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Abstract

Although generally benign, pituitary tumors are frequently locally invasive, with 
reduced success of neurosurgery and unresponsive to pharmacological treatment with 
somatostatin or dopamine analogues. The molecular basis of the different biological 
behavior of pituitary tumors are still poorly identified, but a body of work now suggests 
that the activity of specific cytoskeleton proteins is a key factor regulating both the 
invasiveness and drug resistance of these tumors. This review recapitulates the 
experimental evidence supporting a role for the actin-binding protein filamin A (FLNA) 
in the regulation of somatostatin and dopamine receptors expression and signaling 
in pituitary tumors, thus in determining the responsiveness to currently used drugs, 
somatostatin analogues and dopamine receptor type 2 agonists. Regarding the regulation 
of invasive behavior of pituitary tumoral cells, we bring evidence to the role of the actin-
severing protein cofilin, whose activation status may be modulated by dopaminergic and 
somatostatinergic drugs, through FLNA involvement. Molecular mechanisms involved in 
the regulation of FLNA expression and function in pituitary tumors will also be discussed.

Introduction

Pituitary tumors, accounting for 16.2% of all primary 

brain and other central nervous system tumors (Ostrom 

et  al. 2017), are classified based on their secretory 

activity in non-functioning pituitary tumors (NFPTs) 

or hormone-secreting tumors, including prolactin 

(PRL)-, growth hormone (GH)- and adenocorticotropic 

hormone (ACTH)-secreting tumors. The 4th edition of 

the World Health Organization (WHO) classification 

of endocrine tumors (Lloyd et  al. 2017) has adopted 

an adenohypophyseal cell lineage designation, with 

subsequent categorization of histological variants 

according to hormone content and the expression of 

pituitary-specific transcription factors.

Therapy is aimed to remove or reduce tumor mass 

and to normalize hormone secretion. Transsphenoidal 

surgery is the first choice of treatment in many cases. 

However, incomplete tumor resection and high rate of 

recurrence are associated with pituitary tumors invasion 

into surrounding tissues, a feature found in 30–50% of 

the lesions (Meiji et al. 2002). For PRL-secreting tumors, 

dopamine receptor type 2 (DRD2) agonists represent the 

first-line therapy, whereas somatostatin analogs (SSAs) 

are used for the pharmacological treatment of GH- and 

ACTH-secreting tumors. However, a variable percentage 

of patients (about 10% of PRL-, 30% of GH-, 50–70%  

of ACTH-secreting tumors) is resistant to these drugs 
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(Colao et al. 2011, Cuevas-Ramos & Fleseriu 2014, Guelho 

& Grossman 2015, Tirosh & Shimon 2015).

Little is known about the molecular determinants 

underlying the local invasiveness and the pharmacological 

resistance of pituitary tumors. However, cytoskeleton 

involvement in both these critical issues has been recently 

demonstrated by several studies.

Cell cytoskeleton and pituitary tumors:  
old and new players

Cell cytoskeleton is a complex, dynamic and  

multifunctional network of protein filaments that can be 

classified in three main types: microfilaments, intermediate 

filaments and microtubules, originating by polymerization 

of different protein subunits. Microfilaments are 

composed by actin, intermediate filaments mainly by 

vimentin and keratin and microtubules by tubulin. They 

are characterized by different structural and physical 

properties, enabling specific cellular functions. In addition 

to provide and maintain cell shape and structure, they 

participate in a variety of cellular processes. In particular, 

microfilaments are involved in cell movement, shape, 

differentiation, division and intracellular transport, these 

activities being regulated by specific interactions with a 

variety of actin-binding proteins. Intermediate filaments 

participate in cell–cell and cell–matrix junctions. 

Microtubules are involved in mitosis, organelles transport 

and cell shape. In addition, these three types of filaments 

interact both directly, by physical contact, and indirectly, 

via biochemical signaling and gene transcription, allowing 

reciprocal regulation.

A cytoskeleton involvement in secretory granules’ 

transport and exocytosis in anterior pituitary cells has 

been demonstrated by electron microscopy techniques. 

Both actin filaments (Ostlund et  al. 1977, Senda et  al. 

1989) and microtubules (Labrie et al. 1973, Sherline et al. 

1977) bind anterior pituitary secretory granules in vitro, 

playing a role in their intracellular transport, approach to 

the plasma membrane and release. Moreover, agents that 

disrupt microtubules, such as colchicine or vinblastine, 

inhibited the transport of GH storage granules from 

the Golgi complex to the cytoplasmic pool (Howell & 

Tyhurst 1978).

Specific cytoskeleton features have been associated 

to pituitary tumors clinical behavior. Cytokeratins, 

components of the intermediate filaments, that are 

expressed in both normal and tumoral anterior pituitary 

(Halliday et al. 1990) are specific histological markers that 

designate different subtypes of GH-secreting pituitary 

tumors. In particular, densely granulated tumors are 

defined by perinuclear cytokeratin distribution, whereas 

sparsely granulated tumors are characterized by dot-

like keratin immunoreactivity, commonly referred to as 

fibrous bodies. Histological subtype of the tumor correlates 

with the expression of SS receptor type 2 (SSTR2) and 

response to SSA (Brzana et al. 2013, Chinezu et al. 2014, 

Kiseljak-Vassiliades et al. 2015), but to date, the molecular 

mechanisms involved are unknown.

Regarding actin-binding proteins, a role in regulating 

migration and invasion of pituitary adenomas has been 

attributed to fascin, which organizes actin filaments in 

parallel bundles (Liu et al. 2016). The authors demonstrated 

that silencing of fascin in GH3 cells reduced cell invasion, 

with a mechanism involving NOTCH1/DLL pathway. 

They also found an association between fascin expression 

and invasion and increased risk of recurrence in NFPT and 

GH-secreting tumors.

In the last years, two major actin-binding proteins, 

filamin A (FLNA) and cofilin, emerged as important 

players in the regulation of the complex intracellular 

processes that dictate pituitary tumors drug responsiveness 

and invasiveness. They participate in actin filaments 

crosslinking and remodeling, respectively, and in 

mediating SS and DA receptors intracellular effects.

FLNA: structure and function

Filamins (FLNs) are high-molecular-weight homodimeric 

actin-binding proteins which cross-link actin cytoskeleton 

filaments. FLNs family includes three homologous 

proteins, FLNA, B and C, encoded by different genes 

located on chromosome X, 3 and 7, respectively (van 

der Flier & Sonnenberg 2001). While FLNC is primarily 

expressed in cardiac, smooth and striated muscle, FLNA 

and B are both ubiquitously expressed, but FLNA is the 

most abundant isoform (Feng & Walsh 2004).

A complete loss of FLNA expression in mice causes 

embryonic lethality, cardiac malformations and skeletal 

defects (Hart et  al. 2006). In humans, FLNA mutations 

lead to a broad spectrum of clinical disorders, called 

filaminopathies, which can be classified in loss of 

function or gain of function. FLNA loss-of-function 

mutations, leading to reduced or absent FLNA expression, 

are embryonic lethal in males but are manifest in females 

as periventricular nodular heterotopia (PVNH), a localized 

neuronal migration disorder during late embryonic and 

early fetal development, Ehlers–Danlos syndrome-like 

collagenopathy, macrothrombocytopenia and X‐linked 

cardiac valvular dystrophy (XCVD) (Fox et al. 1998, Sheen 
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et al. 2005, Bernstein et al. 2011, Ieda et al. 2018). FLNA 

variants can also present with seizures, cardiovascular and 

pulmonary findings (Robertson 2005).

In contrast, gain-of-function mutations of FLNA cause 

various skeletal dysplasias and congenital malformations 

affecting brain, viscera and urogenital tract (otopalatodigital 

syndromes, frontometaphyseal dysplasia and Melnick–

Needles syndrome) (Robertson et al. 2003, Robertson 2005), 

strongly suggesting a FLNA role in modulating signaling 

during organogenesis in multiple tissues.

The structure of a FLNA monomer is represented 

in Fig.  1. FLNA was originally discovered as an actin-

crosslinking protein (Hartwig & Stossel 1975), a function 

derived from its ability to homodimerize in V-shaped 

flexible structures that cross-link perpendicular actin 

filaments, conferring membrane integrity and defending 

cells against mechanical stress. Moreover, the binding of 

FLNA with several transmembrane proteins, including 

channels and receptors, anchors actin cytoskeleton to 

the cell membrane. Besides these structural functions, 

mounting evidence suggests a major role of FLNA in signal 

transduction, due to its ability to bind a huge number of 

intracellular signaling molecules, kinases and transcription 

factors (Stossel et al. 2001, Nakamura et al. 2011). FLNA is 

implicated in the regulation and integration of multiple 

cellular processes, including cell adhesion, migration, 

maintenance of cell shape, differentiation, proliferation 

and transcription. Moreover, in different human tumors, 

FLNA may play opposite roles in regulating growth, 

invasion and metastasis (Shao et al. 2016).

FLNA functions are tightly regulated by several 

mechanisms, including FLNA phosphorylation, mechanical 

force, intramolecular inhibition, competition with other 

molecules and proteolysis, as discussed in ‘Mechanisms 

regulating FLNA expression and function in pituitary 

tumors’ section.

Cofilin: structure and function

The ADF/cofilin family is a key regulator of actin 

dynamics. It includes cofilin 1 (a non-muscle type of 

cofilin), cofilin 2 (a muscle type of cofilin) and ADF  

(actin-depolymerizing factor or destrin). Cofilin 1 (hereafter 

referred to as cofilin) is the most abundant and ubiquitous 

member of this family. Deletion of the cofilin gene CFL1 is 

embryonic lethal in mice owing to defects in proliferation, 

polarization and migration of neural crest cells (Gurniak 

et al. 2005, Bellenchi et al. 2007).

Cofilin is a small protein of 19 kDa composed of one 

actin-depolymerizing factor homology (ADF-H) domain 

and able to bind both globular (G) actin and filamentous 

(F) actin. It also contains a NLS that confers to cofilin 

the ability to carry G-actin to nucleus (Abe et  al. 1993, 

Pendleton et  al. 2003), where it regulates chromosome 

organization and gene activity (Percipalle 2013).

Cofilin exerts two main biochemical functions: first, 

it depolymerizes ADP-bound actin filaments near the 

pointed ends to supply a pool of free G-actin monomers 

for polymerization; second, it severs actin filaments and 

initiates actin polymerization by increasing the number 

of actin-free barbed ends, from which F-actin polymerizes 

(Bravo-Cordero et al. 2013).

Since actin cytoskeleton reorganization is crucial for 

a number of cellular processes, it is not surprising that 

cofilin activity is tightly regulated. The main mechanism 

regulating cofilin activity is phosphorylation at Ser3 

(Agnew et al. 1995), that prevents its ability to bind actin. 

Small GTPases of the Rho family are able to promote this 

posttranslational modification, by triggering a cascade of 

kinases, including PAK and ROCK, that activate LIMK1 and 

LIMK2, which ultimately target cofilin. On the other hand, 

cofilin is dephosphorylated by different phosphatases, 

such as slingshot 1L, chronophin and phosphatases 

type 1, 2A and 2B. Even though phosphorylated cofilin 

(P-cofilin) is generally considered the inactive form of 

cofilin, it can exert specific functions, such as to promote 

Figure 1
Schematic representation of a FLNA. A FLNA monomer is composed of 
2647 amino acids and weights 280 kDa. At the N-terminus there is an 
actin-binding domain that consists of two calponin homology domains, 
followed by 24 immunoglobulin (Ig)-like β-sandwich fold repeats of about 
96 aminoacidic residues each. Repeats 1–15 (rod-1 domain) and 16–23 
(rod-2 domain) are separated by a flexible hinge region (H1), and another 
hinge (H2) separates repeats 23 and 24. FLNA can be cleaved by calpain at 
both H1 and H2. Repeat 24 is the self-association domain that mediates 
FLNA homodimerization. A secondary actin-binding domain of lower 
affinity is located in the rod-1 domain, whereas rod-2 does not interact 
with actin filaments, remaining free for interactions with multiple partner 
proteins. Indeed, the majority of FLNA interactions with receptors and 
signaling proteins are mediated by repeats 16–24. Repeats interacting 
with DRD2 and SST2, as well as FLNA scaffold region, are shown. Repeat 
20 contains a putative nuclear localization signal (NLS) and the residue 
serine 2152 target of PKA phosphorylation. The deletion of 41 amino 
acids between repeat 19 and 20, present in the splice variant var-1 of 
FLNA, is indicated.
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the translocation of phospholipase D1 to the plasma 

membrane and to stimulate its activity (Han et al. 2007). 

Beside phosphorylation, that remains the most important 

and the most studied system of cofilin regulation, 

other mechanisms have been described, such as cofilin 

ubiquitination, pH alterations, oxidation, binding to 

PtdIns(4,5)P2 or to tropomyosins, cortactin, CAP1/Srv2p, 

coronins and Aip1 (Bernstein & Bamburg 2010), that 

might contribute to finely tune cofilin activity.

Cofilin has been demonstrated to be involved in cancer 

development, progression, invasion and metastasis. Both 

an increase of cofilin expression and a reduction of cofilin 

phosphorylation has been found in human malignant 

cells, suggesting its potential use as diagnostic/prognostic 

tumor biomarker (reviewed in Shishkin et al. 2016).

Cytoskeleton role in pituitary tumors 
drug responsiveness

FLNA role in PRL-secreting tumors responsiveness to 
DRD2 agonists

FLNA involvement in DRD2 regulation is well established. 

FLNA repeat 19 directly binds DRD2 third intracellular 

loop (Lin et  al. 2001), with a strong impact on DRD2 

coupling to adenylate cyclase, receptor clustering and 

expression on the plasma membrane in human melanoma 

cells (Li et al. 2000, Lin et al. 2002) (Fig. 1).

Concerning PRL-secreting pituitary tumors, Peverelli 

et al. showed that the presence of FLNA is essential for DRD2 

expression and intracellular transduction of dopamine 

inhibitory signals (Peverelli et  al. 2012). The authors 

demonstrated that tumor tissues from patients resistant 

to DRD2 agonists treatment showed a reduced expression 

of both DRD2 and FLNA, by both immunohistochemistry 

and Western blot. Moreover, they showed by in vitro 

experiments that the absence of FLNA caused the loss of 

DRD2. Indeed, FLNA gene silencing or overexpression in 

primary cultured prolactinoma cells from drug-sensitive 

or -resistant tumors produced corresponding decrease 

or increase, respectively, of DRD2 (Peverelli et al. 2012). 

The molecular mechanism involved has been elucidated 

in MMQ, a rat cell model of prolactinoma endogenously 

expressing functional DRD2 and FLNA. In these cells, 

FLNA was required for both DRD2 targeting to the cell 

membrane and DRD2 protection against lysosomal 

degradation (Peverelli et al. 2012) (Fig. 2). In agreement 

Figure 2
The figure schematically represents the proposed model of cytoskeleton involvement in regulating DRD2 and SST2 in pituitary tumor cells, and the 
interplay between FLNA, cofilin and receptors in regulating tumor cell motility. (A) FLNA stabilizes DRD2 expression by preventing its lysosomal 
degradation, and functions as scaffold in mediating DRD2 signal transduction. (B) DRD2 activates ROCK/LIMK/cofilin pathway, promoting an increase of 
cofilin phosphorylation (inactivation), with consequent reduction of cell migration and invasion. (C) FLNA interaction with SST2 is required for SST2 
clusters formation and alignment along actin fibers, prevents SST2 lysosomal degradation upon agonist challenge and functions as scaffold for inhibitory 
G proteins allowing SST2 signal transduction. Activated SST2 recruits a protein complex that includes FLNA, RhoA, ROCK, LIMK and cofilin, promoting 
cofilin phosphorylation and a consequent inhibition of cell migration. (D) FLNA phosphorylation regulates SST2 signal transduction. cAMP/PKA pathway 
activation induces FLNA phosphorylation. P-FLNA constitutively binds SST2, and hampers its coupling with inhibitory G proteins after agonist activation. 
SST2, when bound to dephosphorylated FLNA, inhibits adenylyl cyclase activity, with a consequent reduction of PKA-mediated FLNA phosphorylation.
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with a role for FLNA in the control of DRD2 fate after 

endocytosis, it has been shown in HEK293 cells that  

FLNA regulates DRD2 internalization and recycling 

(Zheng et al. 2016).

These data support the notion that FLNA is a 

trafficking adaptor, which allows an efficient recycling of 

GPCRs, as also showed for chemokine receptor CCR2 and 

β2-adrenergic receptor (Pons et al. 2017), and a protection 

against degradation, as demonstrated for calcium-

sensing receptor (Zhang & Breitwieser 2005), calcitonin 

receptor (Seck et al. 2003), cystic fibrosis transmembrane 

conductance regulator (Thelin et al. 2007) and FcgammaRI 

(Beekman et al. 2008).

However, the role of FLNA in DRD2 regulation is not 

limited to guarantee the appropriate levels of the receptor 

on the plasma membrane, but extends to a scaffold 

function that enable DRD2 signal transduction. The work 

of Peverelli et al. demonstrated that in primary cultured 

human PRL-secreting cells, FLNA silencing prevented the 

inhibitory effects of DRD2 on PRL secretion and ERK1/2 

phosphorylation (Peverelli et  al. 2012). On the other 

hand, DA-resistant prolactinoma cells transfected with 

FLNA become able to respond to dopaminergic drugs 

(Peverelli et al. 2012).

Due to this function of FLNA in DRD2 expression 

and signaling in lactotrophs, the loss of FLNA expression 

may be one of the mechanisms involved in resistance 

of prolactinomas to dopaminergic drugs. Overall, these 

data reveal FLNA as a novel potential target to modulate 

the amount of active DRD2 at the cell membrane in  

PRL-secreting pituitary tumor cells (Fig. 2).

FLNA role in GH-secreting tumor responsiveness 
to SSAs

In GH-secreting tumors, SSTR2 is the main target of 

pharmacological therapy. A positive correlation of SSTR2 

expression with tumor response to medical therapy with 

SSA is well documented in literature, but resistance to SSAs 

has been observed also in the presence of SSTR2, suggesting 

post-receptor mechanisms involved (revised in Peverelli 

et  al. 2015, Gadelha et  al. 2017, Paragliola et  al. 2017, 

Marazuela et al. 2018). The efficacy of SSA can be reduced 

due to an altered expression of beta arrestins, scaffold 

proteins involved both in desensitization and signal 

transduction of several GPCRs, including SSTRs (Tulipano 

et al. 2004, Peverelli et al. 2008). Indeed, low expression of 

beta arrestin 1, but not beta arrestin 2, correlated with a 

reduced recycling rate of SSTR2 and a better biochemical 

response to SSA, both in vitro and in vivo (Gatto et  al. 

2013). Alterations in SSTRs signal transduction might 

be due to aryl hydrocarbon receptor-interacting protein 

(AIP) tumor-suppressor gene mutations (Daly et al. 2010), 

typically correlating with octreotide resistance (Ibáñez-

Costa & Korbonits 2017). Moreover, tumor resistance has 

been associated with alterations of the expression of Raf 

kinase inhibitory protein, which regulates MAPK signaling, 

a pathway involved in mediating the antiproliferative 

effects of somatostatin (Fougner et al. 2008).

Recently, a role for FLNA in both SSTR2 expression 

after prolonged agonist stimulation and signal 

transduction has been described. FLNA can directly bind 

SSTR2 first intracellular loop by its repeats 19–20 (Najib 

et al. 2012) (Fig. 1). In GH-secreting tumors tissues, FLNA 

protein is expressed at variable levels, with no correlation 

with SSTR2 expression (Peverelli et al. 2014), in striking 

contrast with DRD2 in prolactinomas (Peverelli et  al. 

2012). In addition, FLNA is not required for a proper 

localization of SSTR2 on the plasma membrane. Indeed, 

FLNA silencing in primary cultures of somatotropinomas 

does not affect SSTR2 intracellular localization on the 

plasma membrane neither its expression levels (Peverelli 

et  al. 2014), in agreement with the evidence that in 

melanoma cell lines SSTR2 membrane localization does 

not depend on the presence of FLNA (Najib et al. 2012).

At higher level of detail, single-molecule microscopy 

analysis recently showed that dynamic SSTR2–FLNA 

interactions control SSTR2 spatial arrangement and 

mobility at the plasma membrane and are required for 

the formation of SSTR2 clusters and their alignment 

along actin fibers in CHO cells (Treppiedi et al. 2018). In 

addition, the transfection of a dominant negative FLNA 

fragment (FLNA 19–20), which prevents FLNA–SSTR2 

binding (Peverelli et al. 2014), impaired the coupling of 

SSTR2 clusters to clathrin-coated pits, with a consequent 

decrease of SSTR2 internalization (Treppiedi et  al. 2018) 

(Fig. 3).

A role for FLNA in dictating the fate of agonist-

activated SSTR2, in analogy with DRD2, is supported by 

the observation that in GH-secreting pituitary tumor cells 

SSTR2–FLNA interaction is required to prevent activated 

SSTR2 lysosomal degradation and to maintain SSTR2 

stability after prolonged agonist stimulation (Peverelli 

et al. 2014).

At the same time, FLNA is required for SSTR2 signal 

transduction. In human GH-secreting tumor primary 

cultured cells, FLNA silencing prevented SSTR2-induced 

reduction of cyclin D1 and activation of caspase 3/7, 

required for the antiproliferative and pro-apoptotic 

effects of SSTR2 (Peverelli et  al. 2014). The FLNA 
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scaffold domain involving repeats 21–24 seems to play 

a paramount role in facilitating SSTR2 signaling. Indeed, 

overexpression of dominant negative mutant FLNA 

21–24, that does not abolish the interaction of SSTR2 

with endogenous FLNA, eliminated SSTR2 effects on 

apoptosis and ERK1/2 inhibition. These data suggest 

that the FLNA scaffold properties are required for the 

recruitment of signal transduction complexes to activated 

SSTR2. Another mechanism by which FLNA mediates 

SSTR2 antiproliferative action has been demonstrated in 

pancreatic neuroendocrine tumors, where a competition 

of FLNA with PI3K regulatory subunit p85 for the binding 

to SSTR2 occurs (Najib et  al. 2012), and where FLNA is 

required for SSTR2 expression and signaling (Vitali et al. 

2016). FLNA is also required to mediate the inhibitory 

effects of SSTR2 on cell migration and invasion in 

GH-secreting pituitary tumors (Peverelli et  al. 2018a), 

by mediating the recruitment to activated SSTR2 of 

components of the cofilin pathway, as discussed below.

Altogether, these data support the idea that FLNA 

functions as a molecular platform able to connect SSTR2 

with components of the machinery of intracellular 

trafficking and of the signal transduction cascade (Fig. 2).

Thus, low levels of FLNA in GH-secreting pituitary 

tumors, by causing loss of coupling of SSTR2 with 

downstream signal transduction molecules, might cause 

loss of responsivity of the patient to SS analogs even if in 

the presence of appropriate levels of SSTR2. Further studies 

in a large series of patients are required to investigate a 

possible correlation between FLNA expression levels and 

clinical behavior of GH-secreting tumors.

Despite the amino acidic sequence of SSTR2 required 

for FLNA binding is conserved in SSTR5, no data are 

found in literature about a FLNA role in regulating SSTR5. 

This receptor subtype is highly expressed in GH-secreting 

tumors and is the most expressed SSTRs in ACTH-secreting 

tumors. Since the multi-ligand SSA pasireotide represents 

the only pituitary-directed drug approved by regulatory 

authorities to treat Cushing’s disease, at least in Europe, 

it would be of great interest to evaluate a possible FLNA 

role in molecular mechanisms underlying the resistance 

to pasireotide, occurring in 50–70% of patients with 

Cushing’s disease (Guelho & Grossman 2015).

Cytoskeleton role in pituitary 
tumors invasiveness

Cofilin promotes NFPT invasiveness and is regulated 
by DRD2

Non-functioning pituitary tumors (NFPTs) frequently 

show local invasiveness that strongly reduces the success 

of transsphenoidal neurosurgery, the treatment of choice 

for this type of tumor, and increases the incidence of 

tumor recurrence (Meiji et  al. 2002, Losa et  al. 2008). 

No diagnostic molecular markers predictive of the 

invasive behavior and recurrence of NFPTs are available. 

Moreover, the molecular mechanisms underlying  

the invasive behavior of these mostly benign tumors  

are unknown.

Overexpression of cofilin has been associated with 

tumor cell proliferation, invasion and metastasis in 

astrocytoma (Nagai et al. 2011), breast (Wang et al. 2006, 

Zhang & Tong 2010), colon (Popow-Woźniak et al. 2012), 

pancreatic (Wang et al. 2015), prostate (Collazo et al. 2014) 

and gallbladder (Yang et  al. 2013) tumors, and cofilin 

dephosphorylation was observed in human malignant 

cells (Nagai et al. 2011).

Figure 3
Selected frames from a representative image sequence acquired with a total internal reflection fluorescence (TIRF) microscope showing a portion of the 
cell surface of a CHO cell co-expressing single molecules of SSTR2 (green) and FLNA (magenta) and actin filaments (blue). TIRF microscopy is a powerful 
tool to visualize cell plasma membrane associated events, such as lateral movements of receptor and protein–protein interactions. Thanks to the higher 
signal-to-noise ratio compared to epifluorescence, tracking algorithms can be applied to link detected particles in each frame of the acquired image 
sequence and reconstruct particles trajectories. This example shows the dynamics of a typical FLNA–SSTR2 interaction and the involvement of FLNA in 
SSTR2 clusters formation and internalization after SSTR2 stimulation with a specific agonist. Two cell surface SSTR2 molecules are indicated by arrows at 
the beginning of the image sequence (0.06 s). A FLNA molecule, indicated by the arrowhead, appears at the cell surface (0.36 s) and subsequently 
co-localizes with the SSTR2 particle at the bottom (0.48 s). The FLNA-SSTR2 complex gets in close proximity to the other SSTR2 particle (0.78 s) and a 
receptor cluster is then formed (1.32 s and 3.36 s). SSTR2 cluster disappears from cell surface (3.66 s), due to its internalization. Scale bar, 1 µm.
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A role for cofilin in promoting invasion of NFPTs 

has recently been demonstrated. Peverelli et  al. showed 

that overexpression of cofilin induced an increase of cell 

migration of human non-functioning pituitary tumor 

HP75 cells, an effect reproduced by the constitutively 

active cofilin phosphodeficient mutant S3A, but not 

phosphomimetic S3D (Peverelli et al. 2016). Moreover, the 

pro-migratory effect of active S3A cofilin was supported by 

its intracellular co-localization with F-actin in membrane 

protrusions in HP75 cells, in contrast to S3D cofilin, 

which is diffusely distributed in the cytoplasm.

These in vitro data are well supported by the 

analysis of cofilin phosphorylation in human NFPT 

tissues. Indeed, Western blot analysis demonstrated 

higher phosphorylated cofilin (P-cofilin)/total cofilin 

ratio in non-invasive than in invasive NFPTs, and 

immunohistochemistry analysis showed a low or absent 

P-cofilin staining in invasive tumors, in contrast with high 

immunoreactivity for P-cofilin found in non-invasive 

tumors (Peverelli et  al. 2016). From these experiments, 

cofilin emerges as a potential new biomarker predictive of 

NFPTs invasiveness and recurrence, which could provide 

additional information for prognosis influencing the 

management of patients and the use of adjuvant therapies.

DRD2 is expressed in most NFPTs (Vieira Neto 

et  al. 2015) but medical therapy with DRD2 agonists is 

still under debate (Delgado-López et  al. 2018). Beside 

antiproliferative activity (Colao et  al. 2000, Florio et  al. 

2008, Peverelli et  al. 2010, Gagliano et  al. 2013), DRD2 

was recently demonstrated able to exert anti-migratory 

and anti-invasive activity in cultured cells from NFPTs 

and HP75 cells (Peverelli et al. 2016). This unprecedented 

effect of DRD2 in a tumor cell model is a consequence 

of the DRD2 ability to modify the intracellular pool of 

P-cofilin. Indeed, in these cells, DRD2 agonist promoted 

a Rho-associated protein kinase ROCK-dependent 

LIMK phosphorylation, which in turn induced cofilin 

phosphorylation (Fig.  2). To date, DRD2 coupling with 

RhoA/ROCK signaling pathway has been described only 

in mouse striatal neurons (Deyts et  al. 2009, Galan-

Rodriguez et  al. 2017), but the molecular mechanism 

involved has never been investigated. As described below, 

FLNA may function as scaffold linking together GPCRs 

and components of the cofilin pathway (Peverelli et  al. 

2018a), suggesting that DRD2 effect on P-cofilin may 

be mediated by FLNA. However, G proteins coupled to 

DRD2, or beta arrestins, involved in DRD2 internalization 

(Kim et al. 2001) and able to activate Rho (Barnes et al. 

2005, Ma et al. 2012), may be potential molecular players 

connecting DRD2 to cofilin pathway.

These data first suggest a new role for DRD2 agonists 

in the control of invasive properties of NFPTs. Indeed, 

DRD2 actively participates in actin fibers remodeling by 

controlling cofilin activation, with important consequences 

on cell migration and invasion.

Despite DRD2 being the main target of PRL-secreting 

tumors therapy, no data about DRD2 agonists effects on 

invasion and cofilin phosphorylation in prolactinomas 

are available in literature. However, it was demonstrated 

that exposure of lactotrophs to dopamine stabilized the 

cortical actin cytoskeleton (Carbajal & Vitale 1997), 

consistently with an increase of P-cofilin.

Finally, the recent observation that the coupling of 

DRD2 to RhoA/ROCK pathway is specific of the short 

spliced version of the receptor (D2S) (Galan-Rodriguez 

et  al. 2017) deserves further considerations. This DRD2 

isoform differs from the long one (D2L) for the loss of 

29 amino acids in the third intracellular loop, resulting 

in different physiological functions. The differential 

expression of these two splice variants has been associated 

with the biological behavior of PRL-secreting tumors. 

Indeed, lower expression of D2S transcript correlated with 

resistance to dopaminergic drugs (Caccavelli et al. 1994, 

Wu et al. 2010) and tumor invasiveness (Wu et al. 2010), 

consistent with a reduced or absent coupling of D2L with 

cofilin pathway.

GH-secreting tumors invasiveness is regulated by 
SSTR2 through FLNA-mediated cofilin inactivation

Invasion of the cavernous sinus, reported in 20–50% of 

patients with GH-secreting tumors, represents a clinical 

issue since the outcomes of transsphenoidal surgery are 

less favorable for the lesions invading surrounding tissues 

(Sarkar et al. 2014, Anik et al. 2017).

Recently, an anti-migratory effect of SSTR2 in 

GH-secreting tumor cells has been discovered, in addition 

to its recognized antiproliferative and pro-apoptotic 

actions (Peverelli et al. 2018a). This previously unknown 

SSTR2 ability to actively participate to cytoskeleton 

remodeling is mediated by FLNA and cofilin.

The specific SSTR2 agonist BIM23120 inhibited 

migration and invasion on collagen IV in both primary 

cultured cells from human GH-secreting tumors and GH3 

cell line (Peverelli et  al. 2018a). It is of clinical relevance 

noting that these effects are reproduced by the two SSAs 

used in the pharmacological therapy of pituitary tumors: 

octreotide, with high preferential binding affinity for SSTR2, 

and pasireotide, with a broader spectrum of affinity for 

different receptor subtypes and high binding affinity to SST5.
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The investigation about the molecular machinery 

involved identified the RhoA/ROCK/cofilin pathway as 

a new intracellular signaling cascade activated by SSTR2 

(Peverelli et  al. 2018a). Indeed, in GH3 cells, selective 

SSTR2 activation by BIM23120 strongly activated RhoA 

and induced a ROCK-mediated increase of P-cofilin/total 

cofilin ratio, which was required for the anti-invasive 

effects of SSTR2, in analogy with the mechanisms 

employed by DRD2 to reach the same effect in NFPT 

cells (Fig. 2).

In addition, the phosphorylation status of cofilin 

appeared to be an important regulator of GH-secreting 

tumor cells motility, since transfection of constitutively 

inactive phosphomimetic S3D cofilin was able to reduce 

GH3 cell invasion independently from SSTR2 activation, 

whereas no effect was observed after transfection of S3A 

or WT cofilin.

Thus, S3D cofilin functions in a dominant negative 

manner in this type of tumor, in line with the observation 

that it may compete with endogenous phosphorylated 

cofilin for binding to specific phosphatases, with a 

consequent increase of cofilin phosphorylation status 

(Chua et al. 2003).

The effects of overexpression of active S3A cofilin 

depend on the cell line. Indeed, S3A cofilin increased 

NFPT, but not GH-secreting, cell invasion (Peverelli et al. 

2016, 2018a), supporting the hypothesis that multiple, 

cell-specific mechanisms, other than phosphorylation, 

are required to control the initial activation of cofilin 

(Song et al. 2006).

In line with the function of FLNA as scaffold for 

SSTR2 signal transduction molecules (Peverelli et  al. 

2014), the activation of cofilin pathway required FLNA, 

as demonstrated by both FLNA genetic silencing and 

transfection of FLNA dominant negative mutants 

preventing FLNA binding to SSTR2 (FLNA 19–20) 

or to signaling molecules (FLNA 21–24) (Peverelli 

et  al. 2018a). Moreover, by confocal microscopy and 

coimmunoprecipitation assays, the authors demonstrated 

that upon agonist challenge SSTR2 colocalized with 

FLNA and cofilin at the plasma membrane, but cofilin 

recruitment to SSTR2 was completely lost in cells silenced 

for FLNA.

These data suggest that activated SSTR2 recruits a 

macromolecular complex that through FLNA anchors 

SSTR2 to actin fibers and connects molecular components 

of the cofilin pathway, enabling a direct effect of SSTR2 on 

actin cytoskeleton dynamics (Fig. 2).

Intriguingly, the overexpression of FLNA19–20 and 

21–24 in GH3 cells reduced cell invasion, independently 

from SSTR2 selective stimulation, first revealing a role of 

these peptides as inhibitors of tumor cell invasiveness 

(Peverelli et al. 2018a).

The molecular mechanism involved might be related 

to the ability of FLNA to bind molecules that participate 

in the regulation of cell adhesion and migration 

processes. Indeed, the FLNA regions contained in both 

these dominant negative mutants are required for cell 

spreading and initiation of cell migration (Baldassarre 

et  al. 2009) and integrin binding (Kiema et  al. 2006, 

Ithychanda et al. 2009).

Mechanisms regulating FLNA expression and 
function in pituitary tumors

FLNA expression

The molecular events responsible for a low or absent 

FLNA expression in pituitary tumors remain an open 

question. A possible role for epigenetic silencing has 

been ruled out, at least in PRL-secreting tumors, since 

no methylation in the FLNA promoter regions was 

found neither in FLNA expressing nor in non-expressing 

prolactinomas (Peverelli et al. 2012).

Despite several germline FLNA mutations that lead to 

reduced or absent FLNA expression have been identified 

in human disease (see below), a possible presence of  

FLNA somatic mutations in pituitary tumors has never 

been investigated.

FLNA degradation is promoted by ubiquitination 

triggered by ASB2 proteins, subunits of E3 ubiquitin 

ligase complexes (Razinia et  al. 2011). No data about 

FLNA ubiquitination and degradation process in pituitary 

tumors are available, but it is of interest to note that 

alterations of ubiquitin system due to somatic mutations 

of ubiquitin-specific peptidase 8 (USP8) gene play a 

pathogenetic role in the development of ACTH-secreting 

pituitary tumors (Reincke et al. 2015).

FLNA splicing variants

It is known that FLNA mRNA is subjected to alternative 

splicing. Among the described splice variants, of interest 

is the FLNA splice variant-1 (var-1), containing an internal 

deletion of 41 amino acids between C-terminal part of 

repeat 19 and the N-terminal part of repeat 20 (residues  

2127–2167) (Pentikäinen et al. 2011) (Fig. 1). This deletion 

increased FLNA/integrins binding compared with 

nonspliced FLNA (van der Flier et  al. 2002), suggesting 

a general role for this alternative splicing in regulating  
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FLNA binding to its interaction partners. Since FLNA 

regions that directly interact with SSTR2 and DRD2 are 

located in repeats 19–20, an altered binding of FLNA var-1 

to these receptors can be hypothesized. Moreover, it is 

worth noting that the aminoacidic residues spliced out in 

FLNA var-1 include serine 2152, target of phosphorylation 

(see below), and the putative NLS (2146–2149), with 

possible important implications for FLNA functions.

FLNA var-1 is widely expressed at low levels, but up 

to now no data about the expression of this variant in 

normal and tumoral pituitary is known. It is possible to 

hypothesize that the alternative splicing of FLNA may 

have implications in pituitary tumors responsiveness to 

SSAs and DRD2 agonists.

Mutations in FLNs splice sites have been previously 

associated with human diseases, such as PVNH (Oegema 

et  al. 2013) and dilated cardiomyopathy (Begay et  al. 

2016), involving FLNA and FLNC, respectively.

FLNA phosphorylation

FLNA is target of phosphorylation of different kinases, 

such as PKA, PKC, CaM-kinase II, Pak1 (p21-activated 

kinase 1), RSK (ribosomal S6 kinase) and cyclin B1/Cdk1 

(Chen & Stracher 1989, Jay et al. 2004, Woo et al. 2004, 

Cukier et al. 2007, Zhang et al. 2012, Hammer et al. 2013).

This posttranslational modification critically 

modulates FLNA functions, since it has been implicated 

in cell migration (Woo et al. 2004, Ravid et al. 2008, Zhang 

et al. 2012, Hammer et al. 2013, Li et al. 2015, Sato et al. 

2016) focal adhesion formation (Sato et al. 2016), integrin 

binding (Chen et  al. 2009, Sato et  al. 2016), calpain-

mediated FLNA proteolysis (Zhang et  al. 1988, Chen & 

Stracher 1989, Wu et al. 1994, Jay & Stracher 1997, García 

et al. 2006, Bedolla et al. 2009) and chemokine receptor 2 

recycling (Pons et al. 2017).

The N-terminal region of FLNA contains a PKA site 

probably involved in F-actin interaction (Jay & Stracher 

1994), whereas the only PKA phosphorylation site in the 

C-terminal region of FLNA is serine 2152 in the repeat 

20 of FLNA (Jay et al. 2000) (Fig. 1). cAMP/PKA pathway 

activation induced FLNA phosphorylation at S2152 in 

different cell systems (Chen & Stracher 1989, Jay et  al. 

2000, 2004), and recently, the same effect has been 

reported in GH-secreting pituitary tumors.

Indeed, in both GH3 and GH4C1 cell lines and 

in primary cultured cells from GH-secreting pituitary 

tumors, forskolin increased, and SSTR2 agonist reduced, 

FLNA phosphorylation at S2152, with dramatic effects on 

FLNA binding to SSTR2 and SSTR2 signal transduction 

(Peverelli et al. 2018b) (Fig. 2). The authors demonstrated 

that the phosphomimetic S2152D FLNA mutant 

constitutively bound to SSTR2, but precluded inhibitory 

G proteins coupling to SSTR2, and completely abolished 

antiproliferative, pro-apoptotic and anti-migratory 

effects of selective SSTR2 activation by BIM23120 (Fig. 2) 

(Peverelli et al. 2018b). In this scenario, phosphorylation 

seems to be a mechanism to switch FLNA function from a 

scaffold that allows SSTR2 signal transduction, to a signal 

termination protein that hampers all SSTR2 antitumoral 

effects (Fig. 2).

In a broader perspective, further studies are needed 

to investigate whether this mechanism may control the 

activity of other GPCRs that bind FLNA. In the field of 

pituitary tumors, the study of the FLNA phosphorylation 

offers new insights into the molecular determinants 

underlying SSA resistance of pituitary tumors and suggests 

phosphorylated FLNA as a novel biomarker predicting 

GH-secreting tumor responsiveness to SSA.

Conclusions

Cell cytoskeleton proteins, clearly far from being only 

structural cell components, are critically involved in 

the complex molecular machinery that determines the 

biological behavior of pituitary tumors. In particular, the 

multifunctional protein FLNA appears to be a molecular 

platform that by facilitating the interplay with several 

partners orchestrates DRD2 and SSTR2 expression, 

localization, internalization, intracellular trafficking, 

signal transduction and signal termination.

Therefore, its proper function is a mandatory 

requirement for the antitumoral action of dopaminergic 

and somatostatinergic drugs in pituitary tumors.

The biological responses to these currently used 

drugs do not only include the well-established inhibitory 

effects on hormone secretion and tumor growth, but also 

include the ability to restraint tumoral cell migration 

and invasion. It is not surprising that FLNA acts as an 

intermediary between the receptors of these drugs on the 

cell surface and the actin filaments of the cell cytoskeleton, 

also allowing the recruitment of the components of the 

pathway of cofilin, a protein specifically involved in actin 

filaments remodeling.

In this scenario, further studies aimed to deeply 

investigate the mechanisms of regulation of FLNA and 

cofilin might suggest new pharmacological strategies for 

DA or SSA resistant and invasive pituitary tumors. One 

important direction for future studies is to determine 

a possible crosstalk between the different cytoskeletal 
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components identified as crucial in pituitary biology, 

including FLNA, actin, cofilin, keratins and E-cadherin.

Understanding the molecular basis underlying the 

different biological behaviors of pituitary tumors will be 

a key milestone in reaching a personalized approach to 

treatment of this disease.
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