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Abstract: We study the construction of D-brane boundary states in the pure spinor for-

malism for the quantisation of the superstring. This is achieved both via a direct analysis of

the definition of D-brane boundary states in the pure spinor conformal field theory, as well

as via comparison between standard RNS and pure spinor descriptions of the superstring.

Regarding the map between RNS and pure spinor formulations of the superstring, we shed

new light on the tree level zero mode saturation rule. Within the pure spinor formalism

we propose an explicit expression for the D-brane boundary state in a flat spacetime back-

ground. While the non-zero mode sector mostly follows from a simple understanding of the

pure spinor conformal field theory, the zero mode sector requires a deeper analysis which is

one of the main points in this work. With the construction of the boundary states at hand,

we give a prescription for calculating scattering amplitudes in the presence of a D-brane.

Finally, we also briefly discuss the coupling to the world-volume gauge field and show that

the D-brane low-energy effective action is correctly reproduced.
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1. Introduction and summary

Berkovits [1] recently proposed a new approach to covariantly quantise the superstring.

This formalism has some clear advantageous features as compared to other, more tra-

ditional, approaches. For instance, one virtue is that it maintains the super-Poincaré

symmetry of the superstring manifest, while avoiding problems associated with the quan-

tisation of the Green-Schwarz (GS) superstring (essentially, the new formalism constructs

the correct ghost sector for the classically covariant GS superstring). It also circumvents

some of the more problematic aspects of the Ramond-Neveu-Schwarz (RNS) formalism,

in particular the complications arising from the presence of spin fields in the vertex oper-

ators for the Ramond-Ramond (RR) fields and the spacetime fermions (as all important

world-sheet fields in the new formalism have integer conformal weight, never producing

branch cuts on the plane). The ghost degrees of freedom in Berkovits’ approach involve
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certain constrained spinors, the so-called pure spinors. For this reason, the new formalism

is often referred to as the “pure spinor superstring”. Although a fair amount of research

has been carried out since the appearance of [1], there are still many other aspects of the

theory which one would like to understand better, such as its origin from sigma model

gauge-fixing (see, e.g., [2 – 4]). Given the promise of the pure spinor formalism to by-pass

the main difficulties in both GS and RNS formalisms, thus opening the way to previously

unexplored aspects of superstring theory, it becomes very important to fully develop the

pure spinor superstring in all its aspects. In this paper we shall take the first steps towards

developing the boundary state operator formalism [5 – 7] (see, e.g., [8, 9] for reviews) in the

pure spinor superstring (see [10] for earlier work in this direction).

The contents of this paper are as follows. In the next section we begin with a review

of the pure spinor formalism and fix both our conventions and notation. We also show how

the refined tree level zero mode saturation rule proposed recently in [11] can be obtained,

starting from the well-known RNS expression. Then, in section 3, we present our proposal

for the pure spinor boundary state in a flat spacetime background, discussing at length

the most complicated part of this boundary state — its zero mode sector. In section 4 we

propose a rule for calculating (tree level) scattering amplitudes in the presence of a D-brane

and check that some results, which had been previously obtained using RNS methods, are

correctly reproduced in the present framework. This serves as a consistency check on our

proposal for the D-brane boundary state. We also discuss the coupling of the boundary

state to the world-volume gauge field living on the D-brane. In particular, we check via

scattering amplitude calculations that the Dirac-Born-Infeld (DBI) and Wess-Zumino (WZ)

parts of the D-brane low-energy effective action are correctly reproduced. Again, this serves

as a positive check on our proposal for the D-brane boundary state. Finally, in section 5

we summarise our results and discuss some possible directions for future research. In the

appendices some more technical aspects are collected.

2. Pure spinors and the covariant superstring

The covariant quantisation of the superstring using pure spinor ghosts was initiated by

Berkovits in [1]. For an introductory review we refer the reader to [12]. Throughout

this work we shall concentrate on the pure spinor version of the superstring in a flat

spacetime background. Let us note that in this paper we will sometimes find it useful to

compare expressions obtained for the pure spinor superstring to analogous ones in the RNS

superstring, partly because this provides additional motivation for some of our expressions

and partly because most readers are more familiar with the standard RNS formalism.

Even though our comparisons with RNS have various levels of detail, they are mostly at

the heuristic level (possibly with the exception of the discussion in section 2.2) and should

thus not be thought of as rigourous derivations. It is probably possible to make some of

our statements precise, by carefully implementing the map between RNS and pure spinor

descriptions of the superstring given in [13]. However, we believe that it is more important

to develop and understand the pure spinor superstring formalism at the covariant level, and

that our ultimate goal is to obtain a complete understanding of this theory, independently

– 2 –



J
H
E
P
0
7
(
2
0
0
5
)
0
7
0

of its RNS counterpart. Thus, we shall leave our RNS derivations to be regarded mostly

as motivations for the results we obtain. Another point we would like to stress is that

in this paper we use bosonisation at certain intermediate stages of our considerations.

However, in the final pure spinor expressions there is no need to bosonise the variables, a

fact which has been previously argued to be one of the advantageous features of the pure

spinor superstring formalism.

2.1 Type II covariant superstrings in a flat background

We begin by reviewing the pure spinor version of the superstring in a flat background,

initiated in [1], and later developed in a long series of papers, e.g., [14, 15, 13, 16 – 18]. We

have attempted to make the presentation reasonably self-contained; more details can be

found in the references.

In the pure spinor version of the type-II superstring, the world-sheet fields are (xm, θα,

θ̃α̃) — the world-sheet analogues of the N = 2, d = 10 superspace variables — together

with [19] (pα, p̃α̃) where pα is the conjugate momentum to θα and p̃α̃ is the conjugate

momentum to θ̃α̃. Above m = 0, . . . , 9 and α, α̃ = 1, . . . , 16. In the type-IIA superstring,

where the target space has (1, 1) supersymmetry, α and α̃ denote SO(1, 9) Majorana-Weyl

spinors of opposite chirality, while in the type-IIB superstring, where the target space has

(2, 0) supersymmetry, α and α̃ denote SO(1, 9) Majorana-Weyl spinors of the same chirality

(in the case of the type-IIB theory we shall later drop the˜on the α̃ indices to simplify the

notation). In the pure spinor formalism, the world-sheet ghost fields are λα and λ̃α̃, which

are complex bosonic Weyl spinors constrained to satisfy the pure spinor conditions [1]

λγmλ = 0 , λ̃γmλ̃ = 0 . (2.1)

The pure spinor conditions (2.1) reduce the number of independent complex components of

both λα and λ̃α̃ from sixteen to eleven. It is important to notice that even though λα and

λ̃α̃ are complex, they enter holomorphically in the theory (i.e., their complex conjugates, λ̄α

and
¯̃
λ
α̃
, never appear in the world-sheet action). This means that, e.g., in the determination

of the central charge (see below) the counting of degrees of freedom is the same as if λα and

λ̃α̃ were real. In (2.1), the gamma matrices γm are the 16×16 off-diagonal blocks (“Pauli

matrices”) in the Weyl representation of the 32×32 ten-dimensional gamma matrices Γm.

These two matrices are symmetric γmαβ = γmβα, γmαβ = γmβα, and satisfy

γmαβγ
nβσ + γnαβγ

mβσ = 2ηmnδσα , (2.2)

so that {Γm,Γn} = 2ηmn
�

32.

In a flat spacetime background, θα, pα and λα are left-moving (holomorphic), while

θ̃α̃, p̃α̃ and λ̃α̃ are right-moving1 (anti-holomorphic). In the following we mostly only write

the expressions involving the left-movers. The formulæ for the right-moving fields will

look essentially the same. The world-sheet action in a flat background is (in units where

α′ = 2) [1]

S =
1

2π

∫
d2z

(
1

2
∂xm∂̄xm + pα∂̄θ

α

)
+ Sλ , (2.3)

1In many papers ̂(hat) is used instead of ˜(tilde) to denote the right-moving variables.
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where Sλ is the action for the λα ghosts. The free fields xm, θα and pα have the standard

OPE’s,

xm(y, ȳ)xn(z, z̄) ∼ −ηmn log |y − z|2 , pα(y)θβ(z) ∼ δβα
y − z . (2.4)

Because of the pure spinor constraint (2.1) the conjugate momenta to λα, wα, is only

defined modulo the transformation wα → wα + (γmλ)αΛm. Although one could write an

action for the ghost fields involving wα∂̄λ
α this form would be slightly deceiving since the

pure spinor constraint implies, for example, that the OPE between wα and λβ is not the

canonical one, cf. (B.4). Nevertheless, it is still possible to work with this form of the ghost

action provided one carefully takes into account the invariance under the transformation

of wα mentioned above (see, e.g., [20] for a discussion). Another possible way around the

problem of the non-covariance of wα is to relax the pure spinor constraint. This approach

has been pursued in a number of works (see, e.g., [21 – 23] and references therein) but will

not be further discussed in this paper. Yet another way to write down an explicit form for

the ghost action, Sλ, in terms of free fields is to Wick rotate and to temporarily break the

manifest SO(10) Lorentz invariance to U(5) ' SU(5)×U(1) [1]. As explained in [13], U(5)

is the maximal subgroup of SO(10) which leaves the pure spinor constraint invariant.

As we have reviewed in appendix B, an explicit parameterisation of λα satisfying the

constraint (2.1) is [13]

λ+ = es , λab = uab, λa =
1

8
e−sεabcdeubcude , (2.5)

where a = 1, . . . , 5, and uab = −uba are ten complex variables (which together with their

conjugate momenta, vab, parameterise the SO(10)/U(5) coset). The parameterisation (2.5)

is well defined as long as λ+ 6= 0.

Using these “U(5) variables”, the ghost action can be explicitly written as2

Sλ =
1

2π

∫
d2z

(
vab∂̄uab + β′∂̄γ′

)
, (2.6)

where β′ has conformal weight 1 (let us stress that this βγ-system is not the standard one

appearing in the RNS formulation). It turns out that it is convenient to bosonise (β ′, γ′)
according to β ′ ∼= e−φ

′+χ′∂χ′ and γ′ ∼= eφ
′−χ′ and define s = 1

2(χ′ − φ′) and t = χ′ + φ′. It

then follows that γ ′ = e−2s. As we shall later see in greater detail, this s is the same as the

one appearing in (2.5). The free fields s, uab, and their conjugate momenta t, vab, satisfy

the free field OPE’s,

t(y)s(z) ∼ log (y − z) , vab(y)ucd(z) ∼ −
δabcd
y − z , (2.7)

where δabcd = 1
2(δac δ

b
d − δadδbc).

The holomorphic stress tensor in the pure spinor superstring is

T = −1

2
∂xm∂xm − pα∂θα + Tλ , (2.8)

2Note that the integrand equals −wα∂̄λα as can be seen using (B.3) with a suitable choice of the

parameter a, together with the definitions of β′ and γ′ given below.
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where Tλ is the stress tensor for the λα ghosts. In terms of the free U(5) variables, the

ghost stress tensor can be written as (later we show that ∂t∂s+ ∂2s = −β′∂γ′)

Tλ = −vab∂uab + ∂t∂s+ ∂2s . (2.9)

Using this expression it can be readily checked that the ghost CFT has c = 22. If one

recalls that the xm CFT has the standard c = 10 central charge, while the (p, θ) CFT has

central charge c = −32, the total central charge vanishes as required.

Even though the OPE between wα and λα is not manifestly SO(10) covariant, one can

nevertheless explicitly construct SO(10) Lorentz currents for the ghosts as [1]

Nmn =
1

2
wγmnλ . (2.10)

As shown in [1], and discussed at greater length in appendix B, the OPE’s involving Nmn

and λα have the manifestly SO(10) covariant form

Nmn(y)λα(z) ∼ 1

2

1

y − z (γmn)αβ λ
β(z) ,

Npq(y)Nmn(z) ∼ ηpmN qn(z)−ηqmNpn(z) − (m↔ n)

y − z − 3
ηpnηqm−ηpmηqn

(y − z)2
. (2.11)

From this expression we see that the ghost Lorentz currents Nmn form a SO(10) current

algebra with level k = −3. In comparison, the OPE’s involving the (p, θ) Lorentz current,

Mmn = −1
2pγ

mnθ, take the form

Mmn(y)θα(z) ∼ 1

2

1

y − z (γmn)αβ θ
β(z) ,

Mpq(y)Mmn(z) ∼ ηpmM qn(z)−ηqmMpn(z)− (m↔ n)

y − z + 4
ηpnηqm−ηpmηqn

(y − z)2
. (2.12)

Thus the Mmn’s also form a SO(10) current algebra, this time at level k = 4. The total

Lorentz current Lmn = −1
2pγ

mnθ +Nmn satisfies the OPE

Lpq(y)Lmn(z) ∼ ηpmLqn(z)−ηqmLpn(z)− (m↔ n)

y − z +
ηpnηqm−ηpmηqn

(y − z)2
(2.13)

and thus forms a current algebra with level k = 1 as expected from comparison with the

RNS formalism [1], where the Lmn = −ΨmΨn satisfy (2.13).

As should be clear from the above discussion, the OPE’s of the fields λα and the

currents Nmn are manifestly covariant (even though they were computed starting from the

non-covariant free ghost action). Moreover, although one can in principle write down pure

spinor vertex operators in terms of the free variables, it turns out that the requirement of

super-Poincaré covariance implies that the free variables
{
s, t, uab, v

ab
}

can only appear in

the Lorentz covariant combinations of {λα, Nmn, ∂h}, where h is a Lorentz scalar defined

through

∂h =
1

2
wαλ

α . (2.14)
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As was the case for Nmn, even though ∂h contains the “non-covariant” quantity wα, the

OPE’s involving h, Nmn and λα are manifestly Lorentz covariant. Observe that both Nmn

and ∂h are invariant under the transformation wα → wα + (γmλ)αΛm, because of the

pure spinor constraint on λα. The Lorentz scalar ∂h has no singularities with the Lorentz

currents Nmn and satisfies the OPE’s

h(y)h(z) ∼ − log (y − z) , ∂h(y)λα(z) ∼ 1

2

1

y − z λ
α(z) . (2.15)

It is possible to show that the operator J = 2
∮
∂h is the ghost number charge, implying

that λα has ghost number one as it should have.

Furthermore, using the covariant fields Nmn and ∂h, the ghost stress tensor can be

written in a manifestly Lorentz invariant way as [13]

TN,∂h = − 1

20
NmnN

mn − 1

2
(∂h)2 + 2∂2h . (2.16)

By using various normal ordering rearrangements, one can check that the stress ten-

sor (2.16) indeed reduces to the stress tensor (2.9) written in terms of the U(5) variables,

s, t, uab and vab (see appendix B for further details). Let us analyse the ghost stress ten-

sor (2.16) in more detail. The first piece involves the ghost Lorentz currents, Nmn, and is

a Sugawara construction for a SO(10) WZNW model at level k = −3. Indeed, recalling

that the dual Coxeter number of SO(10) is g = 8, we find3 2(g+k) = 10. The second piece

refers to a Coulomb gas, with a background charge of Q = 4. Using standard formulæ one

finds that the central charge of the ghost Lorentz currents is

c =
k dim SO(10)

k + g
=

(−3)(45)

−3 + 8
= −27 , (2.17)

while the central charge of the Coulomb gas field is c = 1+3Q2 = 49, so that −27+49 = 22

as expected. The expression for the stress tensor (2.16) also allows one to write explicitly

covariant expressions for the ghost action, albeit in the complicated form as a sum of a

WZNW and a Coulomb gas action.

To obtain a better understanding of the form of the pure spinor stress tensor we note

that it is also possible to rewrite the (p, θ) stress tensor in the form

TM,∂g = − 1

48
MmnM

mn +
1

2
(∂g)2 − 2∂2g , (2.18)

where, as above, Mmn = −1
2pγ

mnθ and satisfies the OPE’s (2.12), while the Lorentz scalar

∂g = 1
4pαθ

α has no singularities with Mmn and satisfies the OPE’s

g(y)g(z) ∼ log (y − z) , ∂g(y)θα(z) ∼ −1

4

1

y − z θ
α(z) . (2.19)

In the (p, θ) stress tensor, the spacetime fermion Lorentz currents, Mmn, appear as a

Sugawara construction of a SO(10) WZNW model at level k = 4, and the Coulomb gas

3Due to our normalisation of the NN OPE in (2.11) the prefactor in front of NmnN
mn in (2.16) is

unconventional. To obtain the usual + 1
10

one would have to rescale the currents Nmn.

– 6 –



J
H
E
P
0
7
(
2
0
0
5
)
0
7
0

Field Conformal Dimension Ghost Number

∂xm, pα 1 0

θα 0 0

λα 0 1

Mmn, Nmn 1 0

∂g, ∂h 1* 0

Table 1: Conformal dimensions and ghost numbers of the various fields. The * indicates that ∂g

and ∂h do not have honest conformal dimensions because of their background charges.

piece has background charge Q = 4. Further observe that the operator K = 4
∮
∂g is

the spacetime fermion number charge, implying that θα has fermion number −1. In the

form (2.18) the central charge is calculated as 4 · 45/12 + (1 − 3 · 42) = 15− 47 = −32. It

is a straightforward but tedious exercise to show that after using various normal ordering

rearrangements the stress tensor (2.18) indeed reduces to Tpθ = −pα∂θα.

We have thus learned that the full stress tensor (excluding the ∂x part) can be written

as a sum of two WZNW and two Coulomb gas pieces. In [24, 23] it has also been noted that

the pure spinor superstring (in the extended formulation where the pure spinor constraint

is relaxed) can be formulated in terms of WZNW models.

The above discussion can be summarised in table 1, containing the conformal weights

and ghost number assignments of the world-sheet fields.

These properties can be derived using both the free field form of the above stress

tensors or the WNZW/Coulomb gas one, but depending on what one wants to calculate it

is usually easier to use one of the two (equivalent) versions.

The physical states of the superstring in the pure spinor formalism are obtained from

vertex operators in the cohomology of the left– and right-moving BRST operators [1]

Q =

∮
λαdα , Q̃ =

∮
λ̃α̃d̃α̃ , (2.20)

where (the definition of d̃α̃ is completely analogous)

dα = pα −
1

2
(γmθ)α ∂xm −

1

8
(γmθ)α (θγm∂θ) . (2.21)

The world-sheet field dα satisfies the OPE’s4

dα(y)dβ(z) ∼ − 1

y − z γ
m
αβΠm(z) , dα(y)Πm(z) ∼ 1

y − z (γm∂θ)α (z) ,

dα(y)∂θβ(z) ∼ 1

(y − z)2
δβα , (2.22)

where

Πm = ∂xm +
1

2
θγm∂θ . (2.23)

Using the above OPE’s it is easy to check that the BRST operator is nilpotent (due to the

pure spinor condition (2.1)), so that Q2 = 0 = Q̃2.

4In order to verify the first of these OPE’s, it is crucial to use the gamma matrix identity (γmθ)α (γmξ)β =

1
2

[
(γmθ)α (γmξ)β − (γmθ)β (γmξ)α

]
− 1

2
γmαβ (θγmξ).
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The spacetime supersymmetry generator is

qα =

∮ (
pα +

1

2
(γmθ)α ∂xm +

1

24
(γmθ)α (θγm∂θ)

)
, (2.24)

and satisfies the anticommutation relation

{qα, qβ} = γmαβ

∮
∂xm . (2.25)

It is straightforward to check that the BRST operator as well as the world-sheet fields dα,

Πm are supersymmetric, i.e., they (anti)commute with qα.

For an arbitrary superfield Φ(x, θ), one has that [
∮
dα ,Φ(x, θ)} = DαΦ(x, θ) where5

Dα =
∂

∂θα
+

1

2
(γmθ)α

∂

∂xm
. (2.26)

Thus, the world-sheet field dα corresponds to the spacetime supersymmetric covariant

derivative. Similarly, one has [qα Φ(x, θ)} = QαΦ(x, θ), where

Qα =
∂

∂θα
− 1

2
(γmθ)α

∂

∂xm
. (2.27)

Vertex operators in flat space were constructed in [1, 14, 18, 25, 26]. The unintegrated

vertex operator for the massless open superstring state is U = λαAα(x, θ), where Aα(x, θ)

is a superfield. Since {Q,Aβ(x, θ)} = λαDαAβ(x, θ), the physical requirement {Q,U} = 0

implies the ten-dimensional (superspace) Yang-Mills equations of motion (using that for

pure spinors λαλβ = 1
1920γ

αβ
m1···m5λγ

m1···m5λ)

γαβm1···m5
DαAβ = 0 . (2.28)

Hence Aα is the spinor superfield potential for super Yang-Mills theory (see appendix A for

more details). Moreover, the BRST invariance δU = [Q,Ω] implies the Yang-Mills gauge

transformations δAα = DαΩ. Choosing an appropriate gauge and restricting to constant

field strengths, one can write (see also appendix A)

U =
1

2
(λγmθ) am(x) +

1

3
(λγmθ) (θγmξ)−

1

32
(λγσθ) (θγσmnθ) fmn , (2.29)

where am(x) is the gluon with constant field strength fmn, and ξα is the constant gluino.

For non-constant fields there will be additional terms in (2.29).

Integrated vertex operators,
∮
V , are defined through [Q,V ] = ∂U , and are thus

manifestly BRST invariant. For the massless states of the open superstring,

V = ΠmAm(x, θ) + ∂θαAα(x, θ) + dαW
α(x, θ) +

1

2
NmnFmn(x, θ) . (2.30)

The definitions of the superfields Am, Wα and Fmn can be found in appendix A. To lowest

order in the component fields, and in the same gauge as before,

V = am(x)∂xm +
1

2
fmn

(
−1

2
pγmnθ +Nmn

)
+ ξαqα . (2.31)

5We refer the reader to appendix A for our superspace conventions.
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For the closed superstring the story is similar (see [26] for an extensive recent discussion).

The massless unintegrated vertex operator is U = λαλ̃β̃A
αβ̃

(x, θ, θ̃), where A
αβ̃

is a N =

2, d = 10 bispinor superfield. The physical state conditions are6 [Q,U ] = 0 = [Q̃, U ]

implying the (linearised) supergravity equations of motion, and the gauge invariance is

δU = {Q, Ω̃} + {Q̃,Ω} with {Q̃, Ω̃} = 0 = {Q,Ω}. In order to construct the component

forms of the massless closed string vertex operators, the simplest way to proceed is to use

the fact that these operators can be understood as the left-right product of the open string

vertex operators that we described above. The vertex operator,

λAλ̃ = (λγmθ) ζmn(x)(λ̃γnθ̃) , (2.32)

with the gauge choice kmζmn = 0, k2 ζmn = 0, describes a graviton when ζmn = hmn = hnm
with ηmnhmn = 0. It describes a B-field when ζmn = Bmn = −Bnm and it describes the

dilaton when ζmn(x) = ζ(x) εmn and

εmn =
1√
d− 2

(ηmn − km`n − kn`m) , k · ` = 1 , ` · ` = 0 . (2.33)

In the above equations, ζmn(x) = ζmn(k)eik·x and km is the spacetime momentum. In

order to describe spacetime fermions, one should use either the vertex operator

λAλ̃ = (λγmθ) (Υn(x)γmθ)
(
θ̃γnλ̃

)
, (2.34)

or the vertex operator

λAλ̃ = (λγmθ)
(
θγnΥ̃m(x)

)(
θ̃γnλ̃

)
, (2.35)

where the spacetime fields Υα
m and Υ̃α̃

m describe the gravitini and the dilatini. For RR

fields one conventionally uses the vertex operator

λAλ̃ = (λγmθ)
(
θγmF (x)γnθ̃

)(
θ̃γnλ̃

)
, (2.36)

where F is the RR field strength,

F =
∑

n

1

n!
γm1 · · · γmnFm1···mn(x) . (2.37)

Here n is even in type IIA and odd in type IIB. The vertex operator associated with a

constant RR gauge field C has also been studied [25] (see also [26]), and is

λAλ̃ = (λγmθ)
(
θγmCλ̃

)
−
(
λCγmθ̃

)(
θ̃γmλ̃

)
, (2.38)

where

C =
∑

n

1

n!
γm1 · · · γmnCm1···mn . (2.39)

6In this paper we shall ignore the subtleties associated with zero momentum states.
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In this expression n is even in type IIB and odd in type IIA. For later reference we note

that in type IIB the vertex operator can also be written as

λAλ̃ = −
(
λ̃C̃γmθ

)
(θγmλ)−

(
λCγmθ̃

)(
θ̃γmλ̃

)
, (2.40)

where C̃α
β = Cβα, or explicitly,

C̃α
β =

∑

n even

(−1)
n
2

n!
(γm1 ···mn)α

βCm1···mn . (2.41)

The integrated vertex operators can also be constructed in the same way as for the open su-

perstring. For instance, the integrated vertex operator (in momentum space) corresponding

to the Neveu-Schwarz–Neveu-Schwarz (NSNS) fields is given by

V ∝ ζmn (∂Xm + i krL
rn)(∂̄xn + i ksL̃

sm)eik·X + · · · . (2.42)

As before, ζmn equals hmn, Bmn or εmnζ, and the dots refer to terms with additional θ’s

and additional powers of k. Above we only discussed the massless modes of the string;

vertex operators for the first massive level have been studied in [18].

To compute tree amplitudes one also needs to deal with the zero modes of θα and λα.

It was argued in [13] that the pure spinor analogue of the RNS operator

c∂c∂2c e−2φ , (2.43)

which saturates the zero modes in tree amplitudes [27] is

(λγmθ) (λγnθ) (λγpθ) (θγmnpθ) . (2.44)

This is the unique element of ghost number three in the cohomology of the BRST oper-

ator (2.20) [1]. Tree amplitudes are then obtained via n-point correlation functions with

three unintegrated vertex operators and n−3 integrated vertex operators, such that the

zero modes of θα and λα are saturated via the correlator [1]

〈(λγmθ) (λγnθ) (λγpθ) (θγmnpθ)〉 = const . (2.45)

It has been checked that this prescription leads to results which are in complete agreement

with the ones obtained from RNS [14]. Nevertheless, there remain some puzzling aspects

about the saturation rule (2.45). Some of those puzzles were resolved in the recent pa-

per [11] where a refinement of the saturation rule was proposed. In the following, we shall

show that this refinement can be obtained naturally by starting from the RNS saturation

operator (2.43).

2.2 Berkovits’ tree level zero mode saturation rule from RNS

There is a seeming discrepancy between the (tree level) saturation rule (2.45) for the zero

modes in the pure spinor superstring, which we shall schematically write as 〈λ3θ5〉 6= 0,

and the one obtained by analysing (using the standard methods in [27]) the background
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charges of ∂h and ∂g in (2.16), (2.18). In fact, from (2.15) and (2.19), it follows that λα

has ∂h charge 1/2 while θα has ∂g charge −1/4. Together with the fact that both Coulomb

gas fields have background charge 4, this naturally leads to the schematic saturation rule

〈λ−8θ16〉 6= 0 cancelling both background charges, but in contradiction with the previous

expression. Recently Berkovits [11] proposed a refined version of the original saturation

rule which resolves this mismatch: to relate the two saturation rules one further needs

to insert eleven operators Y I (defined in [11]) into the original definition, each of which

carries (λ, θ) charge (−1,+1). Importantly, the properties of these operators are such that

they do not affect earlier considerations in the literature based on the original rule (2.45)

and thus, for most purposes, they can be ignored. We should also point out that in earlier

work by Chesterman [28] equivalent, but less explicit, results were also obtained. In his

work the existence of the different saturation rules was explained at the level of cohomology

as arising from the isomorphism of certain cohomologies. In this language the extra Y I

insertions can be viewed as the map implementing the isomorphism.

In this subsection we show how the modified saturation rule given in [11] arises from the

saturation rule in the RNS superstring, using the map relating the two formulations [13].

Throughout this section we shall not keep track of numerical factors as they are not im-

portant for our conclusions. We will also only write the expressions for the left-moving

sector explicitly; the right-moving sector is completely analogous. To begin with, recall the

bosonisation formulæ of the RNS ghost variables (β,γ, b, c):

β = ∂ξe−φ, γ = ηeφ, ξ = eχ, η = e−χ, c = eσ, b = e−σ , (2.46)

from which it follows that (see, e.g., [29])

: bc := −∂σ , : ξη := ∂χ , δ(γ) = e−φ , δ(β) = eφ . (2.47)

The bosonisation of the RNS world-sheet fermion Ψm is (here a = 1, . . . , 5)

Ψa ± iΨa+5 = e∓τ
a
. (2.48)

Later we will use the notation ψa = e−τ
a

and ψa = eτ
a

As usual [27] one constructs the spin

fields from e±τ
1±τ2±τ3±τ4±τ5

where the 32 different possibilities span a 32-dimensional Dirac

spinor, which decomposes into a Weyl spinor Sα, and an anti-Weyl spinor Sα. These in turn

decompose into (S+, Sa, Sab) and (S+, Sa, S
ab) under the U(5) subgroup (see appendix B

for further details). Here we will only need

Sa = e−τ
a+
∑
b τ

b/2 , Sa = eτ
a−∑b τ

b/2 , S+ = e−
∑
a τ

a/2 , S+ = e
∑
a τ

a/2 .

(2.49)

In the RNS theory, the well known saturation rules for the zero modes are (the first

expression is just the bosonised version of (2.43))

〈e3σ−2φ〉 6= 0 (small Hilbert space) ,

〈e3σ−2φ+χ〉 6= 0 (large Hilbert space) . (2.50)

To relate these expressions to the pure spinor result we first make the change of vari-

ables from RNS to the U(5) variables introduced in [30, 13] by Berkovits. In terms of
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these variables, a U(5) subgroup of the (Wick-rotated) SO(10) super-Poincaré symmetry

is manifest [30]. The U(5) variables comprise7 12 Grassmann-odd variables

θa = eφ/2Sa , θ+ = c ξ e−3φ/2S+ , pa = e−φ/2Sa , p+ = b η e3φ/2S+ , (2.51)

as well as the two Grassmann-even ones

s = σ − 3

2
φ− 1

2

5∑

a=1

τa , t = −χ+
3

2
φ+

1

2

5∑

a=1

τa . (2.52)

In the (s, t) sector, the OPE is as (2.7) and the energy-momentum tensor is

T = ∂s∂t+ ∂2s . (2.53)

By redefining these variables according to

s =
1

2
(χ′ − φ′) , t = χ′ + φ′ , (2.54)

one finds

T =
1

2
∂χ′∂χ′ +

1

2
∂2χ′ − 1

2
∂φ′∂φ′ − 1

2
∂2φ′ , (2.55)

which one recognises (see, e.g., [29]) as a bosonised β ′γ′-system with weight λ′ = 1 (λ = 3
2)

and therefore T = −β ′∂γ′. Note that this is not the same as the usual RNS βγ-system.

In particular, the conformal weight is different. The complete energy-momentum tensor

also includes T = −pa∂θa − p+∂θ
+, i.e., six bc-type systems, all of weight one. In the

large Hilbert space (with respect to the β ′γ′-system) the saturation rule becomes (using

standard methods [27])

〈eχ′−φ′εabcdeθaθbθcθdθeθ+〉 6= 0 ↔ 〈ξ′δ(γ′)εabcdeθaθbθcθdθeθ+〉 6= 0 . (2.56)

Translating to the (s, t) variables this becomes

〈e2sεabcdeθ
aθbθcθdθeθ+〉 6= 0 , (2.57)

which agrees with what one obtains by translating the RNS result (2.50) in the large Hilbert

space (with respect to the βγ-system), using the change of variables in (2.51) and (2.52).

This was to be expected since as long as one includes all zero modes (i.e., one works in the

large Hilbert space) the saturation rule should be the same no matter which variables are

used. On the other hand, in the small Hilbert spaces the saturation rules will not agree

in general since they are defined with respect to different βγ-systems. In the small U(5)

Hilbert space (with respect to the β ′γ′-system) the saturation rule is

〈e−φ′εabcdeθaθbθcθdθeθ+〉 6= 0 ↔ 〈δ(γ ′)εabcdeθaθbθcθdθeθ+〉 6= 0 , (2.58)

7As shown in [13] these U(5) variables are the same as (a subset of) the U(5) variables discussed in

section 2.1. As in [13] the missing quartet (pab, θab, v
ab, uab) will be added later.
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which does not agree with what one obtains by translating the RNS result (2.50) in the

small RNS Hilbert space (with respect to the βγ-system), using the corresponding change

of variables.

In the map between RNS and pure spinor formulations [13], the first step is to move to

the large RNS Hilbert space. One would thus expect that after the change of variables it

is the large U(5) Hilbert space which is relevant. However, one is also free to move to the

small U(5) Hilbert space, and we will argue below that this is required in order to obtain

the SO(10) covariant result.

To proceed, we add [13] the “topological” quartet (pab, θab, v
ab, uab) (cf. section 2.1).

This is a sum of ten bc– and ten βγ-type systems all with weight one. The additional

operator insertion needed to saturate the zero modes is therefore:

10∏

ab=1

θab δ(uab) . (2.59)

Note that this operator is in the small Hilbert spaces (with respect to the (vab, uab) systems).

Combining the above results it follows that the saturation rule can be written as
〈
εabcdeθ

aθbθcθdθe

[
θ+

10∏

ab=1

θab

][
δ(γ′)

10∏

ab=1

δ(uab)

]〉
6= 0 . (2.60)

From (2.54) and the discussion below (2.6) we have γ ′ = e−2s, whereas from (2.5) we find

λ+ = es = γ′−1/2. Using the relation δ(x) = f ′(x)δ(f(x)) we find8 δ(γ′) ∝ (λ+)3δ(λ+).

Using this result together with (2.5) we finally find
〈

(λ+)3εabcdeθ
aθbθcθdθe

[
θ+

10∏

ab=1

θab

] [
δ(λ+)

10∏

ab=1

δ(λab)

]〉
6= 0 , (2.61)

which is equivalent to
〈

(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)

[
θ+

10∏

ab=1

θab

][
δ(λ+)

10∏

ab=1

δ(λab)

]〉
6= 0 , (2.62)

because the extra terms are set to zero by the delta functions (recall that for Grassmann-

odd variables, δ(θ) = θ). One can write (2.62) as
〈

(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)

11∏

I=1

CIαθ
αδ(CIβλ

β)

〉
6= 0 , (2.63)

where the CI
α are non-covariant constant spinors implicitly defined by the above two equa-

tions. The important point now is that C I
αθ

αδ(CIβλ
β) is precisely what Berkovits called YCI

in [11], so that we have recovered his result in our setting. Above, our C I ’s were of a very

special form, but it was shown in [11] that the expression (2.63) is actually independent of

the CI ’s. This completes our discussion of the relation between the RNS and pure spinor

saturation rules.

8The expression (λ+)3δ(λ+), which naively might look like it is zero, is meaningless without the measure.

We discuss the measure below; in the operator formalism the measure is implicit.
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In the previous discussion we have exclusively worked within the operator formalism.

Let us also briefly discuss the connection to the equivalent path integral approach and its

associated zero mode measure. From the above expressions it might naively seem that

(λ+)3δ(λ+) is zero. But this expression is meaningless without the measure. The measure

associated with (2.60) is the canonical one

dγ′
∏

ab

duab

16∏

α=1

dθα . (2.64)

Under the change of variables from γ ′ to λ+ = γ′−1/2 the measure dγ ′ transforms into

dλ+ dγ′

dλ+ ∝ dλ+(λ+)−3, so that what remains after multiplication is
∫

dλ+δ(λ+). After

implementing this change of variables in (2.64) we obtain the measure appropriate to the

saturation rule (2.61). The form of the measure appropriate to the equivalent covariantised

saturation rule (2.62) was constructed in [11]. Note also that in the formulation where the

pure spinor constraint is relaxed, some aspects of the measure were discussed in [23].

Let us end this subsection with a couple of comments. Notice that with our definitions

it is not true that in the ghost sector T = wα∂λ
α = w+∂λ

+ + 1
2w

ab∂λab, as can be seen

by using (B.3) and (2.5). However, if one redefines λab → ec1suab and wab → e−c1svab, as

well as w+ → e−s(∂t+ c2∂s+ c3 v
abuab), it is possible to choose the constants c1, c2 and c3

in such a way that this is true. Also notice that one can define the analogue of the usual

RNS picture number for the eleven βγ-type systems: (β ′, γ′), (vab, uab). In terms of these,

the Y I ’s have picture number −1 (and ghost number +1). Another point is that it can be

checked that the operator saturating the zero modes is BRST closed. In the form (2.61)

this is only true for the expression as a whole. On the other hand, for the covariantised

expression (2.62) this is essentially true for the λ3θ5 and
∏
I Y

I parts separately [11], as

required for the interpretation of the insertion of
∏
I Y

I as a map between cohomologies [28].

The main result of the recent paper [11] was a prescription for calculating loop am-

plitudes in the pure spinor formulation, which had been a long standing problem. In

the calculation of loop amplitudes in the RNS formulation, insertions roughly of the form

{Q,Θ(β)} occur, where Θ is the step-function. If one naively takes this to hold also in the

pure spinor formulation, then one obtains (using (2.5) and Θ′(x) = δ(x))

{Q,Θ(vab)} =
1

2
[dabes +

1

2
εabcdedcude]e

−s δ(vab) ∝ (dγabλ) δ(Nab) (no sum) (2.65)

where in the last step we have used (B.5). Introducing BI
cd = δac δ

b
d, where I = ab, we

can rewrite the above expression as BI
cd(dγ

cdλ) δ(BI
efN

ef ). Thus we find exactly the ZBI

operator defined in [11]. Similarly, using β ′ ∝ e2s(∂t+ 2∂s), one finds

{Q,Θ(β′)} ∝ [esd+ − λada]e2s δ(e2s(∂t+ 2∂s)) (2.66)

which is equal to Qδ(J) modulo normal ordering ambiguities and terms which vanish when

multiplied by δ(uab). Thus we find the operator ZJ defined in [11]. As we said earlier, it

may be possible to make these arguments more precise. Also, related aspects of the loop

amplitude prescription, as well as the geometry of the picture changing operators, were

recently discussed in [31].
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2.3 Mode expansions

In this subsection we collect the mode expansions of the world-sheet fields. Since this is

a standard procedure, we shall be rather schematic. The world-sheet bosons ∂xm, ∂̄xm,

which transform as spacetime vectors, have the standard expansions

∂xm(z) = −i
∑

k∈Z

αmk
zk+1

, ∂̄xm(z̄) = −i
∑

k∈Z

α̃mk
z̄k+1

, (2.67)

where the spacetime momentum is pm = αm0 = α̃m0 , and the commutation relations are

as usual [αmk , α
n
l ] = k ηmnδk+l and similarly for α̃mk . The world-sheet scalars which trans-

form as spacetime fermions have integral world-sheet conformal dimensions, with mode

expansions

θα(z) =
∑

k∈Z

θαk
zk
, pα(z) =

∑

k∈Z

pα,k
zk+1

, (2.68)

and similarly for the right-moving fields. The commutation relations are, as expected,

{pα,k, θβl } = δβαδk+l and similarly for the right-moving sector. The mode expansions of ∂g

and Mmn are (we suppress the right-moving sector)

∂g(z) =
∑

k∈Z

gk
zk+1

, Mmn(z) =
∑

k∈Z

Mmn
k

zk+1
. (2.69)

As to the ghost field, λα, its expansion is

λα(z) =
∑

k∈Z

λαk
zk

. (2.70)

Finally, the expansions for ∂h and Nmn are completely analogous to the ones in (2.69),

and we shall not explicitly write them down.

The commutation relations involving the modes of (Mmn, Nmn, ∂g, ∂h, λα, θα) can

easily be worked out; we have the following non-vanishing commutators

[M rs
k ,M

mn
l ] = ηrmM sn

k+l − ηsmM rn
k+l + ηrnM sm

k+l − ηsmM rn
k+l + 4l (ηmsηnr − ηmrηns) δk+l ,

[N rs
k , N

mn
l ] = ηrmN sn

k+l − ηsmN rn
k+l + ηrnN sm

k+l − ηsmN rn
k+l − 3l (ηmsηnr − ηmrηns) δk+l ,

[Nmn
k , λαl ] =

1

2
(γmn)αβλ

β
k+l , [Mmn

k , θαl ] =
1

2
(γmn)αβθ

β
k+l ,

[hk, λ
α
l ] =

1

2
λαk+l , [gk, θ

α
l ] = −1

4
θαk+l ,

[hk, hl] = −kδk+l , [gk, gl] = kδk+l . (2.71)

Finally, we should also point out that after a conformal transformation to the cylinder, the

mode expansions are (in the (τ, σ) cylinder coordinates)

F =
∑

k

fke
−ik(τ−σ) , F̃ =

∑

k

f̃ke
−ik(τ+σ) (2.72)

for any fields F , F̃ , irrespective of their conformal weights.
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2.4 Vacua

We now discuss the vacuum structure of the theory in more detail. Let us first consider

a simple toy model comprising one bc-system with fields p and θ and one βγ-system with

fields v and u. We assume that both systems have conformal weight equal to one. For

general weights, one needs to distinguish between the oscillator vacuum and the SL(2)

vacuum. However, for the special case of weight one, these coincide. We denote the SL(2)

invariant oscillator vacuum by |0〉. This state satisfies L0|0〉 = 0 = L±|0〉. In terms of the

oscillator modes in the “bc” sector this state satisfies

pk|0〉 = 0 for k ≥ 0 and θk|0〉 = 0 for k ≥ 1 . (2.73)

As is well known there is another state with the same energy, namely, θ0|0〉. This state

has “ghost” number +1. The notation |↑ 〉 is often used for this state whereas the notation

|↓ 〉 is often used for what we previously called |0〉. The only non-vanishing matrix element

between the degenerate states is 〈0|θ0|0〉 (or using the other notation, 〈 ↓ | ↑ 〉). In the “βγ”

sector, |0〉 satisfies

vk|0〉 = 0 for k ≥ 0 and uk|0〉 = 0 for k ≥ 1 . (2.74)

As was the case for the bc-system, there are other vacuum states. In particular, the state

which has a non-vanishing matrix element with 〈0| is δ(u0)|0〉 (this is usually shown using

bosonisation). The state δ(u0)|0〉 has “picture” number −1. To conclude, there are two

natural vacuum states one can define, |0〉 and |Ω〉 = θ0 δ(u0)|0〉, and these states have a

non-vanishing inner product as 〈0|Ω〉 6= 0.

Let us now make contact with the saturation rule given in (2.62). This rule can be

written as (here we suppress the ‘0’ zero mode subscripts)

〈0|(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)|Ω〉 6= 0 , (2.75)

where

|Ω〉 =

11∏

I=1

Y I |0〉 = [θ+δ(λ+)]

10∏

ab=1

[θabδ(λab)]|0〉 . (2.76)

Recall that there are eleven (b, c, β, γ)-type quartets of weight one in the U(5) formulation

of the pure spinor superstring: (p+, θ
+, β′, γ′) and the ten (pab, θab, v

ab, uab). Given the

above discussion we see that the Y I insertions can essentially be understood as a change in

vacuum, required to get a non-vanishing matrix element (since δ(λ+) is used rather than

δ(γ′) there is a remaining background charge which is cancelled by the explicit additional

λ3 insertion).

3. Pure spinor boundary states in flat spacetime

In this section we discuss the construction of the D-brane boundary state, in the pure spinor

superstring. Throughout we restrict ourselves to the case of a flat spacetime background.

Some of the results in subsections 3.1 through 3.3, and 3.5 were also obtained in [10], albeit
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using a slightly different approach. However, the zero mode part of the boundary state was

not discussed in [10]. For simplicity we shall concentrate on the D9-brane in the type-IIB

theory (but a brief discussion of the lower dimensional Dp-branes can be found at the end

of this section).

3.1 The open string picture: sigma model boundary conditions

We start by considering an open string stretched between two D9-branes in the type-IIB

string theory. The relation between the (z, z̄) coordinates and the (τ, σ) coordinates is

z = ei(τ−σ) , z̄ = ei(τ+σ) , ∂τ = i
(
z∂ + z̄∂̄

)
, ∂σ = i

(
−z∂ + z̄∂̄

)
. (3.1)

We are considering an open string with endpoints at σ = 0 and σ = π. To determine

the boundary conditions that the open string should obey at its endpoints we consider the

variation of the action (2.3). At this point we do not consider the ghost sector; this sector

will be included later. The variation of the action gives the equations of motion for the

fields, plus the boundary term

1

2π

∫
dτ
[
−2 i

(
z∂ − z̄∂̄

)
xmδx

m − 2 i z pαδθ
α + 2 i z̄ p̃αδθ̃

α
]σ=π

σ=0
, (3.2)

that needs to be set to zero. Consider σ = 0 corresponding to z = z̄. The boundary

condition on xm is

δxm
(
z∂ − z̄∂̄

)
xm

∣∣∣
σ=0

= 0 . (3.3)

This is the usual condition on the bosonic modes of the open string. For a D9-brane

we impose Neumann boundary conditions
(
z∂ − z̄∂̄

)
xm|σ=0 = 0. In terms of the (τ, σ)

coordinates this is just ∂σx
m|σ=0 = 0.

Let us now consider the spacetime fermionic sector. It is clear that one needs
(
z pαδθ

α − z̄ p̃αδθ̃α
) ∣∣∣

σ=0
= 0 . (3.4)

The boundary term thus vanishes if one imposes the boundary conditions

(z pα ± z̄ p̃α)
∣∣∣
σ=0

= 0 ,
(
θα ± θ̃α

) ∣∣∣
σ=0

= 0 . (3.5)

From the above results (written in terms of the oscillator modes) it follows that the bound-

ary conditions on the supersymmetry generators (2.24) are9

(z qα ± z̄ q̃α)
∣∣∣
σ=0

= 0 . (3.6)

This implies the well-known fact that the D-brane preserves half the supersymmetries, and

justifies the conditions (3.5). It also follows from the above conditions that the fermion

Lorentz currents Mmn = −1
2pγ

mnθ, M̃mn = −1
2 p̃γ

mnθ̃, and the fermion Lorentz scalars

g = 1
4 pθ, g̃ = 1

4 p̃θ̃, obey the boundary conditions
(
zMmn − z̄M̃mn

) ∣∣∣
σ=0

= 0 ,
(
z∂g − z̄∂̄g̃

) ∣∣∣
σ=0

= 0 . (3.7)

9Observe that in (3.6) we are actually referring to the supersymmetry current and not to the supersym-

metry charge. We will return to the standard notation in what follows.
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One should not confuse the ±-ambiguity above with the one appearing in the RNS su-

perstring. Whereas in the RNS case this ambiguity is related to the world-sheet spin

structures, the ambiguity here should rather be regarded as a spacetime ambiguity asso-

ciated to a choice of brane versus anti-brane. That this is so can be understood by the

fact that a D-brane breaks half of the target space supersymmetries and, as one can see

from (3.6) above, there are two distinct ways to do so: one must be associated to a D-

brane and the other to the anti–D-brane. Later, we will indeed see that this sign ambiguity

corresponds to objects with the same tension but opposite RR charges, as expected.

3.2 The closed string picture: D-brane boundary states

If one computes the open string one-loop amplitude, with the boundary conditions just

found in section 3.1, for open strings ending on a D-brane, one is computing the annulus

diagram for the open string. This annulus diagram can equivalently be described in terms

of closed string propagation, as is well-known. In order to go from the open string picture

to the closed string picture, one essentially needs to do the transformation τ ↔ σ (see,

e.g., [8] for a detailed discussion). In general one also has the option of writing the relevant

expressions either in terms of the (z, z̄) coordinates on the complex plane, or to make a con-

formal transformation to the (τ, σ) cylinder coordinates. Under the latter transformation

the fields will have fixed transformation properties dictated by their conformal weights,

e.g., θα → θα and θ̃α → θ̃α, whereas zpα → ipα and z̄p̃α → −ip̃α.

Via the above transformations, one can directly translate the boundary conditions

for the open string, obtained in section 3.1, into conditions for the (closed string sector)

boundary state |B〉. Below, all conditions are written in terms of the (τ, σ) variables, and

all fields have mode expansions as in (2.72). We find

∂τx
m|τ=0 |B〉 = 0 , (3.8)

(pα ∓ p̃α)|τ=0 |B〉 = 0 ,
(
θα ± θ̃α

)∣∣∣
τ=0
|B〉 = 0 , (3.9)

(
Mmn + M̃mn

)∣∣∣
τ=0
|B〉 = 0 , ∂τ (g + g̃)|τ=0 |B〉 . (3.10)

In terms of the modes of the fields this translates into

(
αmk + α̃m−k

)
|B〉 = 0 , (3.11)

(pα,k ∓ p̃α,−k) |B〉 = 0 ,
(
θαk ± θ̃α−k

)
|B〉 = 0 , (3.12)

(
Mmn
k + M̃mn

−k
)
|B〉 = 0 , (gk + g̃−k) |B〉 = 0 . (3.13)

for any k ∈ Z.

We now turn our attention to the ghost sector. It is clear that one could repeat the

above analysis for the free U(5) ghost variables. However, rather than giving the details of

such an analysis, we shall instead present another approach in what follows (which leads

to the same results). First, notice that the boundary state should satisfy

(
Q+ Q̃

)
|B〉 = 0 , (3.14)
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where the BRST operators were given in (2.20). Consistency of this relation with the

boundary condition on (θα, θ̃α) implies that
(
λα ± λ̃α

)∣∣∣
τ=0
|B〉 = 0 , (3.15)

which in turn is consistent with the conditions
(
Nmn + Ñmn

)∣∣∣
τ=0
|B〉 = 0 , ∂τ (h+ h̃)

∣∣∣
τ=0
|B〉 = 0 . (3.16)

A further consistency check is that the Lorentz generators in the spacetime fermionic sector

and in the ghost sector satisfy the same boundary conditions, as required. Having obtained

the boundary conditions, we next turn to the construction of the state |B〉 satisfying the

above conditions.

3.3 Boundary state: non-zero mode sector

Without loss of generality one can write |B〉 as eW |B〉0 where the prefactor eW only involves

non-zero modes, and |B〉0 refers to the zero mode part. The part of the eW prefactor

involving the bosonic modes of xm is as usual

exp

(
−
∞∑

k=1

1

k
αm,−k α̃

m
−k

)
. (3.17)

Similarly, the corresponding pθ prefactor is

exp

(
∓
∞∑

k=1

[
pα,−k θ̃

α
−k + p̃α,−k θ

α
−k
])

. (3.18)

The ghost part of the prefactor can, e.g., be written in terms in terms of the wλ variables

as (we could also have written it in terms of the free (β ′, γ′, vab, uab) variables and their

right-moving cousins)

exp

(
±
∞∑

k=1

[
wα,−k λ̃

α
−k + w̃α,−k λ

α
−k
])

. (3.19)

It is important to observe that although this expression is seemingly not manifestly co-

variant (because of the presence of wα, w̃α), the boundary conditions it implies are indeed

covariant. Notice that when (3.19) is written in U(5) components, only the canonically con-

jugate variables (w+, λ
+), (wab, λab) (and their right-moving counterparts) appear, since

wa = 0 = w̃a (cf. appendix B). It is easy to see that this is not in conflict with the boundary

condition (λa ± λ̃a)|B〉 = 0 because of the composite nature of λa, λ̃a implied by the pure

spinor constraint. Let us also mention that the construction of the cross-cap state |C〉 is

completely analogous, the only difference being that one finds extra (−1)k insertions in the

sums in the above expressions.

In this paper the above explicit expressions for the non-zero mode part of the boundary

state will play a marginal role, so we shall not discuss them any further in this work.

Instead we turn to the much harder problem of determining |B〉0 — the zero mode part of

the boundary state.
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3.4 Boundary state: zero mode sector

As discussed above, the boundary state |B〉 contains two parts: a part containing the non-

zero modes and a part containing only zero modes. There are several different possible

routes one could take to obtain the zero mode part of the covariant boundary state in the

pure spinor superstring. Some possibilities are:

• Start from the known expression in the RNS superstring and try to apply the map

in [13] in order to obtain a result in terms of the pure spinor variables.

• Start from RNS, written in its U(5) version [30], and derive the boundary states

directly in terms of these variables, then translate the result so obtained into the

pure spinor superstring.

• Start directly with the pure spinor variables, alongside with the associated boundary

conditions, and try to derive the boundary state.

• Use known information about the pure spinor massless vertex operators (the zero

mode cohomology) in order to try to obtain information about the zero mode part

of the boundary state.

Below we will comment on each of these approaches. As above, we restrict ourselves to

the D9-brane in type IIB; the more general case will be discussed later. Also, in order not

to clutter the formulæ, we shall not explicitly write the index ‘0’ on the various variables

to indicate that, in this subsection, we are dealing exclusively with the zero modes. From

the previous discussion it follows that we want the zero mode part of the boundary state

to satisfy the conditions

(θα ± θ̃α)|B〉0 = 0 , (pα ∓ p̃α)|B〉0 = 0 , (λα ± λ̃α)|B〉0 = 0 ,

(Q+ Q̃)|B〉0 = 0 , (Lmn + L̃mn)|B〉0 = 0 , (qα ∓ q̃α)|B〉0 = 0 . (3.20)

The first condition, together with the last, implies that the θ, θ̃ dependence of the zero

mode part of |B〉 has to be |B〉θ,θ̃0 =
∏16
α=1(θα ± θ̃α)|0〉, where |0〉 is annihilated by pα

and p̃α (additional factors of θ, θ̃ are ruled out by the fact that we want precisely half the

supersymmetry generators to annihilate the boundary state).

In the ghost sector the situation is more involved. It is clear that we want a factor

δ(λα ± λ̃α) for each independent component of λ, λ̃. However, since the λ, λ̃ variables are

bosonic an additional multiplicative function of λ, λ̃ might also be allowed and it is not

immediately obvious how to choose this function. The approach we shall now take to

determine the ghost part of the boundary state is based on the free U(5) variables; at the

end we will check that all boundary conditions are satisfied.

In terms of the U(5) ghost variables (which we recall comprise eleven βγ-systems, all

of conformal weight one) the natural candidate for the zero mode part of the boundary

state is |B〉γ′,u;γ̃′,ũ
0 = δ(γ′ − γ̃′)∏ab δ(uab ± ũab)|0〉, where |0〉 has picture number 0 and

is annihilated by β ′, β̃′, vab and ṽab. Strictly speaking there are some sign ambiguities

here. We have chosen to fix the signs so that Lorentz covariance is recovered at the end
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(see the later discussion). Recalling that γ ′ = (λ+)−2 (and similarly for γ̃′), we see that

γ′ = γ̃′ implies λ+ = ∓λ̃+. The transformation of δ(γ − γ ′) to the λ+, λ̃+ variables gives

δ(γ−γ′) ∝ (λ+)k(λ̃+)3−kδ(λ+±λ̃+), where the integer k, with 0 ≤ k ≤ 3, is arbitrary. This

arbitrariness arises from the presence of the delta function (there is a similar ambiguity

in the radial part of the usual three dimensional delta function expressed in spherical

coordinates). In the path integral approach the integration is performed using the closed

string measures
∫

dλ+(λ+)−3 and
∫

dλ̃+(λ̃+)−3; this shows that all k give identical results.

Combining the above results we (schematically) obtain

|B〉0 ∝
5∑

n=0

(±)n(λ+)kn(λ̃+)3−knθnθ̃5−n
11∏

I=1

Y I(θ ± θ̃, λ± λ̃)|0〉 (3.21)

where, as in section 2.2, we have re-written the delta functions involving θ+, θab, λ
+,and

λab in terms of Y I(θ, λ) = CI
αθ

α δ(CIαλ
α) for certain constant spinors C I

α. The remaining

θa, θ̃a variables have been written using a short-hand notation, e.g., θ2θ̃3 = εabcdeθ
aθbθ̃cθ̃dθ̃e

and so on. The basic boundary conditions for the free fields discussed above can be used

to show that the boundary state (3.21) satisfies the correct boundary conditions also for

the composite fields Q, qα, Mmn, ∂g, Nmn and ∂h, by using their explicit expressions in

terms of the free fields.

We will now argue that, without changing the physics, one can replace the (λ+)kn ×
(λ̃+)3−knθnθ̃5−n pieces in the boundary state by manifestly covariant expressions, for in-

stance one may replace λ+(λ̃+)2θθ̃4 → (λγmθ)(λ̃γnθ̃)(λ̃γpθ̃)(θ̃γmnpθ̃). One direct argument

is to note that the presence of the δ(λα − λ̃α)’s in the Y I ’s means that in the covariant

expressions we can replace, e.g., all λ̃α’s by λα’s. The remaining θ, θ̃ dependence is then

via θα− θ̃α, but the fermionic delta functions in the Y I ’s then put the + and ab components

to zero. Finally, one notes that there is no way to form a non-vanishing scalar out of a

product of five (θ− θ̃)a’s as well as εabcde and λ+, which also involves λa and/or λab. Thus

only the λ+ dependence survives and we are back to the above expression (3.21).

An indirect but perhaps more transparent argument is to note that in calculating

correlation functions (and as we shall later see, when calculating scattering amplitudes)

one also needs to insert
∏11
I=1 Y

I(θ ∓ θ̃, λ∓ λ̃) to saturate the zero modes. Using the fact

that

11∏

I=1

Y I(θ ∓ θ̃, λ∓ λ̃)Y I(θ ± θ̃, λ± λ̃) ∝
11∏

I=1

Y I(θ, λ)Y I(θ̃, λ̃) ≡
11∏

I=1

Y I Ỹ I (3.22)

one realises that the presence of the delta functions in the Y I and Ỹ I ’s means that in the

covariant expressions only the terms present in (3.21) survive.

There still remains the ambiguity in choosing the kn’s, though. Although this ambi-

guity does not appear to have any direct physical meaning there is a certain choice which

is quite convenient. To describe this choice we recall that the left- and right-moving parts

of the vertex operators for the massless states involve certain basic constituent operators.

These operators essentially coincide with the zero mode cohomology (which was explicitly

worked out in [32]; see also [33, 34, 28]) and are summarised in table 2.
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These operators are normalised according
(p, q) Up,q

(0, 0) 1

(1, 0)∗ λα

(1, 1) (λγmθ)

(1, 2) (λγmθ)(θγm)α
(2, 3) (λγmθ)(λγnθ)(γmnθ)

α

(2, 4) (λγmθ)(λγnθ)(θγmnpθ)

(2, 5)∗ (γmθ)α(λγnθ)(λγpθ)(θγmnpθ)

(3, 5) (λγmθ)(λγnθ)(λγpθ)(θγmnpθ)

Table 2: Basic “massless” operators. The

entries marked with * are not in the BRST

cohomology.

to

〈Up,qUr,s〉 = c δ3−p−r δ5−q−s , (3.23)

where c is a constant which depends on conven-

tions and which we shall take to be equal to 1.

In the above formula we have suppressed the

index contractions, as well as the extra Y I in-

sertions needed to get a non-vanishing answer.

Guided by the properties of the Up,q’s we fix

the kn ambiguity so that the “covariant” part

of the zero mode boundary state contains only

operators of this type. By comparison with

the situation in RNS we also require the terms in the “covariant” part of the zero mode

part of the boundary state to have (λ, λ̃) ghost numbers (1, 2) or (2, 1). This choice will be

further discussed below. Our way of fixing the kn ambiguity implies that although Q+ Q̃ of

course annihilates the full boundary state by construction, it now also almost annihilates

the “covariant” part (i.e., the part without the Y I ’s) separately without using the delta

functions. We say almost, because for the states with five θ’s (five θ̃’s) we choose U2,5Ũ1,0

(U1,0Ũ2,5) rather than U3,5 (Ũ3,5).

From these requirements it follows that the zero mode part of the boundary state takes

the final form

|B〉0 =
2∑

i=0

[
(±)iU2,i+3Ũ1,2−i + (±)i+1U1,2−iŨ2,i+3

] 11∏

I=1

Y I(θ ± θ̃, λ± λ̃)|0〉 , (3.24)

where Up,q (Ũp,q) is a state in table 2 of the schematic form λpθq (λ̃pθ̃q). In this expression

indices have been suppressed (index contractions are the natural ones).

Equation (3.24) is our final result for the zero mode part of the boundary state. It

was constructed to satisfy the boundary conditions (3.20). From this requirement we

showed that it could be written as a part containing Y I ’s, times another part which, by

the arguments given above, could be written in a manifestly covariant manner and which

we chose to express in terms of the operators in table 2. Suppressing the Y I insertions by

defining |Z〉 =
∏11
I=1 Y

I(θ ± θ̃, λ ± λ̃)|0〉, the zero mode part of the boundary state takes

the form

|B〉0 =
2∑

i=0

[
(±)iU2,i+3Ũ1,2−i + (±)i+1U1,2−iŨ2,i+3

]
|Z〉 , (3.25)

where U (Ũ) are the right- (left-) moving “open string” vertex operators for the massless

fields given in table 2. Such a form was expected on general grounds, as well as from

comparison with RNS, where similar results hold [6] (see also the discussion below). The

main rationale behind our choice for fixing the kn ambiguities is that this choice is such

that, when performing calculations, the Y I , Ỹ I insertions largely decouple and one can
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essentially ignore them and effectively use the above form (3.25), together with the original

saturation rule (2.45). However, one must always keep in mind that the Y I insertions are

crucial to make sure that |B〉0 satisfies the correct boundary conditions. For other choices

of fixing the ambiguity one would have to use the delta functions in the Y I ’s to replace

λ’s by λ̃’s at certain intermediate stages of the calculations. We should also point out that

there may well be a more physical way to understand our expression, perhaps starting from

the observation that the covariant piece in the zero mode boundary state (3.25) has total

ghost charge three and total spacetime fermion charge five (by total we mean sum of left

and right), as does the pure spinor saturation rule.

As a final comment, and in order to gather some additional circumstantial support

for our proposal, we now briefly (and at a very heuristic level) discuss the relation to the

RNS expressions. In the RR sector the zero mode part of the RNS boundary state involves

expressions of the form

e2σeσ̃e−1/2φe−3/2φ̃SαS̃
α = e2σe−1/2φeσ̃e−3/2φ̃S+S̃

+ + · · · ∝ (λ+)2λ̃+θ5 + · · · ,
eσe2σ̃e−1/2φe−3/2φ̃SαS̃

α =
1

2
eσe−1/2φe2̃σe−3/2φ̃SabS̃ab + · · · ∝ λ+(λ̃+)2θ2θ̃3 + · · · ,

eσe2σ̃e−3/2φe−1/2φ̃SαS̃α = eσe−3/2φe2σ̃e−1/2φ̃S+S̃+ + · · · ∝ λ+(λ̃+)2θ̃5 + · · · ,
e2σeσ̃e−3/2φe−1/2φ̃SαS̃α =

1

2
e2σe−3/2φeσ̃e−1/2φ̃SabS̃

ab + · · · ∝ (λ+)2λ̃+θ3θ̃2 + · · · ,

where we used a short-hand notation, e.g., θ2θ̃3 = εabcdeθ
aθbθ̃cθ̃dθ̃e. Thus one can surmise

the appearance of four of the six terms in (3.24).

In the NSNS sector things are more subtle since there one has to distinguish between

the zero mode sector, and the part of the boundary state which couples to the massless

fields. In the pure spinor case there is no such distinction, so what one should try to map

to the pure spinor zero mode boundary state (which is also the part which couples to the

massless sector) is the part of the NSNS boundary state which couples to the massless

modes, namely

|B〉m2=0,NSNS ∝ [eσe2σ̃ + eσe2σ̃ ]e−φe−φ̃ΨmΨ̃m|0〉NS . (3.26)

Using

eσe2σ̃e−φe−φ̃ΨmΨ̃m = eσe−φe2σ̃e−φ̃ψaψ̃a + · · · ∝ λ+(λ̃+)2θθ̃4 + · · · ,
e2σeσ̃e−φe−φ̃ΨmΨ̃m = e2σe−φeσ̃e−φ̃ψaψ̃

a + · · · ∝ (λ+)2λ̃+θ4θ̃ + · · · ,

we find evidence for the remaining two terms in (3.24).

Of course we do not pretend to have actually derived any of the terms in (3.24) from

the RNS expressions. Nevertheless, the above relations are an indication that terms of this

form are expected to occur from a more careful treatment. It may be possible to make

this more precise using the map in [13], although we have not tried to do so. We expect

the map between the RNS and pure spinor boundary states to be rather subtle because

of the different large/small Hilbert spaces involved in the two cases (cf. the discussion in
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section 2.2). Another likely source of complications is that the zero mode part of the RR

boundary state is really more subtle than we pretended above, see, e.g., [35, 36] for further

discussions.

3.5 The generalisation to lower dimensional Dp-branes

As is well known the lower dimensional D-branes are obtained by imposing Dirichlet instead

of Neumann conditions in some of the spacetime directions. In the general case, the

boundary condition involving xm is (here ∂± = ∂τ ± ∂σ)

(∂−xm +Rmn ∂+x
n)|τ=0 |B〉 = 0 , (3.27)

where R is the matrix

Rmn =

(
δab 0

0 −δij

)
, (3.28)

with a, b = 0, . . . , p and i, j = p + 1, . . . , 9. Our ansatz for the boundary conditions in

the spacetime fermionic sector is (for simplicity we only consider the type-IIB theory; the

type-IIA case is similar)
(
pα ∓Rαβ p̃β

)∣∣∣
τ=0
|B〉 = 0 ,

(
θα ±Rαβ θ̃β

)∣∣∣
τ=0
|B〉 = 0 . (3.29)

At this point the matrices Rα
β and Rαβ should be seen as independent, but consistency

of the above two equations gives the restriction Rγ
αRγ

β = δβα. Since this is just a relation

between matrices, one also has Rα
γRβγ = δβα.

Further restrictions follow from the boundary conditions on the supersymmetry and

Lorentz currents:
(
qα ∓Rαβ q̃β

) ∣∣∣
τ=0
|B〉 = 0 ,

(
Mmn +RmrR

n
s M̃

rs
)∣∣∣
τ=0
|B〉 = 0 . (3.30)

These conditions imply the relations

γmαβR
β
γRm

n = Rα
δγnδγ , (3.31)

and

γmαβR
β

[σR
η
ρ] (γm)ηδ R

δ
κ = Rα

βγnβ[σ (γn)ρ]κ , (3.32)

as well as

Rα
η(γmn)αβR

β
δ = RmrR

n
s(γ

rs)ηδ . (3.33)

The solution to the above conditions is (for type IIB with p odd)

Rα
β = (γp+1...9)α

β = (−1)[
p−1

2 ](γp+1...9)αβ , Rβα = (γp+1...9)βα . (3.34)

For p = 9 both Rα
β and Rαβ are equal to δβα. One can check that the matrices (3.34)

satisfy all of the above restrictions. In the ghost sector the boundary conditions are
(
λα ±Rαβλ̃β

)∣∣∣
τ=0
|B〉 = 0 ,

(
Nmn +RmrR

n
sÑ

rs
) ∣∣∣

τ=0
|B〉 = 0 , (3.35)

which is consistent with (Q+ Q̃)|τ=0|B〉 = 0.
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The boundary conditions for the modes of the fields can easily be worked out, for

instance one has (note the extra condition for the center of mass in the directions transverse

to the brane)

(
αmk +Rmnα̃

n
−k
)
|B〉 = 0 , X i|B〉 = yi|B〉 , i = p+ 1, . . . , 9 , (3.36)

(
pα,k ∓Rαβ p̃β,−k

)
|B〉 = 0 ,

(
θαk ±Rαβθβ−k

)
|B〉 = 0 , (3.37)(

Lmnk +RmρR
n
sL̃

rs
−k
)
|B〉 = 0 , (3.38)

for any k ∈ Z. The part of the prefactor in the boundary state involving the bosonic modes

becomes

δ9−p(Xi − yi) exp

(
−
∞∑

k=1

1

k
αm−kRmn α̃

n
−k

)
. (3.39)

The prefactor involving the non-zero mode in the pθ sector is

exp

(
∓
∞∑

k=1

[
pα,−kR

α
β θ̃

β
−k − θα−kRαβ p̃β,−k

])
, (3.40)

with a similar modification for the part involving the non-zero modes for the ghost fields.

Finally, the zero mode part (3.25) gets modified to

|B〉0 =
[
Uα2,3Rα

β Ũ1,2;β ± Um2,4RmnŨn1,1 + U2,5;αR
α
βŨ

β
1,0 ±

± U1,2;αR
α
βŨ

β
2,3 + Um1,1RmnŨ

n
2,4 ± Uα1,0Rαβ Ũ2,5;β

]
|Z〉 , (3.41)

where |Z〉 is now also modified to reflect the new boundary conditions.

4. Applications and checks

Although we have presented concise arguments in support of our expression for the bound-

ary state in the pure spinor superstring, it is very important to check that results obtained

from earlier calculations in the RNS superstring are recovered in this new formalism. One

such test is to calculate scattering amplitudes in the presence of a D-brane and check that

the earlier known results are correctly reproduced. As we shall see this requires some fur-

ther work. Another test of our expression is to extend it to include the coupling to the

gauge field living on the D-brane world-volume and to check that the resulting D-brane

low-energy effective action is in agreement with the well-known results.

4.1 Calculating scattering amplitudes

In the RNS approach, tree level scattering amplitudes in the presence of a D-brane can be

calculated using (in this subsection we will only consider scattering amplitudes involving

the bulk modes)

〈U| [c0 − c̃0]
n−1∏

i=1

∫

|zi|>1
d2zi Vi(zi, z̄i)|B〉 . (4.1)
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Here 〈U| ≡ 〈0|U(0, 0), where the unintegrated vertex operator U(z, z̄) = U(z)Ũ (z̄) is

assumed to have ghost number (+1,+1) and to be in the appropriate picture to give

a non-zero answer for the amplitude. The integrated vertex operators Vi are assumed to

have zero ghost- and picture-numbers. See, e.g., [37] for a discussion about how expressions

such as the one above arise. The explicit c-ghost zero mode insertion is needed in order to

get a non-zero answer. In the RNS case one does not have to be precise about the c-ghost

insertions since the ghosts are Lorentz scalars and decouple completely. However, in the

pure spinor formalism the λα ghosts have a Lorentz spinor index and do not decouple, so

for later reference it is helpful to keep the ghosts in the above expression.

In generalising the above expression to the pure spinor case, one possible approach is

to try to find an analogue for the c0-ghost insertion. That additional zero mode insertions

are needed also in the pure spinor case is clear from our expression for the boundary

state (3.25), along with the ghost charges and number of θ’s in the unintegrated vertex

operators, see, e.g., (2.32), (2.40). One proposal for the required zero mode insertion is (as

in RNS we will use the notation c0; hopefully this will not lead to confusion)

c0 =
1

2

∮
(λγmθ)(θγmnpθ)L

np (4.2)

and analogously for c̃0. Here we have written an expression which, after performing the

integral, involves all the modes of θ, λ, . . ., but in practice we only need the part involving

purely the zero modes. Some evidence for the choice (4.2) can be obtained by noting that

in RNS (using U(5) notation)

εabcde

∮
(λ+θcθdθe(ψaψb)) ∝

∮
(c (ψaψb)(ψaψb)) ∝

∮
dz

c

z2
+ · · · = c0 + · · · . (4.3)

Since one expects that ψaψb gets replaced by Lab in the pure spinor formalism and since

one has εabcdeλ
+θcθdθe ∝ (λγmθ) (θγmabθ)+ · · · , the covariant expression suggested in (4.2)

seems like a reasonable guess.

With some work, it can be shown that the action of the c0 operator on the zero mode

states listed in table 2 is such that

c0 : U1,i → −(−)δi0U2,i+3 , i = 0, 1, 2 , (4.4)

i.e., it takes a vertex operator with ghost number 1 into a vertex operator with ghost

number 2. Notice that in the present case what we call c0 arises from integration of a

conformal weight one field, unlike the c0-ghost in the RNS case. The rather remarkable

result (4.4) can be used to rewrite the zero mode part of the boundary state (3.25) as (here

we have also included an overall normalisation factor)

|B〉0 = ±T9(c0 ∓ c̃0)
[
− U1,1Ũ1,1 ± (U1,0Ũ1,2 − Ũ1,0U1,2)

]
|Z〉

= T9

2∑

i=0

[
(±)iU2,i+3Ũ1,2−i + (±)i+1U1,2−iŨ2,i+3

]
|Z〉 . (4.5)

Here the factor (c0∓ c̃0) is assumed to act only on the UŨ part (and not on |Z〉). Thus we
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see that, apart from the (c0∓ c̃0) factor, the zero mode boundary state is simply the sum of

a “graviton”-type and a “C-field”-type vertex operator, cf. (2.32) and (2.40). This result is

similar to the situation occurring in the RNS superstring, where an analogous result holds.

The above considerations lead to our proposal for the calculation of scattering ampli-

tudes in the presence of a D-brane, in the pure spinor superstring:

〈U|(c0 ± c̃0)

n−1∏

i=1

∫

|zi|>1
d2zi Vi(zi, z̄i)|B〉 , (4.6)

with

〈U| = 〈Z|UŨ , (4.7)

where UŨ is taken as a ghost number (−1,−1) vertex operator and where by definition

〈Z| = 〈0|∏11
I=1 Y

I(θ ∓ θ̃, λ∓ λ̃). These Y I insertions are needed to give the right number

of delta functions (when combined with the corresponding Y I ’s in |B〉). The choice of ±
in (4.6) is required to get a non-vanishing amplitude. Instead of the above arguments, the

prescription (4.6) can also be regarded as a definition.

Before turning to explicit calculations based on (4.6), let us make some comments.

Since the operator we propose in (4.2) is the analogue of c0 in the RNS superstring, one may

naturally ask how it relates to the zero mode of the b-ghost, in its pure spinor version [11,

38]. There is no covariant expression for b0 itself. However, in [11] it was shown that

there is a covariant expression for a “picture-raised” version of b0. Moreover, in [39] it was

further shown that even though b0 itself is not covariant, the action of b0 on U = λαΦα

can be written covariantly as (modulo BRST exact terms)

b0 : λαΦα → GαΦα +HαβDαΦβ +KαβγDγDβΦα + LαβγδDδDγDβΦα . (4.8)

Concentrating on the zero mode vertex operator U2,i+3, and using the schematic relations

(here we only list the zero mode parts) Hαβ ∼ dd, Kαβγ ∼ Nd + Jd and Lαβγδ ∼ NN +

JN + JJ [11, 39], we see that the effect of b0 is to remove three θ’s and one λ from U2,i+3.

Thus, it is reasonable to expect that b0 maps U2,i+3 to U1,i (modulo a constant). If this is

indeed true then, at least when acting on these particular states, it is also possible that b0

has the inverse action to c0, as one would expect. Unfortunately, it is not possible to check

this in detail as Hαβ, Kαβγ and Lαβγδ have not yet been explicitly determined.

Let us now consider a couple of examples, starting with the absorption of a sin-

gle massless mode by a D9-brane. The vertex operator for the graviton is of the form

Un1,1hmnŨ
n
1,1, cf. (2.32). The action of c0 ± c̃0 in (4.6) turns this vertex operator into

−Uh2;1 ∓ Uh1;2 ≡ −Un2,4Ũn1,1hmn ∓ Un1,1Ũn2,4hmn and the scattering amplitude becomes

−〈Uh2,1|B〉0 ∓ 〈Uh1,2|B〉0 ∝ −T9

∫
d10x tr(h) , (4.9)

which is zero, i.e., the correct result (in order to get a non-zero answer one needs to

consider lower dimensional D-branes, in which case one finds tr(R · h) instead of tr(h),

which is also the known result). Notice that since the vertex operators we are dealing with

involve zero modes only, the non-zero modes in the boundary state give no contribution.

– 27 –



J
H
E
P
0
7
(
2
0
0
5
)
0
7
0

As another example, the vertex operator for a constant RR potential [25] is proportional to

U1,0 C Ũ1,2 +Ũ1,0 C̃ U1,2, cf. (2.38). The action of c0± c̃0 in (4.6) turns this into UC2;1±UC1;2 ≡
[U2,3 C Ũ1,2− Ũ1,0 C̃ U2,5]± [Ũ2,3 C̃ U1,2−U1,0C Ũ2,5] and the scattering amplitude becomes

〈UC2;1|B〉0 ± 〈UC1;2|B〉0 ∝ ±T9

∫
d10x tr(C − C̃) ∝ ±T9

∫
C10 , (4.10)

which again is the correct result. Notice that the ±, describing brane and anti-brane,

also works out correctly: from (4.10) follows that brane and anti-brane have opposite RR

charges, whereas from (4.9) follows that they have the same tension.

One may also investigate the case with one additional vertex operator insertion. For

the scattering involving two vertex operators for the graviton, or B-field, this is simple

since the integrated vertex operators with zero ghost charge are very similar in both the

RNS and pure spinor cases. Indeed, both can be written as

ζmn

∫
d2z (∂Xm + ikrL

rm)(∂̄Xn + iksL
sn)eik·X , (4.11)

the only difference being that Lmn = −ΨmΨn in the RNS case, whereas it is Lmn = Mmn+

Nmn in the pure spinor case. In the pure spinor case there are also subleading terms in the

vertex operator, at higher order in the θ expansion, but these will not contribute to the

scattering amplitude as they give rise to expressions with too many θ zero modes. Since Lmn

and −ΨmΨn have the same boundary conditions and the same OPE’s with the unintegrated

vertex operators for the massless modes (this follows immediately from the Lorentz index

structure), the scattering amplitudes will necessarily be the same. Thus, we find agreement

with the corresponding RNS results, obtained, e.g., in [40, 41]. Consequently, we also find

agreement with the terms in the D-brane effective action extracted from these results, see,

e.g., [42].

Above we mostly discussed the scattering of massless modes, but it should also be

possible to consider the massive modes. Scattering amplitudes in the presence of a D-

brane beyond tree level might also be within reach, using the results in [11].

4.2 Coupling to a gauge field

In this subsection we incorporate the gauge field living on the world-volume of the D-

brane into the previous analysis. For simplicity we consider the case of a D9-brane with

a constant gauge field, and will comment on the more general case later. The boundary

condition involving xm is of course the same as in the RNS superstring:

(∂τx
m − fmn ∂σxn)|τ=0 |B(f)〉 = 0 . (4.12)

This can also be written as (here ∂± = ∂τ ± ∂σ)

(∂−x
m +R(f)mn ∂+x

n)|τ=0 |B(f)〉 = 0 , where R(f)mn =

(
1− f
1 + f

)
m

n
. (4.13)

Since the Lorentz current and the supersymmetry generator are physical quantities, it

must be the case that their boundary conditions should agree with the ones in the RNS
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superstring [6], i.e., one must require

(Lmn +R(f)mrR(f)nsL̃
rs)|B(f)〉 = 0 , (qα ∓R(f)α

β q̃β)|B(f)〉 = 0 . (4.14)

Here R(f)α
β should agree with the RNS result [6]

R(f)α
β = det(1 + f)−1/2 Æ(−γmnfmn)α

β , (4.15)

where Æ is the antisymmetrised exponential

Æ(−γmnfmn) =

5∑

p=0

1

p!
(−)pγm1n1···mpnpf

m1n1 · · · fmpnp . (4.16)

Note that R(f)α
β = R(−f)βα. Furthermore we have the relations

R(−f) = R(f)−1 , R(f)−1γmR(f) =

[
1− f
1 + f

]
m

n
γn . (4.17)

Now, the following boundary conditions

(θα ± θ̃βR(−f)β
α)|B(f)〉 = 0 , (pα ∓R(f)α

β p̃β)|B(f)〉 = 0 ,

(λα ± λ̃βR(−f)β
α)|B(f)〉 = 0 , (4.18)

are consistent with (4.14) and reduce to the correct boundary conditions when fmn = 0.

Furthermore, they imply that the boundary conditions involving Q, g and h are indepen-

dent of fmn as they should be, and also that, e.g., the boundary condition involving λγm θ

has the same structure as the one involving ∂−xm. Note also that the above boundary

condition involving λα and λ̃α is consistent with the pure spinor conditions because of the

relations (4.17). An alternative approach one could follow, instead of using the known

boundary conditions from the RNS superstring, is to proceed as in section 3.5 and make

an ansatz for the boundary conditions involving θα, pα and λα. Consistency of the other

boundary conditions then leads to the same result as above for R(f)α
β.

The prefactor part of the boundary state involving the non-zero modes is closely anal-

ogous to the one in sections 3.3, 3.5. The part involving the modes of ∂xm is

exp

(
−
∞∑

k=1

1

k
αm−kRmn(f) α̃n−k

)
, (4.19)

whereas the prefactor involving the non-zero modes in the pθ sector is

exp

(
∓
∞∑

k=1

[
pα,−kR

α
β(f) θ̃β−k − θα−kRαβ(f) p̃β,−k

])
. (4.20)

A convenient basis for calculations is to choose f to be block-diagonal with the 2×2 blocks

along the diagonal proportional to
(

0 fi
−fi 0

)
with i = 1, . . . , 5. In this basis Rαβ(f) takes

the form
(1− if1σ3)√

1 + f2
1

⊗ · · · ⊗ (1− if5σ3)√
1 + f2

5

. (4.21)
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Thus the boundary conditions can be written in the U(5) notation as (see appendix B for

more details on the U(5) notation for spinors)

(
θ±±±±± ± (1∓ if1)(1 ∓ if2)(1∓ if3)(1∓ if4)(1∓ if5)√

1 + f2
1

√
1 + f2

2

√
1 + f2

3

√
1 + f2

4

√
1 + f2

5

θ̃±±±±±
)
|B(f)〉 ,

(
p±±±±± ∓

(1± if1)(1 ± if2)(1± if3)(1 ± if4)(1± if5)√
1 + f2

1

√
1 + f2

2

√
1 + f2

3

√
1 + f2

4

√
1 + f2

5

p̃±±±±±

)
|B(f)〉 , (4.22)

with exactly the same form for the boundary condition involving λ, λ̃ as for the one

involving θ, θ̃. In this form we again note that the boundary condition is consistent with

the pure spinor constraints, as can be seen from the explicit solution of the constraint in

the U(5) basis, cf. (2.5). In the U(5) basis the part of the prefactor in the boundary state

involving the non-zero modes for the ghost fields is particularly simple since it can, e.g., be

written using only the conjugate pairs (w+, λ
+), (wab, λab) and the right-moving partners.

The zero mode part of the boundary state which satisfies the above boundary condi-

tions is

|B(f)〉0 = T9

√
det(1 + f)

[
Uα2,3R(−f)α

β Ũ1,2;β ± Um2,4R(f)mnŨ
n
1,1 + U2,5;αR(f)αβŨ

β
1,0 ±

±U1,2αR(f)αβŨ
β
2,3 + Um1,1R(f)mnŨ

n
2,4 ± Uα1,0R(−f)α

β Ũ2,5;β

]
|Z〉 . (4.23)

As in earlier sections, we have suppressed the Y I ’s hidden in |Z〉. In the present case the

Y I ’s seemingly have an fmn-dependence. However, this f -dependence can be absorbed

into the CI
α and C̃Iα’s and therefore does not give rise to any additional f -dependence when

calculating correlation functions or scattering amplitudes. In (4.23) we have included an

f -dependent overall normalisation factor needed to find agreement with the usual D-brane

effective action (see below). It may be possible to understand this normalisation factor

from a more careful analysis.

Having determined the dependence on the world-volume gauge field in the boundary

state, we can now use the resulting expressions to calculate scattering amplitudes and,

for instance, derive the D-brane low-energy effective action. However, before turning to

this problem, let us discuss some puzzling aspects not touched upon above. In fact, we

have obtained the boundary conditions using the closed string language, but one should

also be able to derive these boundary conditions directly in the pure spinor superstring,

starting from the pure spinor superstring sigma model (2.3) plus a boundary action. Such

an analysis was carried out in [43]. In that paper, the resulting boundary conditions were

expressed in superfield notation. Consistency requires that the superfields satisfy certain

constraint equations. These equations put the superfields on-shell and were also obtained

in [44] using the superembedding approach for D-branes. Moreover, it was shown in [44,

43] that these equations have 16 (manifest) linear and also 16 (non-manifest) non-linear

supersymmetries and that the superfield equations therefore have to imply the (super) DBI

equations of motion.

To make contact with the boundary conditions above (for a constant gauge field

strength) one has to expand the superfield equations in components. It may seem strange

that in order to obtain the boundary conditions involving just the gauge field one first
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needs to “solve” the superfield equations (i.e., determine the component expansion), since

these equations also encode the equations of motion for the DBI action. It thus might

seem that in order to determine the boundary state (which can then be used to obtain the

DBI action) one first has to obtain the equations of motion of the DBI action. However,

this is not quite so. Rather, in order to find the boundary conditions for a constant gauge

field strength one actually does not need to solve the superfield equations completely, but

only determine the first few components in the θ expansion and the (algebraic) relations

between them. This will be further discussed in what follows.

Based on comparison with results in the RNS superstring (see, e.g., [45]) one expects

that it should also be possible to write the boundary state in the form eSb(f)|B(f =

0)〉, where Sb(f) is essentially the boundary action. Naively, one would expect Sb(f) ∝∫
dσ(∂σX

mam(X) + 1
2L

mnfmn) since this is the form of Sb(f) in the RNS boundary state

(see, e.g., [45]). Here Lmn is the boundary value of the RNS Lorentz current and one

might think that the only modification one needs to do is to replace the RNS Lorentz

current by its pure spinor analogue. However, this naive ansatz does not work (as was

observed in [46] in the related context of light-cone GS boundary states [7]). In order

to understand how to solve the problem, and also how to make contact with the result

in [43], let us focus on the pθ sector. The naive guess would be that Sb(f) involves

−1
2

∫
dσfmn(p± p̃)γmn(θ ∓ θ̃), in which case Sb(f) would simply be structurally the same

as the vertex operator (2.31). However, let us instead (as in [46]) consider the more general

form where Sb(f) is − 1
2

∫
dσ(pα±p̃α)(θβ∓θ̃β)Gα

β(f). This leads to the boundary condition

[(θβ ± θ̃β) + (θβ ∓ θ̃β)Gα
β(f)]|B(f)〉 . (4.24)

By comparison with the previous boundary condition we find agreement provided Gα
β is

related to Rα
β via G = (1−R)/(1+R). Using this relation we can determine Gα

β(f) using

the known form of Rα
β(f). The explicit form is rather complicated but it is easy to show

(e.g., using the block-diagonal basis for fmn to simplify the calculation) that for Dp-branes

with p > 4, Gα
β(f) contains more than just a γ(2) part; in particular it also has a γ(6) piece,

meaning that Sb(f) does not just involve the “Lorentz generators” (p ± p̃)γmn(θ ∓ θ̃) as

one naively would have expected. Furthermore, G is of course in general not linear in fmn.

On the other hand, on general grounds one expects Sb(f) to be simply given by the

boundary action constructed in [43]. However, this raises a puzzle since in this action only

the γ(2) piece occurs. To see this we first note that the boundary action given in [43] is

written in terms of the fields W α and Fmn (which were defined in [43] and are different

from the Yang-Mills ones, given in appendix A). Keeping only the leading order terms in

the θ expansion of W α and Fmn, which depend non-linearly on fmn, and using W α ∝
(θ∓ θ̃)βGβα(f) together with the relation DαW

β = 1
4Fmn(f)(γmn)α

β (which holds for the

leading order terms we consider), one finds that the boundary action given in [43] contains

a term as above, but where Gα
β(f) only has a γ(2) piece. In fact, it is even easier to see

that only a γ(2) piece occurs in the ghost sector, either from the boundary action in [43]

or more directly from the boundary condition [43] λα ± λ̃α = −1
4(λβ ∓ λ̃β)(γmn)β

αFmn(f)

(there is a similar problem with the θ, θ̃ boundary condition). Thus there seems to be a
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contradiction. However, this is easily resolved by replacing (γmn)α
βFmn(f) by a multiple

of Gα
β(f) (not affecting any of the conclusions in [43]). In fact, such a replacement is also

required to get agreement with the results in [44] where the analogue of (γmn)β
αFmn(f)

was denoted hα
β(f) and was explicitly shown to contain more than just a γ(2) piece (see

also [47]). Thus, after this replacement everything agrees. There is still a slight worry in

the ghost sector since, as noted above, the boundary action seems to involve more than just

the “Lorentz generators” (i.e., more than just γ(2)). This fact seems to be in conflict with

the ghost gauge invariance wα → wα + (γmλ)αΛm, as the term coupling ghosts and gauge

field is not invariant. However,10 the complete action in [43] is invariant under the ghost

gauge transformation provided the above boundary conditions hold. This again amounts

to replacing (γmn)α
βFmn(f) in [43] with a multiple of our Gα

β(f), which is required for

consistency with the pure spinor constraint (cf., the discussion at the beginning of this

section).

We will now test our proposal (4.23). As in RNS [48, 36, 49], the boundary state can

be used to calculate terms in the D-brane effective action. In particular, using (4.23) we

will determine the f -dependence of the D-brane low-energy effective action. One difference

compared to the RNS case is that in the pure spinor calculation only zero modes are

involved. This makes the determination of the DBI and WZ parts of the actions very

similar. More specifically, using the same method as in [48, 36, 49] we shall next determine

the linear coupling of the D-brane to both the graviton and the RR C-field potential, and

from the obtained result extract the D-brane effective action.

The linear coupling (in the action) to the graviton hmn (gmn = δmn+hmn) is obtained

from (cf. (4.9); see the discussion in the previous subsection)

−〈Uh1,2|B(f)〉0 ∓ 〈Uh2,1|B(f)〉0 ∝ −T9

∫
d10x tr(hR(f))

√
det(1 + f) (4.25)

from which we deduce, following [48], the DBI part of the D-brane effective action,

−T9

∫
d10x

√
det(g + f). The linear coupling (in the action) to the RR form fields Cp

is obtained from (cf. (4.10))

〈UC1,2|B(f)〉0 ± 〈UC2,1|B(f)〉0 ∝ ±T9

√
det(1 + f)

∫
d10x tr(CR(f)−R(f)C̃)

∝ ±T9

∫
C ∧ ef , (4.26)

which we recognise as the WZ part of the action, ±T9

∫
C ∧ eF . There are several possible

extensions of the above analysis which we shall leave for future work [50].

5. Final remarks

In this paper we have studied the pure spinor D-brane boundary state in the simplest

setting: a flat spacetime background. Clearly, much work remains to be done and many

extensions could be studied in the future. Ideally, one would like to address problems which

are inaccessible using standard RNS methods.

10We thank N. Berkovits for discussions on this issue.
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As we have discussed at length, the hardest issue in the understanding of the boundary

state is its zero mode sector. Our main result for this part of the boundary state is given

in (3.24), or in slightly more condensed form in (3.25). Our evidence for this result is that

it was constructed in order to satisfy the correct boundary conditions. It further leads to

the correct couplings to the bulk supergravity fields (i.e., one-point functions), and also

correctly reproduces certain scattering amplitudes involving two vertex operator insertions.

These tests did involve some further assumptions beyond just the boundary conditions; in

particular in section 4.1 we proposed a prescription for calculating scattering amplitudes in

the presence of a D-brane. We have also coupled the boundary state to a gauge field (see

section 4.2). The boundary conditions for the gauge field are consistent with the pure spinor

constraints and the calculation of scattering amplitudes using the framework discussed in

section 4.1 leads to expressions which agree with the known low-energy D-brane effective

action for the world-volume gauge field.

One would further like to check that 〈B|P |B〉 (where P is the propagator) is consistent

with the known RNS result. This analysis is hampered by the difficulty of constructing

the propagator in the pure spinor superstring. We note that in the RNS superstring the

total amplitude vanishes after summing over the various NS and R sectors. However, a

ghost zero mode insertion is needed to get a non-vanishing result within each sector. In

the pure spinor case it seems that the amplitude also vanishes, as required for consistency,

but not as a result of cancellations between expressions involving all modes, rather as a

consequence of the cancellation amongst the zero mode pieces alone.
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A. Flat N = 1, d = 10 superspace

The N = 1, d = 10 superspace coordinates are (xm, θα). The supersymmetry transforma-

tions acting on superfields are generated by

Qα =
∂

∂θα
− 1

2
(γmθ)α

∂

∂xm
, (A.1)

satisfying

{Qα,Qβ} = −γmαβ
∂

∂xm
. (A.2)

The vector field ∂
∂xm is invariant under the supersymmetry transformations, as is the usual

supersymmetric derivative,

Dα =
∂

∂θα
+

1

2
(γmθ)α

∂

∂xm
, (A.3)
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which satisfies,

{Dα, Dβ} = γmαβ
∂

∂xm
. (A.4)

To describe N = 1 super Yang-Mills in superspace one introduces the superfield poten-

tials Aα(x, θ), Am(x, θ), and their associated field strengths. Here Am(x, θ) = am(x) + · · · ,
where the field am(x) is identified with the super Yang-Mills gluon. As this construction

is fairly well-known, we shall be brief.

An analysis of the superspace Bianchi identities leads to the following relations between

the potentials and their field strengths

DαAβ +DβAα = γmαβAm ,

DαAm − ∂mAα = (γm)αβW
β ,

∂mAn − ∂nAm ≡ Fmn = −1

8
(γmn)αβDαW

β . (A.5)

Multiplying the first equation with the gamma matrix γαβn yields the relation

An(x, θ) =
1

8
γαβn DαAβ(x, θ) , (A.6)

which defines An in terms of Aα. Note that the gauge invariance Aα → Aα +DαΩ implies

the standard gauge invariance Am → Am + ∂mΩ. Multiplying instead with γαβm1···m5 yields

γαβm1···m5
DαAβ = 0 , (A.7)

which can be shown to imply the super Yang-Mills equations of motion, i.e., this superspace

constraint puts the theory on-shell. Multiplying the second equation in (A.5) with (γm)ηα

yields

W η =
1

10
(γm)ηα(DαAm − ∂mAα) , (A.8)

which together with (A.6) defines W η in terms of Aα. Here W η(x, θ) = ξη(x) + · · · , where

ξη(x) is identified with the super Yang-Mills gluino field.

For a super Yang-Mills background containing a gluon field am(x) with constant field

strength fmn, and a constant gluino field ξα, one can show that the θ expansions of the

above superfields are

Aα(x, θ) =
1

2
(γmθ)α am(x) +

1

3
(γmθ)α (θγmξ)−

1

32
(θγnpqθ) (γnθ)α fpq , (A.9)

Am(x, θ) = am(x) + θγmξ −
1

8
(θγmnpθ) f

np , (A.10)

Wα(x, θ) = ξα +
1

4
(θγmn)α fmn , (A.11)

Fmn(x, θ) = fmn . (A.12)

B. The U(5) formalism

It will be occasionally useful to temporarily break SO(10) to U(5) ≈ U(1)× SU(5). Under

this breaking pattern, the vector representation of SO(10) decomposes as 10 → 5 ⊕ 5̄.
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The components of a SO(10) vector V m are related to the components of the two U(5)

representations va, va, according to va = 1
2 (V a + iV a+5) for the 5 and va = 1

2 (V a− iV a+5)

for the 5̄; here a = 1, . . . , 5. Analogous expressions can be derived for a tensor with an

arbitrary number of vector indices. The following representation for the U(5) components

(γa)αβ and (γa)αβ of the SO(10) gamma matrices Γmαβ is useful (see, e.g., [51])

(γ1)αβ = −1 + σ3

2
⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 , (γ1)αβ = −1− σ3

2
⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ,

(γ2)αβ = −σ2 ⊗
1 + σ3

2
⊗ σ1 ⊗ σ2 ⊗ σ1 , (γ2)αβ = −σ2 ⊗

1− σ3

2
⊗ σ1 ⊗ σ2 ⊗ σ1 ,

(γ3)αβ = −σ2 ⊗ σ1 ⊗
1 + σ3

2
⊗ σ2 ⊗ σ1 , (γ3)αβ = −σ2 ⊗ σ1 ⊗

1− σ3

2
⊗ σ2 ⊗ σ1 ,

(γ4)αβ = −σ2 ⊗ σ1 ⊗ σ2 ⊗
1 + σ3

2
⊗ σ1 , (γ4)αβ = −σ2 ⊗ σ1 ⊗ σ2 ⊗

1− σ3

2
⊗ σ1 ,

(γ5)αβ = −σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗
1 + σ3

2
, (γ5)αβ = −σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗

1− σ3

2
.

(B.1)

Indices are raised and lowered with εαβ = −σ1 ⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 and its inverse εαβ,

according to the rule T αβ = εαδTδρε
ρβ. The above matrices satisfy {γa, γb} = δab . From this

result it follows that the corresponding Γm’s satisfy {Γm,Γn} = 2ηmn. The above matrices

are 32×32 dimensional, but we will only consider the restricted action on 16 dimensional

Weyl spinors. The restriction of Γmαβ to this subspace will be denoted by γmαβ.

A spinor of SO(10) is conveniently represented as the direct product of 5 SO(2) spinors.

Denoting the SO(2) spinor
(1

0

)
by + and

(0
1

)
by −, SO(10) spinors are naturally labelled

by a composite index (±,±,±,±,±), where all 32 possible choices are allowed. The above

γ matrices act on this basis in the natural way. In this basis a 32 dimensional spinor splits

into 16 ⊕ 16. Spinors with an odd (even) number of +’s are Weyl (anti-Weyl) spinors. A

sixteen dimensional spinor λα further decomposes as 16→ 1⊕5⊕10 (and similarly for the

16 representation). The components with one + will be denoted λa and belong to the 5

representation; the components with three +’s will denoted by λab = −λba and belong to

the 10 representation. Finally, the component with five +’s is the singlet and is denoted

λ+ (the difference between the number of +’s and −’s divided by 2 is the U(1) quantum

number).

Using the above results one can derive the relations (our conventions differ slightly

from those of Berkovits)

λα(γa)αβλ
β = 2[λ+λa − 1

8
εabcdeλbcλde] , λα(γa)αβλ

β = 2λabλ
b , (B.2)

which gives the parameterisation (2.5). Define wα via

w+ = e−s(∂t+ a∂s) , wab = −2vab , wa = 0 , (B.3)

where a is a normal ordering constant. One can readily check that wα satisfies the following

OPE with λβ

wα(y)λβ(z) ∼ δβα
y − z −

1

2

(γm)β+

y − z e−s(γm)αδλ
δ . (B.4)
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Note that the OPE’s between w+, λ+ and wab, λab are the canonical ones. In other words,

the second term in (B.4) only contributes if “β = b”. Using the above formulæ one can

show that

wαλ
α = w+λ

+ + waλ
a +

1

2
wabλ

ab , wα(γab)αβλ
β = wabλ++

1

2
εabcdewcλde , (B.5)

wα(γab)
α
βλ

β = −w+λab −
1

2
εabcdew

cdλe , (B.6)

wα(γab)
α
βλ

β = −wbλa − wacλcb −
1

2
δab

(
w+λ

+ − wcλc +
1

2
wcdλcd

)
. (B.7)

Using these results one can write down the expressions for the Lorentz scalar ∂h = 1
2wαλ

α

and the Lorentz currents Nmn = 1
2wα(γmn)αβλ

β as

∂h = −1

2
uabv

ab +
1

2
∂t+

3

2
∂s , Nab = −esvab , (B.8)

Nab = e−s(uac(v
cdudb)) +

1

2
e−s(uab(v

cducd))−
1

2
uab(e

−s(∂t+ ∂s)) + e−s∂uab , (B.9)

Ña
b = vacucb +

1

5
δab v

cducd , N =
1√
5

(
−5

4
(∂t− ∂s) +

1

4
vcducd

)
. (B.10)

Here Na
b has been decomposed into the traceless part, Ña

b, and the trace part, N , ac-

cording to Na
b = Ña

b + 1√
5
δabN . There are normal ordering ambiguities in the above

expressions. More precisely, the terms involving ∂s and ∂u are affected by normal order-

ing. The ambiguities are fixed by requiring that the OPE’s have the right properties. In

the above expressions we have indicated the normal ordering prescription by parentheses.

The covariant OPE’s obtained from the above expressions are given in section 2.1.

Using the above formulæ andNmnN
mn = 4[NabN

ab+NabNab−2Na
bN

b
a] one can show

that the covariant expression for the stress tensor (2.16) reduces to the expression (2.9) The

derivation of this result makes extensive use of the following normal ordering rearrangement

rules (here the parentheses indicate the normal ordering prescriptions)

(A(BC))− (B(AC)) = (([A,B])C) , (B.11)

((AB)C)− (B(AC)) = (A([C,B])) + (([C,A])B) + ([(AB), C]) . (B.12)
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