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Abstract: We study topological D-branes of type B in N = 2 Landau-Ginzburg models,

focusing on the case where all vacua have a mass gap. In general, tree-level topological

string theory in the presence of topological D-branes is described mathematically in terms of

a triangulated category. For example, it has been argued that B-branes for an N = 2 sigma-

model with a Calabi-Yau target space are described by the derived category of coherent

sheaves on this space. M. Kontsevich previously proposed a candidate category for B-

branes in N = 2 Landau-Ginzburg models, and our computations confirm this proposal.

We also give a heuristic physical derivation of the proposal. Assuming its validity, we can

completely describe the category of B-branes in an arbitrary massive Landau-Ginzburg

model in terms of modules over a Clifford algebra. Assuming in addition Homological

Mirror Symmetry, our results enable one to compute the Fukaya category for a large class

of Fano varieties. We also provide a (somewhat trivial) counter-example to the hypothesis

that given a closed string background there is a unique set of D-branes consistent with it.
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1. Introduction

Topological open strings and topological D-branes have recently been enjoying the attention

of both physicists and mathematicians. The most obvious physical motivation for studying

topological string theory is that it is a toy-model for “physical” string theory. Thus a

better understanding of topological D-branes could shed light on the general definition of

a boundary condition for a two-dimensional conformal field theory (2d CFT), something

which is not known at present. Further, if a 2d topological field theory (2d TFT) is obtained

by twisting a 2d supersymmetric field theory, then it is possible to regard topological D-

branes as a special class of “physical” D-branes (BPS D-branes). In fact, much of recent

progress in string theory has resulted from studying BPS D-branes.

From the mathematical viewpoint, topological string theory is an alternative way of

describing certain important geometric categories, such as the category of coherent sheaves

on a Calabi-Yau manifold, and can serve as a powerful source of intuition. An outstanding

example of such intuition is the Homological Mirror Symmetry conjecture [1].

Most works on topological string theory considered the case of topologically twisted

N = 2 sigma-models [2] with a Calabi-Yau target space. This is the case when the world-

sheet theory is conformal, and topological correlators can also be interpreted in terms of

a physical string theory [3]. However, one can also consider more general topologically

twisted N = 2 field theories and the corresponding D-branes. One class of such theories is

given by sigma-models whose target is a Fano variety (say, a complex projective space, or a

complex Grassmannian). Such QFTs, although conformally-invariant on the classical level,

have non-trivial renormalization-group flow once quantum effects are taken into account.

Another set of examples is provided by N = 2 Landau-Ginzburg models (LG models) [4]. In

fact, in many cases these two classes of N = 2 theories are related by mirror symmetry [5].

For example, the sigma-model with target CPn is mirror to a Landau-Ginzburg model with

n fields x1, . . . , xn, taking values in C∗, and a superpotential

W = x1 + · · · + xn +
1

x1 · · · xn
. (1.1)

Thus if one wants to extend the Homological Mirror Symmetry conjecture to the non-

Calabi-Yau case, one needs to understand D-branes in topologically twisted LG models.

Note that all critical points of this superpotential are isolated and non-degenerate; this

means that all the vacua have a mass gap, and the infrared limit of this LG model is

trivial. In what follows we will call such LG models massive. Despite the triviality of

the infrared limit, the Homological Mirror Symmetry conjecture remains meaningful and

non-trivial in this case.

Very recently it has been proposed that massive N = 2 d = 2 QFTs can be used

to describe certain non-standard superstring backgrounds with Ramond-Ramond flux [6].

Thus a study of D-branes in massive QFTs could be useful for understanding open strings

in such Ramond-Ramond backgrounds.

In order to formulate our problem more concretely, let us first summarize the situation

in the Calabi-Yau case, where the N = 2 field theory is conformal. N = 2 superconformal

field theories have two topologically twisted versions: A-model and B-model [2, 3, 7]. The
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corresponding D-branes are called A-branes and B-branes. Mirror symmetry exchanges

A-branes and B-branes. Tree-level topological correlators give the set of either A-branes or

B-branes the structure of an A∞-category; gauge-invariant information is encoded by the

corresponding derived categories. It has been argued that the derived category of B-branes

is equivalent to the derived category of coherent sheaves [1, 8, 9]. A detailed check of this

proposal has been performed in ref. [10].

For A-branes on Calabi-Yau manifolds, it has been proposed that the relevant A∞-

category is the so-called Fukaya category, whose objects are (roughly) lagrangian submani-

folds carrying vector bundles with flat connections [1]. Recently it has been shown that the

derived Fukaya category is too small and does not accommodate certain physically accept-

able A-branes [11]. In particular, if we want the Homological Mirror Symmetry conjecture

to be true for tori, then the Fukaya category must be enlarged with non-lagrangian (more

specifically, coisotropic) branes.

In the case of Fano varieties, the sigma-model is not conformal. What is more impor-

tant, the axial U(1) R-current is anomalous, and therefore one cannot define the B-twist [3].

One can consider D-branes which preserve B-type supersymmetry, but the relation with

the derived category of coherent sheaves is less straightforward [12, 13]. Mirror symmetry

relates B-branes on Fano varieties with A-branes in LG models. The latter have been

studied from a variety of viewpoints in refs. [14, 15, 12, 16]. In the case when the Fano

variety is CPn, the prediction of mirror symmetry has been tested in ref. [12, 17]. In par-

ticular, the mirrors of “exceptional” bundles on CPn have been identified, and in the case

of CP1 and CP2 it has been checked that morphisms between these bundles in the derived

category of coherent sheaves on CPn agree with the Floer homology between their mirror

A-branes.

One can also consider the category of A-branes on a Fano manifold. Since the vector

U(1) R-current is not anomalous, the A-twist is well-defined, and A-branes can be regarded

as topological boundary conditions for the A-model. Presumably, the category of A-branes

contains the derived Fukaya category as a subcategory, but other than that little is known

about it, even in the case of CPn. If we assume mirror symmetry, we can learn about the

category of A-branes on CPn by studying B-branes in the mirror LG model. The B-twist is

well-defined for any LG model whose target has a trivial canonical bundle, thus B-branes

in such a LG model can be regarded as topological boundary conditions for the B-model.

An obvious question is how the introduction of the superpotential deforms the relation

between the category of B-branes and the derived category of coherent sheaves.

Important steps towards understanding B-branes in LG models have been taken in

refs. [14, 12, 13, 16, 18] (see also refs. [19, 20, 21] for a related work). In these papers

general properties of B-branes have been studied, and several concrete examples have been

discussed. A somewhat surprising lesson from these works is that the category of B-branes

remains non-trivial even in a massive LG model, where the bulk 2d TFT is trivial. For

example, if we take the superpotential W to be a non-degenerate quadratic function on

Cn, the graded algebra of endomorphisms of a D0-brane sitting at the critical point of W

is isomorphic to a Clifford algebra with n generators [16]. This raises the question if one

can determine the category of B-branes in any massive LG model.
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A proposal which accomplishes this has been put forward by M. Kontsevich. Roughly

speaking, the proposal is that the superpotential W deforms the derived category of co-

herent sheaves by replacing complexes of locally free sheaves with “twisted” complexes.

Here “twisted” means that compositions of successive morphisms in a complex are equal

to W , instead of zero. One also needs to switch from Z-graded complexes to Z2-graded

ones. Kontsevich’s proposal is supposed to describe B-branes in any LG model such that

the critical set of W is compact; in particular, it does not require the critical points of W

to be non-degenerate.

The main goal of this paper is to provide evidence for Kontsevich’s proposal. Our

evidence is of two kinds. First, we argue on physical grounds that twisted complexes arise

as a consequence of BRST-invariance. More precisely, while in the presence of the super-

potential a holomorphic vector bundle or a complex of vector bundles does not correspond

to a B-type boundary condition, we show that any twisted complex of holomorphic vector

bundles is a valid B-brane. Second, we test the proposal in some specific cases where mor-

phisms between branes (i.e. spectra of topological open strings) can be easily computed.

We focus on the massive case, where the proposal simplifies considerably. Namely, the

category of Z2-graded twisted complexes can be related to the sum of several copies of the

category of finite-dimensional Z2-graded modules over a Clifford algebra. We will denote

the latter category Ctot in what follows. This reformulation is helpful, because the functor

from the category of B-branes in a massive LG model to Ctot is very simple to describe. In

this paper we perform some checks that this functor is an embedding of graded categories.

In view of the above-mentioned “duality” between Z2-graded twisted complexes and Ctot,

this provides a test of Kontsevich’s proposal. Assuming the validity of the proposal, we

infer that the category of B-branes in an arbitrary massive LG model is a full sub-category

of Ctot. The latter has a very simple and explicit description.

Since for many Fano varieties the mirror LG model is known, our results allow one

to effectively compute the category of A-branes for such varieties. From the mathemat-

ical viewpoint, it is an interesting challenge to reproduce such results using methods of

symplectic geometry.

Axiomatic definitions of topological D-branes for 2d Topological Field Theories (2d

TFTs) have been recently proposed by G. Moore and G. Segal [22] and C. I. Lazaroiu [23].

One of the main unresolved problems in the axiomatic approach is whether these axioms

determine unambiguously the category of topological D-branes associated to a given TFT.

We show that the category of B-branes for a massive LG model with a quadratic su-

perpotential provides a counter-example to uniqueness. In fact, this example shows that

uniqueness, if understood naively, fails also for ordinary (i.e. non-topological) D-branes in

any closed superstring background. However, this particular failure is rather mild, i.e. it

does not seem to have serious physical consequences.

Now let us describe the content of the paper in more detail. In section 2 we recall some

basic facts about mirror symmetry between Fano varieties and LG models. In section 3 we

review general properties of B-branes in LG models. We argue that if the superpotential

has only isolated critical points, then it is sufficient to study B-branes in the infinitesimal

neighborhood of each critical point. For example, if all critical points of W are non-
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degenerate, one does not lose anything if one replaces the superpotential by its quadratic

approximation near each critical point. The material in this section is not new and has

been previously discussed in refs. [12, 13, 16, 18]. In sections 4 and 5 we study B-branes

in the LG model with the superpotential W = xy. This is the simplest LG model where

B-branes of dimension larger than 0 are present. In section 6 we discuss B-branes in

more general LG models with the superpotential W = z21 + z22 + · · · + z2n. In section 7 we

explain Kontsevich’s proposal and show that our results are consistent with it. We also

explain why BRST invariance of boundary conditions requires twisted complexes of vector

bundles instead of ordinary complexes. This provides a physical explanation of Kontsevich’s

proposal. We also relate B-branes in massive LG models to Z2-graded Clifford modules.

In section 8 we use Homological Mirror Symmetry to compute the category of A-branes

for CP2 and CP1 × CP1. Section 9 contains concluding remarks.

2. Mirror Symmetry for Fano varieties and LG models

A Fano variety is a compact complex manifold whose anti-canonical line bundle is ample.

This is equivalent to saying that the first Chern class of the canonical line bundle is negative-

definite. An N = 2 sigma-model whose target space is a Fano variety describes an N = 2

d = 2 field theory which is free in the ultraviolet. In the infrared, it can either flow to a

massive vacuum, or to a non-trivial N = 2 SCFT. Note that classically N = 2 sigma-models

have both vector and axial U(1) R-symmetries, but for Fano varieties quantum anomalies

break the axial R-symmetry down to a discrete subgroup. Generically, this subgroup is Z2,

but in special cases it can be larger. In the Calabi-Yau case the full axial R-symmetry is

non-anomalous, and it is this fact that makes Calabi-Yau target spaces so special.

The simplest examples of Fano varieties are complex projective spaces CPn. The

corresponding N = 2 field theories are well studied; in fact, these models are integrable,

in the sense that the exact S-matrix is known [24, 25]. These theories have only massive

vacua. A more general set of examples is given by Grassmann varieties G(n, k), which

are defined as spaces of complex k-planes in an n-dimensional complex vector space. The

corresponding N = 2 field theories are also integrable [26].

An N = 2 field theory which has a conserved vector (resp. axial) R-current admits

a topological A-twist (resp. B-twist), which yields a 2d topological field theory called the

A-model (resp. B-model). N = 2 superconformal field theories have both axial and vector

R-symmetries, and therefore admit both kinds of twisting. A-branes and B-branes are

“defined” as boundary conditions which are consistent with A-twist and B-twist, respec-

tively.1 These two sets of branes have the structure of a category.2 The space of morphisms

is defined as the state space of topological open strings stretched between pairs of branes.

Composition of morphisms is defined by means of 3-point correlators in topological open

string theory. Since state spaces of open strings are graded vector spaces, brane categories

1We put the word “defined” in quotes because there is no generally accepted definition of a boundary

condition for a 2d field theory.
2The set of all D-branes is not a category in any natural sense. The reason is the presence of singular

terms in the boundary operator product expansion.
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are graded categories. In the case of A-branes, spaces of morphisms are graded by the

axial R-charge; in the case of B-branes, by the vector R-charge. For Fano varieties, the

axial R-symmetry is generically Z2, so spaces of morphisms in the category of A-branes

are Z2-graded vector spaces. In the Calabi-Yau case, the full axial U(1) R-symmetry is

non-anomalous, and therefore the category of A-branes is Z-graded. This is the reason one

has to work with Z-graded lagrangian submanifolds in the Calabi-Yau case [1]. In the Fano

case, one only needs to require that lagrangian submanifolds be oriented.

In the Calabi-Yau case, we can also consider the category of B-branes. Since the vector

R-current is non-anomalous, this category is Z-graded. In the Fano case, the B-twist is not

defined, and there is no obvious way to define the category of B-branes.

Given a graded category, one can enlarge it by adding for any object Y its shifts Y [i],

where i ∈ Z or i ∈ Z/2Z, and defining morphisms as follows:

Mork (Y1[i], Y2[j]) = Mork+j−i(Y1, Y2) .

In string theory, the R-charge of strings connecting two different branes is defined only

up to an integer constant; changing this constant by k shifts the degree of all morphisms

by k. The effect of this arbitrariness is that for any brane Y its shifts Y [i] are automati-

cally included. This implies that no information is lost if we replace groups of morphisms

with their degree-0 components. This is what one usually does when working with cate-

gories of complexes, such as the derived category. Nevertheless, in this paper we will keep

morphisms of all degrees, since this conforms better to physical conventions. From this

viewpoint, the mathematical counterpart of the category of B-branes on a Calabi-Yau X is

not Db(Coh(X)), but a Z-graded category which is called the completion of Db(Coh(X))

with respect to the shift functor.

For a sigma-model on a Calabi-Yau manifold which is a complete intersection in a toric

variety, the mirror theory is again a sigma-model of the same kind. For Fano varieties which

are complete intersections in a toric variety, the mirror theory is a LG model whose target

is a non-compact Calabi-Yau [5]. A general definition of a LG model involves, besides a

choice of a target manifold, a choice of a holomorphic function W on this manifold (the

superpotential). Thus non-trivial LG models require non-compact target spaces. This

non-compactness usually does not cause trouble: the important thing is for the critical set

of W to be compact. In general, superpotential breaks vector R-symmetry down to Z2.

Thus the A-twist is not defined, in general. On the other hand, since the canonical bundle

of the target manifold is trivial, the axial R-symmetry is not anomalous, and the B-twist

is well-defined. We expect that the category of A-branes on a Fano variety is equivalent to

the category of B-branes on the mirror LG model.

For example, the mirror of CPn is a LG model whose target is (C∗)n with the super-

potential eq. (1.1). This superpotential has n+ 1 non-degenerate critical points given by

x1 = x2 = · · · = xn = e2πik/(n+1) , k = 0, . . . , n .

The physical interpretation is that the theory has n+ 1 massive vacua. This agrees with

the count of vacua in the CPn model. Furthermore, the superpotential breaks vector U(1)R
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symmetry down to Z2 given by

θ+ → −θ+ , θ− → −θ− ,

where θ± are the usual odd coordinates on the chiral (2, 2) superspace. As a consequence,

spaces of morphisms in the category of B-branes in this LG model are Z2-graded. This is

mirror to the fact that morphisms in the category of A-branes on CPn are Z2-graded.
3

As a rule, it is easier to understand B-branes, rather than A-branes. Therefore, we

now turn to the study of B-branes in LG models, in the hope that it will illuminate the

properties of A-branes on Fano varieties.

3. General properties of B-branes in LG models

The classical geometry of B-branes was described in refs. [14, 12] (see also ref. [27]). In

this section we summarize the results of refs. [14, 12] which are relevant for us and discuss

some simple consequences.

Let X be the target space of a LG model. On general grounds, it must be Kähler

manifold (possibly non-compact). Let the W be a fixed holomorphic function on X (the

superpotential). Let Y be a submanifold of X, and let E be a hermitean vector bundle

over Y with a unitary connection ∇. The rank of E will be called the multiplicity of the

corresponding D-brane. It is shown in ref. [12] that the triple (Y,E,∇) defines a classical

B-type boundary condition if and only if Y is a complex submanifold of X, W is constant

on Y , and the pair (E, ∂̄), where ∂̄ is the anti-holomorphic part of ∇, is a holomorphic

vector bundle. For example, a point on X together with a choice of multiplicity r ∈ N

defines a B-type boundary condition.

The class of B-branes described in the previous paragraph does not exhaust all possible

B-branes. But it appears plausible that all B-branes can be obtained as bound states of

the branes described above.

It was noticed in ref. [16] (see also ref. [18]) that most of the “classical” B-branes should

be regarded as zero objects in the category of B-branes. A classical B-brane is isomorphic

to the zero object if and only if the space of its endomorphisms is zero-dimensional, i.e.

when there are no supersymmetric open string states connecting the brane with itself. In

this case one says that world-sheet supersymmetry is spontaneously broken. For example,

it is explained in refs. [13, 16, 18] that if Y is a point on X which is not a critical point of

W , then B-type supersymmetry is spontaneously broken, and therefore Y is isomorphic to

the zero object in the category of B-branes.

This phenomenon reduces enormously the number of B-branes that one needs to con-

sider, and makes it plausible that the whole category can be described combinatorially,

using only the number and type of critical points of W . To substantiate this claim, we first

notice that to any B-brane in the class described above one can assign a complex number,

the value of W on this brane. Further, there are no non-zero morphisms between branes

3In this LG model, there is in fact an unbroken Z2(n+1) R-symmetry; the Z2 symmetry discussed in the

text is its subgroup. This is mirror to the fact that the CPn sigma-model has non-anomalous axial Z2(n+1)

R-symmetry. In this paper we will only keep track of Z2-gradings.
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with different values of W , because any string connecting such branes will have non-zero

energy and will not be supersymmetric [13, 18]. (Unlike in the case of A-branes, there

is no central charge in the supersymmetry algebra, and supersymmetric states must have

zero energy.) Thus the category of B-branes can be regarded as a family of categories

parametrized by C, and the categories at different points in C do not “talk” to each other.

Second, zero-energy classical configurations of an open string must be constant maps

from the interval to Y , such that the potential energy |∂W |2 vanishes. This implies that un-

less a B-brane passes through a critical point of W , there are no supersymmetric states for

strings connecting this B-brane to any other B-brane (including itself). It follows that cat-

egories corresponding to non-critical values of W are trivial (contain only the zero object).

Now let us assume that all critical points of W are isolated. By scaling up the Kähler

form, we can make the semi-classical approximation arbitrarily good. This means that

wave-functions of all string states will be arbitrarily well localized near a particular critical

point of W , and the overlap between wave-functions associated to different critical points

will be arbitrarily small. Since topological correlators do not depend on the Kähler form,

it is clear that morphisms between B-branes can be computed using only the leading terms

in the Taylor expansion of W around the critical points.4

To be more precise, we can attach a category to each isolated critical point of W as

follows: we replace W by a polynomial which has the same singularity, and consider the

category of B-branes on an affine space with this polynomial superpotential. Now let us

form the direct sum of such categories over all critical points of W and call it Ctot. There is

an obvious map which associates to any B-brane an object of Ctot. Invariance of topological

correlators under variations of the Kähler form means that this map extends to a functor,

and this functor is full and faithful. In other words, the category of B-branes is a full

sub-category of Ctot.

In particular, when all critical points of W are non-degenerate (i.e. when all vacua are

massive), the problem reduces to understanding B-branes in the LG model with target Cn

and superpotential

W = z21 + · · ·+ z2n . (3.1)

The corresponding bulk theory is free, but since the boundary conditions need not be

linear, the problem of determining all B-branes is far from trivial. In this paper we will

study B-branes which correspond to linear boundary conditions. Some such branes have

been considered in refs. [16, 13, 18]. We will see below that if Kontsevich’s conjecture is

true, then these branes generate the whole category of B-branes.

Note that the LG superpotential eq. (1.1) satisfies the conditions stated above. Thus,

assuming mirror symmetry, we can gain information about A-branes on CPn by studying

B-branes in the free LG model with the superpotential eq. (3.1). In the case n = 1 this has

been done in ref. [16]; in that case the category of A-branes is independently known, and

one can see that the mirror conjecture holds true. In section 8 we discuss the less trivial

case n = 2.

4In fact, in refs. [5, 16, 18] there is a proposal how to compute spaces of morphisms between B-branes

using a deformation of the Dolbeault complex by ∂W .
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Before continuing, let us make some further comments on the relation between Ctot and

the category of B-branes. We do not claim that the two categories are equivalent, only that

the latter is a full sub-category of the former. This means that each B-brane can be regarded

as a direct sum of “local” B-branes attached to critical points, but not every direct sum is

a valid B-brane. We will see in section 8 some examples where the category of B-branes

is strictly smaller than Ctot. Nevertheless, since each B-brane behaves as a composite of

“local” B-branes, it is reasonable to enlarge the category of B-branes by allowing arbitrary

sums of “local” B-branes. Then the category of B-branes becomes equivalent to Ctot. From

a purely algebraic standpoint, this is a very natural procedure (c.f. a discussion in ref. [23]

concerning reducible and irreducible branes), but the drawback is that the new branes lack

a clear geometric interpretation. section 8 contains a further discussion of this issue.

4. B-Branes in the LG model with W = xy

4.1 Preliminaries

We begin by recalling the results of ref. [16] concerning B-branes in the simplest LG model

with the superpotential W = z2. In this case, the only allowed B-branes are D0-branes

located at z = 0. It has been shown in ref. [16] that the space of endomorphisms of a single

D0-brane is two-dimensional, with one-dimensional even subspace and one-dimensional odd

subspace. As a graded algebra, it is generated over C by the identity and an odd element

θ with the relation

θ2 = 1 .

This is a Clifford algebra Cl(1,C). If we take N D0-branes, then the algebra of endomor-

phisms becomes

Cl(1,C) ⊗Mat(N,C) ,

where Mat(N,C) is the algebra of N ×N complex matrices.

We are interested in the next simplest LG model with the superpotential W = xy.

Again, D0-branes must be localized at x = y = 0, and it has been shown in ref. [16] that

the algebra of endomorphisms of a single D0-brane is generated by two odd elements θ1, θ2
with the relations

θ1θ2 + θ2θ1 = 1 , (θ1)
2 = (θ2)

2 = 0 .

This is a Clifford algebra Cl(2,C). More invariantly, if we denote by V the complex vector

space which is the target space of our LG model, we can say that fermion zero modes for

the open string take values in V . The hessian of the superpotential

Qij = ∂i∂jW (0)

defines a non-degenerate symmetric bilinear form on V , and the endomorphism algebra of

the D0-brane is the Clifford algebra associated to the pair (V,Q). (Some standard facts

about Clifford algebras and their modules are described in the appendix. We will freely

use these facts in what follows.)
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But in this case there can also be B-branes of higher dimension, namely D2-branes.

(This is briefly discussed in ref. [18].) Irreducible D2-branes are irreducible components of

the critical level set W = 0, which is a singular quadric

xy = 0 .

Thus there are two candidate irreducible D2-branes, given by x = 0 and y = 0, respectively.

Our immediate goal is to compute their endomorphisms, as well as morphisms between D2-

branes and D0-branes. In physical terms, we will compute the spectrum and disk correlators

of the topological open string with appropriate boundary conditions.

4.2 Equations of motion and SUSY transformations

We consider the Landau-Ginzburg model on R× [0, π] with two chiral superfields Φ1 and

Φ2. The superpotential assumes the following form

W (Φ) = 2mΦ1Φ2 .

We include a positive factor 2m in the superpotential in order to keep track of dimensions

of topological correlators later. In physical terms, m is a measure of the mass gap in the

Landau-Ginzburg model.

Assuming the standard Kähler potential K = |Φ1|2 + |Φ2|2, the world-sheet action

reads

S =
1

2π

∫

R×[0,π]
d2x

{

2
∑

α=1

(

|∂tφα|2 − |∂σφα|2 + iψᾱ−∂+ψ
α
− + iψᾱ+∂−ψ

α
+

)

− |mφ1|2 −

− |mφ2|2 −m
(

ψ1
+ψ

2
− + ψ2

+ψ
1
−

)

− m̄
(

ψ1̄
−ψ

2̄
+ + ψ2̄

−ψ
1̄
+

)

}

, (4.1)

where φα are the bosonic components of Φα, and ψα are their fermionic partners. The

world-sheet parametrization (t, σ) is such that t is the world-sheet time.

From the bosonic lagrangian density

LB =
∑

α=1,2

(

|φ̇α|2 − |φ′α|2 −m2|φα|2
)

one readily obtains the EOM’s for φ

φ̈α − φ′′α +m2φα = 0 , α = 1, 2 .

Similarly, in terms of new variables

bα =
ψα− + ψα+√

2
, cα =

ψα− − ψα+√
2

, α = 1, 2 , (4.2)
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the fermionic lagrangian density can be written as

LF = ib̄1ḃ1 + ib̄2ḃ2 + ic̄1ċ1 + ic̄2ċ2 +

+b̄1(i∂σc1 + m̄c̄2) + (−i∂σ c̄1 +mc2)b1 +

+b̄2(i∂σc2 + m̄c̄1) + (−i∂σ c̄2 +mc1)b2 .

The fermionic EOM’s are given by

iḃ1 + ic′1 +mc̄2 = 0 ,

iḃ2 + ic′2 +mc̄1 = 0 ,

iċ1 + ib′1 −mb̄2 = 0 ,

iċ2 + ib′2 −mb̄1 = 0 . (4.3)

B-type supersymmetry transformations are well known (see, for example, ref. [12]) and

look as follows:

δφ1 =
√
2εb11 , δb1 = −

√
2 iε̄φ̇1 , δc1 =

√
2 iε̄φ′1 +

√
2εm̄φ̄2 ,

δφ2 =
√
2εb2 , δb2 = −

√
2 iε̄φ̇2 , δc2 =

√
2 iε̄φ′2 +

√
2εm̄φ̄1 . (4.4)

Now we will perform canonical quantization of this system with various boundary

conditions which correspond to D0-D0 strings, D2-D2 strings, and D0-D2 strings.

4.3 Spectrum of D0-D0 strings

We would like to find supersymmetric states of D0-D0 strings, since these correspond to

endomorphisms of the D0-brane. The relevant boundary conditions are

{

φ1 = φ2 = 0

b1 = b2 = 0
σ = 0, π .

First consider the bosonic degrees of freedom. The boundary conditions give the

following mode expansions for φ and its conjugate momentum πφ:

φα =
1√
π

∞
∑

n=1

i√
ωn

(

aα,n − ã†α,n
)

sinnσ

πφα = ∂tφ̄ =
1√
π

∞
∑

n=1

√
ωn

(

ãα,n + a†α,n

)

sinnσ

where

ωn =
√

n2 +m2 .
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To quantize, we impose the following commutation relations:
[

aα,n, a
†
β,m

]

=
[

ãα,n, ã
†
β,m

]

= δαβδmn , (4.5)

with all other commutators vanishing. It is easy to check that (4.5) is compatible with the

following canonical commutation relations

[φα(σ), πφβ (σ
′)] = iδαβ ·

2

π

∞
∑

n=1

sinnσ sinnσ′ = i δαβ δ(σ − σ′) (4.6)

The bosonic hamiltonian is given by

HB =

∫

dσ
∑

α=1,2

(

|φ̇α|2 + |φ′α|2 +m2|φα|2
)

=

∞
∑

n=1

ωn

(

a†1,na1,n + ã†1,nã1,n + a†2,na2,n + ã†2,nã2,n + 2
)

where the additive constant “+2” in the sum is the bosonic zero point energy. We shall

see later that it is exactly canceled by the fermionic zero point energy.

Next we consider the fermionic degrees of freedom. It will turn out convenient to use

the following combinations as new dynamical variables:

b± =
b1 ± ib̄2√

2
, c± =

c1 ± ic̄2√
2

.

The main advantage of using b± and c± is that the EOM’s for the unbarred quantities are

decoupled from those for the barred quantities. The mode expansions for these fields have

the following form:

b+ =
i√
π

∞
∑

n=1

n+ im

ω

(

α2,n − α̃†2,n
)

sinnσ ,

b− =
i√
π

∞
∑

n=1

n− im
ω

(

α1,n − α̃†1,n
)

sinnσ ,

c+ =
1√
π

∞
∑

n=1

1

n− im (n cosnσ +m sinnσ)
(

α2,n + α̃†2,n

)

+ λ+e
mσ ,

c− =
1√
π

∞
∑

n=1

1

n+ im
(n cosnσ −m sinnσ)

(

α1,n + α̃†1,n

)

+ λ−e
−mσ .

To fix the commutation rules for the oscillators we impose the canonical commutation

relations for b:

{b+, b+} = {b−, b−} = {b+, b−} = {b+, b̄−} = {b−, b̄+} = 0

{b+(σ), b̄+(σ′)} = {b−(σ), b̄−(σ′)} = δ(σ − σ′) . (4.7)

A convenient choice of compatible commutation rules for oscillators is

{

αi,n, α
†
i′,n′

}

=
{

α̃i,n, α̃
†
i′,n′

}

= δi i′δnn′ , (4.8)
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with all others vanishing. One can easily check that the canonical commutation relations

for c fields are also respected, provided that the following relations are imposed:

{

ζ, ζ
}

=
{

η, η
}

=
{

ζ, η
}

=
{

ζ, η†
}

= 0 ,
{

ζ, ζ†
}

=
{

η, η†
}

= 1 .

where η and ζ are defined by

λ+ ≡ ζ

√

m

sinhmπ
e−πm/2 , λ− ≡ η

√

m

sinhmπ
eπm/2 .

The fermionic hamiltonian is

HF =

∫ π

0
dσ
[ (

ic′1 +mc̄2
)

b̄1 +
(

ic′2 +mc̄1
)

b̄2 + h.c.
]

=

∫ π

0
dσ
[

i(c′+ −mc+)b̄+ + i(c′− +mc−)b̄− + h.c.
]

=
∞
∑

n=1

ωn

(

α†1,nα1,n + α†2,nα2,n + α̃†1,nα̃1,n + α̃†2,nα̃2,n − 2
)

.

Note that the additive constant −2 cancels the bosonic zero point energy. The hamiltonian

is diagonalized in the Fock basis, and the zero-energy states are

|0〉 , ζ†|0〉 , η†|0〉 , η†ζ†|0〉 .

The supercharge Q can also be expanded in terms of oscillators. It can be shown that each

term in the expansion contains an annihilation operator for non-zero modes, and that Q

does not depend on zero-mode oscillators ζ and η. Therefore Q annihilates all four ground

states.

4.4 Spectrum of D2-D2 strings

Since we have two different D2-branes related by a symmetry, there are two inequivalent

possibilities: either our string begins and ends on the same D2-brane, or it begins on one D2-

brane, and ends on the other D2-brane. The first situation corresponds to endomorphisms

of a D2-brane, while the second one corresponds to morphisms from one D2-brane to the

other one.

First we consider the case when both boundaries end on the same brane, say, the one

given by the equation Φ1 = 0. The relevant boundary conditions are

{

φ1 = 0

b1 = 0
and

{

∂σφ2 = 0

c2 = 0
at σ = 0, π .

First let us look at the bosons. The mode expansions for φ1 and its conjugate momen-

tum are the same as before, while for φ2 and its conjugate momentum they are given by

φ2 =
1√
2πm

(

a2,0 + ã†2,0

)

+

∞
∑

n=1

1√
πωn

(

a2,n + ã†2,n

)

cosnσ ,
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πφ2 = i

√

m

2π

(

a†2,0 − ã2,0
)

+ i

∞
∑

n=1

√

ωn
π

(

a†2,n − ã2,n
)

cosnσ .

Canonical commutation relations for bosonic fields imply the commutation relations

eq. (4.5) for the oscillators. In terms of oscillators the bosonic hamiltonian is

HB =

∞
∑

n=1

ωn

(

a†1,na1,n + ã†1,nã1,n + 1
)

+

∞
∑

n=0

ωn

(

a†2,na2,n + ã†2,nã2,n + 1
)

.

For the fermions, the mode expansions are given by

b1 =
i√
2π

∞
∑

n=1

[

n+ im

ωn

(

α2,n − α̃†2,n
)

+
n− im
ωn

(

α1,n − α̃†1,n
)

]

sinnσ ,

b2 =
−1√
2π

(

α̃0 − α†0
)

+

+
−i√
2π

∞
∑

n=1

[

−n+ im

ωn

(

α̃1,n − α†1,n
)

+
n− im
ωn

(

α̃2,n − α†2,n
)

]

cosnσ ,

c1 =
1√
2π

(

α0 + α̃†0

)

+
1√
2π

∞
∑

n=1

(

α1,n + α2,n + α̃†1,n + α̃†2,n

)

cosnσ ,

c2 =
1√
2π

∞
∑

n=1

(

α̃2,n − α̃1,n + α†2,n − α
†
1,n

)

sinnσ .

The canonical commutation relations for the fields bi and ci are equivalent to the following

commutation relations for the oscillators:

{

αi,n, α
†
i′,n′

}

=
{

α̃i,n, α̃
†
i′,n′

}

= δi i′δnn′ , n = 1, 2, . . . ,
{

α0, α
†
0

}

=
{

α̃0, α̃
†
0

}

= 1 ,

with all others vanishing. The fermionic hamiltonian can be shown to be

HF =

∫ π

0
dσ
[ (

ic′1 +mc̄2
)

b̄1 +
(

ic′2 +mc̄1
)

b̄2 + h.c.
]

=

∞
∑

n=1

ωn

(

α†1,nα1,n + α†2,nα2,n + α̃†1,nα̃1,n + α̃†2,nα̃2,n − 2
)

+

+m
(

α†0α0 + α̃†0α̃0 − 1
)

.

The fermionic zero point energy cancels the bosonic zero point energy, and we see that

there is a unique state with zero energy: the Fock vacuum. For the same reason as in the

D0-D0 case, this state is supersymmetric (is annihilated by the supercharge).

Now consider the case when one end of the string (σ = 0) is attached to Φ1 = 0, and

the other one (σ = π) is attached to Φ2 = 0. The boundary conditions are

{

φ1(0) = ∂σφ1(π) = 0

b1(0) = c1(π) = 0
and

{

∂σφ2(0) = φ2(π) = 0

c2(0) = b2(π) = 0
.
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The mode expansions for the bosons are

φ1 =

∞
∑

n=1

i√
πωn

(

a1,n − ã†1,n
)

sin knσ ,

πφ1 =

∞
∑

n=1

√

ωn
π

(

ã1,n + a†1,n

)

sin knσ ,

φ2 =

∞
∑

n=1

1√
πωn

(

a2,n + ã†2,n

)

cos knσ ,

πφ2 =

∞
∑

n=1

i

√

ωn
π

(

−ã1,n + a†1,n

)

cos knσ ,

while for the fermions they are

b1 =
i√
2π

∞
∑

n=1

[

kn + im

ωn

(

α2,n − α̃†2,n
)

+
kn − im
ωn

(

α1,n − α̃†1,n
)

]

sinknσ ,

b2 =
1√
2π

∞
∑

n=1

[

kn + im

ωn

(

α̃1,n − α†1,n
)

− kn − im
ωn

(

α̃2,n − α†2,n
)

]

cos knσ ,

c1 =
1√
2π

∞
∑

n=1

(

α1,n + α2,n + α̃†1,n + α̃†2,n

)

cos knσ ,

c2 =
i√
2π

∞
∑

n=1

(

α̃1,n − α̃2,n + α†1,n − α
†
2,n

)

sinknσ ,

where

kn = n− 1

2
, ωn =

√

k2n +m2 .

One can show as before that commutation relations (4.5) and (4.8) yield all the canonical

commutation relations, and the total hamiltonian is diagonalized in the Fock basis as

follows:

H =

2
∑

i=1

∞
∑

n=0

ωn

(

a†i,nai,n + ã†i,nãi,n + α†i,nαi,n + α̃†i,nα̃i,n

)

.

Again there is a single ground state which is annihilated by the supercharge.

4.5 Spectrum of D0-D2 strings

The boundary conditions for the bosons are

φ1(0) = φ1(π) = 0 , φ2(0) = ∂σφ2(π) = 0 . (4.10)

The corresponding mode expansions are

φ1 =

∞
∑

n=1

i
√
πω1,n

(

a1,n − ã†1,n
)

sinnσ ,

πφ1 =

∞
∑

n=1

√

ω1,n
π

(

ã1,n + a†1,n

)

sinnσ ,
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φ2 =

∞
∑

n=1

i
√
πω2,n

(

a2,n − ã†2,n
)

sin

(

n− 1

2

)

σ ,

πφ2 =

∞
∑

n=1

√

ω2,n
π

(

ã2,n + a†2,n

)

sin

(

n− 1

2

)

σ ,

where

ω1,n =
√

n2 +m2 , ω2,n =

√

(

n− 1

2

)2

+m2 .

Imposing (4.6), we infer that the bosonic oscillators obey (4.5). The bosonic hamiltonian

is given by

HB =

∞
∑

n=1

ω1,n

(

a†1,na1,n + ã†1,nã1,n + 1
)

+

∞
∑

n=1

ω2,n

(

a†2,na2,n + ã†2,nã2,n + 1
)

.

Now let us consider fermions. The boundary conditions imposed by supersymmetry

are

b1(0) = b1(π) = b2(0) = c2(π) = 0 ,

which, when combined with the EOM’s, give the following boundary conditions for b and

c fields separately:

b1(0) = b1(π) = 0, b2(0) = b′2(π) = 0, (4.11)
{

c′1(0)− imc̄2(0) = c′2(0) − imc̄1(0) = 0 ,

c′1(π) = c2(π) = 0 .
(4.12)

The mode expansions are

b1 =
i√
π

∞
∑

n=1

k1,n − im
ω1,n

(

αn − α̃†n
)

sin k1,nσ ,

b2 =
1√
π

∞
∑

n=1

k2,n + im

ω2,n

(

β̃n − β†n
)

sink2,nσ ,

c1 =
1√
π

∞
∑

n=1

k1,n
k1,n + im

(

αn + α̃†n

)

cos k1,nσ −

− 1√
π

∞
∑

n=1

m

k2,n + im

(

βn + β̃†n

)

sin k2,nσ + λ coshm(π − σ) ,

c2 =
i√
π

∞
∑

n=1

m

k1,n − im
(

α̃n + α†n

)

sin k1,nσ −

− i√
π

∞
∑

n=1

k2,n
k2,n − im

(

β̃n + β†n

)

cos k2,nσ − iλ† sinhm(π − σ) ,

where

k1,n = n , k2,n = n− 1

2
.
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Imposing canonical commutation relations on the fields implies the following commutation

relations for the oscillators:

{

αn, α
†
n′

}

=
{

α̃n, α̃
†
n′

}

=
{

βn, β
†
n′

}

=
{

β̃n, β̃
†
n′

}

= δnn′ , (4.13)
{

λ, λ†
}

=
m

sinh 2mπ
.

All other anti-commutators vanish.

In view of the commutation relations for λ and λ†, we set

λ =

√

m

sinh 2mπ
ζ ,

so that
{

ζ, ζ
}

= 0 ,
{

ζ, ζ†
}

= 1 .

The fermionic hamiltonian has the form

HF =

∫ π

0
dσ
[ (

ic′1 +mc̄2
)

b̄1 +
(

ic′2 +mc̄1
)

b̄2 + h.c.
]

=

∞
∑

n=1

ω1,n

(

α†nαn + α̃†nα̃n − 1
)

+

∞
∑

n=1

ω2,n

(

β†nβn + β̃†nβ̃n − 1
)

.

As before the bosonic zero-point energy is canceled by the fermionic zero-point energy.

There are two zero-energy states:

|0〉 and ζ†|0〉 .

Again it can be shown that they are annihilated by the supercharge. Therefore both ground

states are supersymmetric.

5. Topological correlators in the LG model W = xy

5.1 Topological B-twist

The Landau-Ginzburg model admits a topological twist to yield the so-called B-model.

This topological twist turns the world-sheet spinor fields ψ and ψ̄ of the original LG model

into a pair of sections of the pullback bundle Φ∗(T 0,1X), which we denote by η, θ, and

a world-sheet one-form ρ with values in Φ∗(T 1,0X). The BRST transformations of the

twisted fields are

δφi = 0 ,

δφī = ε̄ηī ,

δηī = 0 ,

δθī = ε̄∂ īW ,

δρi = iε̄dφi .
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To make connection with the fields in the original Landau-Ginzburg theory, we note that

η and θ are the twisted versions of b̄ and c̄ respectively, while ρ comes from b and c. We

also adopt the common notation θi = gij̄θ
j̄ = θī.

The local physical observables are in one-to-one correspondence with the BRST-coho-

mology, i.e. local quantities which are BRST invariant but not BRST exact. It is easy to see

from the above BRST transformations that in the bulk the physical observables correspond

to holomorphic functions of φ modulo dW (v), where v is an arbitrary holomorphic vector

field. There are no additional local observables from the fermionic fields, as long as W is

nontrivial. In particular, when X ' Cn, the space of bulk observables is C[x1, . . . , xn]/I,

where I is the ideal generated by the first partial derivatives of W . In the boundary sector,

where W is constrained to be constant, additional observables will arise from the θ fields.

We now specialize to the D0 and D2 branes studied above.

5.2 Boundary observables associated with the D0-brane

We consider the boundary component which is mapped to the D0 brane located at φ1 =

φ2 = 0. The boundary conditions require, among other things, that

φ1 = φ2 = η1̄ = η2̄ = 0 at the boundary .

Therefore boundary observables can only come from the θ fields. From the BRST trans-

formation

δθ1 = 2ε̄mφ2 , δθ2 = 2ε̄mφ1

one sees immediately that both θ1 and θ2 are BRST invariant on the boundary. Let us

denote the restriction of θ to the boundary by the same letter θ. Thus the ring of boundary

observables is generated by θ1 and θ2.

5.3 Boundary observables associated with the D2-brane

Without loss of generality, we may assume that the D2 brane sits at the locus φ1 = 0. The

relevant boundary conditions read

φ1 = ∂σφ2 = η1̄ = θ2 = 0 at the boundary .

From this one sees that θ2 no longer gives rise to a boundary degree of freedom. Also, since

φ2 is not constrained to vanish on the boundary, θ1 is no longer BRST invariant. Thus

there are no boundary observables (except for the identity operator) associated with the

D2 brane.

5.4 The boundary operator product algebra

First let us compute topological correlators for strings connecting a brane with itself. Since

in the D2-D2 case there is only the vacuum state, the problem is non-trivial only in the

D0-D0 case.
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D0

σ=0 σ=π

D2

(a)

Ob
ηab

Oa

(b)

=

Figure 1.

In order to compute disk correlators with products of θ1 and θ2 inserted on the cir-

cumference, we proceed as in ref. [16]. We start with a world-sheet diagram which has the

topology of a cylinder, with the D0 and D2 boundary conditions imposed on the two bound-

ary circles (c.f. figure ??). On the D0 boundary there can be operator insertions. Viewed

in the open-string channel, this world-sheet diagram computes the one-loop amplitude

〈B1B1 · · · Br〉cyl = Tr
[

(−)F e−εHB1B2 · · · Br
]

(5.1)

where the B’s are operators inserted at the D0 boundary. The trace on the r.h.s. can be

reduced to the Hilbert space of open-string zero modes by the standard argument. In the

specific case at hand, the zero mode space is spanned by |0〉 and ζ †|0〉 as described in

section 4.5, and one easily obtains

〈1〉cyl = 0 ,
〈

θi
〉

cyl
= 0 ,

〈

θ1θ2
〉

cyl
= −

〈

θ2θ1
〉

cyl
= − im

2
.

More generally, one can compute

〈

(θ1θ2 + θ2θ1) · B
〉

cyl
= − im

2
〈B〉cyl ∀B , (5.2)

〈

θ2i · B
〉

cyl
= 0 ∀B,∀ i . (5.3)

From (5.2) and (5.3) one deduces the relations in the boundary operator product algebra

for the D0-brane:

θ1 · θ1 = θ2 · θ2 = 0 , (5.4)

θ1 · θ2 + θ2 · θ1 = −
im

2
. (5.5)

This is the Clifford algebra with two generators corresponding to the quadratic form

− i
2

(

0 m

m 0

)

.

Up to a numerical factor, this matrix is the hessian of W in the basis θ1, θ2. Thus one can

state the result more invariantly by saying that the boundary operator product algebra for

the D0-brane is the Clifford algebra Cl(V,Q), where V is target space of our LG model,

and Q is the quadratic form given by the hessian of W .
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Topological correlators on the disk can be inferred from the computation on the cylin-

der using factorization in the closed string channel [28]. Namely, we insert a complete set

of states in the closed string channel (cf. figure ??b) and rewrite the cylinder amplitude as

〈B ·Oa〉D0 · ηab · 〈Ob〉D2 ,

where Oa’s form a complete set of bulk operators, and η is the (inverse) metric on the

space of bulk operators defined via topological correlators on the sphere. The relative

normalization is fixed by demanding the following relation for the D2-D2 cylinder amplitude

〈1〉D2−D2 = 1 .

In our case, the only bulk operator is the identity, therefore all disk correlators for the

D0-brane simply coincide with the cylinder correlators.

Besides the algebra structure, another important datum is a non-degenerate inner

product on the space of endomorphisms. This inner product is determined by the two-point

disk correlator and makes the endomorphism algebra into a (non-commutative) graded

Frobenius algebra. In our case the only non-vanishing inner products are

〈θ1θ2, 1〉 = 〈1, θ1θ2〉 = 〈θ1, θ2〉 = −〈θ2, θ1〉 = −
im

2
.

Note that the bilinear form corresponding to this product is even. In contrast, in the model

W = z2 the bilinear form is odd and given by

〈1, θ〉 = 〈θ, 1〉 = 1 .

So far we have determined the endomorphism algebra of the D0-brane (it is isomorphic

to Cl(2,C)) and the D2-brane (it is isomorphic to C). Now we turn to the computation of

compositions of morphisms between different branes.

We begin with the case when both branes are D2-branes. Let us denote the D2-brane

given by the equation Φ1 = 0 (resp. Φ2 = 0) by Y2 (resp. Y1). It was shown in the previous

section that the vector space Mor(Yi, Yj) is one-dimensional for all i and j. When i = j,

this space is even, but for i 6= j there is no canonical choice for the R-charge. In other

words, for i 6= j the “vacuum” vector spanning Mor(Yi, Yj) can equally well be regarded as

even or odd. For reasons which will become clear later, we define Mor(Y1, Y2) to be purely

odd; since Mor(Y2, Y1)) is dual to Mor(Y1, Y2), it is also purely odd, while Mor(Y1, Y2[1]) is

purely even. Here Y2[1] denotes the shift of Y2.

Let γ12 and γ21 be generators of Mor(Y1, Y2) and Mor(Y2, Y1), respectively. Since the

endomorphism algebra of a D2-brane is spanned by the identity morphism, we only need

to determine if γ12 · γ21 is zero or not. This product is evaluated by the disk amplitude

with two insertions of boundary-changing operators. By conformal invariance, this is the

same as the vacuum-vacuum transition amplitude for open strings stretched between Y1

and Y2. Since there are no fermionic zero modes in this case, this amplitude is non-zero.

This means that γ12 · γ21 = c · id with c 6= 0.

This trivial computation implies that the even generator of Mor(Y1, Y2[1]) is an iso-

morphism. In physical language, Y1 is isomorphic to the anti-brane of Y2.
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There remain compositions of morphisms involving both D2-branes and the D0-brane.

In view of the previous paragraph, it is sufficient to consider morphisms between Y1 and

the D0-brane. No new computations are actually required, the result being fixed by general

properties of topological string theory [22, 23]. First of all, we note that by cyclic symmetry

of topological correlators computing compositions of morphisms from D2 to D0 and back

(or the other way around) is equivalent to computing how the endomorphism algebra of

the D0-brane acts on the space of morphisms from D2 to D0. In more detail, we have a

non-degenerate pairing

Mor(Y1, D0)×Mor(D0, Y1)→ C

given by the path-integral on an infinite strip. (This paring is odd in our case, because

there is a single fermionic zero mode.) Similarly, we have an even non-degenerate pairing

Mor(D0, D0) ×Mor(D0, D0)→ C .

Thus computing the product map

Mor(D0, Y1)×Mor(Y1, D0)→ Mor(D0, D0)

is the same as computing the map

Mor(Y1, D0)×Mor(D0, D0)→ Mor(Y1, D0) .

Furthermore, in our case Mor(D0, D0) is isomorphic to Cl(2,C), and we know from the

previous section that Mor(Y1, D0) is two-dimensional. The Z2 graded algebra Cl(2,C) has

a unique representation on C2, up to a flip of parity (up to isomorphism, it is given by

any two Pauli matrices). Since in string theory the parity of morphisms is not canonically

fixed anyway, we conclude that the module structure of Mor(Y1, D0) is completely deter-

mined, up to the unavoidable ambiguity in the overall parity. This in turn determines the

composition of morphisms going from D0 to D2 and back.

6. B-branes in general massive LG models

6.1 Generalities

We now turn to massive Landau-Ginzburg models which involve more than two fields.

Without loss of generality, we may assume that the superpotential on Cn is given by

W = z21 + · · ·+ z2n . (6.1)

We can construct examples of B-branes in this LG model for any n, using the results of

the previous section. For n = 2k, k ∈ Z, we consider an equivalent superpotential

W = z1z2 + z3z4 + · · ·+ z2k−1z2k .
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Since it is a sum of k copies of the superpotential W = xy, we can construct a B-type

boundary condition by picking k arbitrary B-type boundary conditions for the latter model,

and tensoring them. For example, if we take all boundary conditions to be D0-branes,

the tensor product state will also be a D0-brane, and its endomorphism algebra will be

Cl(2k,C). If we take all boundary conditions to be D2-branes, the tensor product boundary

state will be a D(2k)-brane, and its endomorphism algebra will be C.

Similarly, for n = 2k + 1 we consider an equivalent superpotential

W = z1z2 + z3z4 + · · ·+ z2k−1z2k + z22k+1 .

Clearly, B-branes for this LG model can be constructed by taking tensor product of k

boundary states for the LG model with W = xy and a boundary state for the LG model

with W = z2. In this way one obtains B-branes of dimension up to 2k. It is easy to see

that the endomorphism algebra of the D0-brane will be isomorphic to Cl(2k+ 1,C), while

the endomorphism algebra of the D(2k)-brane will be isomorphic to Cl(1,C).

More generally, one can explicitly construct all B-branes which correspond to linear

subspaces of the critical level set W = 0. SinceW is quadratic, these are the same as linear

subspaces isotropic with respect to the bilinear form Q. Classification of such isotropic

subspaces is well known [29]. The maximal dimension of an isotropic subspace is [n/2].

For n odd, there is a single irreducible family of isotropic subspaces of maximal dimension

parametrized by (n−1)(n+1)/8 parameters. For n even, there are two irreducible families

of isotropic subspaces of maximal dimension parametrized by n(n− 2)/8 parameters. Any

isotropic subspace lies in one of the maximal isotropic subspaces. It is straightforward to

compute morphisms and their compositions (i.e the spectrum and topological correlators)

between all linear B-branes. In the next subsection we discuss in some detail the results

for the case n = 3, when the LG superpotential has the form W = xy + z2. Then we will

describe the general case.

Note that in principle there could also be B-branes corresponding to non-linear bound-

ary conditions (e.g. non-linear submanifolds of the quadric W = 0). Such B-branes are

hard to study directly. In what follows we shall focus on linear boundary conditions.

6.2 The LG model with the superpotential W = xy + z2

Maximal isotropic linear subspaces on the quadric surface W = 0 are complex lines, and

there is a single irreducible family of them. This family is parametrized by CP1 as follows:

µx+ νz = 0 , µz − νy = 0 ,

where [µ : ν] are homogeneous coordinates on CP1. Any two distinct lines in the family

intersect at a single point (x = y = z = 0).

Using a linear change of basis in the target space which preserves W , one can always

map any line in the above family to the line x = z = 0. For the brane x = z = 0 we already

know that the endomorphism algebra is isomorphic to Cl(1,C), and since linear changes

of variables preserving the superpotential are invariances of the topological LG model, we

conclude that the same is true for any D2-brane in the above family.
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Next we consider morphisms between different lines in the family. Clearly, there are no

bosonic zero modes, so the space of morphisms will be spanned by the “vacuum” state and

its fermionic excitations with zero energy. As remarked in the previous section, only some

components of θ have a chance to be BRST-non-trivial boundary observables. Thus all

BRST-invariant states can be obtained by acting by some components of θ on the vacuum

state.

Let V ' C3 be the target space of our LG model, and let U1 and U2 be two distinct

lines in V isotropic with respect to the quadratic form W . The corresponding B-branes

will be denoted Y1 and Y2. Let us look at the θ-field restricted to the boundary of the

world-sheet which is mapped to U1. We can regard θi as basis elements of V . BRST

transformations are

δθi = Qijφ
j .

On the boundary the vector with components φj can be an arbitrary element of U1. It

follows that BRST-invariant components of θ must be orthogonal to U1 with respect to the

form Q. We denote the orthogonal subspace by U⊥1 . Of course, since U1 is isotropic, we

have an inclusion U1 ⊂ U⊥1 . Similarly, BRST-invariant fermionic fields on the U2-boundary

are parametrized by elements of U⊥2 ⊃ U2. The total space of BRST-invariant fermionic

fields is

U⊥1 ⊕ U⊥2 = V .

However, not all of these are non-zero. Neumann boundary conditions plus supersymmetry

imply that the components of θ along U1 ⊕ U2 vanish. Thus non-trivial BRST invariant

fermionic zero modes are parametrized by elements of the quotient space

V

(U1 ⊕ U2)
.

This space is one-dimensional. Thus there is a single fermionic zero mode, and the space

of morphisms between two different lines is isomorphic to its exterior algebra (as a Z2-

graded vector space). That is, Mor(Y1, Y2) has one-dimensional even subspace, and one-

dimensional odd subspace.

Composition of morphisms between two distinct lines is fixed by consistency consid-

erations. If Y1 and Y2 are any two lines, then Mor(Y1, Y2) must be a left module over

Mor(Y1, Y1) ' Cl(1,C) and right module over Mor(Y2, Y2) ' Cl(1,C). There is only one

such module of dimension two: the Clifford algebra itself, regarded as a bi-module over it-

self. Together with various parings given by the 2-point correlators, this fixes the structure

of correlators involving any two D2-branes. In particular, it is easy to see that the element

in Mor(Y1, Y2) corresponding to the identity element in Cl(1,C) is invertible. This means

that any two lines give isomorphic objects in the category of B-branes.

Similar arguments can be used to determine boundary correlators involving both D2

and D0. As explained above, the endomorphism algebra of the D0-brane is isomorphic to

Cl(V,Q) ' Cl(3,C). As for the space of morphisms between a D2-brane and D0-brane, it

is 4-dimensional, with two-dimensional even subspace and two-dimensional odd subspace.

Indeed, since all D2-branes are isomorphic, it is sufficient to consider morphisms from the
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D2-brane x = z = 0. This D2-brane is the tensor product of the D2-brane in the LG

model W = xy and the D0-brane in the LG model W = z2. Hence the computation of the

space of morphisms and their compositions is reduced to the one we have performed in the

previous section.

6.3 The LG model with the superpotential W = z21 + · · ·+ z2n

The above arguments can be easily generalized to arbitrary n. We shall consider only

linear boundary conditions. Let the target space be V ' Cn, let W be a non-degenerate

quadratic function on V , and let Q ∈ Sym2(V ∗) be its hessian. A B-brane is a linear

subspace U ⊂ V which is isotropic with respect to Q. As mentioned above, k = dimC U is

less or equal to [n/2].

Using linear changes of variables, we can bring W to the standard form, and U to the

subspace given by z1 = · · · = zn−k = 0. Such a D(2k)-brane is a tensor product of k copies

of D2-branes in the model W = xy, [n/2]−k copies of the D0-brane in the model W = xy,

and, for n odd, one copy of a D0-brane in the model W = z2. It follows that the space of

endomorphisms has dimension

dimC End(D(2k)) = 2n−2k , (6.3)

and is isomorphic as a Z2-graded algebra to the Clifford algebra with n − 2k generators.

In particular, the algebra of endomorphisms of a D-brane of maximal possible dimension

is isomorphic to C or Cl(1,C) depending on whether n is even or odd, while the the

endomorphism algebra of the D0-brane is isomorphic to Cl(V,Q) ' Cl(n,C).

Next let us discuss morphisms between two different B-branes. Let U1 and U2 be

isotropic linear subspaces corresponding to B-branes Y1 and Y2. The same arguments as

in the previous subsection tell us that the space of fermionic zero modes can be identified

with
(U⊥1 ⊕ U⊥2 )

(U1 ⊕ U2)
.

The space of morphisms is isomorphic as a graded vector space to the exterior algebra of

this vector space (up to an overall flip of parity). It is easy to see that the dimension of the

space of zero modes is given by n− k1 − k2, where ki = dimUi. Therefore the dimension

of the space of morphisms is given by

2n−k1−k2 .

In particular, in the case U1 = U2 we recover the result eq. (6.3) obtained by other means.

Let us give a few examples. First, let n be even, and U1 and U2 be distinct maximal

isotropic subspaces. Then U⊥i = Ui for i = 1, 2, and there are no zero modes. This

means that the space of morphisms between any two maximal isotropic subspaces is one-

dimensional. As usual, the R-charge assignment is ambiguous, but it is natural to require

the R-charge to vary continuously as one varies Ui. Since in the case U1 = U2 the space of

endomorphisms is even and isomorphic to C, this implies that for any two maximal isotropic

subspaces in the same irreducible family the space of morphisms is even and isomorphic
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to C. We will fix the remaining ambiguity by saying that the space of morphisms between

two maximal isotropic subspaces in different irreducible families is odd. The reason for

such a convention will be explained in the next section.

The fact that for even n there are no fermionic zero modes for open strings connecting

two maximal isotropic subspaces implies that the vacuum-vacuum transition amplitude

is non-zero in this sector. This is equivalent to saying that the composition of non-zero

morphisms between two maximal B-branes is a non-zero multiple of the identity endo-

morphism. If these two B-branes are in the same irreducible family, this means that they

represent isomorphic objects in the category; if they are in different irreducible families,

then the interpretation is that they are isomorphic up to a shift.

If n is odd, and U1 and U2 are maximal linear subspaces, then there is a single fermionic

zero mode. Thus Mor(Y1, Y2) is two-dimensional, with one-dimensional even and one-

dimensional odd subspaces. The composition of morphisms going between two maximal

B-branes is fixed by consistency requirements. Namely, the space of morphisms must be a

graded bi-module over Cl(1,C) (the endomorphism algebra of a single B-brane), and there

is only one such graded bi-module of dimension two: Cl(1,C) itself. Furthermore, there is

an odd non-degenerate pairing

Mor(Y1, Y2)×Mor(Y2, Y1)→ C ,

which is invariant with respect to both actions of Cl(1,C) in an obvious sense. Up to

isomorphism, there is only one such pairing, namely

〈a, b〉 = tr(ab) ,

where tr is defined by

tr(1) = 0, tr(θ) = 1 .

Together with the module structure of Mor(Y1, Y2), this pairing determines the composition

of morphisms going between any two lines. As in the caseW = xy+z2, it is easy to see that

the morphism corresponding to the identity element of Cl(1,C) is invertible, and therefore

any two maximal B-branes are isomorphic.

Our third example is the case U1 = U2 = 0, that is, the case of the D0-brane. The

space of zero modes coincides with V , and the space of endomorphism is isomorphic to

∧∗V as a Z2-graded vector space (V is regarded as odd). This agrees with an independent

argument of subsection 6.1. There we also showed that the algebra of endomorphisms is

isomorphic to Cl(V,Q).

Our fourth and final example is the case when U1 is an arbitrary isotropic subspace

of dimension k ≤ [n/2], and U2 = 0. In other words, the second brane is the D0-brane.

Then the space of zero modes is V/U1. Its dimension is n− k, and therefore the space of

open strings stretched between a maximal linear subspace and the D0-brane has dimension

2n−k. The space of morphisms has the structure of a graded module over the endomorphism

algebra of the D0-brane, which is isomorphic to Cl(V,Q). If we neglect the grading, there

is a unique such module, which is a sum of 2[n/2]−k irreducible (spinor) modules.
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7. B-branes and twisted complexes

7.1 Kontsevich’s proposal5

Let us recall how to define the derived category of coherent sheaves on a smooth affine

variety X following ref. [30]. Let Coh(X) be the category of coherent sheaves on X, or

equivalently the category of finite modules over the coordinate ring OX of X. We de-

fine C(X) to be a category whose objects are bounded Z-graded complexes of projective

objects of Coh(X). Equivalently, we can think about the coordinate ring of X as a differ-

ential graded algebra (dg-algebra) which is concentrated in degree zero and has a trivial

differential; then objects of C(X) are differential graded modules (dg-modules) over this

dg-algebra such that all homogeneous components are projective OX -modules, and all but a

finite number of homogeneous components are trivial. Morphisms in C(X) are morphisms

of these dg-modules regarded simply as OX -modules (i.e. morphisms do not necessarily

preserve the grading or respect the differentials). Groups of morphisms in the category

C(X) are naturally Z-graded and have a natural differential of degree 1. For example,

closed morphisms of degree 0 in the category C(X) are ordinary morphisms of complexes

(the ones which preserve the grading and commute with the differentials), while exact mor-

phisms of degree 0 are morphisms of complexes which are homotopic to zero. Thus C(X)

is a dg-category.

There is a general way to make a triangulated category out of any dg-category [30].

One takes the category of “twisted objects” of the dg-category, which is again a dg-category,

and then passes to degree-0 homology, i.e. replaces groups of morphisms with their degree-0

homology. In the present case, since we are working with complexes of projective modules,

it is not necessary to consider twisted objects, and one can simply apply the functor H 0 to

C(X). The resulting triangulated category is simply the homotopy category of bounded

complexes of projective OX modules, and it is well known that it is equivalent to the

bounded derived category of Coh(X) (see e.g. ref. [31]). Alternatively, one can apply to

C(X) the functor H∗. This gives a graded category which is the completion of Db(Coh(X))

with respect to the shift functor. As discussed in section 2, the latter alternative conforms

better to physical conventions.

Now we can formulate Kontsevich’s proposal rather simply. Let X be a smooth affine

variety, and W be a holomorphic function on X (the superpotential), whose critical set

is compact. Let W0 ∈ C be a critical value of W . First, since in the presence of the

superpotential morphisms between B-branes are Z2-graded, we will have to use Z2-graded

complexes in order to construct the analogue of C(X). Second, we deform our Z2-graded

complexes of projective modules by asking that the composition of two successive mor-

phisms be equal to W − W0, instead of zero. Thus objects of the deformed category

C(X,W,W0) are pairs of finitely generated projective OX -modules E0, E1 and morphisms

d0 : E0 → E1 and d1 : E1 → E0 such that

d1d0 =W −W0 , d0d1 =W −W0 .

5The content of this subsection was explained to us by Maxim Kontsevich.
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We can regard the pair (E0, E1) as a Z2-graded OX -module, and (d0, d1) as an odd endo-

morphism dE of this module whose square is W −W0 (“twisted differential”). Morphisms

in this category are defined as (ungraded) morphisms of the corresponding OX -modules.

They have a natural Z2-grading, and a natural differential. The differential on Mor(E,F )

is defined as

Dφ = φdE + (−1)degdFφ .

Here (−1)deg : Mor(E,F ) → Mor(E,F ) acts as 1 on the even component and as −1
on the odd component. It is easy to see that D : Mor(E,F ) → Mor(E,F ) is an odd

operator whose square is zero. Thus C(X,W,W0) is a differential Z2-graded category. In

what follows the term “dg-category” (resp. “graded category”) will refer to a differential

Z2-graded category (resp. Z2-graded category), unless specified otherwise.

Applying to C(X,W,W0) the functor H∗, we obtain a graded category, which is pro-

posed to be equivalent to the category of B-branes corresponding to the critical value W0.

One can show that all spaces of morphisms in this category are finite-dimensional, provided

the critical set of W is compact.

An unsatisfactory feature of this construction is that one needs to use complexes of

projective modules, instead of general complexes. This causes problems if one tries to

extend the definition from affine varieties to algebraic ones. There is a way to repair this

defect [32], but we will not try to explain this more complicated definition in this paper.

7.2 A physical derivation of Kontsevich’s proposal

In this subsection we give a physical argument supporting the identification of B-branes

with objects of the category C(X,W,W0). Our argument is modelled on those in refs. [9,

20, 21], where it was explained why complexes of locally free sheaves on a Calabi-Yau

manifold can be thought of as B-branes. For our purposes, it is sufficient to consider Z2-

graded complexes. Then the argument of refs. [9, 20, 21] can be summarized as follows.

Consider a pair of locally free sheaves (i.e. holomorphic vector bundles) E1 and E2. We

already know that E1 and E2 can be thought of as B-branes, i.e. as topological boundary

conditions for a topological sigma-model. The same goes for E1 ⊕E2 and E1 ⊕E2[1]. (In

the physical setting, one has additional data, such as hermitean metrics on E1 and E2 and

compatible connections.) Now we can deform the boundary condition corresponding to

E1 ⊕ E2[1] by adding a boundary term to the action which depends on a pair of sections

F ∈ Hom(E1, E2) and G ∈ Hom(E2, E1) (the “tachyons”). In order to preserve BRST

invariance, one has to require that F and G be holomorphic, and FG = 0, GF = 0. This

deformed boundary condition corresponds to a Z2-graded complex

E1
F−−−−→ E2

G−−−−→ E1 .

One expects (although there is no iron-clad argument) that any B-brane is isomorphic

to a B-brane of this kind. This provides a physical explanation for the relation between

complexes of locally free sheaves on a Calabi-Yau and B-branes.
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In the case of a LG model, locally free coherent sheaves on X are not valid B-branes,

because their support is the whole X, and W is not constant on X. Technically, the

problem occurs because the BRST variation of the bulk action contains a non-vanishing

W -dependent term which is a total derivative on the world-sheet. This is the so-called

Warner problem [33]. The sum E1 ⊕ E2[1] is not a B-brane either. However, we can

try to add a boundary term to the action of the sigma-model so that BRST invariance

is restored. We take the same term as in the case W = 0. As in refs. [9, 20, 21], we

have two holomorphic sections F and G to play with. As we show below, the condition of

BRST-invariance is modified to FG = W −W0, GF = W −W0, where W0 is a constant.

This shows that any object of C(X,W,W0) corresponds to a B-brane.

Now let us work out the BRST-invariance conditions and show that F and G must

satisfy the constraints stated above. For simplicity, let us assume at first that both E1 and

E2 are line bundles. The boundary lagrangian is taken to be

Lb =
i

2

(

γ̄Dτγ + ψi∂iFγ + ψī∂īḠγ
)

− 1

4

(

F̄F + ḠG
)

+ h.c.

Here γ is a complex fermion living on the boundary, ψi = ψi+ + ψi− is the restriction of a

bulk fermionic field to the boundary, and F = F (φ), G = G(φ) are holomorphic sections of

Hom(E1, E2) and Hom(E2, E1), respectively. They depend on the fields φi restricted to

the boundary. The fermion γ takes values in Hom(E2, E1), and the covariant derivative

Dτ along the boundary makes use of the unitary connections on E1 and E2. The boundary

lagrangian is manifestly gauge-invariant. If we set F = G = 0, we get the usual path-

integral representation of the parallel transport operator in the bundle E1 ⊕ E∗2 [16]. For

non-zero F or G we get a deformation of the usual boundary condition. In the special case

G = 0 we get the boundary lagrangian used in ref. [16].

We postulate the following supersymmetry transformations for γ:

δγ = iεF̄ − iε̄G .

Here ε and ε̄ are regarded as independent complex Grassmann variables. We also note that

F and G transform as follows:

δF = εψi∂iF

δG = εψi∂iG

BRST transformations are obtained by setting ε = 0. One can check that the BRST

variation of the boundary lagrangian is given, up to a total derivative, by

δLb = −
1

2
ε̄ψi∂i(FG) .

On the other hand, the BRST variation of the bulk action is a boundary term given by

δS0 =

∫

dτ ε̄

[

gij̄∂0φ
i
(

ψj̄− − ψj̄+
)

+ gij̄∂1φ
i
(

ψj̄− + ψj̄+

)

+
i

2

(

ψi− + ψi+
)

∂iW

]

.

The first two terms in the bulk variation are standard and vanish when the standard

Neumann boundary conditions are imposed on φi and ψi±. The last term is the Warner
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term [33]. Obviously, in order for the variation of the boundary lagrangian to cancel the

Warner term, we need to require

F (φ)G(φ) = i(W (φ) + const) .

One can get rid of the factor i by redefining G→ iG. This implies that instead of an ordi-

nary complex of holomorphic vector bundles we are dealing with an object of C(X,W,W0).

It is straightforward to generalize the construction to the higher-rank case. The fermion

γ still takes values in Hom(E2, E1), which means that it is a matrix of size rank(E1) ×
rank(E2). In order for the path-integral over γ(τ) to reproduce a path-ordered exponential

in the representation of the gauge group of dimension rank(E1) + rank(E2), one needs to

insert a projector onto the sector where the total fermion number (including the boundary

contribution from γ) is equal to 0 or 1 [20, 21, 19]. The rest of the argument is unchanged.

The conditions of BRST-invariance now read

FG = i(W + const) , GF = i(W + const) .

The two conditions arise by requiring that the BRST variation of the bulk term be cancelled

on both boundaries of the world-sheet. By taking the trace of these two equations and

comparing them, one infers that the ranks of E1 and E2 are in fact the same, and the

constant terms in the equations are also the same. It follows that any object of C(X,W,W0)

is a B-brane.

One can also check that the total BRST charge is nilpotent. Indeed, it is easy to see

that the square of the bulk contribution to the BRST charge is equal to

Q2
0 =

1

2
{Q0, Q0} = −iW |∂Σ.

On the other hand, the boundary supercharge coming from one of the two boundaries is

given by

Qb = −iFγ + iGγ̄ .

Canonical quantization yields

{γ, γ̄} = 1

and therefore

Q2
b = FG

It is also easy to check that Qb and Q0 anti-commute (the holomorphicity of F and G is

important here.) Hence the sum of Q0 and the two boundary supercharges is nilpotent.

7.3 Checking Kontsevich’s proposal

We start with the case X = C, W = z2, where there is only a D0-brane to worry about.

In the absence of the superpotential, D0-brane on C is associated with the structure sheaf

of a point, which has a two-term projective resolution

O z−−−−→ O .
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If we pass to Z2-graded complexes, we obtain the following dg-module:

O ⊕O zσ−−−−−→ O ⊕O ,

where

σ− =

(

0 0

1 0

)

,

and it is understood that the module O ⊕ O has the obvious grading. If we turn on the

superpotential, we need to deform the differential so that its square be equal to W = z2.

It is clear how to do this: simply consider the object

O ⊕O zσ1−−−−→ O ⊕O , (7.1)

where

σ1 =

(

0 1

1 0

)

.

This is our candidate object for the D0-brane at z = 0. As a check, let us compute its

endomorphism algebra, following Kontsevich’s prescription. In the category C(X,W,W0),

the algebra of endomorphisms is

EndO(O)⊗C Mat(2,C) ' Mat(2,C[z]) .

The Z2-grading is the natural grading on 2 × 2 matrices (diagonal elements are even,

off-diagonal elements are odd). The differential acts on this graded vector space as follows:

D :

(

A B

C D

)

7→
(

(B + C)z (A−D)z

−(A−D)z (B + C)z

)

.

Here A,B,C,D are elements of EndO(O), i.e. simply polynomials in z. Computing H∗,

we find that this abelian group is isomorphic to the group of complex matrices of the form

(

ξ η

−η ξ

)

.

Multiplicative structure is given by matrix multiplication. Clearly, this algebra is generated

over C by the identity and an odd matrix

σ2 =

(

0 −i
i 0

)

,

which squares to identity. This agrees with the endomorphism algebra of the D0-brane in

the LG model W = z2 [16].

Now let us discuss B-branes in the LG model W = xy. Using the same reasoning as

above, it is easy to guess that the D2-brane given by the equation x = 0 should correspond

to the object

O ⊕O −−−−→ O ⊕O ,
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where the map is defined as
(

0 y

x 0

)

.

Similarly, the D2-brane given by the equation y = 0 should correspond to

O ⊕O −−−−→ O ⊕O

with the twisted differential
(

0 x

y 0

)

.

The group of endomorphisms of the former object in the category C(X,W,W0) is

EndO(O)⊗Mat(2,C) ' Mat(2,C[x, y]) ,

with the differential which acts as follows:
(

A B

C D

)

7→
(

Bx+ Cy (A−D)y

−(A−D)x Bx+Cy

)

.

The homology is readily computed; the result is that it is spanned by the identity matrix.

Thus the algebra of endomorphisms in the derived category is isomorphic to C. This agrees

with the computation in section 5. Of course, for the other D2-brane we get the same result.

Finally, in order to compute morphisms between the two D2-branes, we note that one is

a shift of the other.6 Thus the space of morphisms is the space of endomorphisms with

gradings reversed, i.e. it is spanned by the identity matrix regarded as odd. Composing two

such odd morphisms going in the opposite directions we get the identity endomorphism.

This agrees with the computations in section 5 and explains why we declared the space of

morphisms between two different D2-branes to be odd.

Now let us discuss the D0-brane. Consider the direct sum of objects corresponding

to D2-branes with equations x = 0 and y = 0. It is easy to see that its algebra of

endomorphism is the Clifford algebra Cl(2,C), so we propose that this object corresponds

to the D0-brane. It is easy to check that morphisms to and from other objects agree with

our computations in section 5.

Finally, we propose an object of H∗(C(X,W,W0)) corresponding to the D0-brane in

the free massive LG model with n fields. If we bring the superpotential to the standard

form eq. (6.1), then we can simply tensor n copies of the object eq. (7.1). Consequently,

the endomorphism algebra will also be the graded tensor product of n copies of Cl(1,C),

which is isomorphic to Cl(n,C). More invariantly, let V = X be the complex vector space

whose coordinates we denoted by zi, let ei, i = 1, . . . , n, be the corresponding basis in V ,

let e∗i , i = 1, . . . , n be the dual basis in V ∗, and let Q ∈ Sym2(V ∗) be the hessian of W . We

start with the Z2-graded version of the Koszul resolution of the point at the origin:

Ωeven → Ωodd ,

6In physical terms, this means that the D2-brane with the equation x = 0 is isomorphic to the anti-brane

for the D2-brane with the equation y = 0.
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where Ωi = ∧iV ⊗ OV , and the differential is induced by the wedge product with ziei
(we use Einstein’s convention of summing over repeating indices). Now we modify the

differential so that its square be W instead of zero. The obvious guess is

d = zi

(

ei +
1

2
Qiji(e

∗
j )

)

,

where i(u), u ∈ V ∗, denotes the interior product with an element of V ∗. Using the identity

{

ei, i(e
∗
j )
}

= δij ,

one can easily check that d2 = W . Note that d is essentially the Fourier transform of the

Dirac operator, if we identify Ωeven and Ωodd with spinor bundles.

7.4 B-branes, Clifford modules, and Koszul duality7

We regard the above computations as a convincing check of Kontsevich’s proposal for mas-

sive LG models. In this subsection, we would like to address the following three questions.

First, how do we match B-branes with objects in the category H ∗(C(X,W,W0)) if n > 2?

(As explained in section 3, it is sufficient to consider the case X = Cn, W quadratic non-

degenerate, and W0 = 0.) Second, is there an efficient method to compute morphisms

in the category H∗(C(X,W,W0))? Third, assuming the validity of Kontsevich’s proposal,

what do we learn about B-branes in massive LG models? That is, is there a simpler way

to describe H∗(C(X,W,W0))?

To answer these questions, we will define a functor from the category of B-branes to the

category of finite-dimensional Z2-graded modules over the Clifford algebra Cl(n,C). Let

us denote this category CLMOD(n). (As usual, we allow both even and odd morphisms;

thus CLMOD(n) is a Z2-graded category.) Since we set X = Cn, W0 = 0, and W is

quadratic and non-degenerate, the category H∗(C(X,W,W0)) really depends only on n;

we will denote this category K(n) for short. There is a further functor from CLMOD(n)

to K(n). Composing these two functors gives a way to associate objects of K(n) to B-

branes. In fact, as explained below, the second functor is an equivalence of categories which

implies that we can calculate morphisms in CLMOD(n) instead of K(n). This equivalence

is a cousin of the much-studied Koszul duality for quadratic algebras (see below). The

structure of CLMOD(n) is quite simple: any object is a direct sum of irreducible objects

(spinor modules), and there is one or two non-isomorphic irreducible objects, depending on

whether n is odd or even. Thus we have a completely explicit description of CLMOD(n),

and therefore, by Koszul duality, of K(n). Assuming the validity of Kontsevich’s conjecture,

this amounts to a solution of topological open string theory for any massive LG model.

One can associate a Z2-graded Clifford module to a B-brane as follows. For any B-

brane Y , consider the graded vector space M(Y ) = Mor(D0, Y ). Since Mor(D0, D0) is

isomorphic to Cl(n,C) as a graded algebra, M(·) is a functor from the category of B-branes

to the category of left Z2-graded modules over Cl(n,C). Since spaces of open strings are

7The content of this subsection was explained to us by Alexander Polishchuk.

– 32 –



J
H
E
P
1
2
(
2
0
0
3
)
0
0
5

expected to be finite-dimensional,M(Y ) is expected to be a finite-dimensional vector space.

Thus M(·) is a graded functor from the graded category of B-branes to CLMOD(n).

The results of section 6 (see also the appendix) imply that the functor M(·) maps the

maximal linear B-brane to an irreducible Clifford module; for even n maximal isotropic

subspaces which belong to different irreducible families are mapped to non-isomorphic

Clifford modules related by parity reversal. The D0-brane is mapped to the free module of

rank one. A linear B-brane of complex dimension ` < [n/2] is mapped to a module which

is a direct sum of 2[n/2]−` irreducible modules.

Next we would like to explain why CLMOD(n) is equivalent to K(n). The relation

between these two rather different-looking categories is a generalization of the so-called

Koszul duality for quadratic algebras [34, 35, 36]. Any serious attempt to discuss Koszul

duality would take us out of our depth, so we will just make a few remarks which may help

to orient the reader who would like to study these questions deeper.

Classical Koszul duality applies to quadratic algebras, i.e. Z-graded algebras gener-

ated by degree-1 elements, such that all relations between generators are homogeneous

quadratic. The basic example of a dual pair is the pair (S∗(V ∗),∧∗V ), where S∗(V ∗) is the

symmetric algebra of a finite-dimensional vector space V ∗, and ∧∗V is the exterior algebra

of the dual vector space. The statement of Koszul duality is that their derived categories

of finitely-generated Z-graded modules are equivalent.

There is a generalization of Koszul duality to the case where the relations are non-

homogeneous quadratic [34, 37, 38]. But the dual object in this case is not a graded algebra,

but a quadratic CDG algebra. A CDG algebra is a triple (A, d, f), where A is a graded

algebra, d is a degree-1 derivation, and f is a degree-2 element f such that d2a = [f, a] for

any a ∈ A. CDG means “curved differential graded”; another name for a CDG algebra is

a “Q-algebra” [39]. A module over a CDG algebra (A, d, f) is a graded module M over A

equipped with a degree-1 derivation dM such that d2Mm = f ·m for any m ∈M .

What we need is a Z2-graded version of non-homogeneous Koszul duality. Indeed,

on one hand, the Clifford algebra is a Z2-graded quadratic algebra, while on the other

hand, the category C(X,W,W0) can be regarded as a category of modules over a certain

Z2-graded CDG algebra. This CDG algebra is purely even and isomorphic to OX as an

algebra. The derivation d is identically zero, but the even element f is not: it is given

by W . The category K(n) can be regarded as the derived category of the category of

finitely generated CDG modules over the CDG algebra (OX , 0,W ). This CDG algebra is

Koszul-dual to the Clifford algebra in the sense of refs. [37, 38], and we expect that the

corresponding derived categories of modules are equivalent. More precisely, we expect that

the derived category of finite-dimensional Z2-graded Clifford modules is equivalent to the

derived category of finitely-generated modules over the CDG algebra (OX , 0,W ).

Since the Clifford algebra can be regarded as a deformation of the exterior algebra,

and the CDG algebra (OX , 0,W ) is a deformation of the polynomial algebra, this claim

looks like a generalization of the classic result of ref. [35]. In fact, the deformed duality is in

some sense simpler than the classic one, since the category CLMOD(n) is semi-simple and

“deriving” it is a trivial operation (gives us back the same category). It is also more useful:

while the classic duality of ref. [35] reduced the problem of classifying coherent sheaves on
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CPn to a very difficult problem in linear algebra, the deformed duality reduces the problem

of classifying B-branes in the free massive LG model to a very simple problem in linear

algebra (classification of finite-dimensional graded modules over a Clifford algebra.)

Let us describe the functors which establish the equivalence of K(n) and CLMOD(n).

The first one, from K(n) to CLMOD(n), is obvious: it takes an object Y of K(n) to

Mor(Y0, Y ), where Y0 is the object of K(n) described in the last paragraph of subsection 7.3.

The mapping of morphisms is the obvious one.

To define the functor acting in the opposite direction, let us consider for any object

M of CLMOD(n) the vector space

N =M ⊗C OX ,

where OX is simply the algebra of polynomial functions on Cn. Since M is Z2-graded, this

vector space is also Z2-graded. It is also an OX module, for obvious reasons. It remains

to define the twisted differential dN , i.e. an odd endomorphism of N which squares to W .

Let V be the vector space which appears in the definition of the Clifford algebra; we will

also identify the target space X of the LG model with V . The twisted differential will be

dN : m⊗ f 7→
∑

i

(ei ·m)⊗ zif , ∀m ∈M , ∀f ∈ OX ,

where ei, i = 1, . . . , n, is a basis in V , zi are the corresponding linear coordinates, and

the dot denotes the Clifford algebra action. It is easy to check that dN is odd, and that

d2N =W . Thus we defined a map which sends an object of CLMOD(n) to an object of K(n).

The mapping of morphisms is the obvious one: if α is a morphism of Clifford modules M

and M ′, then the corresponding element of HomOX (N,N
′) is α ⊗ 1. It is easy to check

that α⊗ 1 is closed, and thus is a well-defined morphism in the category K(n).

The claim is that compositions of these two functors in any order are isomorphic to

identity functors. We will not try to prove this claim here, but to make it more plausible

note that the mapping of objects is given by essentially the same formulas as in the classic

case [35].

8. Application: the category of A-branes for some Fano varieties

8.1 A-branes on CP2

The mirror of the the nonlinear sigma model with target CP2 is the affine A2 Toda model [5].

The affine A2 Toda model is an N = 2 Landau-Ginzburg theory of two chiral superfields

x and y taking values in C∗ and a rational superpotential

W (x, y) = x+ y +
1

xy
.

We can test the Homological Mirror Symmetry conjecture by comparing the Fukaya cate-

gory of CP2 with the category of B-branes in the Toda model.

As discussed above, every B-brane in the Toda model lies on some holomorphic curve

W =W0. In addition, in order for open strings to have a supersymmetric ground state, we
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compactify

Figure 2.

require this curve to pass through a critical point of W . In the A2 theory there are three

distinct critical points:

x = y = ak = e2kπi/3, k = 0, 1, 2.

The values of W corresponding to these critical points are pairwise distinct: Wk = 3ak.

There is an obvious Z3 symmetry which permutes the critical points. This implies that the

categories H∗(C(X,W,Wk)) are all equivalent. From now on we will focus on one of them,

say, the one corresponding to k = 0. All B-branes associated to this critical point must be

complex submanifolds of the holomorphic curve in C∗ × C∗ given by

x+ y +
1

xy
− 3 = 0 . (8.1)

This curve is a singular cubic with a single node (see figure ??). Thus the category of

B-branes is a full sub-category of the category of B-branes in the LG model W = xy. We

have seen that the latter is equivalent to the category CLMOD(2).

It remains to understand which objects in the latter category correspond to B-branes.

Clearly, the D0-brane sitting at the critical point (1, 1) is a valid B-brane. As for D2-branes,

they must be (desingularizations of the) irreducible components of the curve eq. (8.1). But

it is easy to see that the singular cubic is irreducible. Thus there is only one D2-brane of

type B: the one which corresponds to the structure sheaf of the desingularized cubic. The

corresponding object in the “local” category associated to the critical point is the direct

sum of the D2-brane x = 0 and the D2-brane y = 0. This direct sum is isomorphic to

the D0-brane (see section (5)). We conclude that the basic B-brane in the Toda model is

the D0-brane, all other branes being direct sums of several copies of the D0-brane. The

endomorphism algebra of the D0-brane is isomorphic to Cl(2,C). We see that the category

of B-branes in this case is strictly smaller than the “local” category Ctot, which is equivalent

to CLMOD(2).

As discussed in section 3, since the D0-brane looks like a composite of two D2-branes,

one can formally add these missing D2-branes to the category of B-branes for the Toda

model. The enlarged category is equivalent to the category CLMOD(2).

Now let us interpret these results from the point of view of Homological Mirror Sym-

metry. The mirror of the D0-brane has been identified in ref. [16] using the dualization

argument of ref. [5]. The mirror is a certain lagrangian 2-torus in CP2 equipped with a rank
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one trivial vector bundle and a certain flat connection. Let us be more specific. Consider

the unit 5-sphere in C3, i.e. a hypersurface defined by the equation

|z1|2 + |z2|2 + |z3|2 = 1 .

The quotient of this 5-sphere by a free S1 action

zi → e2πiαzi , i = 1, 2, 3 , α ∈ R

Z
,

is diffeomorphic to CP2. In fact, the standard symplectic form on CP2 is obtained by

restricting to S5 the standard Kähler form on C3 and then pushing it down to the quotient.

Now consider a 3-torus in C3 defined by the equations

|z1|2 = |z2|2 = |z3|2 =
1

3
. (8.2)

It is contained in the 5-sphere and invariant with respect to the S1 action. Hence by

passing to the quotient, we obtain a 2-torus embedded in CP2. It is trivial to check that

this 2-torus is lagrangian with respect to the standard symplectic form on CP2. The flat

connection can be specified by its monodromy representation. Let γ1 and γ2 be the loops

on the 3-torus (8.2) defined by

γ1 : t 7→
{

1√
3
e2πit,

1√
3
,
1√
3

}

, γ2 : t 7→
{

1√
3
,
1√
3
e2πit,

1√
3

}

.

Their images under the quotient map generate the fundamental group of our lagrangian

2-torus. According to ref. [16], the mirror of the D0-brane sitting at the point (ak, ak),

k = 0, 1, 2, corresponds to the monodromy representation which maps both generators to

e2πik/3. In particular, the D0-brane which sits at the point (1, 1) is mirror to the trivial

flat connection on the lagrangian 2-torus.

As a simple check of this claim, note that the algebra of endomorphisms of a D0-brane

in the modelW = xy has Euler characteristic zero. In the mirror picture, the corresponding

object is the Euler characteristic of the Floer complex, which coincides with the classical

Euler characteristic of the 2-torus. Thus the Euler characteristics match. It would be

nice to compute the Floer homology groups as well and to check that they agree with the

predictions of mirror symmetry. Namely, we expect that

1. the Floer homology of the lagrangian 2-torus equipped with a rank-one flat connection

is non-vanishing only for the three special flat connections defined above;

2. for these choices of the flat connection, the Floer homology is isomorphic to the

classical cohomology of the torus as a Z2-graded vector space;

3. as a Z2-graded algebra, the Floer homology is isomorphic to the Clifford algebra with

two generators, i.e. it is a quantum deformation of the classical cohomology ring;

4. Floer homology groups which compute morphisms between different flat connections

of rank one vanish.

– 36 –



J
H
E
P
1
2
(
2
0
0
3
)
0
0
5

It was argued above that we can formally add D2-branes to the category of B-branes.

It is reasonable to ask if this procedure is consistent with or perhaps even forced on us by

Homological Mirror Symmetry. To answer this question we need to identify the mirrors of

the added D2-branes. There are two such D2-branes for each critical level set. For each

of them the Euler characteristic of the endomorphism algebra is 1. If we assume that the

mirror of a D2-brane is a lagrangian submanifold, then it must be homeomorphic to a real

projective plane RP2. But since RP2 is not orientable, it is not an admissible object of the

Fukaya category (one needs orientability in order to define Z2-graded Maslov index and

Z2-grading on the Floer complex). We conclude that the mirrors of the added D2-brane

cannot be lagrangian submanifolds, and therefore Homological Mirror Symmetry does not

force us to include them on the B-side.

On the other other hand, if we added D2-branes on the B-side, we can maintain

Homological Mirror Symmetry by adding certain objects on the A-side. In other words, we

would like to regard the lagrangian 2-torus with a trivial flat connection, which is mirror

to the D0-brane, as a direct sum of two irreducible objects, which are mirror to the D2-

branes. But since there are no such objects in the Fukaya category, we simply add these

direct summands “by hand.”

Let us clarify what we mean by adding direct summands “by hand.” Let E be an

object of an additive category C. A projector is an element of End(E) which satisfies

e ◦ e = e. Given any projector, we would like to have the corresponding direct summand,

i.e. an object R and a pair of morphisms i : R→ E and r : E → R such that r◦i = idR and

i ◦ r = e. If R does not exist for all projectors and for all E, then we look for the smallest

additive category which contains C as a full subcategory and in which every projector has

a direct summand.

To summarize, to maintain Homological Mirror Symmetry, we must either add formal

direct summands on both A and B sides, or on neither side.

8.2 A-branes on CP1 × CP1

The mirror in this case is the LG model with target C∗ × C∗ and the superpotential

W (x, y) = x+
µ

x
+ y +

ν

y
.

Here µ and ν are nonzero complex numbers whose logarithms are mirror to the periods

of the complexified Kähler form on the two CP1’s. This superpotential has four non-

degenerate critical points. For generic µ, ν there are four critical level sets all of which

look like a cubic with a node. Thus we are in exactly the same situation as in the previous

subsection, and the only B-branes are D0-branes sitting at the critical points. Another way

to see these D0-branes is to note that the LG model is a product of two LG models with the

superpotential W = x+µ/x. This model is mirror to CP1 and has been studied in ref. [16].

Its only B-branes are D0-branes sitting at the two critical points of the superpotential.

Taking tensor products of pairs of such B-branes gives us four D0-branes discussed above.

The mirror of each D0-brane is a lagrangian 2-torus with some flat connection. Indeed,

the mirror of a D0-brane in the model W = x + µ/x is the equatorial circle on CP1 [16],
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therefore the mirror of a D0-brane in the product model is the product of two equatorial

circles. The monodromy around the two generators of the fundamental group is (±1,±1).
For µ = ν something special happens both on the A and B sides. On the A side, we

get a new lagrangian submanifold which is homeomorphic to a 2-sphere. To see this, let z

and w be coordinates on the standard affine patches on the two CP1’s. Consider the “anti-

diagonal” 2-sphere given by z = w̄. Let ω be the Fubini-Study form on CP1, πi, i = 1, 2, be

the projection maps from CP1×CP1 to the two factors, and a1, a2 be complex numbers. It

is trivial to check the restriction of a1π
∗
1ω+a2π

∗
2ω to the “anti-diagonal” 2-sphere vanishes

if and only if a1 = a2. Thus the 2-sphere is lagrangian if and only if µ = ν.

On the B side, the critical level set W = 0 now contains two critical points. The

equation of this critical level set

(x+ y)(xy + µ) = 0

shows that it is reducible. The irreducible components are a line and a non-singular quadric

which intersect transversally at two points; these are the two critical points mentioned

above. We have two irreducible D2-branes of type B corresponding to the two irreducible

components of the critical level set. It is easy to see that one is isomorphic to the shift of

the other, while their sum is isomorphic to the sum of two D0-branes sitting at the two

critical points.

Note that this is another example where the category of B-branes is strictly smaller

than the sum of “local” categories associated to critical points. This happens because all

D2-branes pass through both critical points in the set W = 0. Thus a single D0-brane

sitting at a critical point is irreducible. Of course, if we only look at the infinitesimal

neighborhood of one of the critical points, then we are in the same situation as in the

model W = xy, and the D0-brane appears to be composite. If desired, we can enlarge the

category of B-branes by adding all formal direct summands. Then it will become equivalent

to the sum of categories attached to the two critical points (each of which is equivalent to

CLMOD(2)), and each D0-brane will be the sum of two irreducible objects.

Now let us match the objects on A and B sides. D0-branes correspond to “equatorial”

lagrangian tori, as before. The mirror of a D2-brane must be a lagrangian 2-sphere. Indeed,

each D2-brane passes through two critical points, each of which contributes 1 to the Euler

characteristic of the endomorphism algebra. An obvious conjecture is that the two D2-

branes are mirror to the lagrangian 2-sphere discussed above and its shift (i.e. orientation-

reversal). If this is true, then the sum of the lagrangian 2-sphere and its shift must be

isomorphic (in the Fukaya category) to the sum of two “equatorial” lagrangian tori with

monodromies (1,−1) and (−1, 1). It would be interesting to check this by computing the

Floer homology between all the objects involved.

9. Comments and outlook

In this paper we have described the category of B-branes for the free massive LG model

with n chiral fields. We also argued that this allows one to determine the category of

B-branes for an arbitrary massive LG model. The most striking feature of our results is
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their simplicity. For example, if we consider the free massive LG model, there is a multi-

parameter family of maximal isotropic subspaces of the quadric W = 0, but they are all

isomorphic as objects of the category of B-branes (up to a shift). Moreover, B-branes

of lower dimension, including the D0-brane, are isomorphic to direct sums of B-branes

of maximal dimension. These rather counter-intuitive observations solve the problem of

computing tree-level topological open string correlators in these models.

It is interesting to compare our results with those of refs. [22, 23], where a general

framework for classifying D-branes in 2d Topological Field Theories has been proposed. In

our case, the 2d TFT in the bulk is rather trivial: it is isomorphic, as a Frobenius algebra,

to C with its unique Frobenius structure. The theory of ref. [22] (generalized to the Z2-

graded case) tells us that the algebra of open strings connecting a brane with itself must

be simple. We saw that in our case endomorphism algebras of B-branes are all isomorphic

to Clifford algebras, and these are indeed simple (as Z2-graded algebras). However, unlike

in the purely bosonic case, in the Z2-graded case not every two simple finite-dimensional

algebras are Morita equivalent. In fact, there are two Morita-equivalence classes of such

algebras, represented by C and Cl(1,C). A Clifford algebra with k generators is Morita-

equivalent to C or Cl(1,C) depending on whether k is even or odd. We have seen that

when the number of fields n is even (resp. odd) only even (resp. odd) values of k occur.

This suggests that it is impossible to have a topological open string theory which includes

D-branes of both kinds. Indeed, we have seen that all pairings between spaces of morphisms

induced by 2-point correlators are either even or odd, depending on whether n is even or

odd. On the other hand, one of the basic axioms of topological open string theory is that

all pairings must have the same parity [23].

This observation provides a simple counter-example to the belief that a 2d TFT deter-

mines uniquely the associated category of topological boundary conditions. In fact, we can

make a stronger statement. Given any 2d SCFT representing a superstring background, we

can tensor it with the topological LG model W = z2. Since the latter theory is trivial, this

does not change the closed string sector. But the open string sector does change: one has

to tensor every “physical” D-brane with the D0-brane of the LG model, and this results

in tensoring the open string spectrum of each D-brane with Cl(1,C). This is equivalent to

the introduction of an odd Chan-Paton label. Thus we have two inequivalent open string

theories for a given closed string theory.

This particular ambiguity is rather mild and can be easily eliminated. The difference

between odd and even n comes from the number of fermionic zero modes on a disk, or

equivalently from the parity of the bilinear forms computed by the 2-point disk correlators.

Thus to specify completely the open string theory we are dealing with, it is sufficient to

fix the parity of all bilinear forms.

It would be interesting to extend the considerations of this paper to LG models which

flow to non-trivial SCFTs in the infrared limit. For example, one could study Landau-

Ginzburg realizations of N = 2 minimal models. For these theories much information

about B-branes is available from the boundary state formalism, and it would interesting

to see if it is consistent with Kontsevich’s proposal. By analogy with the massive case,

one expects that the category of B-branes will be describable in terms of modules over
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the algebra of endomorphisms of a D0-brane. From the mathematical viewpoint, this

algebra must be related by a Koszul-like duality to the CDG algebra which appears in

Kontsevich’s proposal. It appears that for W of degree higher than two Koszul duality

relates Kontsevich’s CDG algebra to a finite-dimensional A∞-algebra [32]. B-branes should

correspond to finite-dimensional A∞-modules over this A∞-algebra. In this way solving

topological open string theory is reduced to a problem in linear algebra. Hopefully, the

latter problem is manageable.

In the axiomatic approach of refs. [23, 22], topologically twisted N = 2 minimal models

correspond to non-semi-simple Frobenius algebras. It would be interesting to explore the

uniqueness of the open string sector in such models.
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A. Clifford algebras and modules

In this appendix we collect some well-known facts about complex Clifford algebras and their

modules. Let V be a complex vector space of dimension n, and Q be a non-degenerate

symmetric bilinear form on V . Clifford algebra Cl(V,Q) has V and the identity as its set

of generators, and the following relations:

v · v′ + v′ · v = Q(v, v′) .

As a vector space, Cl(V,Q) is isomorphic to ∧∗V and therefore has dimension 2n. We

can regard Cl(V,Q) either as an ordinary associative algebra, or as a Z2-graded algebra,

such that all the generators are odd. In the latter case, the grading corresponds to the

decomposition of ∧∗V into polyvectors of even and odd degree. Since the isomorphism class

of Cl(V,Q) depends only on the dimension n of V , we will also use the notation Cl(n,C)

to denote this isomorphism class.

If V1 and V2 are complex vector spaces with non-degenerate bilinear forms Q1 and Q2,

then

Cl(V1 ⊕ V2, Q1 ⊕Q2) = Cl(V1, Q1)⊗ Cl(V2, Q2) . (A.1)

Here all Clifford algebras are regarded as Z2-graded algebras, and⊗ denotes their Z2-graded

tensor product.
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If n is even, then Cl(V,Q) regarded as an ungraded algebra is isomorphic to the algebra

of complex 2n/2 × 2n/2 matrices, which we will denote Mat(2n/2,C). If n is odd, then

Cl(V,Q) regarded as an ungraded algebra is isomorphic to Mat(2[n/2],C)⊕Mat(2[n/2],C).

In particular, Cl(1,C) is isomorphic to C ⊕ C. We see that Cl(V,Q) is a simple algebra

only for even n. However, if we regard it as a Z2-graded algebra, then it is simple for all n.

Now let us discuss finite-dimensional modules over Cl(V,Q). The category of Clifford

modules is semi-simple, i.e. every exact sequence splits. Thus every Clifford module is

a direct sum of irreducible modules. The number and properties of irreducible modules

depend on the parity of n, as well as whether we regard Cl(V,Q) as a Z2-graded algebra.

If we neglect the grading, then for even n we have a unique irreducible module S of

dimension 2n/2. It is called the spinor module and can be constructed as follows. Pick

a pair of subspaces U,W of V such that both U and W are isotropic with respect to Q,

U
⋂

W = 0, and V = U ⊕W . One can easily see that Q gives a non-degenerate pairing

between U and W and thus we may identify W with U ∗. Set S = ∧∗U , and define the

action of Clifford algebra on S as follows: if v = u⊕w, where u ∈ U and w ∈W , then for

any λ ∈ S we let

(u⊕ w) · λ = u ∧ λ+ iwλ .

Here we used the identification of W with U ∗ mentioned above.

For odd n Clifford algebra is a sum of two matrix algebras, and therefore there are

two non-isomorphic irreducible modules of dimension 2[n/2] (two spinor modules). For

example, for n = 1 the algebra is generated by the identity and an odd element ξ with a

single relation ξ2 = 1; the two irreducible modules are one-dimensional, with the action of

ξ given by ±1. For general n one can use the property eq. (A.1) to reduce the problem to

the cases already considered.

If we regard Cl(V,Q) as a Z2-graded algebra, then we should look for Z2-graded irre-

ducible modules. For even n there are two inequivalent choices of grading on the spinor

module related by parity reversal. Therefore we have two non-isomorphic irreducible spinor

modules S and S̄. For odd n the “minimal” Z2-graded module has dimension 2(n+1)/2; as

an ungraded module, it is isomorphic to the direct sum of two inequivalent irreducible

ungraded modules. Furthermore, the choice of grading is unique up to isomorphism. We

will denote this unique spinor module by S. For example, for n = 1 S ' C2, and ξ acts as

any of the three Pauli matrices, say σ1. Then the parity operator can be chosen to be σ3.

To summarize, for even n any Z2-graded Clifford module is a direct sum of several

copies of two inequivalent spinor modules S and S̄. For odd n the situation is the same,

except that S is isomorphic to S̄. The dimension of the spinor module is given by 2[(n+1)/2]

for any n > 0.

In particular, Cl(V,Q) regarded as a left module over itself is a direct sum of 2 [n/2]

copies of spinor modules. For n even half of them are S’s, and the other half are S̄’s.
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