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CD4 T cells that acquire cytotoxic phenotype and function have been repeatedly identified in humans, mice, and other species in
response to many diverse pathogens. Since CD4 cytotoxic T cells are able to recognize antigenic determinants unique from those
recognized by the parallel CD8 cytotoxic T cells, they can potentially contribute additional immune surveillance and direct effector
function by lysing infected or malignant cells. Here, we briefly review much of what is known about the generation of cytotoxic
CD4 T cells and describe our current understanding of their role in antiviral immunity. Furthering our understanding of the many
roles of CD4 T cells during an anti-viral response is important for developing effective vaccine strategies that promote long-lasting
protective immunity.

1. Introduction

CD4 T cells are well known for their helper roles including
those that promote antibody class switching, enhancing the
development of cytotoxic T lymphocyte (CTL) activity of
CD8 T cells and their ability to be functional memory
cells, as well as inducing the phagocytic activity of innate
immune cells to name a few (Figure 1). To perform these
important roles, CD4 T cells differentiate into unique
effector helper subsets characterized by their expression of
specific cytokines and transcription factors as outlined in
Figure 2. A lesserknown role for CD4 T cells, however, is
their ability to acquire cytotoxic activity and directly kill
infected, transformed, or allogeneic MHC class II+ (class II)
cells. Cytotoxic CD4 T cells (ThCTL) identified by cytotoxic
phenotype and/or function have been repeatedly identified
over the past three decades and shown to recognize a diversity
of pathogens. ThCTL were once thought to be an anomaly
associated with long-term in-vitro culturing of CD4 T cell
lines and clones generated from both humans [1–4] and
mice [5, 6]. However, ThCTL have also been identified in
the peripheral blood mononuclear cells (PBMCs) of humans
seropositive for chronic viral infections including human
cytomegalovirus (HCMV) [7–10], hepatitis viruses [11],
and human immunodeficiency virus 1 (HIV-1) [7, 12, 13].
ThCTL have also been identified in mice infected with
chronic viruses including lymphocytic choriomeningitis

virus (LCMV) [14] and gamma-herpes virus [15]. The
generation of ThCTL, however, is not just restricted to
conditions of chronic antigen stimulation or chronic viral
stimulation, as we have also identified ThCTL in the lungs of
mice 7 days following primary infection with influenza virus
A (unpublished results). Despite these observations, there
is still much we do not know about ThCTL, including the
specific events that occur during infection that induce the
acquisition of cytotoxic function, and whether ThCTL can
play a significant protective role during an antiviral immune
response. In particular, we can postulate that ThCTL could
aid in viral clearance and the fact that they and CD8 T cells
recognize distinct epitopes could make selection of viral vari-
ants much less likely. Moreover, ThCTL may have different
properties that make them less inflammatory including a
faster contraction and secretion of cytokines and chemokines
that promote repair, although this has not been established.
As we analyze the potential of ThCTL to enhance antiviral
immunity, we will want to evaluate these possibilities.

2. Class II-Restricted Cytotoxic Activity

Unlike CD8 CTL that recognize cognate antigen in the
context of ubiquitously expressed MHC class I molecules,
the cytotoxic function of ThCTL is restricted to class II
antigen-presenting cells (APCs) such as the professional
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Figure 1: The many roles of CD4 T cells in promoting antiviral
immunity multiple direct and indirect cellular interactions with
CD4 T cells promotes antiviral immunity. CD4 T cells can promote
affinity maturation and antibody class switching by B cells, enhance
antigen presentation and costimulation of dendritic cells (DC),
induce the phagocytic activity of macrophages, and promote the
development of CD8 T cells into cytotoxic T lymphocytes (CTLs)
and functional memory cells. A lesser known role for CD4 T cells
is the development of cytotoxic activity directed against infected
target cells.

APCs that include dendritic cells, macrophages, and B cells,
as well as a number of infected tissue types. One of the
most extensively studied ThCTL subsets in humans are those
generated against Epstein Barr Virus (EBV), a herpes virus
typically harbored in latent form by B cells. ThCTL have
been found to recognize both lytic and latent EBV class
II antigens presented by conventional and transformed B
cells [16–19]. ThCTL have also been identified in HIV-
1 seropositive individuals [7, 12], a lentivirus that infects
professional APCs and CD4 T cells that can also express
class II upon activation in humans but not in mice [20–
22]. CD4 T cell clones from macaques infected with
another lentivirus, Simian immunodeficiency virus (SIV),
were found to eliminate SIV-infected macrophages but not
infected CD4 T cells in-vitro [23]. Also, CD4 T cells from
the PBMCs of individuals vaccinated against poliovirus were
shown to kill poliovirus-infected macrophages and dendritic
cells [24]. Other nonprofessional APCs that harbor viruses
and support their replication can also express class II such
as the epithelial cells that line the respiratory tract that are
infected by viruses such as influenza and parainfluenza, as
well as endothelial cells and glial cells which can harbor CMV.
ThCTL clones derived from HCMV-seropositive individuals
were shown to kill glial cells expressing HCMV glycoprotein
B [25] and lympoblastoid cell lines expressing CMV antigen
[26].

In-vivo class II-restricted killing has also been demon-
strated in virally infected mice. First shown by Jellison et
al., splenocytes pulsed with LCMV GP61 class II peptide and
not irrelevant peptide were specifically eliminated in LCMV-
infected mice [14]. This was also shown for spleen cells
pulsed with influenza HA126 peptide in influenza-infected
mice [27], and spleen cells pulsed with West Nile Virus
(WNV) NS31616 peptide in WNV-infected mice [28]. Taken
together, the majority of studies that have measured the
cytotoxic activity of ThCTL have either used peptide-pulsed
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Figure 2: CD4 T cell effector subsets A CD4 T cell (Th) can
differentiate into unique effector subsets determined in part by the
cytokine milieu that is present when the cell encounters antigen.
Effector subsets are classified by the dominant transcription factor
in concert with the cytokines that they express. Th cells that develop
optimal cytotoxic activity (ThCTL) may be distinct from the other
identified effector subtypes.

transformed B cells or splenocytes as target cells, hence we
still know very little about the diversity of target cell types
that human or mouse ThCTL can recognize and kill. Also
unknown is whether there are key attributes of infected target
cells that promote ThCTL generation and what host and viral
factors favor their induction.

3. Role for ThCTL When CD8 CTL Are Impaired

One of the challenges of identifying ThCTL in situ is
that they are overshadowed and seemingly inhibited by
the presence of CD8 CTL which outnumber them [29,
30]. Thus it is not surprising that ThCTL have also been
identified in virally infected mice deficient in, or depleted
of, CD8 T cells. Stuller and Flaño showed specific killing
of spleen cells pulsed with γHV68 in gamma herpes virus-
infected mice depleted of CD8 T cells [15]. In beta-2
microglobulin KO (β2m−/−) mice that lack most class I MHC
expression and hence have very few CD8 T cells and NK
cells, ThCTL were identified in the respiratory tract during
Sendai parainfluenza virus infection [31], and also in β2m−/−

mice infected with LCMV [32, 33]. ThCTL can also arise
from naı̈ve TCR transgenic CD4 T cells transferred to a
lymphopenic host and kill adoptively transferred splenocytes
presenting cognate pepide (unpublished results). Moreover,
lymphopenia-induced ThCTL have been shown to eradicate
melanoma tumors in mice [34, 35], highlighting a potential
therapeutic role for ThCTL in antitumor immunity.
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ThCTL could also play a role in compensating for age-
related decline in CD8 CTL activity or when CD8 CTL
activity is impaired. Interestingly, Zhou and McElhaney
found that the cytolytic function of influenza-specific CD4
T cells was preserved in aged individuals at least 10 weeks
postvaccination, however, the CD8 CTL response was signif-
icantly impaired within 4 weeks postvaccination compared
to younger individuals [36]. Moreover, ThCTL may be found
to play a prominent role in antiviral responses to pathogens
that have evolved mechanisms to evade detection by CD8
CTL. Many viruses including HIV-1, HSV, and HCMV
employ mechanisms that inhibit normal MHC class I antigen
processing and presentation [37, 38], enhancing their ability
to evade detection by CD8 CTL. During the latent stage
of infection, EBV expresses a limited number of proteins
including Epstein-Barr Nuclear Antigen 1 (EBNA1) that is
expressed in B cells as well as the EBV-associated malignancy,
Burkitt’s lymphoma (BL). EBNA1 inhibits its own degrada-
tion and translation thus preventing presentation of EBNA1
antigens on MHC class I molecules [39, 40]. Interestingly,
EBNA1 does gain access to endogenous MHC class II
processing by the process of autophagy [16, 41]. EBNA1
contains a dominant EBV CD4 T cell epitope, and EBNA1-
specific ThCTL have been shown to kill BL cells [42, 43]. As
ThCTL have been repeatedly described in EBV carriers, one
may speculate they play a role in controlling EBV infection,
or control the development of EBV-associated malignancies.
Interestingly, the loss of EBV-specific functional CD4 T cells
has been found to correlate with the development of EBV-
associated lymphomas in some individuals [44–46].

4. ThCTL Cytotoxic Effector Mechanisms

The cytotoxic effector mechanisms reported thus far to be
utilized by ThCTL are shared with those used by CD8 CTL
including cytotoxic granule exocytosis and Fas/Fas ligand-
(FasL-) mediated apoptosis. The cytotoxic mechanism con-
sidered the dominant mechanism utilized by ThCTL is
the directed exocytosis of cytotoxic granules into a target
cell to induce apoptosis. Contained within these granules
are granzymes that are serine esterases that target various
substrates to initiate and mediate cellular apoptosis [47].
The granzymes gain intracellular access into target cells
with the help of the protein perforin that polymerizes to
form channel pores through the plasma membrane [48].
Perforin-mediated cytolytic activity has been suggested for
virus-specific ThCTL clones that recognized peptides derived
from EBV latent membrane proteins [49], HIV-1 gag protein
[50], poliovirus [24], and dengue virus capsid protein [51].
Granulysin, an enzyme with both cytolytic and antimicrobial
properties, is also found in cytotoxic granules in NK cells and
activated T cells in humans [52]. Granulysin was found to
play an important role in the killing of the yeast Cryptococcus
neoformans by ThCTL [53]. No homolog for granulysin
has been identified in mouse. The binding of Fas receptor
on target cells to FasL expressed on effector cells initiates
the formation of a death-inducing signaling complex and
induction of target cell apoptosis [54]. Expression of Fas
on target cells has been shown to lend them susceptible to

lysis by ThCTL [55]. Furthermore, a lack of Fas expression
on target cells impairs killing by ThCTL generated in mice
infected with LCMV [14, 33] and WNV [28]. A third
cytotoxic mechanism we should mention is the induction of
apoptosis via the binding of TNF-related apoptosis-inducing
ligand (TRAIL) to death receptors DR4 and DR5 expressed
on target cells. T cells have been shown to induce apoptosis
of bystander cells via this pathway, however, the relevance of
this apoptotic pathway for class II-mediated killing is not yet
known.

Differential regulation of cytotoxic gene expression in
CD8 T cells compared to CD4 T cells has been described.
Unlike CD4 T cells, single positive CD8 thymocytes express
perforin mRNA transcript [56] and likely maintain this
expression once they emigrate out into the periphery, while
CD4 T cells require activation through their T cell receptor
to induce perforin expression [57, 58]. CD4 T cells also
require TCR stimulation to upregulate their expression of
granzyme B [59]. We also found that naı̈ve mouse CD8 T
cells cultured with IL-2 for 72 hours expressed increased
granzyme B protein, however, CD4 T cells required the
addition of TCR activation (N. B. Marshall, S. L. Swain;
unpublished observations). Thus it is possible that CD8 T
cells are better primed for the immediate development of
cytotoxic function when in a naı̈ve state, while further stimuli
are necessary to convert CD4 T cells into killers. Whether the
CTL program in CD4 T cells once activated is maintained
into memory has not to our knowledge been reported, but
this is clearly of interest. If it is, it would support the concept
that the CD4 T cells that become cytotoxic represent a
separate polarized functional subset.

5. ThCTL Phenotype

Degranulation is required for perforin- and granzyme-
mediated killing of target cells. The core of the cytotoxic
granules contains the effector proteins granzymes and
perforin; the membrane of the cytotoxic granules contains
lysosomal-associated membrane glycoproteins (LAMPs)
including CD107a (LAMP-1) and CD107b (LAMP-2) [60].
During degranulation, the granule membranes merge with
the outer cellular membrane, thus the transient transfer
of LAMP proteins onto the surface of a cell is currently
considered to be a marker of degranulation. Nemes et al.
found that approximately half of HIV-1 gag-specific CD4 T
cells in infected individuals expressed CD107a [61]. Casazza
et al. identified CD107a+ perforin+ granzyme+ CD4 T cells
in HCMV-seropositive individuals with cytolytic activity
[62]. CD107a+ ThCTL have also been identified in mice
infected with gamma herpes virus [63] and in mice infected
with influenza virus A (unpublished results). ThCTL are
thus currently identified by the coexpression of perforin,
granzyme B, and surface expression of CD107a. One of the
challenges of identifying ThCTL in mice, however, is the lack
of a reliable antibody that can be used to stain for perforin
expression in mouse cells [58].

In individuals with chronic viral infections, ThCTL have
a phenotype consistent with that of differentiated effector T
cells including the loss of expression of the TNF receptor
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family member, CD27, and the costimulatory molecule,
CD28. However, CD28neg CD27neg perforin+ ThCTL were
identified in the PBMCs of HIV-1 seropositive individuals
[12], and in individuals with viral hepatitis [11]. In HCMV-
seropositive individuals, ThCTL that expressed granzyme B,
perforin, and CD107a were CD27neg and CD28neg [8, 62],
and they were further identified to coexpress the killer lectin-
like receptor (KLR) NKG2D [9]. Engagement of NKG2D
has been shown to activate the cytolytic activity of NK cells
and gamma delta T cells [64–66]. A role for NKG2D or
other KLRs in ThCTL cytotoxic activity is not yet known.
Consistent with the phenotype of ThCTL in humans, ThCTL
in mice infected with gamma herpes virus were also found
to be CD27neg [15]. EBV-specific CD4 T cells, however, were
both CD27+ and CD28+ in EBV-seropositive individuals
[67]. We have also found that ThCTL generated in the
lungs of mice during primary influenza virus A infection
are CD27+/− [68] and CD28+ (unpublished results). Thus
the expression of CD27 and CD28 by virus-specific ThCTL
is determined by the particular viral response which is also
true for CD8 T cells [69]. Also, the anatomical site in
which ThCTL are generated may help to determine their
unique signature phenotype as is the case for other types
of effector CD4 and CD8 T cells. For example, ThCTL
generated in the lungs of influenza-infected mice express
high levels of CD103, a receptor for epithelial cadherin,
which is not expressed by the CD4 T cells found in the spleen
and draining lymph nodes (unpublished results). Thus
phenotypic variation of ThCTL across different anatomical
sites and pathogenic infections is expected.

6. ThCTL Generation

Although CD4 T cells with cytotoxic activity have been
identified within Th0- [70–72], Th2- [73, 74], and Treg- [75]
effector T cell subsets, ThCTL are most often described as
being Th1-like, characterized by the production of IFN-γ
or as polyfunctional with production of some combination
of the cytokines IFN-γ, TNF-alpha, and IL-2 [8, 12, 28,
49, 51, 62, 76]. Th1-polarized or Th1-like CD4 T cells are
known to demonstrate cytotoxic activity [27, 43, 72, 77],
however, the expression of these cytokines is not required
for their cytotoxic function [14, 27, 31, 63]. Th1-polarizing
conditions include the presence of IL-12 and neutralizing
anti-IL-4 antibody which, respectively, have been shown to
enhance (IL-12) and inhibit (IL-4) cytotoxic activity. IL-
12 enhances cytotoxic activity by increasing expression of
perforin and granzymes through the activation of STAT4
[78–81]. Conversely, IL-4, which activates STAT6, has been
shown to inhibit the cytotoxic activity of in-vitro generated
ThCTL [72].

Th1-polarizing conditions, however, are not the optimal
conditions for generating ThCTL. CD4 T cells differenti-
ated under Th1-polarizing conditions do express perforin,
however, the transcript levels are still >20-times less than
that of activated CD8 T cells [82]. The cytotoxic activity
of CD4 T cells is further enhanced when polarized under
Th0 conditions in the presence of IL-2 [72]. For CD8
CTL, IL-2 has been shown to increase the expression of

perforin and granzymes and enhance cytotoxic activity [83,
84]. The activation of STAT5 by IL-2 has been shown to
enhance perforin expression in CD8 CTL [85], and also in
EBV-specific ThCTL clones [57]. IL-2 also strongly induces
the expression of the transcription factor, Eomesodermin
(Eomes) [86]. The transcription factors Runx3 and Eomes
promote CTL development and are sufficient to induce
IFN-gamma, perforin, and granzyme B expression [87, 88].
Eomes was required for the upregulation of granzyme B
expression in cytotoxic Th1 cells responding to staphylococ-
cal enterotoxin A in the presence of agonist antibodies to
CD134 (OX40) and CD137 (4-1BB) [89]. The requirement
for Eomes in ThCTL development and cytotoxic activity is
still not yet well established. IL-15, a cytokine structurally
similar to IL-2, binds the IL-2/IL-15 beta chain and common
gamma chain also activating STAT5 and was recently shown
to enhance the expression of granzyme B and perforin in
human CD28neg CD4 T cells [90].

By analogy to conditions inducing other T cell subsets, it
is likely that in addition to IL-2, other factors will be found
to act in concert to promote the development of ThCTL.
For example, heat shock protein 70 was shown to induce the
cytotoxic activity of CD4 T cells that was further enhanced
in the presence of IL-15, as well as IL-12 or IL-7 [91].
Costimulatory pathways may also play a role in inducing
optimal ThCTL. Costimulation through OX-40 and 4-1BB
was recently found to enhance the cytotoxic activity of Th1
cells [89]. Antigen dose and persistence may also affect
ThCTL generation. In influenza-infected mice, ThCTL are
only found in the lung suggesting maximum or repeated
antigen stimulation may be necessary. We have also found
that low antigen dose favors in-vitro ThCTL generation, but
with the addition of exogenous IL-2 [72].

7. Role of ThCTL in Antiviral Activities

There are few studies of the contribution of ThCTL in
immune protection. We found that perforin-dependent
cytotoxicity played a key role when in-vitro-generated Th1
effectors were introduced into unprimed mice infected
with high-dose influenza virus [27]. Moreover, when we
analyze the protective mechanisms used by Th1 memory
cells, we find that monoclonal memory cells drive the
selection of virus variants and that this mechanism is
perforin-dependent (T. M. Strutt, K. K. McKinstry, S. L.
Swain, unpublished results). Thus CD4-mediated cytotoxic-
ity seems to be one of several key mechanisms that contribute
to viral control and elimination. A key complication of
the multipronged strategy that CD4 T cells use to combat
pathogens is that individual mechanisms may be redundant
except when virus titers rise to very high levels. Thus, further
studies are needed to define the role of ThCTL in response to
different pathogens.

8. Summary

A subset of CD4 T cells can acquire cytotoxic activity during
an antiviral immune response and kill target cells presenting
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cognate viral antigen. A role for ThCTL is highlighted
when the generation and/or immune surveillance by CD8
CTL is impaired, which can occur when immune eva-
sion mechanisms are employed by the virus. Furthermore,
ThCTL may also play a role in controlling the development
of viral-associated malignancies including EBV-associated
lymphomas. ThCTL are identified phenotypically by their
expression of markers of cytotoxic granule exocytosis includ-
ing perforin, granzyme B, and surface expression of degranu-
lation marker, CD107a. We still know little about the factors
necessary to generate ThCTL, although TCR activation is
required for the upregulation of granzyme B and perforin
expression. The expression of cytotoxic mediators is further
enhanced by the addition of cytokines including IL-12, IL-2,
and IL-15. Although ThCTL often share characteristics with
Th1 cells, there is evidence that Th1-polarizing conditions
do not produce optimal killers, thus ThCTL may represent a
distinct CD4 T cell effector subset. We propose that CD4 T
cell-mediated cytotoxicity is one component of the antiviral
arsenal of T cells and will in time be seen as a valuable player
in antiviral responses where destruction of target cells is an
important aspect of protective immunity.
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