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Abstract

Testing large-scale distributed systems is a challenge, be-
cause some errors manifest themselves only after a dis-
tributed sequence of events that involves machine and
network failures. D3S is a checker that allows develop-
ers to specify predicates on distributed properties of a
deployed system, and that checks these predicates while
the system is running. When D3S finds a problem it pro-
duces the sequence of state changes that led to the prob-
lem, allowing developers to quickly find the root cause.

Developers write predicates in a simple and sequential
programming style, while D3S checks these predicates
in a distributed and parallel manner to allow checking
to be scalable to large systems and fault tolerant. By
using binary instrumentation, D3S works transparently
with legacy systems and can change predicates to be
checked at runtime. An evaluation with 5 deployed sys-
tems shows that D3S can detect non-trivial correctness
and performance bugs at runtime and with low perfor-
mance overhead (less than 8%).

1 Introduction

Distributed systems are evolving rapidly from simple
client/server applications to systems that are spread over
many machines, and these systems are at the heart of
today’s Internet services. Because of their scale these
systems are difficult to develop, test, and debug. These
systems often have bugs that are difficult to track down,
because the bugs exhibit themselves only after a certain
sequence of events, typically involving machine or net-
work failures, which are often difficult to reproduce.

The approach to debugging used in practice is for de-
velopers to insert print statements to expose local state,
buffer the exposed state, and periodically send the buffers
to a central machine. The developer then writes a script
to parse the buffers, to order the state of each machine in
a global snapshot, and to check for incorrect behavior.

This approach is effective both during development
and deployment, but has some disadvantages for a devel-
oper: the developer must write code to record the state
of each machine and order these states into a globally-
consistent snapshot. The developer must anticipate what
state to record; an implementation monitoring too much
state may slow down the deployed system, while moni-
toring too little may miss detection of incorrect behav-
ior. The developer may need to distribute the check-
ing across several machines, because a central checker
may be unable to keep up with a system deployed on
many machines—an application we worked with pro-
duced 500∼1000 KB/s of monitoring data per machine,
which is a small fraction (1∼2%) of the total data han-
dled by the application, but enough monitoring data as
a whole that a single machine could not keep up. Fi-
nally, the developer should have a plan to approximate
a globally-consistent snapshot when some processes that
are being checked fail, and should make the checking it-
self fault tolerant.

Although many tools have been proposed for simplify-
ing debugging of distributed or parallel applications (see
Section 7), we are unaware of a tool that removes these
disadvantages. To fill that need, we propose D3S, a tool
for debugging deployed distributed systems, which auto-
mates many aspects of the manual approach, allows run-
time checking to scale to large systems, and makes the
checking fault tolerant.

Using D3S, a developer writes functions that check
distributed predicates. A predicate is often a distributed
invariant that must hold for a component of the sys-
tem or the system as a whole (e.g., “no two machines
should hold the same lock exclusively”). D3S compiles
the predicates and dynamically injects the compiled li-
braries to the running processes of the system and ad-
ditional verifier processes that check the system. After
injection, the processes of the system expose their states
as tuples (e.g., the locks a process holds), and stream the
tuples to the verifier processes for checking. When the
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checking identifies a problem (e.g., two processes that
hold the same lock), D3S reports the problem and the se-
quence of state changes that led to the problem. By using
binary instrumentation, D3S can transparently monitor
a deployed, legacy system, and developers can change
predicates at runtime.

A key challenge in the design of D3S is to allow the
developer to express easily what properties to check, yet
allow the checking to use several machines so that the
developer can check large systems at runtime. A second
challenge is that D3S should handle failures of check-
ing machines. A third challenge is that D3S should han-
dle failures of processes being checked—the checkers
should continue running without unnecessary false neg-
atives or positives in the checking results. Using the lock
example, suppose a client acquires a lock with a lease
for a certain period but then fails before releasing the
lock, and after the lease expires another client acquires
the lock. The predicate that checks for double acquires
should not flag this case as an error. To avoid this prob-
lem, D3S must handle machine failures when computing
snapshots.

D3S’s design addresses these challenges as follows.
For the first challenge, D3S allows developers to orga-
nize checkers in a directed-acyclic graph, inspired by
Dryad [21]. For each vertex, which represents a compu-
tation stage, developers can write a sequential C++ func-
tion for checkers of this stage; the function can reuse type
declarations from the program being checked. The state
tuples output by the checkers flow to the downstream ver-
tices in the graph. During the checking, a vertex can be
mapped to several verifier processes that run the check-
ers in parallel; in this way D3S can use multiple machines
to scale runtime checking to large systems. Within this
framework, D3S also incorporates sampling of the state
being checked, and incremental checking. These features
can make the checking more lightweight.

For the second challenge, D3S monitors verifier pro-
cesses. When one fails, D3S starts a new verifier pro-
cess and feeds it the input of the failed process. Be-
cause checkers are deterministic, D3S can re-execute the
checkers with the same input.

For the third challenge, the verifier processes re-
move failed processes from globally-consistent snap-
shots before checking the snapshots. D3S uses a logical
clock [24] to order the exposed state tuples, and has a
well-defined notion of which processes are in the snap-
shot at each timestamp. For the previous lock example,
D3S will not report a false positive, because the lock state
acquired by the first client is removed from the snapshot
at the time when the second client acquires the lock.

We have implemented D3S on Windows and used it
to check several distributed systems. We were able to
quickly find several intricate bugs in a semi-structured

storage system [26], a Paxos [25] implementation, a Web
search engine [37], a Chord implementation [35, 1], and
a BitTorrent client [2]. We also found that the burden of
writing predicate checkers for these systems was small
(the largest predicate we used has 210 lines of code; oth-
ers are around 100 lines), and that the overhead of run-
time checking was small compared to the system being
checked (the largest overhead is 8% but for most cases it
is less than 1%).

The main contributions of this paper are: the model
for writing predicate checkers; the runtime that allows
real-time checking to scale to large systems, that con-
structs global snapshots to avoid unnecessary false nega-
tives and positives, and that handles failures of checking
machines; and, the evaluation with 5 distributed systems.

The rest of this paper is organized as follows. Sec-
tion 2 details D3S’s design. Section 3 explains how D3S
computes global snapshots. Section 4 describes our im-
plementation of D3S on Windows. Section 5 presents an
evaluation with several distributed systems. Sections 6
reports on the performance of D3S. Section 7 relates D3S
to previous work. Section 8 summarizes our conclusions.

2 Design

We describe the design of D3S (see Figure 1). D3S com-
piles a predicate into a state-exposer library and a check-
ing library. Using binary instrumentation, D3S dynami-
cally injects the state exposer into the running processes
of the system. The state exposers produce tuples de-
scribing the current state of interest, and partitions the
stream of tuples among the verifier processes. The ver-
ifying processes either run on dedicated machines or on
the same machines that the system runs on. The veri-
fying processes order tuples globally, and evaluate the
predicate on snapshots of tuples. If a predicate fails, D3S
reports to the developer the problem and the sequence of
state changes that led to the problem.

The rest of this section describes the design of D3S in
more detail: how developers write predicates, how D3S
inserts them into a deployed system, how D3S allows
for parallel checking and stream processing for checking
predicates in a scalable and efficient manner.

2.1 Writing predicates

To illustrate the ease with which a developer can write
a predicate, we will describe a predicate written in C++
that we have used to check the distributed lock service
in Boxwood [29]. This distributed lock service allows
clients to acquire multiple-reader single-writer locks. A
lock can be held in either Shared or Exclusive
mode. A critical property of the service is that the
lock holders must be consistent, i.e., either there is one
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Figure 1: Overview of D3S.

Exclusive holder and no Shared holders, or there
is no Exclusive holders. Because clients cache locks
locally (to reduce traffic between the clients and the lock
server), only the clients know the current state of a lock.

Figure 2 shows the code that the developer writes
to monitor and check the properties of Boxwood’s dis-
tributed lock service. The developer organizes the pred-
icate checking in several stages and expresses how the
stages are connected in an acyclic graph; the developer
describes this graph with the script part of the code. In
the example there are only two stages that form a single
edge with two vertices (V0 and V1). (Later examples in
this paper have more stages.)

The vertex V0 represents the system and the state it
generates. The developer describes the state after a
change as a set of tuples; in the example, each tuple
has three fields of types: client:ClientID, lock:LockID
and mode:LockMode. These types come from the header
file of the lock service code, and the developer can reuse
them in the script and C++ code. The tuples together ex-
press the locks and their state that a lock client is holding.

The vertex V1 represents the computation of the lock
predicate. As the script shows, V1 takes as input the out-
put of V0 and generates a set of tuples, each of which has
one field conflict:LockID. This vertex is marked as final
to indicate it is the final stage of the checker.

The developer specifies the computation to check the
predicate at vertex V1 by writing C++ code, again reusing
the types of the system being checked. In the example,
the computation is the class LockVerifier, which is de-
rived from the Vertex class and which the developer ties
to V1 using a template argument. The developer must
write a method Execute. The D3S runtime invokes this
method each time it constructs a global snapshot of tu-
ples of the type that V0 produces for a timestamp t; how
the runtime produces sequences of global snapshots is
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Figure 2: (a) Checking code. (b) graph and checker execution.

the topic of Section 3. In the example, Execute enumer-
ates all tuples in the snapshot and tracks the number of
clients holding an Exclusive and Shared lock for
each lock ID. It outputs the IDs of locks that are in con-
flict at timestamp t.

As shown, the developer can check distributed proper-
ties by writing just sequential code that processes states
in a centralized manner and reuses types from the sys-
tem being checked. How the runtime transmits the state
of multiple clients, collects the state of the clients into a
globally-consistent snapshot, and checks them in parallel
is hidden from the developer. This design achieves D3S’s
design goals of expressiveness and simplicity.

2.2 Inserting predicates

To change what properties of a system to check, a de-
veloper can insert predicates when the system is run-
ning. The developer uses D3S’s compiler to generate
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C++ code from the predicates for a state exposer and a
checking logic module. The output of the compiler is
two dynamically-linked libraries, one for each module,
that can be attached to a running process.

D3S then disseminates and attaches the generated state
exposer to every process of the system. When loaded,
the state exposer rewrites the binary modules of the pro-
cess, so as to add new functions that will execute ei-
ther before or after the functions to be monitored (Sec-
tion 4 explains the details). These new functions con-
struct tuples in V0’s output from memory states. For
the script in Figure 2, the state exposer adds two func-
tions after ClientNode::OnLockAcquired and
ClientNode::OnLockReleased, respectively, to
obtain the acquired and released lock states. These func-
tions construct tuples of the form ($0→m NodeID, $1,
$2), in which $i is the ith parameter to the original
function (for member functions in C++, $0 is the “this”
pointer). The state exposer will add or delete the con-
structed tuples in V0’s output, instructed by the addtu-
ple and deltuple keywords. The developer is allowed to
embed C++ code in the script to construct tuples for V0

in case the script needs more than the function param-
eters. However, we find that in most cases (all systems
we checked), exposing function parameters is sufficient
to monitor state changes.

The state exposer can start outputting tuples imme-
diately after it adds all monitoring functions. Alterna-
tively, it can start on a certain time instructed by the
developer. Due to network delay, different instances of
state exposers may not start at exactly the same time.
This causes no problems, because the D3S verifiers will
wait with running the checkers until they can construct a
global snapshot.

The checking library contains the programs for ver-
tices other than V0. D3S attaches them to all verifiers,
and the verifiers start to process incoming tuples, run
the checkers when a global snapshot is ready, and stream
outputs to their next stages.

When a developer inserts a new predicate checker
while the system is running, the checker may miss vi-
olations that are related to previous unmonitored history.
For instance, in the lock example, if the verifier starts af-
ter a client has acquired a lock, the verifier does not know
that the client already has the lock and a related violation
may go undetected.

2.3 Dataflow graphs

More complex predicates than the lock example will
have more complex dataflow graphs of verifiers. D3S
runs vertices to process timestamp t when the input data
from upstreaming vertices are ready to construct a con-
sistent snapshot for t. After the snapshot is processed, the

output data is also labeled with t and transmitted to all
downstream vertices. When all vertices has executed for
t, the predicate is evaluated for t, and D3S produces the
checking result from the output of the final vertex. Ver-
tices can work on different timestamps simultaneously
in a pipeline fashion, transparently exploiting the paral-
lelism in the predicate.

Predicates are deterministically calculated from the
exposed states. When failures happen in intermediate
vertices, after recovery D3S can re-execute the same
timestamp from the original exposed states in V0 (V0

can buffer exposed states of the timestamp, until the fi-
nal stage finishes). This scheme allows D3S to handle
verifier failures easily.

2.4 Partitioned execution

The D3S runtime can partition the predicate computation
across multiple machines, as in Figure 2(b), with min-
imal guidance from the developer. Using the lock ser-
vice example, to guarantee the correctness of predicate
checking when the runtime partitions the computation,
the tuples describing the same lock should be checked to-
gether. Similar to the Map phase in MapReduce [12], the
developer expresses this requirement through the Map-
ping method, which maps output tuples to a virtual key
space. The runtime then partitions the key space dynami-
cally over several machines and runs the computation for
different key ranges in parallel. Tuples mapped to a key
are checked by the verifier that takes that key as input.
In the example, the first and the second machine will run
Execute for lock 0 ∼ 5 and 6 ∼ 10, respectively. Each
vertex can have an independent mapping function. D3S
uses a default hash function when there is no mapping
function in a vertex.

A notification mechanism (details in Section 4) tells
verifiers the current key assignments of their downstream
vertices so that verifiers can transmit outputs to the veri-
fiers that depend on them. If a verifier fails, its responsi-
ble input range will be taken over by other remaining ver-
ifiers. By changing the assignment of key spaces to veri-
fiers on demand, D3S is free to add and remove verifiers,
or re-balance the jobs on verifiers. This design achieves
D3S’s design goals of scalability and failure tolerance.

2.5 Stream processing and sampling

Often, there are only minor variations in state between
consecutive timestamps. In such cases it is inefficient to
transmit and process the entire snapshots at every times-
tamp. For this reason D3S supports stream processing, in
which vertices only transmit the difference in their out-
put compared to the last timestamp, and check the state

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association426



�

��������������������	
����
�
�������	�������
�
��������������
�
������
�������� �������������	����	���������
� ������ ���������	��
!	���	����
���������	
����

�	���������"����	���������������#�$%�	�������#�$%�

	&�
����#�$%���������
�	�������������"����	�������������#�$%�	�������#�$%�

	&�
����#�$%���������
�
������'���	(�������
�
���	��	)*����%����
�������
��������
��+)	���	�����������,
��	���
��-�������
������
�������������������������	
����
�����������
������������������������	����	�.��/�
��������������
�����0�������
�&	
���������
����������������������1���	���.�������
�&�	���	)���/�
��������������������������	����	�2.������	�
������	��&��	
���&�	���/�
��������������
������������
�����&�

������1���	����������	����	����/�
��������
���������
������������������
�����������������
�������
��������
��+)	���	,����	������������	����-�
	��������
��������������������������������
�����������	
���
����������������
	��������	����	�.��/�
��������������
�����0�
	���&	
���������
����������������������1���	��/���	���3��������/�
������������������
	���&�	���	)������������/�
����������������������������.���������..��+415�3456��+4+1+����7�$�����/�
������������������
	��������	����	�2.������8������	�
������	��&��	
���&�	���/�
��������������
������������
�����&�

������1���	�������
������2�
	��������	����	����/�
��������
�/�
������5���	����
������
�
���	��	)*�� �%����
�������
��������
��+)	���	�����������,
��	���
��-�������
������
�������������������������������	
��	�
��������
��	��������
��������������������.��/�
��������������
�����0�������
�&	
���������
����������������������2.�������
�&�	���	)���&��������	����	/�
��������������
������������
�����&�

��� ��1���	������9�,�',4+�(�:+����/�
��������
����������
��;	<�=��������
��������1���	�-�������
�������������	������/�����������	��������	�������������	�
��������	
��������


���
��������
�/�

Figure 3: The predicate that checks the key range coverage
among Chord nodes.

incrementally. There is an optional ExecuteChange func-
tion to specify the logic for incremental processing.

To illustrate the use of ExecuteChange and dataflow
graph with more vertices, we will use Chord DHT in i3
service [35] as another example (Figure 3). Section 5.4
presents the checking results of this example.

We check the consistency of its key ranges among
Chord nodes. Every Chord node exposes the ring infor-
mation as tuples with three fields: pred, self and succ,
which indicate the chordID of the node’s predecessor,
itself and the successor, respectively. According to the
i3-Chord implementation, the key range assigned to the
node is [pred, self). The key range predicate computes
the aggregate key range held by current nodes, relative
to the entire ID space. In ideal case where the Chord ring
is correct, this value should be 100%. Below 100% in-

dicates “holes” while above 100% indicates overlaps in
key ranges.

For the key range predicate in Chord, we use three ver-
tices V0 → V1 → V2. V0 represents state exposer that
outputs states from Chord nodes. Every state represents
the neighborhood of a Chord node in the ring. The sec-
ond vertex V1 calculates the sum of range sizes in Exe-
cute from received states from all Chord nodes.

ExecuteChange shows incremental execution. It re-
ceives only the difference of two consecutive snapshots,
and uses its last output as the base of execution. This
avoids most of the redundant transmission and process-
ing on unchanged states, reducing the overhead in both
state exposers and verifiers.

To make the Chord checker scalable, we partition the
execution of V1 to multiple verifiers, each verifier taking
only a subset of the states. Therefore, we need a third
vertex V2 to aggregate the outputs from all verifiers in
V1, i.e., the sum of key ranges in each partition. It cal-
culates the relative range coverage as final output of the
predicate. We use one verifier in the final vertex, and
the verifier communicates with verifiers in V1. This al-
gorithm is essentially a 2-level aggregation tree; more
levels will further improve scalability and pipelining.

Beside stream processing, developers can use sam-
pling to further reduce overhead. Developers can check
only sampled states in each vertex. To achieve this, D3S
allows verifiers to take as input only a portion of the key
space for some vertices. These vertices process only the
states that are mapped to covered keys. Tuples mapped
to uncovered key space are dropped at the producer side.
In addition, developers can check only sampled times-
tamps. This can be done because D3S can stop checking
in the middle of system execution and restart predicate
checking at later global snapshots.

With sampling, D3S can use a few verifiers to check a
large-scale system in probabilistic manner. For instance,
to check the consistency of Chord key range, D3S can
randomly sample a number of keys at different time and
check that each sampled key has exact one holder (see
Section 5.4), instead of checking the entire key space
all the time. This approach makes the checking more
lightweight, at the risk of having false negatives (i.e.,
missed violations).

2.6 Discussion

The two examples check predicates for safety properties
only. For liveness properties, which should eventually
be true, a violation often implies only that the system is
in fluctuating status, rather than a bug. Similar to our
previous work [27], a D3S user can specify a timeout
threshold plus stability measures in the predicate to filter
out false alarms for liveness violations.
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In theory, D3S is capable of checking any property
specified on a finite length of consecutive snapshots. To
be used in practice, D3S should impose negligible over-
head on the system being checked, and be capable of
checking large-scale systems. Based on our experience
in Section 6, the overhead of the system is small in most
cases, because we need to expose only states that are rel-
evant to the predicate, and can omit other states. As a
result, a state exposer consumes a tiny fraction of CPU
and I/O compared with actual payloads of the system.

The scalability of checking depends on the predicate
logic. When the predicate can be partitioned (as shown
in our examples), a developer can add more verifiers to
check larger systems. For such cases, the dataflow pro-
gramming model effectively exploits parallelism within
and among stages. However, some properties cannot be
partitioned easily (e.g., deadlock detection that looks for
cycles in the lock dependency graph). In such cases,
the developer must write more sophisticated predicates
to improve the scalability. For instance, the developer
can add an early stage to filter locks that changed state
recently, and have the final stage check only the locks
that have been in the acquired state for a long time. By
this means the final verifier avoids checking most correct
locks, while still catching all deadlocks.

3 Global Snapshots

This section explains how D3S constructs global snap-
shots and how accurate the predicates are under failures.
Because of machine failures, snapshots might be incom-
plete, missing the state of failed machines, which may
lead to false positives and false negatives when the sys-
tem is reconfiguring.

3.1 Snapshots

We model the execution of the system being checked as a
sequential state machine that traverses a sequence of con-
sistent snapshots with global timestamps. Assume we
have an increasing timestamp sequence T = {t0, t1, ...},
where ti ∈ T is a timestamp for i ∈ N. The membership
at timestamp t is the set of live processes at t, denoted by
M(t). For a process p ∈ M(t), we use Sp(t) to denote
its local state at timestamp t. A consistent snapshot at t,
denoted by π(t), is the collection of states from all live
processes at t, i.e., π(t) =

⋃
p∈M(t) Sp(t). With this no-

tation, the system goes through a sequence of consistent
snapshots, denoted by Π = {π(ti), i = 0, 1, ...}. D3S
checks properties defined over these global snapshots.

To construct a global snapshot we need a global times-
tamp, which D3S provides in a standard manner using
a logical clock [24]. Each process maintains a logical
clock, which is an integer initialized to 0. Each time
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Figure 4: Predicate checking for consistency of distributed
locks. Two processes A and B expose their states in the form
of {(ClientID, LockID, Mode)} (E for Exclusive and S for
Shared). T is the sequence of timestamps and π(t) is the
snapshot for timestamp t. Given a failure detector that out-
puts membership for every timestamp, the verifier can decide
whether a complete snapshot is obtained for checking.

a process reads its logical clock (e.g., to timestamp its
state on a state change), it increases the logical clock by
1. Each time the process sends a message, it attaches its
logical clock to the message. On receiving a message, the
receiving processes sets its logical clock to the maximum
of its local logical clock and the clock attached to the
message. This way the D3S runtime preserves happens-
before relationships, can order all tuples in a consistent
total order, and can construct snapshots.

Figure 4 illustrates the memberships and snapshots
of the lock checking example. Process A and B are
lock clients being checked, and they expose their state
changes. Every state change produces a set of (ClientID,
LockID, Mode) tuples that represent all current locks the
process holds. The state changes happen at disjoint log-
ical times {2, 10, 16} and {6}, respectively. In addition,
process B crashes at logical time 12.

If process p exposes two set of tuples at timestamp
t1 and t2, for any timestamp t between t1 and t2,
Sp(t) = Sp(t1). For example, SA(6) = SA(2) =
{A,L0, Shared}. Therefore, given M(6) = {A,B},
the snapshot π(6) = SA(6) ∪ SB(6) = SA(2) ∪ SB(6).

3.2 Predicates

We model a predicate as a function defined over a fi-
nite number of consecutive snapshots. The number of
consecutive snapshots needed is called the window size
of a predicate. Specifically, a predicate P with win-
dow size n is a function evaluated for every timestamp
in T , P (ti) = F (π(ti−n+1), π(ti−n+2), ..., π(ti)) for
some n ≥ 1, where F is a user-specified function. With
this definition, a predicate can depend only on a recent
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time window of snapshots, and thus can be checked in the
middle of system running. In our experience, all useful
properties can be checked with only a recent time win-
dow of snapshots.

In the lock example, the checked property is that at any
time ti, there is no conflict between read and write locks.
This property is checked by a predicate over the cur-
rent snapshot, i.e., LockConsistency(ti) = F (π(ti))
in which F checks whether ∀l ∈ LockID, the set
{(c, l′,m) ∈ π(ti)|l

′ = l,m = Exclusive} contains
at most one element (Figure 2 (a) implements this func-
tion). So LockConsistency is a predicate with window
size 1. Predicates with multiple consecutive snapshots
are useful when specifying historical properties.

3.3 Correctness of predicate checking

To verify a predicate correctly, D3S needs a complete
snapshot, which contains the state of all processes that
constitute the system at a timestamp. To construct a
complete snapshot π(t), D3S must know the member-
ship M(t), and the local states Sp(t) for all p in M(t),
but M(t) can change due to failures.

D3S relies on a failure detector to establish M(t). We
model the failure detector with a query interface, similar
to most failure detector specifications [8]. A verifier can
query for any timestamp t in T , and the failure detector
will return a guess on M(t), denoted by M ′(t), which
can be incorrect.

The verifier uses the failure detector as follows. It
queries the failure detector and receives M ′(t). Then,
the verifier waits until local states Sp(t) for all p ∈ M ′(t)
have been received. Then, it constructs snapshot π(t) as⋃

p∈M ′(t) Sp(t). The verifier knows it has received Sp(t)
either when it receives it directly or when it receives two
consecutive states Sp(t1) and Sp(t2) (t1 < t < t2). In
the latter case the verifier infers that Sp(t) = Sp(t1).

If we would use this procedure unmodified, then D3S
has a problem when p does not expose any state for a
long time (i.e. t2 À t1 ). In that case, D3S is unable
to construct π(t) for any t between t1 and t2, because it
doesn’t know if Sp(t1) is the latest state from p. There
are several ways to deal with this problem; we describe
the solution we have implemented. The state exposer in-
jected to p sends periodically p’s current timestamp to
the verifier. D3S uses this heartbeat as both failure detec-
tor and the notification of p’s progress. Thus the verifier
receives a train of timestamps of heartbeats intermixed
with the exposed state from p. When computing π(t),
D3S uses the latest received Sp(t1) as long as the largest
timestamp received from p exceeds t. If the failure detec-
tor declares that p has crashed at t2 through a heartbeat
timeout, for all t between t1 and t2, π(t) uses Sp(t1).
From t larger than t2, D3S excludes all p’s state.

Figure 4 provides an example. B exposes its lat-
est state at 6 and then crashes at 12. Thus, π(10) is
SA(10) ∪ SB(6) (after waiting for more than the time-
out threshold for new state update from B). π(16), how-
ever, will exclude B, since D3S will decided that B has
departed from the system.

3.4 Practical implications

D3S guarantees that as long as M ′(t) = M(t). In other
words, if the failure detector outputs correctly for times-
tamp t, the corresponding snapshot will be complete. If a
snapshot is incomplete, then a checker can produce false
positives and false negatives. In practice, there is a trade-
off between quick error alerts and accuracy.

To handle process failures that can lead to incomplete
snapshots, D3S must wait before constructing a snapshot.
A larger waiting time Tbuf results in larger buffer size to
buffer state and delays violation detection. A too small
Tbuf , however, can result in imprecise results due to in-
correct membership information. Tbuf thus yields a knob
to control the tradeoff between performance and accu-
racy.

The appropriate value of Tbuf depends the failure de-
tector D3S uses, and should be larger than the failure de-
tector’s timeout Tout. We derive Tout as follows. For
machine-room systems, there is usually a separate mem-
bership service that monitor the machine status using
lease mechanisms [18]. We can use the membership ser-
vice (or our own heartbeats) in failure detector. Tout is
set as the grace period of the lease (resp. heartbeat in-
terval) plus message delay. For wide-area applications
such as DHT, Tout is determined by the specification of
the application that declares the status of a node from its
neighborhood. For predicates that does not rely on strict
event orders, e.g. some runtime statistics, Tbuf can be
any values that is practically reasonable.

As an example, consider cluster storage system that
we have checked (see details in Section 5.1). The system
is designed for in machine-room environment, and the
largest observed message delay between state exposers
and verifiers is less than 350ms. The keep-alive message
in the system runs every 1000ms. Thus, Tbuf should be
at least 1000ms + 350ms, and we use 2000ms. This guar-
antees that the verifiers always check on consistent snap-
shots.

4 Implementation

We have implemented D3S on Windows. When compil-
ing a predicate script, D3S extracts the types of the tuples
and the actions of monitoring functions. It then generates
the corresponding C++ source code, which contains the
definitions of the tuple types, vertex classes, monitoring
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functions, and the checking code in the predicates. D3S
compiles the source code into a state exposer DLL and a
checking DLL.

The state exposer and the logical clock in D3S uses
WiDS BOX [19] to instrument processes being moni-
tored. BOX is a toolkit for binary instrumentation [20];
it identifies the function addresses through symbol in-
formation, and rewrites the entries of functions in code
module to redirect function calls. When injecting a DLL
into a process, BOX loads the DLL into the process’s
address space, and redirects function calls that are inter-
posed on to callbacks in the DLL. Because BOX provides
rewrites code atomically, it does not need to suspend the
threads in the process during the instrumentation.

Through the callbacks for application-level functions,
the state exposer copies the exposed states into an inter-
nal buffer. States that are used by predicates are emit-
ted to the verifiers, whereas all others are omitted. D3S
buffers the states to batch data transmission. It waits un-
til the collected states exceed 500 bytes, or 500 ms has
elapsed after the last transmission.

The D3S runtime also interposes on the socket APIs
for sending and receiving messages. In those callbacks,
D3S updates the logical clock. D3S also adds 8 addi-
tional bytes to each message for the logical clock and
some bookkeeping information, same as [27, 15].

To make the logical clock relate to real time, D3S di-
vides a second in 1,000 logical ticks. Every second D3S
checks the value of the logical clock, and if hasn’t been
updated a 1,000 times, D3S bumps the clock to 1,000.
This gives a convenient way to specify timeout of the
monitored processes (i.e., Tout in Section 3.4).

D3S uses reliable network transmission between state
exposers and verifiers, and also among verifiers when
computation graph has multiple levels.

D3S uses a central master machine to manage a par-
titioned key space. Each verifier periodically reports its
recently verified timestamp to the master. A verifier is
considered to be failed when it doesn’t report within a
timeout period. In such case the master re-arranges the
partition of key space to make sure that every key is ap-
propriately covered. The new partition is then broadcast
to all related state exposers and verifiers. By this means
the appropriate states will arrive at the new destinations.

5 Experience with Using D3S

To evaluate the effectiveness of D3S, we apply it to five
complete, deployed systems, including systems that are
based on production-quality code. Table 1 summarizes
these checked systems, line of code in predicates (LoP),
and the results, which are obtained within one month.
For each of these systems, we will give sufficient de-
scriptions of their logic and properties, and then report

the effectiveness of D3S with our debugging experience,
in terms of both the benefits and lessons we gained.

Unless otherwise specified, experiments are per-
formed on machines with dual 2 GHz Intel Xeon CPU
and 4 GB memory, connected with 1 Gb Ethernet and
run Windows Server 2003. For some systems we injected
failures to improve testing coverage.

5.1 PacificA

PacificA [26] is a semi-structured distributed storage
system. It shares with BigTable [9] the property that
large tables are segmented into small pieces, which are
replicated and distributed across a cluster of commodity
servers. The goal of this project is to explore different
design choices (e.g., semantics-agnostic vs. semantics-
aware in replication), and develop a semi-structured stor-
age system with better combination of these trade-offs.

PacificA has been developed for more than one year,
and is fairly complete with around 70,000 lines of code.
It is a good example of a complex system that builds on
top of well-specified components, including: two-phase
commit for consistent replica updates, perfect failure de-
tector on storage nodes, replica group reconfiguration to
handle node failures, and replica reconciliation to rejoin
a replica. When combining these components , the whole
system can have complex message sequences with bugs
that are hard to detect and analyze. However, each com-
ponent must be working correctly with predictable be-
haviors and invariants. Therefore, we use D3S to check
individual components against their specifications.

Based on specifications, there are several invariants
for every major component. These invariants include
consistency among replicas, data integrity after recovery,
and consistent membership view across a replica group.
Violating an invariant may eventually leads to data loss
or replica inconsistency. We specify these invariants as
predicates in D3S, and check a daily used deployed in-
stance of PacificA. The deployment stores a social graph
data for a social network computing platform. It uses
8 servers as storage nodes, and another server as fron-
tend for clients. Clients running in 4 other machines fre-
quently query and update edge data stored in PacificA
tables to complete graph computation tasks, which usu-
ally last from a day to a week. The size of original social
graph data is 38 GB, while during the execution the inter-
mediate tables exceed 1 TB in size. A PacificA machine
can have 40 MB/s throughput at the peak time. We use
another 3 machines to run verifiers, and have detected 3
bugs. We will explain in detail one bug in replica group
reconfiguration. The bug violates the primary invariant
(see page 3 of [26]) during failures.

In PacificA, the basic unit of data is a slice (100 MB
data chunk). A slice is replicated in three storage nodes
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Application LoC LoP Predicates Results

PacificA (Structured storage) 67,263 118 membership group consistency; replica consistency 3 correctness bugs

MPS (Paxos implementation) 6,993 50 consistency in consensus outputs; leader election 2 correctness bugs

Web search engine 26,036 81 unbalanced response time of indexing servers 1 performance problem

i3-Chord (DHT) 7,640 72 aggregate key range coverage; conflicting key holders availability and consistency

libtorrent (BitTorrent client) 36,117 210 neighbor set; downloaded pieces; peer contribution rank 2 performance bugs; free riders

Table 1: Benchmarks and results
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Figure 5: PacificA architecture and the bug we found.

(SliceServers), one replica being the primary and the
other two being secondaries. A simplified architecture
is shown in Figure 5. The primary (labeled with P) an-
swers queries and forwards updates to the secondaries
(labeled with S). These replicas monitor each other with
heartbeats. When noticing a failure, the remaining repli-
cas will issue requests to a MetaServer (master of Slice-
Servers) for reconfiguration, and may ask to promote
themselves as the primary if they think the primary is
dead. The primary invariant states that at any given
timestamp, there cannot be more than one primary for
a slice. This is because multiple primaries can cause po-
tential replica inconsistency during updates.

We expose replica states with tuples of the form (Sid,
MachineID, {P / S}) (Figure 5), and check the number
of P’s for every Sid (slice identifier). Because replicas of
the same slice should be checked together, we map tuples
to their Sid.

As expected, the predicate found no violations in nor-
mal cases, since the system reconfigures only after a fail-
ure. To expand test coverage, we randomly injected fail-
ures to SliceServers and MetaServer and then recovered
them. After dozens of tries, D3S detected a violation in a
slice group, which had two primary replicas. By studying
the sequence of states and the events that led to the vio-
lation, we determined that, before MetaServer crashed, it
accepted a request and promote the replica to be the pri-
mary. After crash and recovery, the MetaServer forgot
the previous response and accepted the second replica’s
request, which resulted in the second primary. This vi-
olation should have been avoided by MetaServer’s fail-
ure tolerance mechanism, which logs accepted requests

to disk, and restores them at next start. However, the
code uses a background thread to do batch logging, so
the on-disk log may not have the last accepted request.
To do it correctly, the MetaServer must flush the log be-
fore it sends a response.

D3S helped in detecting the bug in the following ways.
First, the bug violates a distributed property that can-
not be checked locally. D3S provides globally-consistent
snapshots that make checking distributed properties easy.
Second, contrast to postmortem log verification, D3S en-
forces always-on component-level specification check-
ing, and catches rare-case bugs with enough information
to determine the root cause. Without this predicate, we
may still have noticed the bug when conflicting writes
from two primaries would have corrupted the data. How-
ever, from this corruption it would have been difficult to
determine the root cause.

We also applied D3S to an old PacificA version which
has two data races. It took the developers several days to
resolve them. With D3S, these bugs were caught in sev-
eral hours of normal use, and state sequences provided
much better hints of the root cause.

5.2 The MPS Paxos Implementation

Paxos [25] is a widely used consensus algorithm for
building fault-tolerant services [29, 6]. Despite the exist-
ing literature on Paxos, implementing a complete Paxos-
based service is non-trivial [7]. We checked MPS1,
a Paxos-based replicated state machine service used in
production. MPS provides many features over the base
Paxos protocol, e.g., it uses leader election for liveness,
and perform state transfers to allow a new node to catch
up with others. These additional features are necessary
for ensuring progress of the service, because Paxos itself
guarantees only safety but not liveness of agreement.

MPS provides an API that application code can invoke
to execute arbitrary commands, with the guarantee that
all nodes execute the same sequence of commands. We
deploy MPS on 5 nodes, the typical configuration in clus-
ter environment, and make each node invoke the API in-
dependently. For checking consensus protocols, testing

1MPS is an anonymous name of a Paxos-based service system de-
veloped by Microsoft product team.
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Figure 6: Leader election in Paxos implementation and the
snapshots of states that lead to the bug.

with failure cases is important. Therefore we inject a fail-
ure module along with the state exposer library, which
can fail the MPS process.

An important invariant is safety and liveness of agree-
ment: all nodes execute identical sequence of commands
with sequence number always increasing by 1 (safety),
and the system can make progress as long as there exist
majority of nodes (liveness). To check this invariant, D3S
exposes every executed command in each node with its
sequence number. After days of running, D3S detected
no violations. We did find a careless pointer error in a
rare code path, thanks to failure injection.

Then we turned our attention to the leader election
implementation of MPS—this part of the service was
less well specified and proven by the development team,
compared to their implementation of the Paxos proto-
col. A node can be in one of the four status: Leader,
Follower, Promoting and Learning. In normal
case, one Leader broadcasts incoming commands to
Followers using the Paxos protocol (Figure 6.(1)).
Promoting and Learning are only transient status.
Promoting is used when leader is absent, and the pro-
moting node needs to get majority’s approval to become
the new leader (Figure 6.(2) and (3)). A Learning
node is out-of-date in execution of commands, and is ac-
tively transferring state from another node (Figure 6.(4)).
Leader election should make the system always go back
to the normal case after failures. Therefore, we wrote a
predicate to check the status of nodes and catch persistent
deviation from the normal case.

After running for hours with randomly injected fail-
ures, this predicate detected a persistent abnormal status,
as shown in (5) ∼ (7). We name the five nodes as A ∼ E
in counterclockwise order. After A, B, E crash and re-
cover, both C and D are promoting themselves (in (5)).
Only D gets majority’s approval (A, E and itself). C
is approved by B but the messages to A and E are lost
(in (6)). Later when D’s promoting request arrives at
B, B happens to be out-of-date compared with D, so
B switches to Learning (in (7)). By design, C will
become Follower when it learns the new leader. But
now C considers A, E are dead and only keeps request-
ing B, which is a learning node and will just ignore any
requests except state transfers. Therefore, C can be stuck
in Promoting for a long time. Although this bug does
not corrupt the Paxos properties right away, it silently ex-
cludes C from the group and makes the system vulnera-
ble to future failures. This bug was confirmed by people
working on the code.

This is a fairly complicated bug. Although the system
has correct external behavior, D3S helps us discover the
bug with always-on checking of internal states. This bug
had been missed by log verification. We guess the rea-
son might be that, when the abnormality shows up for
a short time during a long execution, it is hard to detect
bugs with postmortem analysis. Another lesson is that
less rigorously specified components (e.g., leader elec-
tion) are harder to get right. Therefore, it is productive
for testers to write and install “ad-hoc” predicates on-the-
fly to probe the suspected components, as D3S enables.

5.3 Web search engine

Another research group in our lab has developed an ex-
perimental search engine that powers an online vertical
search [37]. It has a frontend server which distributes
queries to a set of backend index servers and collects re-
sults. The index is partitioned among the index servers
using the partition-by-document scheme. Each index
server further partitions its responsible index into five
tiers, according to document popularity. Only the first
tier is kept in memory. Given a query of terms, an index
server first retrieves the documents from the first tier. If
there are 100 hits, the index server returns, otherwise it
tries the next tier, and so on. The system is deployed in
250 servers, each having 8 GB memory and 1 TB disk.
We use a dedicated server to run as a verifier, which com-
municates with all index servers and the frontend. The
frontend keeps the index servers by replaying query logs
from a commercial search engine.

Developers of the system were not satisfied about the
performance. They had statistics on total latency for
queries, but they wanted to know what contributed to the
latency of the critical path, and how much time was spent
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Figure 7: Load imbalance in the web search engine.

on each tier. We used D3S to interpose on every function
in the critical path (e.g., fetching documents from each
tier, intersecting lists of terms, and sorting the results),
and exposed the execution time and the related terms in
the query. This provided detailed performance data. We
wrote predicates to probe different aspects of the latency
to catch abnormal queries.

One predicate we wrote checked load balance. For
each index tier, the predicate calculates Pr = (max −
mean)/mean, using maximum and mean of the latency
in the tier among index servers. Larger Pr means less
balance of the load. Since the frontend needs to collect
results from all the index servers, unbalanced load may
result in a performance degradation, since the slowest in-
dex server determines the final response time.

Figure 7 shows the values of Pr of 500 selected
queries over 10 index servers. For the queries whose Pr
is greater than one (i.e., max > 2 × mean), there are
always one or two index servers running much slower
than others. Further diving into the latency measures
with other predicates (e.g., the number of visited tiers
in different index servers), we found that simple hashing
does not balance the load across the index server uni-
formly, and the imbalance degrades performance signifi-
cantly when the query has more than one terms.

D3S is useful in terms of flexibility and transparency.
Adding logs to the search engine code and performing
postmortem analysis of these logs will yield the same
insights. However, it is more work and doesn’t allow
refining predicates on-the-fly.

5.4 Chord

DHTs are by now a well-known concept. There are avail-
ability measures of DHTs, in terms of convergence time
and lookup success rate in case of failures. However,
the routing consistency in DHTs is less well understood.
Routing consistency means that a lookup returns the cor-
rect node holding the key, which may not happen when
nodes fail or the network partitions [11]. For example,
a DHT put for a key may store the key at a node that
after healing of the network isn’t the successor or isn’t
even in the successor list, and the key becomes unavail-
able. Similarly, it may happen that several nodes think
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Figure 8: i3-Chord experimental results.

they are the successor of a key, which could lead to in-
consistencies. Because availability and consistency are
tradeoffs in distributed systems [17], a better study on
DHTs should measure these two issues altogether.

We ran an experiment with 85 Chord nodes on 7
servers. We ran the i3 [1] Chord implementation, which
we ported to Windows. We used the predicate in sec-
tion 2 (Figure 3) to check the aggregate key ranges held
by the nodes, with 4 verifiers for the first stage and 1
verifier for the final stage. This predicate checks a nec-
essary but insufficient condition for the integrity of the
DHT logical space. If the output value is below 100%,
then the system must have “holes” (i.e., no node in the
system believes it is the successor of a key range). This
indicates unavailability. On the other hand, an output
value above 100% indicates overlaps (i.e., several nodes
believe they are the successor).

In i3, a Chord node maintains several predecessors and
successors, and periodically pings them for stabilizing
the ring. We used two configurations for the number of
predecessors, one is 3 and the other is 8. The number
of successors is set to the same value as the number of
predecessors in either configuration. We crashed 70% of
nodes and then monitored the change of the aggregated
key ranges.

Figure 8a shows the results of the two configurations.
The 3-predecessor case has unpredictable behavior with
respect to both consistency and availability. The total
key range value oscillates around 100% before converg-
ing. The 8-predecessor case does better, since it never
exceeds 100%. The swing behavior in the 3-predecessor
case results from nodes that lose their predecessors and
successors. Such nodes use the finger table to rejoin
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the ring. This case is likely to result in overlapping key
ranges. With more predecessors and successors, this case
happens rarely.

With the total key range metric, the “holes” and “over-
laps” can offset each other, and therefore when the met-
ric is below 100%, there could be overlaps as well. To
observe such offsets, we added a predicate to sample 256
random points in the key space, and observed the number
of nodes holding these points. Figure 8b shows a snap-
shot taken at the 25th second. Despite that the total key
range never exceeds 100% for the 8-predecessor configu-
ration, overlaps occur (see key serial number 200), which
indicate inconsistency. The figure also shows a snapshot
when both inconsistency and unavailability occur in the
3-predecessor configuration.

D3S allows us to quantitatively measure the tradeoffs
between availability and consistency in a scalable man-
ner using D3S’s support for a tree of verifiers and for
sampling, and reveals the system behavior at real time.
Although we did these experiments in a test-lab, repeat-
ing them in a wide-area large-scale deployment is prac-
tical. For a wide-area online monitoring system, D3S’s
scalable and fault-tolerant design should be important.

5.5 BitTorrent client

We applied D3S to libtorrent [2] release 0.12, with 57
peers running on 8 machines. The peers download a file
of 52 MB. The upload bandwidth limit varies from 10
KB/s to 200 KB/s in different experiments, and peers fin-
ish downloading in 15 minutes to 2 hours. The bugs we
found (and acknowledged by the developers) illustrate
the use of real time monitoring with D3S predicates.

Similar to Chord, BitTorrent exhibits complex behav-
ior which is difficult to observe in detail. We start with
investigating key properties of the running system with
predicates in order to gain some insights. The first prop-
erty we looked at was the peer graph, because the struc-
ture of graph is important to dissemination of data.

We exposed the neighbor list from every peer, and
used a two-stage predicate to form an aggregation tree,
similar to the total key range predicate in Chord. At the
final stage, we obtained the entire graph in real time. We
printed the graph to a console and kept refreshing it, in
order to observe the graph changes. we found an ab-
normality right away: sometimes a peer had more than
300 neighbors (recall that we used only 57 peers). We
inspected the code and found that, when adding a new
IP address into the neighbor list, libtorrent did not check
if the same IP address already existed. This resulted in
duplicated IP addresses in neighbor list, and degraded
performance because peers may had less choices when
downloading from neighbors. We fixed the bug and con-
tinued with subsequent experiments.
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Figure 9: Piece distributions over peers when finishing 30%
downloading.

After the peer graph looked correct, we started an-
other predicate to compute how pieces are distributed
over peers. Every time when a peer downloads a piece,
the predicate exposes the piece number along with its
own ID. The predicate aggregates the vector of available
pieces in every peer, again using a two stage aggregating
tree. With simple visualization (i.e., printing out the dis-
tribution of pieces at real time), we observed that some
pieces spread much faster than the others. Figure 9 il-
lustrates a snapshot of the numbers of pieces over peers.
Some pieces are distributed on all peers in a short time,
while other pieces make less progress. This was not what
we expected: pieces should have been selected randomly
and therefore the progresses should not have differed that
dramatically. Thus, we suspected that peers are converg-
ing on same pieces. We examined the code and found
that the implementation deterministically chose which
pieces to download: for pieces with the same number of
replicas, all clients chose replicas in the same order. We
fixed the bug and collected the data again. As shown in
Figure 9, the progress of pieces is much closer to random
selection.

After fixing these bugs, we implemented algorithms
that detect free riders who disproportionally download
compared to upload. Our purpose was to further ex-
pand the use of D3S from debugging-focused scenarios
to online monitoring. Of the 57 peers, the upload band-
widths of Peer 46∼56 were limited to 20 KB/s, while
other peers’ upload bandwidths remained 200 KB/S. All
peers had unlimited download bandwidth. Peer 46∼56
were more likely to be free riders, compared to the other
peers [33]. We compute contributions of the peers using
predicates that implement the EigenTrust algorithm [22].
The predicates collect the source of every downloaded
piece in each peer, and calculate EigenTrust in a central
server. As shown in Figure 10, the predicates success-
fully distinguished peers via their contributions.

5.6 Summary of debugging experience

Using examples we have shown that D3S helps find non-
trivial bugs in deployed, running systems. The effective-
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Figure 10: The contributions of peers (free riders are 46∼56).

ness of D3S depends on whether or not we have useful
predicates to check. When a system already has spec-
ifications and invariants (e.g., at the component level),
which is common for complex, well designed systems,
D3S is effective, because the predicates can check the in-
variants. Writing the predicates is mostly an easy task for
developers, because they are allowed to use sequential
programs on global snapshots. When a system doesn’t
have a clear specification (e.g., in performance debug-
ging), D3S is more like a dynamic log-collecting and
processing tool, which can help zooming into specific
state without stopping the system. This helps develop-
ers probing the system quickly, and eventually identify
useful predicates.

D3S is not a panacea. Component-level predicates are
effective for debugging a single system with a good spec-
ification. However, when debugging large-scale web ap-
plications running in data centers, this approach is some-
times insufficient. First, data center applications often
involve a number of collaborative systems that interact
with each other. When unexpected interactions happen
that lead to problems (e.g., performance degradation),
developers have little information about which system
they should inspect for the problem. Second, these sys-
tems evolve on daily basis, and sometimes there are no
up-to-date specifications to check. These issues are what
our on-going research on D3S aims to address.

6 Performance Evaluation

This section studies the performance of D3S, using the
machine configuration described at the beginning of Sec-
tion 5.

We first evaluate overhead of checking on a running
system. This overhead is caused by the cost of expos-
ing state, and depends on two factors: the frequency of
exposing state and the average size of the state exposed.
To test the overhead under different conditions, we use
a micro benchmark in which the checked process starts
various number of threads. Each thread does intensive
computation to push CPU utilization close to 100%. Fig-
ure 11 shows the overhead. We can see that the state ex-
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Figure 11: Performance overhead on system being checked.

poser is lightweight and in general the overhead is around
2%. The largest overhead happens when the process has
2 threads of its own, which maps perfectly to the dual-
core CPU. State exposer brings one additional thread,
and thus increases the thread scheduling overhead. In
this case the overhead is still less than 8%.

These results are consistent with all the systems
checked. Systems that are neither I/O nor CPU inten-
sive (e.g., Chord and Paxos) have negligible overhead;
BitTorrent and Web search have less than (< 2%) over-
head. The impact to PacificA varies according to system
load (Figure 12). We created 100 slices and we vary the
number of concurrent clients, each sends 1000 random
reads and writes per second with average size 32KB per
second. The overhead is less than 8%. A PacificA ma-
chine generates in average 1,500 snapshots per second,
and consumes at the peak time less than 1000 KB/s addi-
tional bandwidth for exposing states to verifier. On aver-
age, exposing states uses less than 0.5% of the total I/O
consumption. These results encourage adopting D3S as
an always-on facility.

Second, we evaluate the impact on performance of
PacificA when we start new predicates. We start check-
ing all predicates in Section 5.1 at the 60th second. Be-
fore that there is no state exposer injected to PacificA.
Figure 13 shows the total throughput seen by clients.
Given that PacificA itself has fluctuating throughput due
to reorganizing disk layout (see [26]), there is no visible
impact on performance when starting new predicates.

In addition, we evaluate the failure handling of D3S.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 435



7.21%

4,38%

3.94%

4.20%

7.24%

0

30

60

90

120

150

180

2 4 6 8 10

ti
m

e
 (

se
co

n
d

s)

# of threads

without

with

Figure 12: Performance overhead on PacificA with different
throughput.

0

100

200

300

400

500

600

700

800

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

#
 o

f 
re

q
u

e
st

s 
p

e
r 

se
co

n
d

Time (seconds)

Figure 13: Throughput of PacificA when a predicate starts.

In the above PacificA testing, we start 3 verifiers and kill
one at the 30th second. After the failure is detected, the
uncovered key range are repartitioned. Figure 14 shows
how the load of the failed verifier is taken over by the
remaining verifiers. The fluctuation reflects the nature
of PacificA, which periodically swaps bulk data between
memory and disk.

7 Related Work

Replay-based predicate checking. People have pro-
posed to check replayed instances of a distributed system
for detecting non-trivial bugs that appear only when the
system is deployed [27, 16]. D3S addresses one critical
weakness in that replaying the entire execution of a large-
scale system is prohibitively expensive. The advantage
that replay brings is to repeatedly reproduce the execu-
tion to aid debugging, and the role of the online checking
is to accurately position and scope the replay once a bug
site is reported. We see replay as a key complementary
technology to online predicate checking. The ultimate
vision is to use online checking to catch violations, and
then enable time-travel debug of a recent history with
bounded-time replay.
Online monitoring. P2 monitor [34] is designed for on-
line monitoring of distributed properties, which is close
to ours in spirit. However, D3S differs in a number of
ways. First, D3S allows expressing predicates on global
snapshots of states, while P2 monitor requires its user to
take care of collecting and ordering the monitored states.
Second, D3S works on legacy systems, while P2 monitor

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

#
 o

f 
sn

a
p

sh
o

ts
 p

e
r 

se
co

n
d

time (seconds)

verifier 1

verifier 2

verifier 3

Figure 14: Load when verifier 1 fails at 30th second.

is confined to systems built with OverLog language [28].
Finally, D3S can tolerate failures from both the system
being checked and itself.
Log analysis. There is a collection of literature that re-
lies on logs for postmortem analysis, including analyzing
statistics of resource usage [3], correlating events [5],
tracking dependency among components [10, 14] and
checking causal paths [32]. Using a specific and com-
pact format, the work in [36] can scale event logging to
the order of thousands of nodes. Fundamentally, logging
and online predicate checking all impose runtime over-
head to expose information for analysis. D3S is, at a
minimum, an intelligent logger that collects states in a
scalable and fault-tolerant way. However, the D3S’s ad-
vantage in exposing new states on-the-fly and allowing
a simple programming model can significantly improve
debugging productivity of developers in practice.
Large-scale parallel applications. Parallel applications
generally consist of many identical processes collectively
for a single computation. Existing tools can check thou-
sands of such processes at runtime and detect certain
kinds of abnormalities, for example, by comparing stack
traces among the processes [4, 30], or checking message
logs [13]. In contrast, D3S works for both identical and
heterogeneous processes, and is a general-purpose pred-
icate checker.
Model checking. Model checkers [23, 31, 38] virtual-
ize the environments to systematically explore the sys-
tem space to spot a bug site. The problem of state explo-
sion often limits the testing scale to small systems com-
pared to the size of deployed system. Similarly, the test-
ing environment is also virtual, making it hard to identify
performance bugs, which require a realistic environment
and load. D3S addresses the two problems by checking
the deployed system directly.

8 Conclusion and Future Work

Debugging and testing large-scale distributed systems is
a challenge. This paper presented a tool to make debug-
ging and testing of such systems easier. D3S is a flexible
and versatile online predicate checker that has shown its
promise by detecting non-trivial correctness and perfor-
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mance bugs in running systems.
As future work, we are exploring several directions.

We are pushing forward our vision of combining online
predicate checking and offline replay. We are also ex-
ploring tools to debug data center applications that are
composed of many systems so that a developer can eas-
ily find bugs due to unexpected interactions between the
systems.
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