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d-aminolevulinic acid, the precursor of porphyrin biosynthesis has been used to induce the endogenous synthesis of the
photosensitiser protoporphyrin IX for photodynamic therapy in the treatment of various tumours. The aim of this work was
to characterise the d-aminolevulinic acid transport system in the murine mammary adenocarcinoma cell line LM3 using 14C-d-
aminolevulinic acid, to finally improve d-aminolevulinic acid incorporation in mammalian cells. Our results showed that d-
aminolevulinic acid is incorporated into these cells by two different mechanisms, passive diffusion which is important at the
beginning of the incubation, and active transport. Specificity assays suggested that the transporter involved in d-aminolevulinic
acid incorporation is a BETA transporter, probably GAT-2.
British Journal of Cancer (2002) 87, 471 – 474. doi:10.1038/sj.bjc.6600481 www.bjcancer.com
ª 2002 Cancer Research UK

Keywords: d-aminolevulinic acid; membrane transport; photodynamic therapy; BETA transporters

Photodynamic therapy (PDT) is a non-thermal technique for indu-
cing tissue damage with light following administration of a light-
activated photosensitising drug which can be selectively retained
in malignant or diseased lesions relative to normal adjacent tissue
(Dougherty et al, 1978; Hsi et al, 1999). In addition, the fluores-
cence of photosensitising chromophores has been exploited for
the visualisation and diagnosis of early stage superficial cancers
(Kriegmair et al, 1996).

The exogenous administration of d-aminolevulinic acid (ALA) is
a relatively new approach in PDT (Kennedy et al, 1990; Fukuda et
al, 1993). ALA is a natural precursor of protoporphyrin IX (PPIX)
which is an intermediate in the haem biosynthetic pathway. Since
conversion of PPIX to haem is a rate-limiting step, the exogenous
administration of ALA can induce significant intracellular levels of
PPIX, which is an effective photosensitiser.

The success of so called ALA-based PDT will depend on the effi-
cient incorporation of ALA into cells as well as an efficient
convertion into porphyrins.

ALA-induced PPIX accumulation has been shown to be prefer-
entially greater in certain tumoural cells (Navone et al, 1988)
primarily due to the reduced activity of ferrochelatase, the enzyme
responsible for the conversion of PPIX into haeme (Van Hillesberg
et al, 1992) and a relative enhancement of porphobilinogen deami-
nase activity (Navone et al, 1991), which constitutes the biological
rationale for the clinical use of ALA-PDT.

The knowledge of the mechanism of entrance of ALA into the
cells will provide new tools to improve ALA-PDT.

Recently, several reports about ALA uptake systems have
appeared. Thus, some authors postulated that ALA is taken up
through the di- and tri-peptide transporters PEPT1 and PEPT2

(Döring et al, 1998; Novotny et al, 2000; Whitaker et al, 2000).
Other authors suggested that BETA transporters are involved in
ALA transport (Rud et al, 2000). The BETA transporter family
comprises GAT-1 to GAT-3, BGT-1 and TAUT transport systems
(Palacı́n et al, 1998).

The aim of this work was to characterise ALA transport in a
murine mammary adenocarcinoma cell line.

MATERIALS AND METHODS

Cell line and cell culture

Cell line LM3 (Werbajh et al, 1998) derived from the murine
mammary adenocarcinoma M3 was cultured in minimum essential
Eagle’s medium, supplemented with 2 mM L-glutamine, 40 mg
gentamycin ml71 and 5% foetal bovine serum, and incubated at
378C in an atmosphere containing 5% CO2. 3.56104 cells well71

were seeded into 24-well plates and medium was renewed 24 h
before the experiment.

Chemicals

[4-14C]ALA hydrochloride and [14C(U)]g-aminobutyric acid
(GABA) were from New England Nuclear. ALA, GABA, amino
acids, ALA methyl ester, levulinic acid, captopril, succinyl acetone
and metabolic inhibitors were obtained from Sigma Chemical
Co., St Louis, USA. (R,S)-nipecotic acid was from Aldrich Chemi-
cal Company Inc., Milwaukee, USA. Other chemicals were of
analytical grade.

ALA and GABA preparation

Unlabelled ALA or GABA were dissolved in phosphate-buffered
saline (PBS) and pH was adjusted to 7.4 with NaOH. [14C]ALA
and [14C]GABA were added so that the final solution contained
0.0222 MBq ml71 and 0.0111 MBq ml71, respectively.
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Uptake measurements

Uptake measurements were performed 72 h after seeding, when cells
were nearly confluent. Cells were washed twice with 0.5 ml PBS-0.1%
glucose preheated at 378C and incubated with 0.3 ml radiolabelled
ALA or GABA prepared in PBS-0.1% glucose at 378C. At the indi-
cated times, the reaction was stopped washing cells four times with
0.5 ml ice-cold PBS containing either 1 mM ALA or 1 mM GABA.
Then cells were disrupted in 0.1 mM NaOH and transferred to vials
containing scintillation fluid (OptiPhase-Hisafe 3, Perkin Elmer,
England). Radioactive content of the samples was determined.

Porphyrin synthesis

Porphyrins accumulated within the cells were extracted twice with
5% HCl, leaving the cells standing for 30 min in the presence of
the acid at 378C. These conditions proved to be the optimal for
total PPIX extraction. The excitation and emission wavelengths
of light used producing the highest fluorescence were 406 nm
and 604 nm, respectively. PPIX (Porphyrin Products, Logan, Utah,
USA) was used as a reference standard.

Cell number

The number of cells seeded per well and the cell number employed
for the calculations were determined by counting viable cells with
the Trypan blue exclusion method.

Viability assay

All compounds employed were previously tested for cell toxicity by
means of the MTT assay (Mosmann, 1983). Following appropriate
treatments, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazo-
liumbromide) solution was added to each well in a concentration
of 0.5 mg ml71, and plates were incubated at 37ºC for 1 h. The
resulting formazan crystals were dissolved by the addition of
dimethyl sulphoxide (DMSO) and absorbance was read at 560 nm.

Statistic analysis

Quadruplicates were run for each point in every experiment and
the values presented are the average of three experiments. The
deviation of these values from the mean was less than 7.5%.

RESULTS

We measured ALA uptake and porphyrin synthesis in cells incu-
bated with 0.1 mM and 0.6 mM ALA (Figure 1). Initial ALA
uptake rate is significantly higher using 0.6 mM ALA
(2.26 pmol 105 cell71 min) than using 0.1 mM ALA
(0.35 pmol 105 cell71 min). When using 0.1 mM ALA, less than
15% of incorporated ALA was converted into porphyrins after
60 min of incubation, while 40% of incorporated ALA was meta-
bolised into porphyrins from 0.6 mM ALA.

Because the aim of this work was to characterise the ALA trans-
port system in murine mammary adenocarcinoma cells, we tried to
minimise the ALA metabolization process during ALA uptake
measurement. For this reason we have used 0.1 mM

14C-ALA for
all transport experiments.

Specificity of ALA transport system

To get an insight into the specificity of the ALA transport system,
we measured ALA uptake in the presence of several compounds
(Figure 2A). ALA incorporation is strongly inhibited by GABA
and the b-amino acids, b-alanine and taurine, while betaine has
no effect. GABA and b-amino acids are substrates of BETA trans-
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Figure 1 Time course of ALA uptake and porphyrin synthesis. ALA in-
corporation and porphyrin synthesis were measured incubating cells with
0.1 mM or 0.6 mM C-ALA.
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Figure 2 Effect of various compounds on ALA and GABA uptake.
Washed cells were preincubated for 15 min with each compound in
PBS-0.1% glucose. Then 0.1 mM

14C-ALA (A) or 0.1 mM
14C-GABA (B)

was added and radioactivity was measured after 30 min. The final concen-
tration of all compounds assayed was 10 mM, except ALA methyl ester and
levulinic acid which were 1.25 mM and 3.3 mM, respectively. Values are ex-
pressed as percentage of inhibition relative to the control uptake without
competitor.
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porters (Palacı́n et al, 1998). Nipecotic acid, an inhibitor of GABA
transporters (GAT-1 to GAT-3), diminishes ALA uptake by 50%,
whereas the ALA derivative methyl-ALA (Me-ALA) does not. On
the other hand, we found a very strong competition of ALA incor-
poration by its structural analogue, levulinic acid.

The dipeptide glycil-glycine (gly-gly), the tripeptide glycil-glycil-
alanine (gly-gly-ala) and captopril, substrates of the transporters
PEPT1 and PEPT2, have not any significant effect on ALA uptake.

Because all the substrates of GABA transporters are strong inhi-
bitors of ALA uptake, we analysed GABA uptake in the presence of
the same compounds tested for ALA uptake (Figure 2B). As
expected, we found that ALA also inhibits GABA uptake. For the
rest of the compounds assayed, a pattern of GABA uptake inhibi-
tion similar to that obtained for ALA was found (Figure 2A,B),
although their effect was higher on GABA than on ALA transport.

Effect of metabolic inhibitors

To establish the energy dependency of ALA uptake, we measured
the uptake of ALA in the presence of different known metabolic
inhibitors. When the Na+/K+ and Na+/H+ exchange inhibitors,
ouabaine and dimethylamiloride, respectively, were used, a moder-
ate decrease in ALA incorporation is observed (Table 1). When
cells were pre-incubated with NaN3 (10 mM) and 2-deoxy-D-
glucose (100 mM) for 1 h, ALA uptake is reduced by 60%. Under
these conditions nearly complete cellular ATP abolishment is
achieved (Gederaas et al, 2001).

The effect of these inhibitors on GABA uptake is similar to that
produced on ALA uptake although greater.

Dependence of ALA transport on temperature

The above results indicate that ALA incorporation into these cells
would be mediated through an active system. However, inhibition
by energetic inhibitors never overrides 60% suggesting that a signif-
icant uptake would occur by passive diffusion. To test this
hypothesis, we compared ALA and GABA transport at 378C and
48C. An active transport system would be completely blocked by
lowering the temperature to 48C, whereas involvement of passive
transport would imply uptake at low temperatures.

When ALA uptake is measured at 48C, a significant incorpora-
tion is observed up to 15 min of incubation (Figure 3) with an
initial uptake rate similar to that found in the presence of GABA.
Results indicate that the remaining uptake detected at 48C is not
mediated by the active system shared by ALA and GABA.

The time course of ALA uptake at 48C suggests that during the
first 15 min of incubation ALA is being incorporated by diffusion,
and after that time transport is mediated by an active system.

Figure 4 shows that the initial uptake rate of GABA at 48C is not
significant and it is not altered by the presence of ALA, indicating
that GABA diffusion is negligible.

DISCUSSION

We demonstrate here that ALA is incorporated into murine
mammary adenocarcinoma cells by two different processes. One
of these processes is passive diffusion which is significant at shorter
incubation intervals. The other is an active transport system which
becomes very important after the first 15 min of incubation.
Recently, it was found that incorporation of Me-ALA, a more lipo-
philic derivative of ALA, is also mediated by at least two different
mechanisms, passive diffusion and active transport (Gederaas et al,
2001). In contrast, other authors (Rud et al, 2000) reported that
ALA is only uptaken by an active process while diffusion is negli-
gible. Döring et al (1998) have shown that ALA is a substrate for
both mammalian intestinal and renal PEPT1 and PEPT2 transpor-
ters. In rat pancreatic tumour cells ALA uptake is mediated by

PEPT1 (Whitaker et al, 2000). Novotny et al (2000) also reported
that PEPT2 is one of the two transporters responsible for ALA
incorporation at the choroid plexus. Results here presented indicate
that in our murine mammary adenocarcinoma cell cultures ALA is
not incorporated by any of these transporters since their substrates,
the dipeptide gly-gly, the tripeptide gly-gly-ala and the angiotensin-
converting enzyme inhibitor captopril (Boll et al, 1996) do not
significantly block ALA uptake.
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Table 1 Effect of metabolic inhibitors on ALA and GABA uptake

% inhibition

ALA uptake GABA uptake

Ouabine 32.4+2.8 62.0+6.5
di-methylamiloride 43.4+4.5 67.5+4.3
2-deoxy-D-glucose+Na3N 60.1+8.7 78.1+6.9

Washed cells were preincubated for 15 min with 2 mM ouabaine or 0.1 mM dimethy-
lamiloride or for 60 min with 100 mM 2-deoxy-D-glucose plus 10 mM Na3N. Then
0.1 mM

14C-ALA or 0.1 mM
14C-GABA was added and radioactivity was measured

after 30 min. Values are expressed as percentage of inhibition relative to the control
uptake without inhibitor.
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Figure 3 Dependence of ALA uptake on temperature. ALA uptake was
measured at 378C or 48C in the absence or the presence of GABA. When
uptake was determined in the presence of GABA, cells were preincubated
15 min with 10 mM GABA. Then 14C-ALA was added and radioactivity
was measured.
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Figure 4 Dependence of GABA uptake on temperature. GABA uptake
was measured at 378C or 48C in the absence or the presence of ALA.
When uptake was determined in the presence of ALA, cells were preincu-
bated 15 min with 10 mM ALA. Then 14C-GABA was added and radioac-
tivity was measured.
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Moreover, in our cell system ALA incorporation appears not to be
mediated either by the amino acid transport systems A, ASC, GLY,
IMINO, PHE and B8 because the substrates for these transporters,
that is methyl-aminoisobutyrate (alfa-Me-AIB), alanine, glycine,
proline and phenylalanine (Palacı́n et al, 1998) do not significantly
affect ALA incorporation.

ALA methyl ester does not inhibit ALA uptake, in agreement
with Rud et al (2000) and Gederaas et al (2001), who reported that
ALA and its derivative ALA methyl ester, do not share the same
transport system.

We found that ALA uptake is inhibited to the highest extent by
GABA and b-amino acids, b-alanine and taurine, suggesting that
the BETA transporters are involved in ALA transport. BETA trans-
porters are GAT-1 to GAT-3, BGT-1 and TAUT (Palacı́n et al,
1998). We have observed that betaine, the substrate of BGT-1,
has no effect on ALA uptake and neither has methyl-AIB, an inhi-
bitor of TAUT system (Palacı́n et al, 1998). Consequently, GAT-1
to GAT-3, the high-affinity GABA transporters, seem to be the best
candidates for ALA transport in our murine mammary adenocarci-
noma cell system.

The strong inhibition of ALA transport by GABA and viceversa
support this proposal. Using human colon adenocarcinoma cells,
Rud et al (2000) have already shown that ALA is incorporated
by BETA transporters. We should also recall that in the yeast
Saccharomyces cerevisiae ALA and GABA share the UGA4 transport
system (Bermúdez Moretti et al, 1996).

Among the high-affinity GABA transporters, GAT-2 is the only
one expressed in peripheral tissues in addition to brain and retina
(Borden et al, 1992; Liu et al, 1993; Ikegaki et al, 1994), therefore it
is very likely that GAT-2 is also the ALA transporter in murine

mammary adenocarcinoma cells. However, both the regulation of
gene expression and substrate specificity in neoplastic cells may
be different from the corresponding normal tissue; if so, these
differences may be exploited to enhance ALA-PDT selectivity.

Despite the great similarities between ALA and GABA transport
systems, the lack of diffusion of GABA in our cell system represents
the main distinct feature.

The elucidation of ALA transport mechanisms in tumoural cells
would be of major scientific interest and importance for the design
of new ALA derivatives which can be expected to more easily pene-
trate into these cells. The relationship between ALA and GABA
transport systems would help to develop new prodrugs, by taking
into account the structures of GABA transport competitors (Krogs-
saard-Larsen et al, 2000; Soudijn and van Wijngaarden, 2000). This
approach could be of particular interest in the photodynamic treat-
ment of tissues with high GAT-1 to GAT-3 expression such as
glioblastomas and neuroblastomas.
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