved ternary complex composed of 

Gi, the  subunit of heterotrimeric G-protein; LGN, a leucine-

glycine-asparagine repeat protein; and NuMA, a nuclear mi-

totic apparatus protein; as the cortical anchoring complex that 

recruits dynein as the force generator for spindle orientation. 

NuMA interacts with LGN (Du and Macara, 2004; Bowman  

et al., 2006; Siller et al., 2006), which in turn binds to the myris-

toylated Gi that is directly attached to the membrane. NuMA 

can also bind the membrane directly through a C-terminal PIP-

binding domain in a manner independent of LGN and Gi 

(Zheng et al., 2014). Intriguingly, when the F-actin meshwork 

was disrupted, NuMA and Gi dissociate from the cell cortex 

(Luxenburg et al., 2011; Machicoane et al., 2014; Zheng et al.,  

2014), signifying that their membrane association is weak. These 

observations raise interesting questions about the physical nature 

of the anchoring platform, and suggest that additional mecha-

nisms may be required to attach anchoring proteins to the F-actin 

meshwork or to stabilize them at the cortex.

Recent work has shown that the actin-binding proteins 

ezrin/radixin/moesin (ERM) are probably the missing puzzle 

pieces at the cell cortex mediating spindle orientation (Solinet  

et al., 2013; Machicoane et al., 2014). ERMs help organize the  

F-actin meshwork, bridging it to the cell membrane, and this 

may be necessary for establishing and maintaining the Gi-LGN-

NuMA cortical platform. ERMs, when activated by Ste20-like 

(SLK) kinase (Machicoane et al., 2014), adopt an open con-

formation that binds F-actin and the plasma membrane. An  

N-terminal FERM domain, which binds PI(4,5)P2 directly (Fievet 

et al., 2004; Roch et al., 2010; Roubinet et al., 2011), mediates 

interaction with the membrane. Interestingly, the FERM domain 

also binds to and stabilizes microtubules (Solinet et al., 2013), 

possibly via interaction with CLASP family of +TIPs (Ruiz-

Saenz et al., 2013), which suggests that ERMs may function 

as microtubule-tethering factors. However, evidence suggests 

that they do more than just tethering microtubules. Depletion 

of ERMs or inhibition of ERM activation leads to loss of corti-

cal rigidity, mislocalization of LGN and NuMA, and abnormal 

spindle rocking behavior (Carreno et al., 2008; Machicoane 

et al., 2014). It is interesting to speculate that ERMs may be 

required to increase membrane rigidity by pinning the F-actin 

meshwork to the plasma membrane. As proposed (Zheng et al.,  

2014), this rigidity may enable the cortical platform to counter-

act astral microtubule–mediated and dynein-generated pulling 

forces on the cortical anchors. It is noteworthy that the budding  

yeast version of the dynein cortical anchor, Num1, interacts  

with the plasma membrane directly via a BAR-like domain 

and a PH domain (Farkasovsky and Küntzel, 1995; Tang  

et al., 2009, 2012; Klecker et al., 2013; Lackner et al., 2013). 

In budding yeast, actin is dispensable for maintenance of the  

Num1 cortical platform (Heil-Chapdelaine et al., 2000a) or to 

support dynein-dependent spindle movements (Heil-Chapdelaine  

et al., 2000b), as membrane rigidity is provided by turgor  

pressure and the cell wall. During animal development, it is 

Figure 2. Regulation of microtubule tethering by actin-dependent membrane 
rigidity. ERM increases membrane rigidity to support Gi-LGN-NuMA– 
dependent anchoring and pulling of astral microtubules by cytoplasmic dy-
nein. Activated ERMs in an open conformation may link F-actin to the cell 
membrane. Membrane association of the Gi-LGN-NuMA complex medi-
ated by the lipid anchor on Gi and the PIP-binding domain on NuMA are 
presumably weak. Stiffening of the membrane (indicated by straight phos-
pholipid tails) or yet unidentified interactions with F-actin or ERMs may further 
stabilize the Gi-LGN-NuMA platform to prevent anchorage detachment.
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Finally, there has been substantial interest in the role of 

septins as diffusional barriers, and work from yeast to human 

cilia has suggested the possibility that septins can functionally 

compartmentalize membranes (Takizawa et al., 2000; Barral  

et al., 2000; Hu et al., 2010; Fig. 3 C). Despite the �rst observa-

tions of a barrier function over a decade ago, the mechanism 

by which septin compartmentalizes membranes has proven to 

be highly elusive. The �rst clues as to a molecular basis for 

the ER-based barrier have come from several recent studies. 

Yeast genetics uncovered a link between sphingolipid domains 

and septin-based ER barriers, and a second study identi�ed a 

role for one speci�c septin, Shs1, in these barriers (Chao et al., 

2014; Clay et al., 2014). Finally, a critical functional role for 

septins in membrane compartmentalization came from a screen 

looking at regulators of calcium in�ux in cultured mammalian 

cells (Sharma et al., 2013). This study showed that septins 

are required for establishing PIP2-rich microdomains at sites 

of ER–plasma membrane contacts. These functional studies, 

along with the development of reconstitution methods for prob-

ing the barrier properties in arti�cial lipid membranes, should 

pave the way for understanding how septins in�uence mem-

brane diffusion. But it is clear that a reciprocal relationship 

between certain membrane domains and septins underlies their 

organization and function.

Conclusions

As more mechanistic connections emerge between the mem-

brane and the cytoskeleton, it is becoming clear that a new gen-

eration of tools is needed. In particular, being able to track the 

dynamics and localization of speci�c lipid species, as well as 

physical methods to measure membrane rigidity in living cells, 

is critical. Additionally, most studies have been performed in 

individual cells, but not in the context of developing tissues or 

varied extracellular environments. Thus, how mechanical strains 

on the membrane translate into cytoskeletal reorganization ulti-

mately effecting cell physiology and development constitutes 

the next generation of questions in cytoskeletal dynamics.
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