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Abstract

In this review we study BPS D-branes on Calabi–Yau threefolds. Such D-branes
naturally divide into two sets called A-branes and B-branes which are most easily
understood from topological field theory. The main aim of this paper is to provide
a self-contained guide to the derived category approach to B-branes and the idea of
Π-stability. We argue that this mathematical machinery is hard to avoid for a proper
understanding of B-branes. A-branes and B-branes are related in a very complicated
and interesting way which ties in with the “homological mirror symmetry” conjecture
of Kontsevich. We motivate and exploit this form of mirror symmetry. The examples
of the quintic 3-fold, flops and orbifolds are discussed at some length. In the latter
case we describe the rôle of McKay quivers in the context of D-branes.
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4.2.1 Čech cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Spectral sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Dolbeault cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.4 Sheaf cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 The Category of B-branes 48

5.1 Deformations and complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Open strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 The derived category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Coherent sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 More deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Anti-branes and K-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.7 Mirror symmetry restored? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1



6 Stability 63

6.1 A-Branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.1 Special Lagrangians . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.2 A geometrical decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.3 Tachyon condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 B-Branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.1 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Categorical mirror symmetry at last . . . . . . . . . . . . . . . . . . . 75
6.2.3 Π-Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.4 Multiple decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.5 µ-stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Applications 83

7.1 The Quintic Threefold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.1 Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.1.2 4-branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.3 Exotic B-branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.1.4 Monodromy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3 Orbifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.1 The McKay correspondence . . . . . . . . . . . . . . . . . . . . . . . 101
7.3.2 The Douglas–Moore construction . . . . . . . . . . . . . . . . . . . . 104
7.3.3 θ-stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3.4 Periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3.5 Monodromy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3.6 Examples of stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Conclusion 119

2



1 Introduction

There can be no doubt that the most important development in string theory in recent years
is the discovery of D-branes. In flat spacetime a D-brane is regarded as a subspace on which
open strings may end.1 Since string theory modifies classical notions of geometry at short
distances, it is natural to assume that such a simple picture of a D-brane as a subspace is
too näıve for more general backgrounds. A more abstract notion of a D-brane is required,
one which coincides with the notion of a subspace when viewed in the context of only large
distances. The aim of these lectures is to study how this can happen.

It is probably of profound importance in string theory to know a robust definition of
D-branes in the most general space-time background, but this problem is far too difficult
with our present understanding of string theory. Instead we look for the simplest context in
which one might observe nontrivial D-brane behaviour. We render our model as simple as
possible by the following steps:

1. Get rid of the enormous complications introduced by time by using a compactification
model. We will assume our string theory has a target space R1,3×X for some compact
space X. We focus our attention on X.

2. Send the string coupling gs to zero and consider only quantum corrections arising from
nonzero α′ effects.

3. Use just as much supersymmetry as we can while keeping the problem nontrivial.
This amounts to an N = (2, 2) supersymmetric theory on the worldsheet with X a
Calabi–Yau threefold.

4. Consider only the “topological sector” of the worldsheet theory. This results in a
finite-dimensional Hilbert space of open strings and we remove all oscillator modes.

As we will see, after such dramatic simplifications, a very rich model remains which requires
sophisticated mathematical tools to analyze. One can only wonder at how abstruse a more
realistic D-brane, with the above assumptions removed, must be!

Much has already been written about D-branes. We refer to [2], for example, for a review
of many aspects of D-branes. In this paper we chart a slightly different course to usual to
achieve our aims. Firstly we try wherever possible to avoid the D-brane world-volume
approach since this assumes that the D-brane really is a subspace of the target spacetime.
Our ideas are then planted on the worldsheet which forces us to take the string coupling
to zero. Having put ourselves in the worldsheet, we will avoid much of the boundary-state
formalism that one often employs here. Whether this is a judicious choice is up to the reader
to decide, but it does not seem to be of great importance in the context of our discussions.

By restricting attention to the topological sector of N = (2, 2) worldsheet theories we
are in the land of mirror symmetry. In order to keep these lecture notes a manageable

1The first reference to such objects that the author is aware of is, oddly enough, section 4 of [1].
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length we will have to assume at least some familiarity with mirror symmetry for closed
strings. We refer to the TASI 1996 lectures, and in particular [3], for a review. The more
mathematical reader is referred to [4]. We will assume a rudimentary knowledge of the
geometry of Calabi–Yau manifolds. The reviews [3, 5] should suffice.

These lectures are primarily intended to review the ideas of the derived category and Π-
stability for B-branes. These subjects have been reviewed by Douglas in [6] from a somewhat
different direction than we employ here. Douglas also has a shorter, more mathematically-
oriented review in the ICM proceedings [7]. In order to motivate and better understand
our constructions, a good deal of our discussion will also involve mirror symmetry for open
strings. This latter topic has been extensively studied and reviewed in many places. In
particular, the reader can consult [8] and references therein for a very detailed review of
most of the aspects of the subject.

In section 2 we review the basic ideas one needs from topological field theory in the
context of closed strings. This leads into mirror symmetry which will be a central tool in
our analysis. Section 3 is then a guide to adding boundaries to the string worldsheet. By
the end of this section we will realize that there are some difficulties in maintaining mirror
symmetry without broadening our concept of D-branes.

Further analysis requires a degree of mathematical sophistication. We review the alge-
braic geometry that we require for further progress in section 4. We would like to claim that
only the necessary mathematics has been included here, with no complications introduced
for their own sake. The fact remains however that pretty esoteric notions in cohomology
due to Grothendieck do seem to be directly applicable to D-brane physics, and so we need
to delve fairly deeply into this abstract world.

In section 5 it is then a straight-forward process to apply the machinery of section 4 to
the case of B-branes. We derive the fact that B-branes are described by the derived category
of coherent sheaves.

The notion of Π-stability, which is essential in relating the derived category to “physical”
D-branes, is reviewed in section 6. Much of the motivation for this comes from A-branes
and mirror symmetry which we also discuss at length. Finally in section 7 we give a few
examples of the derived category and Π-stability.

2 Worldsheet Models of Closed Strings

2.1 The N = (2, 2) non-linear σ-model

Let Σ be the string worldsheet. We consider a field theory based on all possible maps
φ : Σ→ X, where X is the target manifold. This non-linear σ-model has an action

i

8πi

∫

Σ

d2z gIJ(φ)
∂φI

∂z

∂φJ

∂z̄
, (1)

where z is a complex coordinate on Σ and φI are local coordinates for the map φ. The letters
I and J are associated with real coordinates here. The object gIJ may be viewed as a metric
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on X but it does not need to be symmetric for the non-linear σ-model to be well-defined.
The antisymmetric part of gIJ is usually called the “B-field”.

This 2-dimensional field theory only defines string theory to an extent. We know that
nonperturbative effects in the string coupling are invisible from this point of view. Since the
entire content of these lectures is based on this worldsheet definition of string theory, one
must realize that our results are only completely valid in the zero string coupling limit.

Assuming X is a Kähler manifold, we may construct the N = (2, 2) supersymmetric
version of the non-linear σ-model by adding worldsheet fermions. We now switch to complex
coordinates denoted by φi and its complex conjugate φı̄. The action is2

i

4πi

∫

Σ

d2z

{

gī

(
∂φi

∂z

∂φ̄

∂z̄
+
∂φi

∂z̄

∂φ̄

∂z

)

+ iBī

(
∂φi

∂z

∂φ̄

∂z̄
− ∂φi

∂z̄

∂φ̄

∂z

)

+ igīψ
̄
−Dψ

i
− + igīψ

̄
+D̄ψ

i
+ +Rīıj̄ψ

i
+ψ

ı̄
+ψ

j
−ψ

̄
−

}

, (2)

where gī is the Kähler metric and Bī is a real (1,1)-form encoding the B-field degree of
freedom. The fermions are defined as sections of bundles on Σ as follows:

ψi
+ ∈ Γ(K

1

2 ⊗ φ∗TX)

ψ̄
+ ∈ Γ(K

1
2 ⊗ φ∗T̄X)

ψi
− ∈ Γ(K̄

1
2 ⊗ φ∗TX)

ψ̄
− ∈ Γ(K̄

1
2 ⊗ φ∗T̄X),

(3)

whereK is the canonical bundle on Σ, i.e., the holomorphic cotangent bundle3, TX is the holo-
morphic tangent bundle on X and bar denotes the corresponding antiholomorphic bundle.
D represents the covariant derivative Dψi

− = ∂ψi
− + ∂φjΓi

jkψ
j
−, where ∂ is the holomorphic

part of the de Rham differential as usual.
Let B = i

2
Bīdφ

idφ̄ and assume dB = 0.4 In section 2.2 it will become clear that the
(continuous) B-field degree of freedom lies in H2(X,R)/H2(X,Z).

The supersymmetries are given by the following transformations:

δφi = iα−ψ
i
+ + iα+ψ

i
−

δφı̄ = iα̃−ψ
ı̄
+ + iα̃+ψ

ı̄
−

δψi
+ = −α̃−∂φ

i − iα+ψ
j
−Γi

jkψ
k
+

δψı̄
+ = −α−∂φ

ı̄ − iα̃+ψ
̄
−Γı̄

̄k̄ψ
k̄
+

δψi
− = −α̃+∂̄φ

i − iα−ψ
j
+Γi

jkψ
k
−

δψı̄
− = −α+∂̄φ

ı̄ − iα̃−ψ
̄
+Γı̄

̄k̄ψ
k̄
−

(4)

2There are many conventions for writing N = (2, 2) theories. We are following Witten’s notation in [9]
where ± refers to left and right-moving — not the sign of the U(1) charge!

3Note that, since Σ is Kähler, K−1 = K̄.
4Wedge products will often be implicit.

5



with fermionic parameters α− and α̃− as sections of K− 1
2 and α+ and α̃+ as sections of K̄− 1

2 .
If X is a Calabi–Yau manifold then it is well-known (see, for example, chapters 3 and 17

of [10]) that there will be a metric (close to the Ricci-flat metric if X is large) such that this
supersymmetry is extended to an N = (2, 2) superconformal symmetry. We restrict to this
case from now on.

Let us quickly review some basic facts about N = (2, 2) superconformal field theories for
Calabi–Yau threefolds in order to fix notation. We urge the reader to consult other sources
(such as [3, 11, 12] and chapter 19 of [10]) for a fuller account of this important subject if
they are not familiar with it.

A closed string state forms a representation of the superconformal algebra. This is often
encoded in the from of an operator product relationship between the generators of the algebra
and the vertex operators associated to the closed strings. The generators of the left-moving
algebra are then given by

T (z) = −gī
∂φi

∂z

∂φ̄

∂z
+ 1

2
gīψ

i
+

∂ψ̄
+

∂z
+ 1

2
gīψ

̄
+

∂ψi
+

∂z

G(z) = 1
2
gīψ

i
+

∂φ̄

∂z

G̃(z) = 1
2
gīψ

̄
+

∂φi

∂z
J(z) = 1

4
gīψ

i
+ψ

̄
+

(5)

with similar expressions for the right-moving T̄ (z̄), Ḡ(z̄), ˜̄G(z̄) and J̄(z̄).
Two elements of the superconformal algebra are of interest to us. The first concerns

the generator of dilatations of the worldsheet associated to T (z). The eigenvalue of this
operation is the conformal weight h of a given state. The second is the charge q associated
with the O(2) = U(1) R-symmetry of the superconformal algebra associated to J(z). Since
we have both a left-moving and a right-moving N = 2 algebra, we have left-moving weight
and charge which we denote h and q, and a right-moving weight and charge which we denote
h̄ and q̄.

The R-symmetry part of the superconformal algebra can essentially be “factored out” in
the following sense. The U(1) currents can be bosonized using bosons ϕ and ϕ̄:

J(z) = i
√

3
∂ϕ

∂z
, J̄(z̄) = i

√
3
∂ϕ̄

∂z̄
(6)

If we have a vertex operator in the left-moving sector with charge q, then we can essentially
write it as5

f = f0 exp(
i√
3
qϕ), (7)

where the operator f0 will have charge 0.

5Normal ordering is assumed.
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Periodic or anti-periodic boundary conditions on the fermions lead to the Ramond and
Neveu-Schwarz sectors respectively as usual. The NS sector has q ∈ Z whilst the R sector
has q ∈ Z + 1

2
.

Naturally there are an infinite number of string states in this theory but there is a very
interesting finite subset which is of central importance. Unitarity forces certain constraints
on the allowed weights and charges. In the NS sector we have a set of states lying on the
boundary of this set of unitary representations which satisfy

h = |q/2|, q = −3,−2, . . . , 3. (8)

The operators producing these states from the vacuum are called “chiral primary” operators
for q > 0 and “antichiral primary” operators for q < 0. We refer to [11, 13, 14] for more
details. For simplicity of notation we will usually refer to both the chiral and antichiral
operators as chiral.

The key feature of the chiral operators is that they close nicely under the operator product
to form the “chiral algebra” (or, less precisely, the “chiral ring”). This finite-dimensional
subalgebra of the full infinite-dimensional algebra of closed string vertex operators seems to
encompass a good deal of information about the full superconformal field theory. It is best
analyzed using methods of topological field theory as we will see in the following sections.
One may also use methods of “gauged linear sigma models” as pioneered in [15]. Indeed,
linear sigma models may be used to analyze open strings and D-branes as in [16–18]. We
will not pursue the linear sigma model in these lectures.

An operator in the Ramond sector of particular interest is the “spectral flow operator”
with q = 3/2:

Σ(z) = exp(i
√

3
2
ϕ). (9)

This has an operator product expansion with itself as

Σ(z)Σ(w) = (z − w)
3
4 Υ(z) + . . . , (10)

where
Υ(z) = exp(i

√
3ϕ) = Ωijkψ

i
+ψ

j
+ψ

k
+, (11)

is the chiral primary operator with q = 3 and Ω = Ωijkdφ
idφjdφk is the (3,0)-form on X

which is unique up to normalization. The spectral flow operator is responsible for space-
time supersymmetry. Again we refer the reader to [11, 14] for details. Note that we have
two spectral flow operators, Σ(z) and Σ̄(z̄), which give us N = 2 supersymmetry in the
uncompactified spacetime directions.

2.2 The A model

The chiral algebra is best studied by passing to a topological field theory associated to the
N = (2, 2) superconformal field theory described in section 2.1. There are two topological
field theories that naturally occur this way — the “A model” and the “B model” discovered

7



by Witten [9, 19] which we now review. We will generally denote the target space for the
A-model by Y , and use X as the target space of the B-model.6

We “twist” the superconformal field theory by modifying the bundles in which the
fermions take values. We set

χi = ψi
+ ∈ Γ(φ∗TY )

χı̄ = ψ ı̄
− ∈ Γ(φ∗T̄Y )

ψ ı̄
z = ψ ı̄

+ ∈ Γ(K ⊗ φ∗T̄Y )

ψi
z̄ = ψi

− ∈ Γ(K̄ ⊗ φ∗TY ).

(12)

Note that the action (1) still makes sense (i.e., it is invariant under rotations of the world-
sheet) with this assignment.

The “supersymmetry” (4) still holds but notice that the four α parameters are no longer
worldsheet spinors. We consider a restricted version of this symmetry by setting α = α− =
α̃+ and α+ = α̃− = 0. That is, we have a symmetry depending on a single scalar parameter
α. Let us also denote the operator which generates this symmetry Q. To be precise,

δW = −iα{Q,W}, (13)

for any operator W . It follows that (up to equations of motion)

Q2 = 0. (14)

In other words, Q generates a “BRST symmetry”. Furthermore, we may write the action in
a simplified form (where α′ has been chosen suitably):

S =

∫

Σ

i{Q, V } − 2πi

∫

Σ

φ∗(B + iJ), (15)

where
V = 2πgī(ψ

̄
z ∂̄φ

i + ∂φ̄ ψi
z̄), (16)

and B + iJ ∈ H2(Y,C) is the complexified Kähler form.
The next step is to restrict attention only to operators W , which are Q-closed, i.e.,

{Q,W} = 0. The effect of the twisting (12) is to mix the notion of weight h and U(1)-charge
q from the original untwisted superconformal field theory. It follows that by restricting to
Q-closed states we are effectively restricting attention to the case h = q/2, h̄ = −q̄/2. That
is, to a particular chiral algebra.

Now, suppose we have an operator W which is Q-exact in the sense that W = {Q,W ′}
for some W ′. By standard methods one can show that any correlation function involving
this operator and other Q-closed operators will vanish. In other words, a Q-exact operator
is equivalent to zero in the chiral algebra.

6This apparently backwards convention is used since it renders the notation in some of the sections on
algebraic geometry more standard.
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This means we are restricting attention to Q-cohomology.

The reason we have put this statement in a pretentious little box is that it is the most
important mathematical statement in these lectures. The fact that cohomology is essential
will lead to a proliferation of homological algebra in the later lectures.

Note that the triviality of Q-exactness extends to the action too. That is, under the shift
S 7→ S + {Q, S ′}, correlation functions are invariant. One can show that a change in the
worldsheet metric leads to a Q-exact shift in the action (15). This means that the location
of the vertex operators on the worldsheet are not important (assuming the locations are
distinct of course) when computing the correlation functions.

The action (15) manifestly depends on the complexified Kähler form but any change in
complex structure merely changes V and is thus trivial. So the correlation functions in this
topological A-model depend only on the complexified Kähler form B+ iJ . Furthermore it is
manifest from the action that it is only the cohomology class of B+ iJ that is of importance,
and that a shift in B by an element of integral cohomology will not affect the correlation
functions.

Operators will be general functions of the fields φ and ψ. We first consider “local oper-
ators” in Σ, i.e., scalars. This means we cannot use ψ ı̄

z or ψi
z̄ as they are 1-forms on Σ. A

basis for the vector space of local operators is therefore given by operators of the form

Wa = aI1I2...Ip
χI1χI2 . . . χIp, (17)

where a = aI1I2...Ip
dφI1dφI2 . . . dφIp is a p-form on Y . The In’s represent real indices — in

other words they may be holomorphic or antiholomorphic. One can then compute

{Q,Wa} = −Wda. (18)

That is, for the A-model, Q-cohomology is de Rham cohomology and the space of
operators is given by H∗(Y,C).

Let us now address the question of how we might compute a correlation function between
such operators:

〈WaWbWc . . .〉 =

∫

DφDχDψe−SWaWbWc . . . (19)

The fact that the action (15) splits naturally into two pieces makes life particularly easy
when analyzing the space of all maps φ : Σ → Y . Let us assume Σ is a sphere. The space
of all maps then breaks up into connected components corresponding to elements of π2(Y ).
On a given component the second term in the action (15) is constant and can be pulled out
of the path integral.

The term in the action that remains is Q-exact and is therefore trivial. Although one’s
first temptation might be to replace something that is trivial by zero, we do the opposite
and rescale it by a factor that tends to infinity! Then the fact that this integrand is positive
semi-definite means that we effectively restrict the path integral to maps φ where this part
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of the action is zero. These are “worldsheet instantons”. In other words, the saddle-point
approximation of instantons is exact for topological field theories. The worldsheet instantons
are given by V = 0 in (16). These are holomorphic maps ∂̄φi = 0.

The infinite-dimensional space of all maps φ : Σ→ Y is therefore replaced by the finite-
dimensional space of holomorphic maps when we perform the path integral. Supersymmetry
then cancels the Pfaffians associated with the fermionic path integral and the remaining
determinants from the φ integrals. We refer to [20] for more details on this cancellation
process.

We focus on the p-forms for p even since the odd forms do not directly correspond to
operators in the untwisted superconformal field theory. The 0-form clearly represents the
identity operator. The simplest case is therefore to consider correlation functions between
operators associated to 2-forms. One can show that

〈WaWbWc〉 =

∫

Y

a ∧ b ∧ c +
∑

α∈I

Nα
abce

2πi
∫

Σ
φ∗(B+iJ), (20)

where I is the set of instantons and Nα
abc are integers given by the intersection theory on

the moduli space of rational curves (i.e., holomorphic embeddings of Σ) in Y , including the
possibility of multiple covers [21, 22].

The knowledge of these correlation functions between 2-forms is sufficient to define an
algebra (i.e., multiplicative) structure on Heven(Y,C). This is equivalent to the operator
algebra. In the large radius limit, where J → ∞, this coincides with the cohomology ring
given by the wedge product. At finite volume the deformed ring is called the “quantum
cohomology ring” of Y . We have impinged on a vast subject here which we do not have
space to explore more fully. We refer to [4] and references therein for a more detailed account
of this important subject together with more recent developments.

The operator algebra is graded by the degree of the forms. Viewing Q as a generator
of a BRST symmetry we can also refer to the grading as a “ghost number”. That is, if a
is a p-form then the operator Wa has ghost number p. The ghost number maps naturally
back to the U(1) charges in the untwisted theory. In this case Wa would map to an operator
with (q, q̄) = (p/2,−p/2). Note also that the correlation function of a product of operators
is only nonzero if the total ghost number is 6. This means that the grading of the operator
algebra is preserved under multiplication mod 6.

An important aspect of the A-model for our purposes concerns deformations of the theory.
An operator within the theory may be used to deform the Lagrangian density if it makes
sense to integrate such an operator over Σ to deform the action. To find such operators we
need to look beyond the local operators considered so far. Suppose Wa is a local operator
with ghost number p. The operator dWa (where “d” is the worldsheet de Rham operator)
will have trivial correlation functions with other operators since the location of the vertex
operator insertions is unimportant. It follows that it must be Q-exact, i.e.,

dWa = {Q,W (1)
A }, (21)

10



for some operator W
(1)
A with ghost number p − 1. We may repeat this process again by

setting
dW (1)

a = {Q,W (2)
A }, (22)

for some operator W
(2)
A with ghost number p − 2. But W

(2)
A is a 2-form and so we can

naturally integrate it over Σ. We may therefore consider a deformation of the theory given
by

S 7→ S + t

∫

Σ

W
(2)
A d2z, (23)

for some infinitesimal t. In order to preserve the grading of the operator algebra given by
the ghost number, the deformation of the action should have ghost number zero, i.e., p = 2.

It is not hard to see that this deformation of the field theory corresponds to deforming
B + iJ by a 2-form proportional to tA. Since the only dependence of the A-model was
on B + iJ , we see that we have described all the deformations of the A-model. (Other
deformations that violate ghost number conservation were considered in [9].)

It is important to realize that the topological A-model is a different quantum field theory
to the original N = (2, 2) superconformal field theory. Even though the vector space of
primary chiral operators is naturally a subspace of the infinite-dimensional space of operators
in the untwisted theory, the operator products may be quite different. There is an exception
however. If the worldsheet is flat then the twisting has no affect. If the N = (2, 2) were used
to compactify a heterotic string (rather than the type II strings we consider in these lectures)
then the products which determine the effective superpotential of the resulting N = 1 theory
in four dimensions are unchanged in the topological field theory. We refer to [9] for more
details.

We emphasize again that the structure of the operator algebra depends only upon B+ iJ
and not the complex structure of Y . In fact, as explored in [19], we don’t need any complex
structure on Y , nor do we require the Calabi–Yau condition. Y can be any symplectic
manifold with a compatible almost complex structure. Instantons then correspond to pseudo-
holomorphic curves. Since the topological A-model knows about only a small subset of the
data of the untwisted theory, it should not come as a surprise that it can be applied to a
wider class of target spaces.

In this section we considered a fixed worldsheet of genus zero mapping into Y . If higher
genera are considered, the A-model becomes fairly trivial because of ghost number conserva-
tion constraints. A variant of the A-model that is commonly considered consists of coupling
the worldsheet theory to gravity. In other words one includes all metrics on Σ in the path
integral. Such a theory now contains nontrivial information about higher genus worldsheets
as discovered in [23]. This “topological gravity” is also important in the “large N” duality
of [24, 25].

If we were going to do a full treatment of mirror symmetry for open strings we would
certainly have to wade into many of the technicalities of the A-model coupled to gravity.
However, in these lectures, which focus on the issues of stability, we can get away with largely
ignoring this topic.

11



2.3 The B model

We may relabel the fermions in the superconformal field theory in a different way to obtain
the “B-model” which was also introduced by Witten [9].

Let ψ̄
± be sections of φ∗(T̄X), while ψj

+ is a section of K ⊗ φ∗(TX) and ψj
− is a section of

K̄ ⊗ φ∗(TX). Define scalars

η̄ = ψ̄
+ + ψ̄

−

θj = gjk̄(ψ
k̄
+ − ψk̄

−),
(24)

and define a 1-form ρj with (1, 0)-form part given by ψj
+ and (0, 1)-form part given by ψj

−.
Now consider a variation corresponding to the original supersymmetric variation with

α± = 0 and α̃± = α. As in the A-model, this produces a BRST-like variation Q satisfying
Q2 = 0 (up to equations of motion).

Now, for a suitable choice of α′, we may rewrite the action in the form

S = i

∫

{Q, V }+ U, (25)

where

V = gjk̄

(

ρj
z∂̄φ

k̄ + ρj
z̄∂φ

k̄
)

U =

∫

Σ

(

−θjDρ
j − i

2
Rj̄kk̄ρ

j ∧ ρkη̄θlg
lk̄
)

.
(26)

An additional complication arises in the B-model because the fermions are twisted in a
more asymmetric fashion than in the A-model. For a general target space X one has a chiral
anomaly associated with a problem properly defining the phase of the Pfaffian associated to
the fermionic path integrals. This anomaly is zero if we require c1(TX) = 0, i.e., if X is a
Calabi–Yau manifold.

It is not immediately obvious from (26) but U depends only upon the complex structure
of X. It is independent of both the metric on Σ and the complexified Kähler form on X,
B + iJ . Thus the correlation functions have a similar independence.

Local observables are now written

WA = ηk̄1 . . . ηk̄q A
j1...jp

k̄1...k̄q
θj1 . . . θjp

, (27)

where

A = dz̄k̄1 . . . dz̄k̄q A
j1...jp

k̄1...k̄q

∂

∂zj1

. . .
∂

∂zjp

, (28)

is a (0, q)-form on X valued in
∧p TX . One might call A a “(−p, q)-form”. Note that we can

use contraction with the holomorphic 3-form Ω to give an isomorphism between the spaces of
(−p, q)-forms and (3− p, q)-forms. This isomorphism is often used implicitly and explicitly
in discussions of mirror symmetry as we will see in section 2.4.
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Now,
{Q,WA} = −W∂̄A, (29)

and so, for the B-model, Q-cohomology is Dolbeault cohomology on forms valued in
exterior powers of the holomorphic tangent bundle.

The instantons in the B-model are trivial. Setting V = 0 in (26) requires ∂̄φk̄ = ∂φk̄ = 0,
i.e., φ is a constant map mapping Σ to a point in X. Thus the correlation functions do not
consist of some infinite sum.

The generators of the operator algebra of interest in the B-model are given by (−1, 1)-
forms. The three-point functions can be shown to be

〈WAWBWC〉 =

∫

X

ΩjklAj ∧Bk ∧ Ck ∧ Ω, (30)

where A = Aj ∂
∂φj ∈ H1

∂̄
(X, TX) etc. The object Ωjkl can be obtained from the antiholomor-

phic 3-form Ω̄ using the Kähler metric to raise indices.
A (−p, p)-form in the B-model has ghost number 2p and maps to an operator with

(q, q̄) = (p, p) in the untwisted model. Just as in the A-model we may consider deforming the
theory by adding operators to the Lagrangian density. This time such operators correspond
to (−1, 1)-forms, i.e., elements of H1

∂̄
(X, TX). That this cohomology group corresponds to

deformations of complex structure of X is well-known (see chapter 15 of [26] for a nice
account of this).

Note that the B-model does require that X has a complex structure and that it be
Calabi–Yau. However, it does not require any mention of B + iJ . This means that the
B-model requires only “algebraic” knowledge of X in the following sense. Suppose that
X is an “algebraic variety” i.e., a subspace of PN defined by the intersection of various
(homogeneous) equations f1 = f2 = . . . = 0 in the homogeneous coordinates. Then the
B-model is defined completely by the equations f1, f2, . . .

The fact that the B-model has no instanton corrections together with the above algebraic
nature means that one should think of the B-model as being the “easy” topological field
theory and the A-model as the “difficult” theory. When we discuss open strings in section 5
the reader may decide that the B-model is not so “easy” after all but no one can deny that
it is a good deal easier than the A-model!

2.4 Mirror Symmetry

There are several definitions of mirror symmetry varying in strength. We require only a
fairly weak definition which asserts that two Calabi–Yau threefolds X and Y are mirror
if the operator algebra of the A-model with target space Y is isomorphic to the operator
algebra of the B-model with target space X.

The original definition is stronger and is a statement concerning conformal field theo-
ries. The strongest definition would be that the type IIA string compactified on Y yields
“isomorphic” physics in four dimensions to the type IIB string compactified on X.
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A simple analysis of the dimensions of the vector spaces of the operator algebra yields
the simple statement that hp,q(Y ) = h3−p,q(X) and thus χ(Y ) = −χ(X).

The operator algebra for the A-model on Y depends on a choice of B + iJ on Y and
the operator algebra for the B-model on X depends on a choice of complex structure for X.
Thus a precise statement of mirror symmetry must map the moduli space of B + iJ of Y to
the moduli space of complex structures of X. This mapping is called the “mirror map” and
we now discuss it in some detail for a simple key example.

Let us introduce the most-studied example of a mirror pair of Calabi–Yau threefolds
following [21, 27]. Y is the “quintic threefold, i.e., defined as a hypersurface in P4 given by
the vanishing of an equation of degree 5 in the homogeneous coordinates. Since h1,1(Y ) = 1,
the moduli space of complexified Kähler classes is only one-dimensional. Let e denote the
positive7 generator of H2(Y,Z). Then, by an abuse of the notation, we will refer to the
cohomology class of the complexified Kähler form as (B + iJ)e, i.e., B and J are real
numbers in the context of the quintic. Basically we can think of the size of Y (i.e., J) being
determined purely by the size of the ambient P4.

Y has h2,1 = 101 and thus 101 deformations of complex structure but this is of no interest
to us here.

The mirror X of the quintic is constructed by dividing Y by a (Z5)
3 orbifold action. We

refer to [3] for a review of why this orbifold yields the mirror. Y has orbifold singularities
which should be resolved yielding many degrees of freedom for B + iJ . However, all we care
about is the complex structure of X which may be defined by specifying the exact quintic
polynomial used. The most general quintic compatible with the (Z5)

3 orbifold action is given
by

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5ψx0x1x2x3x4. (31)

Thus the complex structure is determined by the single complex parameter ψ. The mirror
map we desire will be a mapping between B+ iJ on the A-model side and ψ on the B-model
side. This map turns out to be quite complicated and is actually a many-to-many mapping.

Because the mirror map is not globally well-defined one generally starts with a basepoint,
which is usually the large radius limit on the A-model side, and finds the mirror map in some
neighbourhood of this basepoint. One can then try to analytically continue the mirror map
to a larger region.

One may analyze the moduli space intrinsically without any reference to a specific com-
pactification by studying the general features of scalar fields in N = 2 theories of supergrav-
ity in four dimensions. The result is that the moduli space is a so-called “special Kähler
manifold” [28–30]. For a nice mathematical treatment of this subject see [31].

The special Kähler structure of the moduli space leads to the existence of favoured
(but no uniquely defined) coordinates, the “special coordinates” which obey certain flatness
constraints. On the A-model side, the components of B + iJ form such special coordinates.
On the B-model side, the natural complex parameters such as ψ in (31) do not form special
coordinates. Instead, the special coordinates are formed from periods as follows. Let αm, β

m

7That is,
∫

Y
e3 > 0.
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for m = 0 . . . h2,1(Y ) form a symplectic basis of H3(X,Z) in the sense that we have the
following intersection numbers

αm ∩ αn = 0, αm ∩ βn = δn
m, βm ∩ βn = 0. (32)

A “period” of the holomorphic 3-form

̟m =

∫

αm

Ω, (33)

is not intrinsically defined as we may rescale Ω by a constant. However, ratios of periods,
̟m/̟0 for m = 1 . . . h2,1 are well-defined. These ratios do form special coordinates and
these are naturally mapped to components of B + iJ by the mirror map.

To find exactly which periods are mapped to which components of B + iJ one looks at
the monodromy of these coordinates around the large radius limit induced by the symmetry
B 7→ B + 1. A systematic method for doing this was analyzed in [32]. The criteria we have
described so far almost determines the mirror map uniquely. To nail down the last constants
one really needs to explicitly count some rational curves on Y and map the correlation
functions of the A-model to that of the B-model directly. Having said that, there is a
conjectured form of the mirror map (which was implicitly used in [21]) which appears to
work in all known cases. We refer to [4] for more details.

Let’s see how all this works for the case of the quintic. We first need to find the rela-
tionship between the periods of X and the parameter ψ. This relationship is encoded in
a differential equation called the “Picard–Fuchs” equation. This is a differential equation
whose solutions are the periods (33). There are various ways of deriving this equation. A
fairly tortuous method was originally pursued in [21] with a more direct way discussed in [33].
The nicest method was given in [34] (see also [35]) in terms of toric geometry.

First introduce a coordinate z = (5ψ)−5 on the B-model moduli space. The method
of [34] yields a differential equation

(

z
d

dz

)4

Φ− 55z

(

z
d

dz
+ 1

5

)(

z
d

dz
+ 2

5

)(

z
d

dz
+ 3

5

)(

z
d

dz
+ 4

5

)

Φ = 0. (34)

Expanding around z = 0 we obtain a basis of solutions in the following form:

Φ0 =

∞∑

n=0

(5n)!

n!5
zn

Φk =
1

(2πi)k
log(z)kΦ0 + . . . , k = 1, 2, 3.

(35)

The monodromy of this set of solutions around z = 0 is precisely the right form to be
associated with the large radius limit J = ∞ on the A-model side [32]. The mirror map is
then given by8

B + iJ =
Φ1

Φ0
=

1

2πi

(

log(z) + 770z + 717825z2 + . . .
)

. (36)

8Special geometry and monodromy considerations alone do not rule out a constant term in this power
series.
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Figure 1: Five fundamental regions for the moduli space of the quintic.

There are three points of particular interest in the moduli space where the Picard-Fuchs
equation becomes singular. As we have just stated, the point z = 0 corresponds to the large
radius limit. The point z = ∞ (or ψ = 0) corresponds to the “Gepner model” [36]. It may
also be interpreted as a Z5-orbifold of the Landau–Ginzburg theory [15,37,38]. The solutions
to the Picard–Fuchs equation have a branch point of order 5 at this point. Finally there is
a singularity at z = 5−5 (or ψ = exp(2πin/5)) usually referred to as the “conifold” point.

A nice way to visualize the mirror map is to plot fundamental regions of the moduli
space in the (B+ iJ)-plane. To do this we put branch cuts along ψ = R exp(2πin/5) for real
R > 0 and n = 0, 1. In figure 1 we show the “scorpion” diagram from [21] which shows five
fundamental regions. These consist of the one containing the large radius limit in the region
−1 < B < 0 together with 4 other fundamental regions obtained by analytically continuing
around the Gepner point.

It is very important to note that the fundamental regions do not tesselate in general.
Monodromy around the large radius limit induces a shift B 7→ B + 1 and it is clear from
figure 1 that such shifts cause overlaps between fundamental regions.

If we stick to the region containing the large radius limit we see that the Gepner point
represents the “smallest” possible quintic threefold. For further discussion of minimal sizes
in this context see [35, 39].
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A more typical example of a mirror pair will require analysis of moduli spaces of more
than one complex dimension. This makes the problem a good deal more complicated than
the quintic but we do not require any more basic concepts to solve this problem. The Picard–
Fuchs equations are now a set of simultaneous linear partial differential equations. We refer
to [39], for example, for an efficient way of dealing with this situation.

3 Boundaries

3.1 The A-model

In this section we consider a worldsheet Σ with boundaries. A careful analysis of this gets
quite technical quite quickly, taking us beyond where we need to be for these talks. We
refer the reader to [40] (and also [41, 42] for the most thorough treatment. One should also
consult [8] which is based on the analysis of [43]. In the following we will make rough and
ready assumptions which are quite adequate for our purposes.

3.1.1 A-branes

As stated earlier one of the main purposes of these lectures is to demonstrate the existence
of D-branes which do not correspond simply to subspaces. Despite this, we will initially
assume that D-branes are subspaces. Thus we assume that we have a collection of subspaces
La ⊂ Y and that our maps φ : Σ→ Y obey the condition

φ(∂Σ) ⊂
⋃

a

La, (37)

i.e., the open strings end on the D-branes La. We have not yet constrained the dimensions
of the D-branes and one might be free to consider the case that one of the La’s fills Y in
which case we have imposed no condition at all. A D-brane that can appear in the A-model
will have to satisfy certain constraints which we now discuss. Such a D-brane is called an
“A-brane”.

The first step is to apply the variational principle to the problem. Applying a variation
of the fields and then integrating by parts divides the variation of the action into two parts
— the bulk and the boundary. Setting the variation of the bulk to zero yields the Euler–
Lagrange equations in the usual way. Demanding that the variation of the boundary is zero
imposes further conditions.

In flat space the vanishing of the variation of the boundary imposes either Dirichlet or
Neumann conditions for the fields φI (see [44] for example). More generally [40, 45] we set

∂φI

∂z
= RI

J (φ)
∂φJ

∂z̄
+ fermions, (38)

where R is a matrix orthogonal with respect to the metric gIJ . Eigenvectors of R with
eigenvalue −1 give Dirichlet conditions and are thus associated with directions normal to L.
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To be completely general, one need not assume that directions tangent to the D-branes are
associated to eigenvectors with eigenvalue +1 [45, 46], but for our purposes we may make
this assumption.

It is impossible to preserve all the N = (2, 2) supersymmetry of section 2.1 once Σ has a
boundary. This is because we must have a reflection condition at the boundary which mixes
the left-moving and right-moving fermions. The best we can do is use the same reflection
matrix as above:

ψI
+ = RI

J (φ)ψJ
−. (39)

Now, referring to the A-model twist of (12), such a reflection only really makes sense in the
A-model if Ri

j = Rı̄
̄ = 0 when we use holomorphic coordinates. That is, only the off-diagonal

terms Rı̄
j and Ri

̄ are nonzero.
Now choose a vector v which has eigenvalue +1 with respect to R, i.e., a tangent vector

in the D-brane. Let us introduce the almost complex structure J , which in holomorphic
coordinates is of the form

Jm
n = iδm

n , Jm̄
n̄ = −iδm̄

n̄ , (40)

with off-diagonal entries equal to zero. It is then easy to see that the vector Jv has eigenvector
−1. Furthermore, J2v = −v, so a further application of J restores us to the tangent direction.
Thus J exchanges the directions tangent and normal to the D-brane L. Clearly then L must
be of middle dimension, i.e., real dimension 3.

Note that if v and w are two tangent vectors in L with eigenvalue +1 under R, then w
is orthogonal to Jv with respect to the metric gIJ . Since, by definition, the Kähler form on
Y is 1

2
gLMJ

M
N dφLdφN , we see that the Kähler form restricted to L is zero.

A middle-dimensional manifold on which the Kähler form restricts to zero is called a La-
grangian submanifold. Thus we have argued that the simplest D-branes compatible with the
A-model twist appear to consist of Lagrangian submanifolds. There are further constraints
which we discuss shortly.

A more careful analysis [45, 46] shows that a Calabi–Yau n-fold may have “coisotropic”
submanifolds of real dimension n+ 2p for non-negative integer p. Such submanifolds will be
of no interest to us in the case of Calabi–Yau threefolds since b5 = 0 so long as the holonomy
is not a proper subgroup of SU(3).

Thus far we have taken care of the analysis of the theory that pertains to the metric. We
should also consider the effect of the boundary on the B-field.

When Σ had no boundary, it was apparent from the A-model action (15) that only the
cohomology class of B affected any correlation functions. This is no longer true when Σ has
a boundary and so there are more degrees of freedom associated to the B-field than would
arise from H2(Y,R). Naturally these degrees of freedom must be associated to the boundary
and so should show up in the D-brane.

This extra freedom may be written in the guise of 1-form A on Y and an addition of a
term

S∂Σ = −2πi

∮

∂Σ

φ∗(A), (41)
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to the action. In order to maintain supersymmetry and/or BRST invariance it is also nec-
essary to add some terms involving fermions to this boundary contribution.

A shift of the B-field by an exact 2-form dΛ is then an invariance of the theory if it is
accompanied by a shift A 7→ A − Λ. Thus, with this symmetry understood, the B-field is
restored to living in H2(Y,R) and we have a new parameter A. Setting F = dA, we note
that B + F is invariant under the Λ-symmetry and thus, unlike B or F alone, can be a
physically meaningful parameter.

It is also important to realize that the theory is no longer invariant under a lone shift of
the B-field by an integral 2-form. An invariance is obtained by accompanying such a shift
by a similar shift in F . We will see this effect clearly in section 7.1.4.

Typically one thinks of A as the connection on a U(1)-bundle associated to the boundary
of Σ in the form of “Chan–Paton” factors.

Like the B-field, the only contribution from A to the correlation functions will arise from
worldsheet instantons. As in section 2.2, worldsheet instantons correspond to holomorphic
maps of Σ into Y . The action of such an instanton will receive a contribution from (41) in
the form of a line integral of A around the boundary of Σ in the D-brane L. As this integral
contains only directions tangent to L, it is only the projection of A into the cotangent bundle
of L that matters. Thus the U(1)-bundle may be considered as living purely on the D-brane
even though we defined A as living in the cotangent bundle of Y .

To derive this notion that A is a connection one should really follow the “gerbe” descrip-
tion of the B-field [47]. We will not attempt to do this here. As we will do later, one is free
to associate larger gauge groups than U(1) to the D-branes. One should always be aware,
however, that there is a natural diagonal U(1) in this gauge group which is associated to the
B-field by the Λ symmetry.

The condition that the BRST symmetry (or supersymmetry of the untwisted theory)
is preserved puts a condition on the connection A. In the case that B = 0 one can show
[40,43,45,48] that F = 0, i.e., the connection must be flat. We will generally restrict to this
case.

The statement that an A-brane consists of a Lagrangian submanifold with a flat bundle
is a purely classical statement. Quantum considerations impose two further constraints.
The first arises due to an anomaly. We would like to preserve the ghost number grading
of the operator product algebra once we include A-branes. It turns out that an arbitrary
Lagrangian submanifold can break this symmetry which, in physics language, is due to an
anomaly.

This anomaly is carefully analyzed in chapter 40 of [8] and is tied to the problem of
grading Floer cohomology [49]. Since this subject is rather technical we will simply state
the result here. Let us fix a particular choice of a holomorphic 3-form Ω on Y . At any point
p on a Lagrangian submanifold L the volume form of L may be written as a restriction

dVL = Re−iπξ(p)Ω|L, (42)

where R is a positive real number. ξ gives a map from L to a circle ξ : L → S1. This in
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Figure 2: Loops which do and do not give an anomaly.

turn induces a map on the fundamental group

ξ∗ : π1(L)→ π1(S
1) ∼= Z, (43)

known as the “Maslov class” of L.
The anomaly is absent precisely when the Maslov class of L is zero. Clearly this is always

the case when π1(L) = 0. For a nontrivial example we can picture, consider the case where
Y is a one-complex-dimensional torus. Any line of Y is trivially Lagrangian. As shown in
figure 2, a contractible loop has a nontrivial Maslov class and so is ruled out as an A-brane.

The second condition on A-branes which arises from quantum effects concerns destabi-
lizing from open string tadpoles. This requires knowledge about the open string states to
which we now turn.

3.1.2 Open strings for one A-brane

The Hilbert space of closed string states in the A-model is unaffected by the presence of A-
branes and is still given by the De Rham cohomology of Y . In addition we need to consider
open strings stretching between two D-branes. Clearly there are two possibilities:

1. The ends of the open string may lie on the same D-brane.

2. The string stretches between two distinct D-branes.

These two cases are best analyzed differently. The first case was analyzed by Witten in [48].
Suppose we have a Lagrangian cycle L with a GL(N,C) vector bundle E → L. By the

usual methods of Chan–Paton factors [10], the open strings will lie in the set End(E), i.e.,
endomorphisms of E. In the case of a line bundle we simply have End(E) = C. Q-invariance
allows us to take a scaling limit [48] effectively taking the string tension to infinity, which
implies that the open string states are only associated with constant maps φ and the fermions
take values in the tangent bundle of L.
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Thus, local operators corresponding to the insertion of open string states on the boundary
of Σ which maps to L are given by objects of the form

aI1I2...(φ)χI1χI2 . . . , (44)

where aI1I2...(φ) ∈ End(E), φ ∈ L, and χIk lies in the tangent bundle of L. The BRST
operator Q acts similarly to section 2.2 and so the Hilbert space of open string states is
given by the total de Rham cohomology group

3⊕

n=0

Hn(L,End(E)), (45)

where the ghost number is given by n.
The discussion of deformations of the theory induced by operators in section 2.2 applies

similarly to boundary states. One difference is that the deforming operator will naturally
be integrated along the one-dimensional ∂Σ rather than the two-dimensional Σ. Thus we
look for ghost number one boundary operators to give the deformation. These correspond
to elements of H1(L,End(E)).

It is interesting to explicitly match these deformations coming from open string vertex
operators to the parameters that define the A-model. First we note that the number of
deformations of the connection on a flat vector bundle are given by H1(L,End(ER)) as
shown in chapter 15 of [26] for example. Note that to count degrees of freedom correctly
we restrict to a real form of the gauge group. Since our open string operators are complex-
valued, these deformations of the connection A account for exactly half of the degrees of
freedom present in H1(L,End(E)).

So what do the other half of the deformations correspond to? Clearly deformations of
L itself should correspond to deformations of the A-model. We will now show that such
deformations indeed account for the remaining degrees of freedom.

Let us assume initially the minimal case, i.e., that E is a line bundle. A deformation
of L corresponds to a section of the normal bundle of L. We saw in section 3.1.2 that the
Kähler form provides a perfect pairing between vectors normal to L and vectors tangent to
L. We may thus use the Kähler form to provide a one-to-one mapping between sections
of the normal bundle of L and sections of the cotangent bundle of L. Thus a deformation
is given by a 1-form on L. Of course, we would like the deformed submanifold to still be
Lagrangian. A simple calculation reveals that this condition dictates that the 1-form on L
be closed.

The result is that Lagrangian deformations of L are in one-to-one correspondence with
closed 1-forms on L. In contrast, the degrees of freedom coming from the A-model consist
of cohomology classes of 1-forms on L. Thus, if a deformation of L corresponds to a 1-
form which is exact, then it does not affect the A-model. Such a deformation is called a
“Hamiltonian” deformation of L. Thus we see that A-branes are really only defined up to
Hamiltonian deformation.
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If the rank of E is greater than one then some of the deformations of L corresponding to
H1(L,End(E)) are associated to breaking L up into a collection of branes with bundles of
lower rank. This all ties together with the picture of enhanced gauge symmetry for coincident
D-branes as discussed in [50]. We should therefore think of the generic A-brane as comprising
of a line bundle E → L with higher rank bundles obtained by allowing such basic A-branes
to coalesce.

There is one more piece of information about the properties of A-branes that the open
strings inH1(L,End(E)) can tell us. If an A-brane background defines a truly stable vacuum
for the topological A-model then the one-point function 〈Wa〉 will be zero for any vertex
operator associated with H1(L,End(E)). A nonzero value, called a “tadpole”, would force
the operator to acquire an expectation value which would move the D-brane to another
location.

We therefore need to know how to compute 〈Wa〉 exactly. Fortunately Witten [48] discov-
ered a beautiful way of computing all the correlation functions between open string operators
associated to H1(L,End(E)).9

Without instanton corrections, Witten showed that the correlation functions could be
determined by a Chern–Simons field theory on the Lagrangian L. The effect of instantons
is to add an additional term into the action. At tree level an instanton will consist of a
holomorphic map of a disk into Y with the boundary of the disk mapped to L.

It is this instanton contribution to the effective action that has the potential to generate
tadpoles 〈Wa〉. Restricting to the case of a line bundle, the condition that such tadpoles
vanish is that

∑

α∈I

exp

(

2πi

∫

Dα

(B + iJ) + 2πi

∮

∂Dα

A

)

[∂Dα] = 0 in H1(L), (46)

where the sum is over all holomorphic disks Dα with ∂Dα ⊂ L (including multiple covers).
The notation [∂Dα] refers to the cohomology class of ∂Dα. It is an interesting exercise to
show that (46) is invariant under Hamiltonian deformations of L.

Any Lagrangian violating (46) should not be considered to be an A-brane. This condition
on A-branes has been explored in some cases (in [51,52] for example) but a general geometric
understanding appears to be missing. For example, it is not known if the 3-torus fibrations
of SYZ [53] satisfy this condition. Note that the condition (46) depends on B + iJ and the
value of the connection A. Thus there can be A-branes which are good for a specific value
of these parameters but will, in general, be killed by tadpoles. Note also that an S3, which
is simply-connected, always trivially satisfies the vanishing tadpole condition.

It is worth summarizing the definition of an A-brane that we have finally settled on:

An A-brane is an element of the equivalence class of Lagrangian 3-manifolds in
Y modulo Hamiltonian deformations, which satisfies the tadpole cancellation
property (46) and has trivial Maslov class.

9Note that Witten’s method applies to the topological field theory coupled to gravity.

22



Although we will be doing our best to evade the issue, we really should mention the
A∞-algebra structure associated to the A-branes. The correlation functions for the open
string vertex operators which arise from Witten’s Chern–Simons theory are not consistent
with an associative algebra in the usual way. Instead one defines a series of products

mk(a1, a2, . . . , ak), (47)

for which m2 would be the usual product. These higher products are related in a specific
way. We refer to [54–56], for example, for more details. The recent paper [57] explains
carefully how the A∞ structure appears directly in the topological field theory.

3.1.3 Open strings for many A-branes

Suppose we have a set of A-branes La. For simplicity of exposition, let us initially assume
that we just have line bundles over each brane. Given a pair of A-branes La and Lb we will
have a Hilbert space of open strings beginning on La and ending on Lb. This Hilbert space
has a grading, which, up to an additive shift is the ghost number. This additive shift will
turn out to be very important and we will discuss it extensively soon. We use the following
notation for this graded Hilbert space:

Hom∗(La, Lb) =
⊕

m∈Z

Homm(La, Lb). (48)

We will also denote Hom0(La, Lb) simply by Hom(La, Lb).
The reason for this notation is that the concept of open strings between branes fits

naturally into the mathematical structure of a category. A category is defined as follows (as
copied from [58])

Definition 1 A category C consists of the following: a class10 obj(C) of objects, a set
HomC(A,B) of morphisms for every ordered pair (A,B) of objects, an identity morphism
idA ∈ HomC(A,A) for every object A, and a composition function

HomC(A,B)× HomC(B,C)→ HomC(A,C), (49)

for every ordered triple (A,B,C) of objects. If f ∈ HomC(A,B) and g ∈ HomC(B,C), the
composition is denoted gf . The above data is subject to two axioms:

1. Associativity axiom: (hg)f = h(gf) for f ∈ HomC(A,B), g ∈ HomC(B,C) and h ∈
HomC(C,D).

2. Unit axiom: idB f = f = f idA for f ∈ HomC(A,B).

There are many examples of a categories. Some of the obvious ones are as follows:

10A class is basically the same thing as a set but by using this language one avoids Russell’s paradox.
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1. Objects are sets , morphisms are maps.

2. Objects are groups, morphisms are group homomorphisms.

3. Objects are rings (or modules, etc.), morphisms are ring homomorphisms (modules
homomorphisms, etc.)

4. Objects are topological spaces, morphisms are continuous maps.

Note that in each case above an object is a set, or some glorified notion of a set, and so
consists of elements. One of the key ideas in category theory is to phrase things so that you
never make any mention of these elements. There are also categories whose objects are not
composed of elements. The D-brane categories which will be of particular interest to us are
examples of such “elementless” categories!

A morphism f ∈ Hom(A,B) is often written f : A → B for obvious reasons. As one
might guess, we say that two objects, A and B, in a category are isomorphic if there are
morphisms f : A → B and g : B → A such that gf = idA and fg = idB. That is, there
exists an invertible morphism between A and B.

L

L

L

1

2

3

Hom(L1, L2)⊗ Hom(L2, L3)→ Hom(L1, L3)

Figure 3: Composition of morphisms.

Clearly we would like to form a category where the A-branes are the objects and the
open strings of the A-model form the morphisms. While one is free to define the set of
morphisms of the total Hilbert space as in (48), we will ultimately see that there is little
difference between this and restricting just to the case of Hom0(L1, L2).

The composition function corresponds precisely to the notion of two open strings joining
together as shown in open string diagram of figure 3. The edges of this figure have labels
showing to which D-brane the ends of the open string are attached. This data is encoded in
the correlation functions of the topological field theory.

We see from the previous section that the identity operator idL for a given D-brane L is
given by the identity operator in H0(L).

Just as in the case of a single D-brane, the correlation functions of the topological A-model
coupled to gravity encode a more complicated product rule than the simple composition
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(49). Thus the notion of an A∞-algebra is generalized to the notion of an A∞-category. This
structure is very interesting and important but we do not really need to concern ourselves
with it in these lectures. In particular, if one ignores the higher products, the category of
A-branes that we wish to construct really does satisfy the axioms of a plain old category
specified above.

The information content of the topological A-model with open strings is precisely the
data associated to the category of A-branes. We already know exactly what the objects
are. We now want to compute the dimensions of the Hilbert spaces of open strings and the
correlation functions between such states.

To compute the Hilbert space of open strings stretched between two different D-branes
L1 and L2, it is easiest to assume that L1 and L2 intersect transversely. As in section 3.1.2,
the Q-invariance of the topological field theory can be used to argue that open strings can
only arise from constant maps φ : Σ→ Y . This means that an open string state is associated
to a point of intersection L1 and L2.

The previous section suggests that locally the Hilbert space should be given by the De
Rham cohomology of this intersection, i.e., the cohomology of a point. We therefore first
guess that there is a one-dimensional Hilbert space associated with each point of intersection.
Thus the dimension of Hom∗(L1, L2) would be given by the number of points of intersection
between L1 and L2.

This cannot be right. We know the A-model is invariant under Hamiltonian deformation
of L1 or L2 but the number of points of intersection is not such an invariant. Of course, the
oriented intersection number #(L1∩L2) is such an invariant as it depends only on homology
classes but this turns out to be too crude for our purposes.

Let us introduce some notation. Let there be M points of intersection between L1 and
L2 and let the points be labeled pa, a = 1 . . .M . Thus we have open string vertex operators
Wpa

that create an open string at the point pa. Our putative Hilbert space will be denoted
V = CM . Each vertex operator Wpa

has a ghost number that we denote µ(pa). This leads
to a grading of V by ghost number

Vi =
⊕

µ(pa)=i

C

V =
⊕

i

Vi.
(50)

The way to determine the true Hilbert space lies in Witten’s work on Morse theory [59]
as generalized in the work of Floer [60] and, in particular, by Fukaya [61, 62]. We also refer
to chapters 10.5 and 40.4 of [8] for a nice review of this. Because these references are quite
thorough, we will only outline the general picture in the following discussion.

The basic idea is that an instanton can “tunnel” from an open string state at one point
of intersection to an open string at another point of intersection. The worldsheet of an
instanton of such a tunneling process is shown in figure 4. As we saw earlier, at tree-
level these worldsheet instantons are holomorphic disks in Y . These instantons produce a

25



L L1 2
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Perturbative Ground States

Figure 4: Instanton Tunneling.

correction to the BRST operator resulting in:

{Q,Wpa
} =

∑

b

nabWpb
, (51)

for some coefficients nab to be determined. Thus the true Hilbert space will be determined as
the Q-cohomology of some complex based on the vector space V . Since Q has ghost number
one, the complex looks like

. . .
Q

V−1
Q

V0
Q

V1
Q

. . . (52)

We define Homi(La, Lb) as the cohomology of this complex at position i.
To compute nab we must perform an integral of the moduli space of instantons. This

integral must be performed over the fermionic parameters as well as the obvious bosonic
maps φ. By the usual rules of fermionic integration such an integral vanishes unless the
fermionic parameters cancel in some way, i.e., we have no net fermionic zero modes. To be
more precise, we require that the index of the Dirac operator for the instanton is equal to
the ghost number of Q, i.e., one [59].

The index of the Dirac operator also measures the generic (or, to be precise, virtual)
dimension of the moduli space of holomorphic maps. We refer to [63] for a nice account of
what happens in the non-generic situation. In the generic case, we thus compute nab simply
by counting the number of points in the zero-dimensional instanton moduli space.

For an instanton connecting pa to pb, the index of the Dirac operator is given by the
difference in ghost numbers µ(pb)−µ(pa). Thus we expect that the generic dimension of the
moduli space of instantons is given by

dim M = µ(pb)− µ(pa)− 1. (53)

We refer the reader to [64] for further information on this point.
The astute reader should have noticed that we have nowhere specified a way that one can

actually compute µ(pa). Given the dimensions of moduli spaces of instantons, the relation

26



L

L

L2

1

3

Figure 5: Disk instanton associated to three-point functions.

(53) only gives enough information to compute the relative ghost number of two points of
intersection of La and Lb. Indeed, we have the following very important fact:

The topological A-model does not contain enough information to determine the
absolute ghost number of an open string associated to a point of intersection
of two A-branes.

Just how much ambiguity in the ghost number do we actually have? Given a pair of D-
branes L1 and L2 we are free to shift the ghost numbers of the open strings from L1 to L2 by
some fixed integer. We also saw in section 3.1.2 that if L1 = L2 then the ghost number was
given by the degree of de Rham cohomology which is perfectly well-defined. Furthermore,
we would like to preserve ghost number in the operator product

Homi(L1, L2)⊗ Homj(L2, L3)→ Homi+j(L1, L3). (54)

The ambiguity in the ghost number can then be accounted for by assigning a ghost number
µ(L) to each D-brane itself. One then defines the ghost number of an element of Homi(La, Lb)
as

i+ µ(Lb)− µ(La). (55)

It is easy to see that this definition has all the properties we desire.
We may restate the above as follows. The topological A-model has a symmetry which

allows us to shift the ghost numbers of the open string states by assigning arbitrary ghost
numbers to the A-branes and defining the ghost number as in (55). Note that this idea of
assigning integers to Lagrangian submanifolds to fix this ambiguity was studied carefully
in [65].

We will not give details on how to compute the correlation functions. It should be clear
however that there will be instanton corrections involved. For example, if we compute the
three-point function associated to figure 3, at tree-level we will consider holomorphic disks
in Y with boundary conditions shown in figure 5. The cancellation of fermion zero modes
will enforce ghost number conservation as usual.
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In this section we have outlined the definition of the category of A-branes in the case
that the objects La and Lb intersect transversely. Actually one may always use Hamiltonian
deformations to deform any pair of Lagrangian into this case. Thus we actually have a
complete definition of the category of A-branes.

This category is named after Fukaya who introduced it. The reader should note that
our discussion of the Fukaya category in this section has omitted a vast number of technical
details that have made this subject the object of a good deal of attention for the past
ten years. We refer to [56, 62, 66–68], for example, for more of the gory details. We also
refer to [69, 70] where the Fukaya category (complete with its A∞ structure) is determined
explicitly for the 2-torus. Recently, in a remarkable paper [71], Seidel has described the
Fukaya category for the quartic K3 surface. No other examples are known.

The generalization of the Fukaya category to the case of higher rank bundles over each
A-brane should be fairly obvious. Rather than associating C with each point of intersection,
we have a matrix representing a linear map from the fibre of one bundle to the fibre of the
other over the point of intersection.

We emphasize that nothing in A-model depends on the complex structure of Y . Indeed,
the Fukaya category is usually defined purely in terms of the symplectic geometry of Y
thus explicitly removing any possible dependence on the complex structure. The Fukaya
category depends on B + iJ for both its objects and its composition of morphisms. The
tadpole condition (46) has a B + iJ dependence and so certain objects might only exist for
particular values of this parameter. The correlation functions depend on B + iJ through
instanton corrections and so the composition of morphisms are similarly dependent.

Finally we should point out that worldsheet instantons are generally expected to adversely
affect notions based on the concept of a spacetime metric. Thus it would be reasonable to
expect that the concept of a Lagrangian submanifold is only really valid at large radius
limit. The composition rules in the Fukaya category are based on power series associated to
instanton effects. Beyond the radius of convergence of these power series it is reasonable to
think that the Lagrangian submanifold description of A-branes has broken down.

3.2 The B-model

It should be with relief that we turn attention to the B-model on X. Unfortunately we will
see that there is a subtlety concerning the set of all possible B-branes that will occupy us
for most of the remaining lectures.

3.2.1 B-branes

We may repeat the analysis of the beginning of section 3.1.1. The difference for the case
of B-branes is that the B-model twist implies that we should impose Rı̄

j = Ri
̄ = 0 for the

reflection matrix in (38) and (39). That is, only the diagonal terms Ri
j and Rı̄

̄ are nonzero.
This means that the almost complex structure now preserves the tangent and normal

directions to the D-brane, rather than exchanging them. It follows that the D-brane is
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a holomorphically embedded submanifold of X. Clearly this forces the dimension of the
D-brane to be even, i.e., 0, 2, 4 or 6.

Although 0, 2 and 4-dimensional B-branes exist, we will at first restrict attention only
to the 6-dimensional case, where the D-brane fills X. That is we put purely Neumann
conditions on the open string. The complexities of B-branes will allow us to deduce the
properties of all the B-branes purely from a knowledge of 6-branes.11

As in the A-brane, consideration of the B-field forces us to consider the possibility of a
bundle over the B-brane, i.e., a bundle E → X. Setting the B-field equal to zero we may
consider the constraint on this bundle from the requirement that the variation of the action
from the boundary term is zero. In this case, we find that the curvature, F , of the bundle is
a 2-form purely of type (1,1) [8, 43, 48]. In other words, E → X, is a holomorphic bundle.

We refer again to chapter 15 of [26] for a very readable account of holomorphic vector
bundles. The basic idea is that the transition functions for the bundle may be written as
holomorphic functions of the coordinates of X. Thus the bundles may be described very
naturally in the language of algebraic geometry. In section 4 this will allow us to move from
the language of bundles to the language of sheaves which, although alien to most physicists,
is definitely the right language for B-branes.

3.2.2 Open strings for B-branes

Since we have chosen purely Neumann boundary conditions on the open string, we have
effectively set the matrix R equal to the identity in (39). Thus, from (24) we have, on the
boundary

θj = gjk̄(ψ
k̄
+ − ψk̄

−) = 0, (56)

and so a local operator will depend only on φ and η̄. It follows that local operators look
like (0, q)-forms.

Suppose we have two B-branes in the form of two bundles E1 → X and E2 → X. The
Chan–Paton degrees of freedom are associated with maps from E1 to E2. We denote the
space of such maps as Hom(E1, E2).

We saw in section 2.3 that the BRST operator Q looks like the Dolbeault operator in the
B-model. Adding all these ingredients together, we see that an open string vertex operator
for a string stretching from E1 to E2 is given by the cohomology groups

H0,q

∂̄
(X,Hom(E1, E2)). (57)

In contrast to the A-brane case, we can choose to declare the ghost number of an operator
in (57) to be q without ambiguity.

11Note that, in our notation, a p-brane is a brane with p-dimensions in the Calabi–Yau directions and any
number of dimensions in the uncompactified part of spacetime.
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As always, the B-model has no instanton corrections. If

a ∈ H0,1

∂̄
(X,Hom(E1, E2))

b ∈ H0,1

∂̄
(X,Hom(E2, E3))

c ∈ H0,1

∂̄
(X,Hom(E3, E1)),

(58)

then we may compute the 3-point function exactly from

〈WaWbWc〉 =

∫

X

Tr(a ∧ b ∧ c) ∧ Ω, (59)

and deduce an operator product algebra. The Hom matrices are composed in the obvious
way.

If the B-model is coupled to gravity one may analyze higher n-point functions. In [48]
Witten showed that these correlation functions could be deduced from a “holomorphic”
Chern–Simons theory. This A∞ structure was analyzed more abstractly by Merkulov [72].
See also [57] for more discussion of the A∞ structure in topological field theories.

3.2.3 A failure of mirror symmetry

Given the dreadful complexities one is forced to endure to define the Fukaya category (most
of which we omitted) the reader is probably shocked at how easy the B-branes were to
analyze.

It would be remarkable if one could now invoke mirror symmetry and say that the category
of A-branes on Y is equivalent to the category of B-branes on X at this point. Unfortunately
this equivalence would be wrong with our current definition of B-branes. The problem is
that we simply do not have enough B-branes.

Clearly our assumption that B-branes are 6-branes is too strong. The lower-dimensional
branes certainly exist and one might hope that such branes account for the missing B-branes.
Sadly we still fall far short of the number of objects in the Fukaya category.

There is a lack of symmetry between the A-branes and B-branes which is key in the
failure of mirror symmetry. In section 3.1.3 we had a real problem when we tried to assign
an intrinsic ghost number to an open string which we solved by labeling the A-branes with
a ghost number. The B-branes did not have this problem. We will essentially restore mirror
symmetry by inflicting the ghost number ambiguity on the B-branes!

As Kontsevich proposed as far back as 1994 [73], the answer involves going to the “derived
category” as we will explain in section 5.

4 Some Mathematical Tools

Before continuing with the story of B-branes we need some more mathematical weapons. As
these ideas are not familiar to a typical physicist we will try to be fairly thorough. Most of
the ideas in this section are taken from [58,74, 75].
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As defined in section 3.2, a B-brane is associated to a vector bundle over X. In section 2.3
we noted that the B-model for a closed string can be described in purely algebraic terms. In
order to do the same for closed strings we need to replace vector bundles by something purely
algebraic, namely sheaves. This mathematical construction appears to be unavoidable if one
wants to fully understand B-branes. Anyone who ignores the language of sheaves would be
forced to reinvent it!

In order to discuss sheaves properly we use quite a bit of categorical language. This will
also prove useful later on when we discuss the derived category.

4.1 Categories of sheaves

4.1.1 Holomorphic functions

Let us begin with PN with homogeneous coordinates [z0, z1, . . . , zN ]. Let X ⊂ PN be an
“algebraic variety”, i.e., X is defined as the intersection of the zeroes of a set of polynomials
F1, F2, . . . in the homogeneous coordinates. These polynomials define the space X purely in
terms of algebraic data. Other than PN itself, the simplest case consists of a hypersurface
X ⊂ PN defined by a single equation. We never consider more than one defining equation
in these lectures.

How might we put some more “stuff” on X that is described purely in terms of algebraic
structures built on the homogeneous coordinates? The obvious thing to do is to define
functions f : X → C. In terms of the homogeneous coordinates, the natural way to define
such a function is

f =
g

h
, (60)

where g and h are polynomials in the homogeneous coordinates. Clearly we require g and h
to have the same homogeneous degree so that the function is well-defined on the projective
space PN and thus X. Any function f : X → C that can be written in the form (60) in a
neighbourhood of a point p ∈ X, such that h never vanishes in this neighbourhood, is called
regular at p. A function is regular on X if it is regular at all the points in X. We will also
refer to such functions on X as holomorphic. It is these regular functions on X which form
the prototype of “extra data” on X which will be used to replace the unalgebraic notion of
a vector bundle.

4.1.2 Sheaves

Let X be a topological space. We make the following12

Definition 2 A presheaf F on X consists of the following data

a) For every open set U ⊂ X we associate an abelian group F (U).

12In fancy language this makes a presheaf a contravariant functor from the category of open sets on X to
the category of abelian groups.
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b) If V ⊂ U are open sets we have a “restriction” homomorphism ρUV : F (U)→ F (V ).

This data is subject to the conditions

0. F (∅) = 0.

1. ρUU is the identity map.

2. If W ⊂ V ⊂ U then ρUW = ρV WρUV .

If σ ∈ F (U) then we use the notation σ|V for the restriction ρUV (σ). An element of F (U)
is called a section of F over U . X is an open subset of itself and an element of F (X) is
called a global section.

We then make a more restrictive

Definition 3 A sheaf F on X is a presheaf satisfying the conditions

3. If U, V ⊂ X and σ ∈ F (U), τ ∈ F (V ) such that σU∩V = τU∩V , then there exists
ν ∈ F (U ∪ V ) such that ν|U = σ and ν|V = τ .

4. If σ ∈ F (U ∪ V ) and σU = σV = 0, then σ = 0.

This definition makes the data defining a sheaf essentially contained in very small open sets.
That is, the sheaf is defined by “local” information.

A simple example of a presheaf is given by associating some fixed abelian group, such
as Z, to every non-empty open set in X. The restriction maps are set equal to the identity.
This example is not a sheaf as it violates condition 3 above when we consider disconnected
open sets. The closest sheaf we can find to this presheaf would be to associate Zn to each
open set U where n is the number of connected components of U . This latter sheaf will be
useful and we denote it simply by Z.

Another important sheaf is constructed by making F (U) the group (under addition) of
holomorphic functions over U . The restriction map is the obvious restriction map in the
usual sense. This “sheaf of holomorphic functions”, also known as the structure sheaf, is
denoted OX (or just O).

Yet another example is given by O∗ — the sheaf of nonzero13 holomorphic functions.
This time the abelian group structure is given by multiplication.

It will be useful to make a category of sheaves. Obviously the sheaves on X form the
objects. We define a morphism φ : F → G of sheaves as something which associates a
homomorphism φ(U) : F (U) → G (U) to each open set U ⊂ X such that, for any V ⊂ U ,
the following diagram commutes:

F (U)
φ(U)

ρUV

G (U)

ρ′
UV

F (V )
φ(V )

G (V ),

(61)

13That is, nowhere zero.
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where ρ and ρ′ are the restriction maps on F and G respectively. The fact that this forms
a category follows immediately from the properties of homomorphisms of groups. Note that
the objects, F , in the category of sheaves are not directly composed of elements. Having
said that, for any open set, F (U) is a group and so is composed of elements.

We note that two sheaves are said to be isomorphic if there is an invertible morphism
from one to the other.

4.1.3 Locally free sheaves

Having defined the structure sheaf OX, we would like to define more complicated sheaves
that are equally algebraic in nature. First recall the definition of a module:

Definition 4 Let R be a ring with a multiplicative identity 1. An R-module is an abelian
group M with an R-action given by a mapping R×M → M such that

1. r(x+ y) = rx+ ry

2. (r + s)x = rx+ sx

3. (rs)x = r(sx)

4. 1x = x

for any r, s ∈ R and x, y ∈M .

Now, the set of regular functions over U , OX(U), is an abelian group under addition as
noted earlier, but multiplication of functions also gives it a ring structure. This allows us to
introduce the concept of a sheaf of OX-modules. That is, let E be a sheaf such that E (U) is
an OX(U)-module for any open U ∈ X. By a common abuse of notation we will refer to a
sheaf of OX-modules as an OX-module.

Clearly OX is itself an OX-module. We may also take a sum of copies

O
⊕n
X = OX ⊕ OX ⊕ . . .⊕OX

︸ ︷︷ ︸

n

(62)

to give another OX-module. This is called the free OX-module of rank n. We call a sheaf E

locally free of rank n if there is an open covering {Uα} of X such that E (Uα) ∼= OX(Uα)⊕n

for all α.
There is a one-to-one correspondence between holomorphic vector bundles of rank n on

X and locally free sheaves of rank n on X. To see this first consider the trivial complex line
bundle over X. We may regard OX(U) as the group of holomorphic sections of this bundle
over U . Thus, if the covering {Uα} trivializes a vector bundle E → X, then the group of
holomorphic sections of E over Uα is given by OX(Uα)⊕n.

Conversely, let E be a locally free sheaf and let

φα : E (Uα)→ OX(Uα)⊕n, (63)
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be the explicit isomorphism. On Uα ∩ Uβ we may define the n × n matrix of holomorphic
functions

φβφ
−1
α : OX(Uα ∩ Uβ)⊕n → OX(Uα ∩ Uβ)⊕n, (64)

which defines a holomorphic bundle E → X.
So locally free sheaves are the algebraic way of describing holomorphic vector bundles.

Clearly a trivial bundle corresponds to a free OX-module and, as we stated above, the trivial
line bundle corresponds to the structure sheaf OX .

To get a better feel for locally free sheaves, let us consider some very simple cases where
X is P1 with homogeneous coordinates [z0, z1]. We define an open set U0 by z0 6= 0 with an
affine coordinate y0 = z1/z0. Similarly U1 has z1 6= 0 with an affine coordinate y1 = z0/z1.
Thus P1 has an open cover {U0, U1}.

Consider a holomorphic line bundle on P1 with a fibre coordinate wi over the open set
Ui. Then the transition function in U0 ∩ U1 may be written in the form

w1 = yn
1w0, (65)

for some integer n.14 We define O(n) as the locally free sheaf associated to this line bundle.
Clearly O(0) is O .

Now consider an example of a morphism O → O(n). On U0 we use the identity map 1.
To keep the transition function valid, this would force us to make the morphism look like
g(y1) 7→ yn

1 g(y1) on U1 for any g ∈ O(U1). We will write a morphism as

O
f

O(n), (66)

where f is a homogeneous function in [z0, z1] and we understand the morphism in Uα to be
given by a multiplication by f/zn

α. Thus, in the case we just described, f = zn
0 . Clearly, so

long as f is homogeneous of degree n, it will be compatible with the transition functions of
the vector bundle. Indeed, all morphisms from O to O(n) are of this form.

Grothendieck [76] proved that any locally free sheaf of finite rank on P1 is isomorphic
to a sum O(n1) ⊕ O(n2) ⊕ . . .. For PN we may define analogous sheaves O(n) which will
serve as our basic building blocks later on. Note that Grothendieck’s theorem is not valid
for N > 1.

4.1.4 Kernels and cokernels

Given a morphism between two objects in a category we would like to define the notion of
kernel and cokernel of this map.

If we have a map f : B → C between two groups we would usually define the kernel
of f , Ker(f), to be the subgroup of B which f maps to the identity of C. In the world of
categories it is taboo to talk about elements and so this definition is, in general, no good.

The first thing we need to define is the notion of the identity in some categorical way.
This is done as follows

14This is the first Chern class of the line bundle.

34



Definition 5 A zero object in a category is an object 0 such that for any object B there
is precisely one morphism in Hom(0, B) and precisely one morphism in Hom(B, 0). If the
zero object exists, then for any pair of objects, B and C, we define the zero morphism (also
denoted as 0) in Hom(B,C) as the composition B → 0→ C.

It is easy to show that all zero objects are isomorphic. For the category of sets the zero object
does not exist. For groups, rings, etc., it is the trivial group, ring, etc. In the category of
sheaves it is the sheaf that associates the trivial group to every set U . In the category of
D-branes, it represents the absence of a D-brane!

Secondly, we are going to restrict attention to additive categories. This is a category with
a zero object and an abelian group structure (written as addition) on the set of morphisms
Hom(B,C) such that the distributive law (f + f ′)g = fg + f ′g and f(g + g′) = fg + fg′

is true for compositions.15 It is easy to see that the zero morphism is the identity in the
group Hom(B,C). Clearly the category of abelian groups and the category of sheaves has
an additive structure. In addition, we saw that for D-branes Hom(B,C) represents a Hilbert
space, thus endowing the category of D-branes with an additive structure too.

Now we may make the following

Definition 6 The kernel of a morphism f : B → C is a morphism i : A → B such that
fi = 0 and which satisfies the following “universal” property: For any morphism e : A′ → B
such that fe = 0, there is a unique morphism e′ : A′ → A such that e = ie′. That is, the
map e′ can be constructed such that the following commutes:16

A′

e′
e

A
i

B
f

C.

(67)

Note that the kernel may not always exist for a general additive category. We emphasize
that, in this categorical language, a kernel is a morphism — not an object as one might
first think. Of course, since a morphism must specify the object it is mapping from, we
do intrinsically define a kernel object , A, too. If the reader is unfamiliar with universal
properties of maps such as the above, they should convince themselves that this definition
of kernel coincides with the usual one for, say, the category of groups. To be precise, the
kernel, as defined above, is the inclusion map of the kernel subgroup into the group itself.

We say f is a monomorphism if the kernel of f is zero. It is easy to prove that the unique-
ness of e′ implies that the kernel itself is a monomorphism. For groups, etc., a monomorphism
is the same thing as an injective map. If the kernel object exists, it is unique up to isomor-
phism.

While we’re at it, we can reverse all the arrows in the above to define the cokernel:

15In addition one requires the existence of an object B ⊕ C for every pair B and C, but this isn’t very
important in this discussion.

16In these diagrams the solid lines represent maps which are given, and dotted lines represent maps to be
constructed.
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Definition 7 The cokernel of a morphism f : B → C is a morphism p : C → D such that
pf = 0 and which satisfies the following “universal” property: For any morphism g : C → D′

such that gf = 0, there is a unique morphism g′ : D → D′ such that g = g′p. That is, the
map g′ can be constructed such that the following commutes:

B
f

C
p

g

D

g′

D′

(68)

The object D is called the cokernel object. Recall that the “old” definition of the cokernel of
a map f : B → C is the quotient C/ Im(f). The reader should again check that this agrees
with the categorical definition.

We say f is an epimorphism if the cokernel of f is zero. For groups, etc., an epimorphism
is the same thing as a surjective map. Again, the cokernel itself is an epimorphism and the
cokernel object is unique, if it exists, up to isomorphism.

So why have we dragged ourselves through all this mathematical nonsense? The answer is
that the category of sheaves does not quite behave as one might expect when this categorical
machinery is applied to it. One might be forgiven for thinking that given a map between
sheaves, φ : F → G , one could apply the old ideas of kernel and cokernel to the group maps
φ(U) : F (U) → G (U) to get a definition of kernel and cokernel of φ. While this works for
the kernel, it can fail for the cokernel. In particular, the cokernel defined this way, while
always a presheaf, need not be a sheaf.

To illustrate what can go wrong, consider the morphism of sheaves

φ : O → O
∗, (69)

on C∗ = C − {0} by the map φ(U)(f) = exp(2πif) for any function f ∈ O(U). The
coordinate z on the complex plane gives us a global section z ∈ O∗(C∗). This section is
clearly not in the image of φ(C∗). However, if we were to consider a simply-connected
subspace U ∈ C∗, then z|U would lie in the image of φ(U). We can define a nontrivial
presheaf F such that F (U) is given by O∗(U)/ Im(φ(U)), but it violates property number
4 of the definition of a sheaf in section 4.1.3.

Conversely, the categorical definition of cokernel tells us that cokernel of φ in this example
is zero. Thus φ is an epimorphism.

4.1.5 Abelian categories

A particular kind of category will be of particular importance to us — namely an abelian
category. While the D-brane category itself will turn out not to be abelian, these special
categories will be an essential building block in describing D-branes.

We defined the kernel and cokernel morphisms in section 4.1.4. Now let us further define
the image of a map as the kernel of its cokernel (if it exists) and the coimage of a map as
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the cokernel of its kernel. Again, this defines the image and coimage as morphisms but each
has a naturally associated object too.

Given any map f : B → C such that the image and coimage exist, chasing through the
definitions of these various morphisms shows that we may construct a map h to make the
following diagram commute:

A
ker(f)

B
f

coim(f)

C
coker(f)

D

E
h

F

im(f)

(70)

Now we may define the category of interest:

Definition 8 An abelian category is an additive category satisfying the following axioms:

1. Every morphism has a kernel and a cokernel (and thus an image and coimage).

2. The map h in (70) is an isomorphism for any f .

Any category for which the objects are made up of elements, such as the category of
R-modules, is abelian. Since the coimage, etc., are defined only up to an isomorphism, in
the case of an abelian category we may assume that E and F are the same objects in (70).
That is, every map f factors into its coimage (which is epic) followed by its image (which is
monic).

As usual, an exact sequence may be defined as a sequence of maps

. . .
fn−2

An−1 fn−1

An fn
An+1 fn+1

. . . , (71)

such that the image of fn−1 is the same morphism as the kernel of fn.
A short exact sequence is then an exact sequence of the form

0 A
f

B
g

C 0. (72)

If the reader is finding all this category stuff a bit confusing, they should check through the
above definitions to prove that this short exact sequence implies that f is the kernel of g,
and g is the cokernel of f .

Finally in this section we can use the category machinery to define cohomology abstractly
for a complex as follows:

. . . fn−2

An−1
fn−1

An
fn

An+1
fn+1 . . .

Ln

im(fn−1)

k
Kn

ker(fn)

(73)
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If fnfn−1 = 0, the definition of the kernel of fn guarantees the existence of the map k above.
The cohomology of this complex at position n is then defined as the cokernel object of the
map k. We generally denote the cohomology Hn(A•) in the case that it is an abelian group,
or H n(A•) if it is a sheaf.

There is a remarkable theorem due to Freyd [77] that says that, if the objects in an
abelian category can be described as a set, the category may be embedded in the category
of R-modules for some ring R. This effectively means that the objects in such a category
can be thought of as consisting of elements.

We will see eventually that the categories we build for A-branes and B-branes are not
abelian — hence the necessity for the abstractions of category theory.

4.1.6 Coherent sheaves

We saw in section 4.1.3 that the concept of vector bundles can be replaced by locally free
sheaves in algebraic geometry. We want to be able to do things like compute cohomology
for complexes of these things so it would be nice if the category of locally free sheaves were
an abelian category. Sadly it is not.

The problem is that, while this category contains all of its kernels, it does not contain
its cokernels. The solution is to start with the category of locally free sheaves, which is a
subcategory of the category of OX-modules. Then add in all the cokernel objects together
with all the possible morphisms between these new objects and the objects we already had.
The resulting category is abelian. Thus we end up with a minimal abelian full17 subcategory
of the category of OX-modules containing locally free sheaves. This is the category of coherent
sheaves.18

Let’s give a simple example of a coherent sheaf that is not locally free. We work locally
on part of X and pretend it looks like C3 with affine coordinates (x, y, z). Consider the
following morphism

O⊕3 ( x y z )
O , (74)

that is, three functions f1, f2, and f3 are mapped to xf1+yf2+zf3 by this morphism. Näıvely
speaking, the cokernel object should consist of functions on C modded out by functions in
the image of the map. This quotient should kill all functions away from the origin. We
define Op as the sheaf such that Op(U) is the trivial group if U does not contain the origin.
If U does contain the origin we set Op(U) = C. This is an OX-module and is called the
skyscraper sheaf of the origin. There is also a natural map

O Op, (75)

17A subcategory is full if, for any pair of objects A and B, the set of morphisms Hom(A, B) is the same
in the subcategory as it was in the original category.

18In these notes we are going to be somewhat careless about specifying whether ranks of free modules are
infinite or finite. In particular we will make no effort to distinguish between coherent and quasi-coherent

sheaves.
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which takes a function to its value at the origin. The reader can carefully check through the
definitions to see that (75) indeed represents the cokernel of (74). That is,

O⊕3( x y z )
O Op 0 (76)

is an exact sequence.
Thus, the skyscraper sheaf Op is a coherent sheaf. It clearly isn’t locally free since its

rank appears to jump at the origin. In a way, it looks like it could be associated to a vector
bundle which has a fibre C over the origin and has trivial fibre elsewhere. We will see in
section 5.4 that this is a 0-brane on X.

We can also compute the image of the map (74), i.e., the kernel of the map (75). To
phrase it a third way, we are looking for the OX-module Ip that completes the short exact
sequence

0 Ip O Op 0. (77)

One can easily show that Ip is a subsheaf of O and consists of functions which vanish at
the origin. This sheaf is called the ideal sheaf of the origin.

Again, Ip is not locally free. The best we could say is that somehow it represents a
trivial bundle with fibre C3 everywhere except at the origin, where it has no fibre. In D-
brane language you might say it is a 6-brane on X with an anti-0-brane glued in at the
origin. We will see later that this isn’t such a bad description of Ip.

4.2 Cohomology

We have replaced the vector bundles of the B-model by coherent sheaves. We now need to
replace the notion of Dolbeault cohomology with something more algebraic. To do this we
use sheaf cohomology. Let us emphasize immediately that by sheaf cohomology we do not
mean Čech cohomology, which is more topological than algebraic.19 Our sheaf cohomology
is the version due to Grothendieck as reviewed in chapter III of [74] which is much more
suited to the B-model. Having said that, we will start our discussion with Čech cohomology.

4.2.1 Čech cohomology

Here we give a lightning review. For more information and examples, the reader is referred
to [79].

Suppose U = {Uα} is an open covering of a manifold X. Let us denote Uα0
∩Uα1

∩. . .∩Uαp

by Uα0α1...αp
. Given a sheaf F we define

Čp(U,F ) =
∏

α0<α1<...<αp

F (Uα0α1...αp
). (78)

That is, an element a ∈ Čp(U,F ) is specified by giving an element aα0α1...αp
∈ F (Uα0α1...αp

)
for each unordered (p+ 1)-tuple of open sets in U.

19Unfortunately, many references, such as [78], do mean Čech cohomology when they say sheaf cohomology.
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Now define a coboundary δ : Čp → Čp+1 by

(δa)α0α1...αpαp+1
=

p+1
∑

k=0

(−1)kaα0α1...α̂k ...αp+1
, (79)

where the notation α̂k means omit αk.
It is easy to prove that δ2 = 0 and so we can define Čech cohomology, Ȟp(U,F ), as the

cohomology of the complex

0 Č0(U,F )
δ
Č1(U,F )

δ
Č2(U,F )

δ
. . . (80)

This definition of Čech cohomology depends on the open covering U but one can show that,
as the covering becomes finer and finer, one approaches a well-defined limit which we call
Ȟp(X,F ). An open cover which yields Ȟp(U,F ) ∼= Ȟp(X,F ) is a so-called good cover
where each finite intersection Uα0

∩ Uα1
∩ . . . ∩ Uαp

is diffeomorphic to Rn. We refer to [79]
for more details.

As is well-known, given a short exact sequence of sheaves

0 E F G 0, (81)

we have an associated long exact sequence of cohomology:

. . . Ȟk(X, E ) Ȟk(X,F ) Ȟk(X,G ) Ȟk+1(X, E ) . . . (82)

Also, if X is an n-dimensional manifold, then Ȟk(X,F ) = 0 for any F if k < 0 or k > n.
It will prove useful to know all the cohomology groups Ȟk(Pn,O(m)) for the locally-

free sheaves of rank one introduced in section 4.1.3. The zeroth Čech cohomology consists
of sections defined over each Uα such that the differences of these sections over the pair-
wise intersections vanishes. In other words, the zeroth Čech cohomology consists of global
sections.

The global sections of a sheaf F which is an OX-module are in one-to-one correspondence
with morphisms OX → F . This important fact will be used many times below. The
morphism may be produced from the section simply by multiplication by the section. Given
the morphism, the definition of morphisms between OX-modules forces it to be given by
multiplication by a global section.

The analysis around (66) therefore shows that global sections of O(m) are given by
homogeneous functions of degree m in the homogeneous coordinates [z0, z1, . . . , zn]. Thus,

dim Ȟ0(Pn,O(m)) =

(
n+m

m

)

, (83)

where the binomial coefficient is defined to be zero if either of its entries are negative.
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The method of Čech cohomology may be applied to compute the higher cohomologies.
This is tedious and there are other ways to do the computation (see [74, 78] for example).
The result is that

dim Ȟk(Pn,O(m)) = 0 for k 6= 0, n

dim Ȟn(Pn,O(m)) =

( −m− 1

−n−m− 1

)

.
(84)

Now suppose X ⊂ Pn is an algebraic variety of dimension n − 1 corresponding to the
zeroes of a polynomial f of homogeneous degree d. We denote the embedding i : X →֒ Pn.

Let us introduce a little notation. Suppose we have a map f : X → Y between two
algebraic varieties and a sheaf F on X. We may define the sheaf f∗F on Y by f∗F (U) =
F (f−1U). More specifically, suppose we have an embedding i : X →֒ Pn, and we are given a
sheaf E on X. The sheaf i∗E is therefore given by i∗E (U) = E (U ∩ Pn) for all open subsets
U ⊂ Pn. This naturally embeds the set of sheaves on X into the sheaves on Pn.

The structure sheaf OX may thus be pushed forward into a sheaf i∗OX on P4. By a
modest abuse of notation we refer to this latter sheaf as OX . Clearly OX is then a quotient
sheaf of O . In fact, it is not hard to see that we have a short exact sequence of sheaves

0 O(−d) f
O OX 0. (85)

Using (82), and the fact that Hk(X,F ) = Hk(Pn, i∗F ), this allows the computation of the
cohomology of OX . Similarly we may tensor (85) by O(m) to compute the cohomology of
OX(m) = OX ⊗ O(m).

4.2.2 Spectral sequences

We would like to compare Čech cohomology with something we already know about such as
Dolbeault cohomology. A very quick way of doing this is to use “spectral sequences” which
we now review. The idea of spectral sequences will also be a recurring topic in the rest of
lectures. Again, a comprehensive review of this important subject is beyond the scope of
these lectures and we recommend the interested reader consult [79,80], for more information.
Here we focus on how a spectral sequence is used rather than why it works.
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Suppose we are given a double complex, Ep,q
0 ,

...
...

...

E0,2
0

δ

d

E1,2
0

δ

d

E2,2
0

δ

d

. . .

E0,1
0

δ

d

E1,1
0

δ

d

E2,1
0

δ

d

. . .

E0,0
0

δ

d

E1,0
0

δ

d

E2,0
0

δ

d

. . .

p

q

(86)

where each row and each column forms a complex. We assume that the two derivatives
anticommute dδ + δd = 0.

Clearly we may make a new complex

0 E0 D
E1 D

E2 D . . . , (87)

where
En =

⊕

p+q=n

Ep,q
0 , (88)

and D = d+ δ. The big question is, how to we compute the cohomology of (87)?
The spectral sequence method is to inductively form a sequence of stages Ep,q

r . Ep,q
r+1 is

defined as the cohomology of Ep,q
r with respect to a differential

dr : Ep,q
r → Ep+r,q−r+1

r , (89)

where d0 is given by d in figure (86) and d1 is given by the image of δ in Ep,q
1 . We won’t

need to know how to compute dr for r ≥ 2 since any problem that requires such knowledge
is essentially too difficult for these lectures!

For large enough r (r ≥ 2 if we’re lucky) the differentials dr are all zero. This means that,
for large r, the Ep,q

r ’s become independent of r and so are written Ep,q
∞ . The cohomology of

(87) is then given as20

Hn
D =

⊕

p+q=n

Ep,q
∞ . (90)

4.2.3 Dolbeault cohomology

Let’s try the spectral sequence construction to prove that Dolbeault cohomology is equal to
a particular example of Čech cohomology. We consider the sheaf A m,n of (m,n)-forms on X.

20This is not quite right for torsion subgroups but we do not consider such things in these lectures.
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That is, A m,n(U) is the group of differentiable (but not necessarily holomorphic) sections of
the bundle

∧m TX ⊗
∧n T̄X over the open set U ⊂ X.

Now, build the double complex

Ep,q
0 = Čp(U,A m,q), (91)

where U is a good cover of X. The “horizontal” δ operator in (86) is given by the Čech
coboundary (79) and the “vertical” d operator is given by the Dolbeault operator ∂̄ : A m,n →
A m,n+1.

The first step is to take the cohomology under the vertical map d0 = ∂̄ to obtain the
Ep,q

1 ’s. On RN any (m,n)-form which is ∂̄-closed must be ∂̄-exact. Thus all the cohomology
groups vanish except the bottom row given by q = 0. The groups Ep,0

1 are given by (p, 0)-
forms which are killed by ∂̄. In other words, the Ep,q

1 stage looks like

...
...

...

0
δ

0
δ

0
δ . . .

0
δ

0
δ

0
δ . . .

Č0(U,Ωm)
δ

Č1(U,Ωm)
δ

Č2(U,Ωm)
δ . . .

p

q

(92)

where Ωm is the sheaf of holomorphic m-forms. That is, Ωm(U) is the group of holomorphic
sections of

∧m TX over U .
Now we take the δ-cohomology to form the Ep,q

2 stage. Clearly we end up with Ep,q
2 =

Ȟp(X,Ωm) for q = 0 and Ep,q
2 = 0 for q > 0.

For the next stage we note that d2 cannot map between nonzero entries and therefore
must be zero. Similarly dr = 0 for r > 2. Thus, in this case, Ep,q

2 = Ep,q
∞ . Applying (90) we

see
Hn

D = Ȟn(X,Ωm). (93)

The alert reader will be wondering why, when the definition of the double complex in (86)
is symmetric under interchange of d and δ, the spectral sequence procedure clearly treated
them differently. We can exchange the rôles of rows and columns to define another spectral
sequence Ẽp,q

r with Ẽp,q
0 = Ep,q

0 and differential

d̃r : Ẽp,q
r → Ẽp−r+1,q+r

r , (94)

with d̃0 = δ. This spectral sequence may also be used to compute the total cohomology Hn
D.
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Under such a reversal we compute the Čech cohomology first. This may be done by using
the fact that the following “Mayer–Vietoris sequence” is exact:

0 A m,n(X) Č0(U,A m,n)
δ
Č1(U,A m,n)

δ
Č2(U,A m,n)

δ . . . . (95)

Elements of the group A m,n(X) are globally defined (m,n)-forms. The exactness of the start
of this sequence should be pretty clear. For the other terms one uses a trick using a partition
of unity. We refer to page 94 of [79] for the proof in an essentially identical situation.

The exactness of (95) implies that the Ẽp,q
1 stage of the spectral sequence looks like

...
...

...

A m,2(X)

∂̄

0

∂̄

0

∂̄

. . .

A m,1(X)

∂̄

0

∂̄

0

∂̄

. . .

A m,0(X)

∂̄

0

∂̄

0

∂̄

. . .

p

q

(96)

The first column is nothing but the usual Dolbeault complex. Thus Ẽ0,q
2 = Hm,q

∂̄
(X) and

Hn
D = Hm,n

∂̄
(X). Comparing to (93) and relabeling a little, we obtain Dolbeault’s theorem:

Hp,q

∂̄
(X) = Ȟq(X,Ωp). (97)

Thus Dolbeault cohomology can be rewritten as Čech cohomology.
Suppose E is a holomorphic vector bundle over X. The above argument can be general-

ized to
Hp,q

∂̄
(X,E) = Ȟq(X,Ωp ⊗ E ), (98)

where E is the locally-free sheaf associated to E and the tensor product “⊗” is defined as a
sheaf of tensor products of OX-modules.

4.2.4 Sheaf cohomology

Now we give a definition of cohomology which is couched purely in terms of category lan-
guage. An object I in a category is called injective if, given a monomorphism f : A → B
and any map g : A → I, we may construct a map g′ : B → I such that g′f = g. This may
be pictured as the following diagram:

0 A
f

g

B

g′

I

(99)

44



The reader might like to check that U(1) is injective in the category of abelian groups for
example.

In the category of OX-modules, injective objects have an interesting property as follows.
Given an open set U ⊂ X we define OU as the sheaf OX restricted to U and then “extended
by zero” outside U . Roughly speaking, this is the sheaf of holomorphic functions on U .
We refer to page 68 of [74] for the precise definition of extending by zero. Using a similar
argument to that in section 4.2.1, for any OX-module F one may argue that

Hom(OU ,F ) = F (U). (100)

Now, if V ⊂ U then OV is a subsheaf of OU , i.e., there is a monomorphism OV → OU .
If I is an injective OX-module, then, by the definition above, we have a surjective map
Hom(OU ,I ) → Hom(OV ,I ). That is, from (100), the restriction map ρUV : I (U) →
I (V ) is surjective.

A sheaf whose restriction maps are all surjective is called flabby.21 Thus we have shown
that injective OX-modules are flabby sheaves.

Given any object A in an abelian category, an injective resolution of A is a long exact
sequence of the form

0 A I0 I1 I2 . . . , (101)

where the Ik are all injective objects. Injective resolutions need not exist. In the category
of OX-modules, injective resolutions do always exist (see page 207 of [74] for example).

At this point we need to introduce the notion of a functor in a category. In our categories
of D-branes we will have no direct physical manifestation of a functor but the concept still
proves valuable.

Definition 9 A functor F : C → D is a rule that associates an object F (C) of D to every
object C of C and a morphism F (f) : F (C1)→ F (C2) in D to every morphism f : C1 → C2

in C. It satisfies

1. F (idC) = idD

2. F (fg) = F (f)F (g).

Suppose we have a short exact sequence

0 A
f

B
g

C 0, (102)

in an abelian category. A functor F is said to be left-exact if

0 F (A)
F (f)

F (B)
F (g)

F (C), (103)

21Or, in French, flasque.
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is also exact, and right-exact if the following is exact:

F (A)
F (f)

F (B)
F (g)

F (C) 0. (104)

An example of a functor from the category of abelian groups to itself is Hom(G,−) for
some fixed group G. This maps a group A to Hom(G,A). If f ∈ Hom(G,A), then any
homomorphism h : A → B yields a map hf : G → B thus inducing the required map
Hom(G,A)→ Hom(G,B). The functor Hom(G,−) is easily shown to be left-exact but not
right-exact.

Given an injective resolution (101) and a left-exact functor F , we may construct a com-
plex22

0 F (I0) F (I1) F (I2) . . . (105)

The cohomology of this complex at position n is defined as the nth right-derived functor of
A and is denoted RnF (A). The reader is invited to check that the left-exactness of F means
that R0F (A) = F (A). While it is not obvious at first sight, these derived functors do not
depend on the choice of an injective resolution.

In the category of OX-modules, the functor of interest is Hom(OX ,−). As we saw in
(100), Hom(OX ,F ) = F (X), i.e., the group of global sections of F . Thus we may also
view Hom(OX ,−) as the global section functor. We may then define sheaf cohomology for
OX-modules as the right-derived functors of the global section functor. That is,

Hn(X,F ) = Rn Hom(OX ,−)(F ). (106)

Since R0F (A) = F (A), H0(X,F ) corresponds to the group of global sections of F — just
like Čech cohomology.

OK, so this is all pretty abstract! At this point the reader would probably like some
examples to work through to get a feel for sheaf cohomology. The truth is that this definition
of cohomology is awful for practical calculations. The best one can generally do is show that
it is equivalent to some other form of cohomology that can be computed realistically. The
reason we have bothered to introduce sheaf cohomology is that its definition is very powerful
in the context of the B-model as we see later.

Sheaf cohomology is equivalent to Čech cohomology as can be seen as follows. Given an
OX-module F , construct an injective resolution

0 F I 0 I 1 I 2 . . . (107)

Consider the double complex given by

Ep,q
0 = Čp(U,I q). (108)

It follows from (107) that at the first stage of the spectral sequence we have that Ep,q
1 =

Čp(U,F ) for q = 0 and is zero otherwise. Thus Ep,q
2 = Ep,q

∞ = Ȟp(X,F ) for q = 0 and is
zero otherwise. This yields Hn

D = Ȟn(X,F ).
22Note we omitted the first term from (101).
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Applying the spectral sequence the other way requires us to compute the Čech cohomol-
ogy of injective OX-modules. We saw above that an injective OX-module is a flabby sheaf.
It can be shown (e.g., page 221 of [74]) that if F is flabby, then the Čech cohomology groups
Ȟn(X,F ) are zero for n > 0. As always, Ȟ0(X,F ) is given by the global sections F (X).

This means that the Ẽp,q
1 stage of the spectral sequence looks like

...
...

...

I 2(X) 0 0 . . .

I 1(X) 0 0 . . .

I 0(X) 0 0 . . .

p

q

(109)

and Ẽp,q
2 computes the sheaf cohomology of F . Thus Hn

D = Hn(X,F ) and we obtain the
equivalence

Hn(X,F ) = Ȟn(X,F ). (110)

Note that we have used the language of OX-modules in the section. Everything works equally
well if we restrict attention to coherent sheaves since we may always form injective resolutions
using coherent sheaves.23

We may take the definition of sheaf cohomology a little further. The functor Hom(E ,−)
is left-exact for any OX-module E . We denote its right derived functors by “Ext”:

Rn Hom(E ,−)(F ) = Extn(E ,F ). (111)

Let us note the following obvious statements:

Ext0(E ,F ) = Hom(E ,F )

Extn(OX ,F ) = Hn(X,F ).
(112)

A very useful fact about these Ext groups is that they satisfy “Serre duality”. We refer
to [74] for more details. In the case of a smooth Calabi–Yau m-fold, Serre duality states that

Extn(E ,F ) ∼= Extm−n(F , E ). (113)

Now suppose we have two vector bundles E and F over X. The bundle Hom(E,F )
is also a vector bundle as we saw in section 3.2.2. We may associate locally free sheaves

23Pedants should remind themselves of the footnote on page 38.
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E and F to the bundles E and F respectively. The locally-free sheaf we associate to
Hom(E,F ) is denoted Hom(E ,F ). We emphasize that Hom(E ,F ), which is a sheaf,
should not be confused with Hom(E ,F ) which is the abelian group of morphisms from E

to F . Hom(E ,F ) is actually the group of global sections of Hom(E ,F ).
From (98) it follows that

H0,q(X,Hom(E,F )) = Ȟq(X,Hom(E ,F ))

= Hq(X,Hom(E ,F )).
(114)

Since sheaf cohomology is the right-derived functor of global section, and a global section of
Hom(E ,F ) is given by Hom(E ,F ), we may further deduce that

Hq(X,Hom(E ,F )) = Extq(E ,F ). (115)

Thus we have achieved our goal. We have converted the Dolbeault cohomology language
of differential geometry into purely algebraic ideas. The statement in section 3.2.2 that an
open string from a B-brane E → X to a B-brane F → X is given by an element of the
Dolbeault cohomology group H0,q

∂̄
(X,Hom(E,F )) is now restated in the form

An open string from the B-brane associated to the locally-free sheaf E to
another B-brane given by the locally-free sheaf F is given by an element of
the group Extq(E ,F ).

The reader is probably thoroughly unimpressed at this point given the lengths of ab-
straction we went to. Hopefully the later lectures will convince the reader that it is all
worthwhile!

5 The Category of B-branes

5.1 Deformations and complexes

The problem with the B-model we have thus far is that it doesn’t contain enough B-branes.
The first thing to try to do is to see if we can deform the B-branes we already know about
into something new.

Looking at the topological field theory, we already saw that we could use vertex operators
as deformations. The closed string operators are required to have ghost number two and
correspond to H1(X, TX). These give the expected deformations of complex structure.

As in section 3.1.2 the open strings vertex operators which deform the theory must be
ghost number one. For a theory with a single D-brane given by the locally free sheaf E these
correspond to Ext1(E , E ). Ignoring potential obstructions in the moduli space this agrees
with the expected deformations of the sheaf E .24

24If E is associated to a vector bundle E then Ext1(E , E ) = H1(X, End(E)). See section 15.7.3 of [26] for
one way of seeing why this latter group corresponds to deformations of E.
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What about the ghost number one open strings stretched between two distinct B-branes
E and F ? The first guess would be to look at vertex operators in Ext1(E ,F ). One can
do this but it turns out that one still doesn’t generate enough B-branes. To get the right
answer we need to be more general.

Our experience with the A-model in section 3.1.3 tells us that assigning a ghost number
to an open string stretched between two distinct D-branes is a little troublesome. The B-
model has no right to be so unambiguous in its knowledge of the ghost number and so we
should inflict the same ignorance on it. That is, let us label a B-brane F with some ghost
number µ(F ). An open string stretching from E to F in the group Extq(E ,F ) is then
given a ghost number

q + µ(F )− µ(E ), (116)

in agreement with (55). We are certainly free to attach such ghost number labels to the
B-branes without any effect on the B-model. We will also see in section 6 that associating a
ghost number to the B-branes themselves is essential if we want to understand the untwisted
superconformal field theory.

We may construct a general collection of D-branes in terms of a locally-free sheaf E in
which we have a decomposition:

E =
⊕

n∈Z

E
n, (117)

where E n is a B-brane with ghost number n. The ghost number one operators in this B-model
are therefore elements of Extk(E n, E n−k+1) for any n and k.

We have already noted that the case k = 1 corresponds to deformations of the sheaves
that we already know about. The case k = 0 concerns open strings

d =
∑

n

dn

dn ∈ Ext0(E n, E n+1) = Hom(E n, E n+1),

(118)

i.e., morphisms dn : E n → E n+1 of locally-free sheaves. It will turn out that, by just studying
this case, we will obtain the deformations for the other values of k for free.

Let W
(1)
d be the operator obeying

{Q,W (1)
d } = dΣd, (119)

where dΣ is the worldsheet de Rham operator. We deform the action by

S = S0 +

∮

∂Σ

W
(1)
d . (120)

Following the usual Noether method, we may show that this results in a change in the BRST
charge

Q = Q0 + d. (121)
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So, to maintain the relation Q2 = 0, we are required to impose

{Q0, d}+ d2 = 0. (122)

We are assuming that d was an open string vertex operator in our original theory before
deformation and so we assume {Q0, d} = 0. Naturally this can only be justified if the
deformation of the theory is infinitesimal in some way. Indeed the analysis we perform below
only really describes the tangent space for the deformations. There can be obstructions to
these deformations.

Anyway, with the assumption {Q0, d} = 0, we require d2 = 0. What does this mean
exactly? d is an open string vertex operator given by a sum in (118). Multiplication of d by
itself means we use the operator product algebra for open strings. The first thing to note is
that the boundary conditions must make sense in order to obtain a nonzero result: an open
string A → B can only combine with an open string C → D to produce a string A→ D if
B and C represent the same D-brane. Secondly, we stated in section 2.3 that the operator
product was given by simple wedge product between forms. Here we are simply multiplying
zero forms valued in a group of homomorphisms. Thus the operator product is simply a
composition of these homomorphisms. The result is that d2 = 0 implies that

dn+1dn = 0 for all n. (123)

In other words we have a complex

. . .
dn−1

E n dn
E n+1 dn+1

E n+2 dn+2

. . . , (124)

which we denote E • for short.
A B-brane is therefore more generally represented by a complex of locally-free sheaves.

The maps in the complex represent a deformation from the initial simple collection of sheaves.
Note that a sheaf E itself is a complex in a rather trivial way:

. . . 0 0 0
E

0 0 0 . . . (125)

Our convention, in this context, will be to assume that E is in position 0 of the complex.
So, a contender for the objects in our category of B-branes appears to be complexes of

locally-free sheaves. This will turn out to be the correct answer but we will need to quotient
out by a large set of equivalences. That is, two different complexes may represent the same
B-brane. In the language of categories this means that two complexes are related by an
invertible morphism, i.e., they are isomorphic. Thus, it is by analyzing the morphisms, i.e.,
open strings, that we will know if two complexes represent the “same” B-brane.

5.2 Open strings

The deformation above will also affect the spectrum of open strings between the B-branes.
In this section we compute the corresponding Hilbert spaces of open string states.
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Initially let us assume that the open strings come from a B-brane that is a complex and
goes to a B-brane that is just a locally-free sheaf. To be more precise, suppose, for simplicity,
we have a collection of locally free sheaves E 0, E 1, . . . and another locally-free sheaf F . Let
E n have ghost number n and F have ghost number 0. Now deform the theory by turning
the collection of E ’s into a complex (124) with boundary maps dE

n . We want to consider the
open strings E • → F .

Suppose F has an injective resolution

0 F I 0 I 1 I 2 . . . (126)

We now construct the double complex Ep,q
0 = Hom(E −p,I q):

...
...

...

. . .
dE
2

Hom(E 2,I 2)
dE
1

Q0

Hom(E 1,I 2)
dE
0

Q0

Hom(E 0,I 2)

Q0

. . .
dE
2

Hom(E 2,I 1)
dE
1

Q0

Hom(E 1,I 1)
dE
0

Q0

Hom(E 0,I 1)

Q0

. . .
dE
2

Hom(E 2,I 0)
dE
1

Q0

Hom(E 1,I 0)
dE
0

Q0

Hom(E 0,I 0)

Q0

p

q

(127)

The maps in this sequence are the obvious ones induced by the complexes (124) and
(126). We label the vertical maps Q0 since we know, by the definition of Ext in section
4.2.4, that cohomology in this direction produces the open string Hilbert spaces before the
deformation d is turned on.

Clearly we have something that looks just like the spectral sequence construction of
section 4.2.2. The only difference is that we have made p negative to make the horizontal
maps point to the right. Note that nothing in the spectral sequence construction in section
4.2.2 depended on the positivity of p and q. The required anti-commutivity of the differentials
is given by Q2 = 0 as we saw above.

Thus, a spectral sequence construction applied to (127) yields the total cohomology, i.e.,
the cohomology of Q = Q0 + d, which is exactly what we are after! In keeping with the
notation before the deformation, we denote the Hilbert space of open strings of ghost number
q by Extq(E •,F ).

Note that there is no reason why we couldn’t include E n for n < 0 in the complex. It
just made the diagram a little easier to draw.

We need to work a little harder in the case that the string starts on a sheaf E and ends
on a complex F • given by

. . . F 0
dF
0

F 1
dF
1

F 2
dF
2

. . . , (128)
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where each F p has an injective resolution

0 F p I p,0 I p,1 I p,2 . . . (129)

From the definition of an injective object in section 4.1.6 we may prove the following gener-
alization

Theorem 1 Given any maps f : A → B, g : A → I in an abelian category with I an
injective object, a map g′ can be constructed to make the following commutative:

A
f

g

B

g′

I

(130)

so long as g ker(f) = 0.

From this, we may prove that any map dF
p : F p → F p+1 may be extended to a map between

resolutions

0 F p

dF
p

I p,0 I p,1 I p,2 . . .

0 F p+1 I p+1,0 I p+1,1 I p+1,2 . . . ,

(131)

where the vertical set of maps form a chain map, i.e., every square commutes.
We may build a double complex from I p,q if we switch the sign of every vertical map in

(131) to make the squares anticommute. So we build a single complex of injective objects

. . . I n−1 I n I n+1 . . . , (132)

where
I

n =
⊕

p+q=n

I
p,q. (133)

Applying the Hom(E ,−) functor, we obtain Extn(E ,F •) as the cohomology of the induced
complex

. . . Hom(E ,I n−1) Hom(E ,I n) Hom(E ,I n+1) . . . (134)

Clearly the general case, Extn(E •,F •), must be computed by a triple complex Ep,q,s
0 =

Hom(E p,I q,s). The Hilbert space of open strings is then given by the cohomology of this
with respect to Q = Q0 + dE + dF .

To compute this we collapse the double complex I q,s into a single complex I q as in (132).
Now we have a double complex given by Ep,q

0 = Hom(E p,I q) from which Extn(E •,F •) may
be found.
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Note that this Hilbert space Extn(E •,F •) of open strings of ghost number n from E •

to F • occurs commonly in homological algebra and is known as the hyperext group (see
chapter 10 of [58] for example).

Let us introduce the useful notion of shifting for complexes. Let F •[n] denote the
complex F • shifted n places to the left.25 Thus, if the qth position of F • contains F q, the
qth position of F •[n] contains F q+n. It is then easy to convince oneself that

Extq(E •[m],F •[n]) = Extq−m+n(E •,F •), (135)

i.e., these shift operators just change the ghost number of the B-branes.
It would seem sensible to define Hom(E •,F •) = Ext0(E •,F •). Doing this actually

defines the category of B-branes. We know what the objects are, namely complexes of
locally-free sheaves, and now we’ve defined the morphisms. We should check, of course, that
the morphisms satisfy the axioms of a category. This is not hard to do and we leave it as an
exercise for the reader.

5.3 The derived category

Logically speaking, we have achieved our goal. Section 5.2 completely defined a category of
B-branes. Practically speaking, however, we need to analyze the mathematical structure of
this category in order to extract useful information about it. In particular, we would like a
more intrinsic description of it.

We constructed the category of B-branes by using the right-derived functor Ext. A
category in which the morphisms are obtained from the derived functors of some other
category, as above, is called a derived category for obvious reasons.

The definition of the derived category proceeds as follows. We begin with an abelian
category C. The derived category of C, denoted D(C) has objects consisting of complexes of
objects of C. We will denote these chain complexes E •, etc., as in the last section. If we
were being careful, we would distinguish the case where these complexes had finite length
and call it the “bounded derived category”. As it is, we will be sloppy and implicitly assume
this finiteness condition most of the time.

We will build up the set of morphisms in two stages. As we saw in section 5.2, a chain
map is defined as a map between complexes such that all squares commute. Given two chain
maps f, g : E • → F • we define a chain homotopy from f to g as a set of maps {hn} such
that we have a diagram

. . .
dE

n−2

E n−1
dE

n−1

fn−1,gn−1

hn−1

E n
dE

n

fn,gn

hn

E n+1
dE

n+1

fn+1,gn+1

hn+1

. . .

hn+2

. . .
dF

n−2

F n−1
dF

n−1

F n
dF

n

F n+1
dF

n+1 . . . ,

(136)

25Beware! All sane people define the shift as being to the left but that doesn’t include everyone.
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with fn − gn = dF
n−1hn + hn+1d

E
n for all n.

The first set of morphisms that we include in the derived category consists of the set of
chain maps modulo chain homotopies.

Comparing to section 5.2, the reader might like to check that, given a general map
between two chains E • and F •, a map that is a chain map will be Q-closed, and that
two chain maps differing by a chain homotopy differ by something Q-exact. Thus these
morphisms do give part of the set of morphisms in the category of B-branes.

Given a chain map f : E • → F •, we induce a map fn
∗ : H n(E •)→H n(F •) between the

cohomologies of the complexes. We should emphasize that we do not mean sheaf cohomology,
but rather the cohomology in the sense of abelian categories in section 4.1.5. Thus, for the
category of OX-modules, the objects H n(E •) are sheaves — hence the notation.

A chain map is called a quasi-isomorphism if the induced morphisms fn
∗ are isomorphisms

in the category C for all n. If the morphism f is a quasi-isomorphism, we add another
morphism f−1 to the derived category which composes with f to give the identity. Adding
in all these inverse morphisms finally constructs the derived category D(C). Thus the derived
category looks somewhat like

A
f≈

B
f−1 g

C

k−1

D
h

E

k≈
(137)

where A,B, . . . are chain complexes; f, g, . . . are equivalence classes of chain maps modulo
homotopy; and ≈ denotes a quasi-isomorphism.

Adding in these inverses makes a lot of objects in D(C) isomorphic. To be precise, any
two objects are isomorphic if the complexes are related by a sequence of quasi-isomorphisms
E •

1 → E •
2 ← E •

2 ← E •
3 → . . .← E •

m, where the arrows may point in either direction.
Note that any complex E • obviously has the same cohomology as the sequence given by

the cohomology itself, i.e., the following complex with zero morphisms:

. . .
0

H 0(E •)
0

H 1(E •)
0

H 2(E •)
0

. . . , (138)

However, it is not necessarily true that there is a chain map in either direction between E •

and (138). Thus, in general, a complex need not be quasi-isomorphic to its cohomology.
This very important fact leads to the complicated structure of the derived category.

Suppose C is the abelian category with objects corresponding to complex linear vector
spaces and morphisms corresponding to linear maps. In this case, there is always a quasi-
isomorphism between a complex and its cohomology and thus the derived category takes on
a simple form. Every isomorphism class of objects is determined by its cohomology. We
emphasize again though that this simplification does not happen in a more general case,
such as sheaves.

Let’s see what these quasi-isomorphisms do in the B-brane category. The first thing we
should note is that the category of locally-free sheaves is not abelian. In order to compute
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the cohomology of a complex we need a larger abelian category in which the category of
locally-free sheaves is embedded. We may take this to be OX-modules for example.

Consider the double complex Ep,q
0 = I p,q that we constructed in (131) for the complex

F •. Applying the spectral sequence construction we obtain Ep,0
1 = F p and Ep,q

1 = 0 for
q > 0. It follows that Ep,0

2 = Ep,0
∞ = H p(F •) and thus the total cohomology of this

complex is given by H n(F •). Of course, the total cohomology of this double complex is,
by construction, the cohomology of the single combined complex given in (132). The means
that the injective resolution in (131) is equivalent to the statement that

. . . F n
F n+1 F n+2 . . .

. . . I n
I n+1 I n+2 . . .

(139)

is a quasi-isomorphism. We also say that this quasi-isomorphism represents an injective
resolution of the complex F •.

Now, if we have a quasi-isomorphism E • → F •, we may compose this chain map with
the quasi-isomorphism (injective resolution) F • → I • to obtain another quasi-isomorphism
E • → I • — but this is clearly an injective resolution again. Thus I • represents an injective
resolution of both E • and F •!

Referring back to all the computations in section 5.2, where we used these injective resolu-
tions, it should now be fairly clear that any two complexes related by a quasi-isomorphism are
isomorphic objects in the category of B-branes. If E • and F • are quasi-isomorphic, the con-
struction of Hom(E •,F •) = Ext0(E •,F •) is identical to the construction of Hom(F •,F •)
and thus contains a natural “identity” element, as does Hom(F •, E •) and these elements
are naturally inverses to each other. Thus the quasi-isomorphisms are invertible — just like
the derived category.

Given two objects E • and F • in the derived category, how might we go about computing
the set of morphisms Hom(E •,F •)? We can chase the inverted quasi-isomorphisms as
follows. Suppose we have a third object E •

1 with the following chain maps

E •
1

f

≈

F •

E •

(140)

where ≈ denotes a quasi-isomorphism. These maps do not imply the existence of a chain
map E • → F •, but in the derived category the map f will contribute to Hom(E •,F •) since
it may be composed with the inverse of the quasi-isomorphism.

Thus to compute Hom(E •,F •) we need to look at chain maps between all objects quasi-
isomorphic to E • and F •. To actually carry this process out is hopelessly impractical.
Thankfully there is a often a better way.

Suppose the abelian category C is such that all objects have an injective resolution. Thus,
for any complex F •, we have a quasi-isomorphism F • → I •, where I • is a complex of
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injective objects. With a bit of effort, one may then show (see sections 3.10 and 3.11 of [81]
or chapter 10 of [58]) that Hom(E •,F •) is equal to the set of chain maps from E • to I •

modulo chain homotopies.
But wait! This is exactly how we were computing the Hilbert space of open strings

Hom(E •,F •) in section 5.2. Thus, to be almost precise, the category of B-branes is the

derived category of locally-free sheaves.

5.4 Coherent sheaves

So what’s wrong with the last statement in the previous section? The objects in the category
of B-branes are indeed complexes of locally-free sheaves and the morphisms are computed
exactly in the manner of the derived category.

The only problem is that the way we defined the derived category, we had to begin
with an abelian category. This was necessary so that we could take the cohomology of the
complex and thus define the notion of a quasi-isomorphism. Locally-free sheaves do not
form an abelian category since they do not contain their own cokernels. The way we defined
quasi-isomorphisms was to embed the category of locally-free sheaves into the category of
OX-modules where the cohomology was defined.

This is only really a cosmetic problem. To be pedantic we should replace the category
of locally-free sheaves by the minimal abelian full subcategory of OX-modules containing
locally-free sheaves. In section 4.1.6 we saw that this is the category of coherent sheaves.
We have thus proven that26

The category of B-branes is the derived category of coherent sheaves D(X).

This was first conjectured by Kontsevich [73]. This proof is an improved version of an
argument in [82] which, in turn, was based on ideas by Douglas [83].

We should emphasize that we have added nothing by going from locally-free sheaves to
coherent sheaves. On a smooth space, any coherent sheaf A has a locally-free resolution,
i.e., an exact sequence27

0 F−3 F−2 F−1 F 0 A 0, (141)

where each F k is locally free. This is nothing but a quasi-isomorphism, F • → A , between
a complex of locally-free sheaves and a coherent sheaf. Similarly, any complex of coherent
sheaves is quasi-isomorphic to a complex of locally-free sheaves.

We saw in section 4.1.6 that an example of a coherent sheaf looked a lot like a 0-brane.
Since we have now shown that all coherent sheaves are B-branes, we will assert that it really
is the 0-brane.

26If we kept track of finiteness of complexes, we would assert that it is the bounded derived category.
27The maximal length of this resolution is given by the dimension of X [74], and thus we know we need

go no further than F−3.
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Suppose we have an embedding i : S →֒ X, and we are given a sheaf E on S. In section
4.2.1 we defined a sheaf i∗E on X. This naturally embeds the set of sheaves on S into the
sheaves on X.

One might be forgiven for thinking that, if E is a locally-free sheaf associated to a
vector bundle E, then i∗E would represent a B-brane wrapping the cycle S with vector
bundle E → S. It turns out that this is not true. This may be traced to the Freed–
Witten anomaly [84]. To get the correct answer requires an explicit analysis of the vertex
operators in the topological field theory for the 2-cycles and 4-cycles as was done by Katz

and Sharpe [85, 86]. The sheaf i∗E corresponds to a “bundle” E ⊗ K− 1
2

S , where KS is the

canonical line bundle of S. Note that if S does not admit a spin structure, then E ⊗K− 1
2

S is
a “twisted bundle” in the sense that its first Chern class is not integral. This is in agreement
with [84].

To recap, we only needed to consider 6-branes in order to find the correct category for
all B-branes. That said, the precise identification of which sheaves correspond to 2-branes
and 4-branes requires the further analysis of [85, 86].

It should be noted that there are many many more coherent sheaves on X than these
wrapped branes i∗E . Indeed, the derived category D(X) itself is a vast thing encompassing a
good deal more than one would expect for B-branes. This is because we have yet to analyze
the stability of the B-branes — something the B-model knows nothing about. A physical
D-brane in the untwisted theory will only correspond to stable objects in some sense and
this condition will rule out the vast majority of objects in D(X).

In this proof of B-branes being described by the derived category D(X) we should note
we assumed that B-branes really are described by a category. In particular, we assumed that
two B-branes which are isomorphic in the category are the “same” B-brane. It is probably a
deep philosophical question as to when two abstractly-defined D-branes are the “same” in a
strict sense. All we can say is that, within the language of the data of topological field theory,
two B-branes which are isomorphic in D(X) are indistinguishable. If someone wishes to add
extra data beyond the topological field theory, then it could be that two quasi-isomorphic
complexes represent different D-branes.

5.5 More deformations

In section 5.1 we only considered deformations arising from Hom(E n, E n+1). The obvious
question to ask is whether there are any more deformations which can take us outside the
derived category.

For example, we could turn on some open strings corresponding to gn ∈ Ext3(E n, E n−2)
to produce a more complicated “complex”:

. . .
dn−1

E n dn
E n+1 dn+1

gn+1

E n+2 dn+2

gn+2

. . .
gn+3

(142)
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This actually produces nothing new. To see this first replace the complex E • by a quasi-
isomorphic complex I • of injective sheaves. Now use the definition of Ext in section 4.2.4
and we see that the strings gn are converted into maps gn : I n → I n+1 returning us to the
case considered in section 5.1.

About the most general deformation we may consider is as follows. Suppose we have
two D-branes given by complexes E • and F •. Assuming the ghost numbers of the com-
ponents were not affected by turning on the differentials, an open string corresponding to
f ∈ Hom(E •[−1],F •) will have ghost number one. Thus we may consider a deformation
given by f . It is easy to see that this produces a new combined complex:

. . .
E −1

⊕
F−1

(

dE 0
f dF

)

E 0

⊕
F 0

(

dE 0
f dF

)

E 1

⊕
F 1

. . . (143)

This construction is well-known in the context of the derived category and is known as the
mapping cone of f . We refer to [87] for a nice account of why it has this name. We denote
the new complex in (143) as Cone(f : E •[−1]→ F •) or just Cone(f).

The cone construction encompasses almost all the deformations we can consider. For
example, a complex itself can be considered an iterated cone:

E
• = . . .Cone(d2 : Cone(d1 : Cone(d0 : E

0 → E
1)→ E

2)→ E
3) . . . , (144)

where we think of a sheaf as a complex with a single entry.
The only exception to this rule is the case of deformations given by Ext1(E n, E n). Adding

such a vertex operator to the action simply deforms E n itself. This is not quite the same
thing as forming Cone(f : E • → E •[1]) in the derived category although the concepts are
very closely related. In the latter case we are turning on a string between E • and a second
copy of this D-brane whereas in the former case there was an open string beginning and
ending on the same D-Brane. What Cone(f : E • → E •[1]) actually represents is a family
of infinitesimal deformations of E • rather than the deformed E •. We refer to [88] for more
details on the theory of deformations.

There is an interesting feature of the deformations we are considering which is worth
discussing. Suppose we turn on a nonzero map f : E 0 → E 1. Clearly we can rescale this
map by a nonzero number c ∈ C. There is now a quasi-isomorphism

. . . 0 E 0
f

1

E 1

c

0 . . .

. . . 0 E 0
cf

E 1 0 . . . ,

(145)

and so the deformations f and cf represent the same B-brane.28 We may use this feature
to justify our assumption that the maps d in section 5.1 were infinitesimal since their scale
doesn’t matter at all!

28Note that this is not true if c = 0.
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Thus, as the deformation f is turned on from zero, we suddenly obtain the new D-brane
and any increase in f makes no difference. Such discontinuous behaviour is common in
algebraic geometry and therefore it should come as no surprise that B-brane exhibit such
behaviour. In the untwisted theory one might expect more continuous behaviour and in
section 6.2.3 we will see that this is so.

5.6 Anti-branes and K-Theory

One of the key steps in arriving at the derived category picture was associating a ghost
number with each B-brane in section 5.1. How physical is this? That is, is there much of a
difference between a B-brane associated to the complex E • and a B-brane associated to the
shifted complex E •[n] for some n?

Relative shifts certainly matter. We have

Hom(E •,F •) 6= Hom(E •,F •[n]), (146)

for generic E •,F • and nonzero n.
If we shift all the complexes by the same n then there is no change in the physics. That

is,
Hom(E •,F •) = Hom(E •[n],F •[n]), (147)

and there is no change in any of the operator products. Thus, it looks like there is a gauge
symmetry of the theory associated to a global shift of the complexes by any integer.

While this is essentially correct, there is a subtlety used in the language of D-branes that
makes it preferable to state the gauge symmetry in a different way. Consider a complex as
follows:

. . . 0 E
c

E 0 . . . , (148)

where the nontrivial map is given by multiplication by c ∈ C. If c 6= 0, the complex (148) is
quasi-isomorphic to zero. That is, the two E ’s in (148) cancel out. In other words, the E on
the left is the “anti-brane” of the E on the right. Turning on c must represent a “tachyon
condensate” in the sense of Sen [89] which performs the cancellation. We will have much
more to say about such tachyons in section 6.1.3 and 6.2.3.

The generalization of this cancellation is that the mapping cone of the identity map
Cone(id : E • → E •) is quasi-isomorphic to zero for any complex E •. From section 5.5 it
follows that E •[1] represents the anti-brane to E •. The gauge symmetry is therefore stated
as follows [83]

The B-model is subject to a gauge symmetry generated by simultaneously shift-
ing all the B-brane complexes one place to the right (or left) and exchanging
the notion of D-brane and anti-D-brane.
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We should warn that this anti-brane language is a little crude and can lead to misleading
statements. For example E •[1] is the anti-brane to E •, and E •[2] is the anti-brane to E •[1]
in the above sense. It does not follow that E • and E •[2] are the same D-brane, however,
since Hom(E •,F •) is not generically equal to Hom(E •[2],F •).

This gauge symmetry means that any intrinsic physical property associated to a D-brane
E • is also given to E •[n] for any n. This would include mass, stability (to be discussed later),
etc. Thus, if a particular D-brane E • becomes massless at a given point in moduli space, all
the D-branes E •[n] become massless. However, it does not mean that an infinite number of
D-branes has become massless in a physically meaningful way, since all these D-branes are
gauge equivalent. For counting purposes the collection {E •[n] : n ∈ Z} is one D-brane!

The fact that D-brane/anti-D-brane annihilation is built into the derived category de-
scriptions means that we can map the derived category to Witten’s K-theory language for
D-branes [90]. To do this we basically disregard all the information contained in the mor-
phisms. We saw above that we could deform two D-branes E •[−1] and F • into a single
D-brane represented by the cone of a morphism f : E •[−1] → F •. Thus the B-brane
Cone(f) is composed of E •[−1] and F •, where E •[−1] is an anti-E •. We may therefore
assert that

[Cone(f)] = [F •] + [E •[−1]]

= [F •]− [E •],
(149)

where [ ] represents some kind of “class” of a D-brane. We may define an abelian group
K (X) which is generated by all the objects in D(X) and we divide out by all relationships of
the form (149) for all possible mapping cones. This group K (X) is called the “Grothendieck
group” ofX (see page 77 of [75] for more details). The Grothendieck group was also discussed
in [91] in the context of D-branes.

We may naturally map the derived category to K-theory as follows. Using locally-free
resolutions we may replace any complex by a quasi-isomorphic complex E • of locally-free
sheaves. We may then construct the K-theory object

. . .⊖ E−1 ⊕ E0 ⊖E1 ⊕ E2 ⊖ . . . , (150)

where Ei is the holomorphic vector bundle associated to E i. One can show that this leads
to a well-defined map K (X)→ K(X). Note that this map need not be surjective. K(X) is
generated by all vector bundles whereas we have restricted attention to holomorphic vector
bundles. This is because we have focused only on B-branes, which are essentially BPS. The
full K-theory might require some non-BPS branes in order to generate all possible classes.

Anyway, we should emphasize that K-theory contains much less information than the
derived category. For example, all 0-branes on X would be represented by the same K-theory
element. In contrast, two 0-branes corresponding to distinct points in X are associated to
non-isomorphic objects in D(X). We like to think of K-theory as a “poor man’s derived
category” that knows only about D-brane charge.

A more precise notion of D-brane charge may be defined from the world-volume of the D-
brane. This may be computed by anomaly inflow arguments following [92–94]. This subject
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is covered by Harvey’s lectures at this TASI meeting and so we may refer to [95] and be brief
here. A D-brane corresponding to a vector bundle E is given a charge

Q(E) = ch(E)
√

td(X), (151)

where ch(E) is the Chern character of E and td(X) is the Todd class of the tangent bundle
of X. Note that Q(E) is an element of Heven(X,Q). It follows from above that this extends
to the derived category by

Q(E •) = ch(E •)
√

td(X), (152)

where
ch(E •) = . . .− ch(E−1) + ch(E0)− ch(E1) + ch(E2)− . . . (153)

In section 5.4 we argued that a D-brane wrapped on S was given by a coherent sheaf
i∗E . The charge of such a D-brane can be computed using the Grothendieck–Riemann–Roch
theorem. In the special case that we have an embedding i : S → X, this asserts that

ch(i∗E ) td(X) = i!(ch(E ) td(S)), (154)

where i! is defined on cohomology as P · i∗ · P−1, where P is Poincaré duality and i∗ in
this latter context is the natural map induced by i on homology. It follows that, for any
C ∈ Heven(X), we have the following formula

∫

X

C ·Q(i∗E ) =

∫

S

ch(E )

√

td(S)

td(N)
· i∗C, (155)

where N is the normal bundle of S in X.
That said, in section 5.4 we also saw that i∗E corresponds to a B-brane given by a

(twisted) bundle E ′ = E ⊗K− 1
2

S over S, where E is the bundle associated to E . Using the

relation td = exp(1
2
c1)Â and the fact that c1(X) = 0, we may therefore rewrite (155) as

∫

X

C ·Q(i∗E ) =

∫

S

ch(E ′)

√

Â(S)

Â(N)
· i∗C, (156)

which is the formula one would arrive at via anomaly consideration [95].

5.7 Mirror symmetry restored?

If the A-model on Y is “the same” as the B-model on X, then it would appear that we have
motivated the proposal that the Fukaya category on Y is equivalent to D(X), the derived
category on X. That was Kontsevich’s original proposal. It turns out that there is still a
small fly in the ointment, as we discuss in section 6.2.2, but this proposal seems to be very
close to the truth. In this section we note a few miscellaneous features of how well this
mirror symmetry works.
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The D-brane charge of an A-brane is simply given by its homology class in [Li] ∈ H3

multiplied by the rank of the bundle over the Lagrangian. Let us denote the Poincaré dual of
[Li] by li ∈ H3(X). Note that we have a natural symplectic inner product on these charges
given by the oriented intersection number #([L1] ∩ [L2]). It can be shown [64] that the
orientations of the points of intersection in figure 4 are opposite if the difference in their
ghost numbers is odd. Thus the intersection number is given by the Euler characteristic of
the complex (52). That is,

#([L1] ∩ [L2]) =

∫

Y

l1 · l2

=
∑

i

(−1)i dim Homi(L1, L2).
(157)

If the Lagrangian Li is mirror to a complex E •
i then the right-hand-side of (157) is clearly

mirror to the alternating sum of dim Exti(E •
1 , E

•
2 ). The Hirzebruch–Riemann-Roch theorem

says that this is given by

∑

i

(−1)i dim Exti(E •
1 , E

•
2 ) =

∫

X

ch(E •
1 )∨ · ch(E •

2 ) · td(X)

=

∫

X

Q(E •
1 )∨ ·Q(E •

2 ),

(158)

where, if ω is a 2p-form, then ω∨ = (−1)pω. Thus we see a very nice agreement for the
pairing between A-brane charges and B-branes charges. Note that the “∨” is necessary in
(158) to get a symplectic inner product.

The tadpole cancellation condition in section 3.1.3 produces two interesting aspects of
the moduli space of A-branes:

1. First-order deformations of the Lagrangian, which correspond to H1(L), may be ob-
structed and do not lead to genuine A-brane deformations.

2. Some A-branes may depend on very special values for B+ iJ and disappear completely
for generic B + iJ .

The mirror statements in the B-model are both true:

1. The first-order deformations of coherent sheaves, which correspond to Ext1(E , E ) can
be obstructed. We refer to [96] for examples.

2. There are some sheaves which only exist for special values of complex structure. An
example of this is given by 2-branes wrapped around an algebraic curve of high genus
in X [97].

This subject was also analyzed in [51, 52]. Note that this is a typical example of mirror
symmetry in that instanton effects (i.e., tadpoles) in the A-model are mapped to effects in
the B-model that can be understood from classical geometry.
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A-model B-model

Geometry Symplectic (no complex structure) Algebraic (no metric)

Category Fukaya category Derived category

D-branes Lagrangians Complexes of coherent sheaves

Open strings Floer cohomology Ext’s

Dependence B + iJ complex structure

Charges li ∈ H3 ch(E )
√

td(X) ∈ Heven(X) or K(X)

Table 1: Mirror symmetry for A-branes and B-branes.

In table 1 we review the picture of mirror symmetry that we have obtained so far. The
reader might be a little disappointed to note that we haven’t actually used the more exotic
elements of the derived category in this discussion of mirror symmetry — everything was
done for coherent sheaves. We will give a very explicit example that requires a nontrivial
complex in section 7.1.3.

6 Stability

So far we have dealt with D-branes in the context of topological field theory. This was
sufficient to understand the origins of the Fukaya category in the case of A-branes and the
derived category in the case of B-branes. In the untwisted theory it is the D-branes that
correspond to BPS states that descend to D-branes in the topological field theory. Having
said that, the BPS condition is stronger than that imposed on branes in the topological field
theories. In order for an A-brane or a B-brane to correspond to a BPS state in the untwisted
theory we need to impose a further condition — namely “stability”.

The purpose of studying stability is two-fold. As we just said, in order to make contact
with the “real world”, i.e., the untwisted theory, a D-brane must be stable. In addition,
stability makes us study a mathematical structure on the categories of D-branes, i.e., “dis-
tinguished triangles”, that provides further insight into the intrinsic structure of the D-brane
categories.

Stability of D-Branes was also studied in [98,99] using a quite different method than we
employ here.

6.1 A-Branes

6.1.1 Special Lagrangians

The spacetime supersymmetry arises from the spectral flow operators discussed at the end
of section 2.1. These are associated with the holomorphic 3-form Ω on X as in (11). The
N = 2 spacetime supersymmetry arises because we have a spectral flow operator in the left-
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moving and right-moving sector. The boundary conditions on the open string destroys the
independence of these sectors and the best we can do is to preserve an N = 1 supersymmetry.
To do this we can set

Σ = exp(−iπξ)Σ̄, (159)

on the ends of the string, where 0 ≤ ξ < 2. The parameter ξ measures “which” N = 1
spacetime supersymmetry is preserved from the original N = 2.29

This boundary conditions given by Ri
̄ in section 3.1.1 imply that this is given by

Ω|L = exp(−2iπξ)Ω̄|L, (160)

on the A-brane L. In section 3.1.1 we noted that Ω|L was equivalent to the real volume
form on L up to some complex constant. This means that our choice of the real parameter
ξ coincides with that of (42). That is,

ξ =
1

π
arg

Ω|L
dVL

. (161)

The key issue is that the parameter ξ must be the same at all points on the Lagrangian L
in order for the same spacetime supersymmetry to be preserved everywhere. A Lagrangian
for which ξ is a constant is called a special Lagrangian. Thus it is the special Lagrangians
which correspond to BPS states as first observed in [100].

Note that if ξ is a constant, then we may rewrite (161) as

ξ =
1

π
arg

∫

L

Ω. (162)

Note also that Ω is only defined up to a complex constant so the value of ξ might appear
somewhat meaningless. Indeed, the standard definition of a special Lagrangian is to put
ξ = 0 and so assert that the real part of Ω|L is zero. We will need the idea of comparing
values of ξ between different special Lagrangians and so we retain the notion here, although
one should always bear in mind that only relative values of ξ have any meaning.

In section 3.1.2 we gave a very specific definition of an A-brane. In addition to being
a Lagrangian it had to satisfy two extra condition. It should be obvious that the map ξ∗
in (43) is trivial and thus the Maslov class condition is automatically satisfied for a special
Lagrangian. The second condition concerned the tadpole cancellation. This, in general, is
not automatically satisfied in the special Lagrangian case and so remains an extra condition
to be imposed.

It is very easy to motivate the idea that special Lagrangians are BPS states. A special
Lagrangian is a calibrated submanifold in the sense of Harvey and Lawson [101]. The details
of this definition need not concern us but the useful fact is that any calibrated submanifold

29N spacetime supersymmetries give a U(N) R-symmetry. One might therefore expect a U(2)/ U(1) choice
of N = 1 supersymmetries in N = 2. However, the spectral flow picture of N = 2 spacetime supersymmetry
only sees a U(1)×U(1) subgroup of the R-symmetry so the parameter only lives in U(1).
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automatically minimizes the volume of any manifold in its homology class. Thus, if we think
of a D-brane as some kind of membrane with a tension, a D-brane that wraps a special
Lagrangian submanifold is clearly stable. Note that there is no reason to suppose that all
minimal 3-manifolds in a Calabi–Yau are special Lagrangians, reflecting the fact that not all
stable D-branes are necessarily BPS.

6.1.2 A geometrical decay

Tadpoles aside, in section 3.1.2 we saw that an A-brane (with a line bundle) has a moduli
space given by H1(L). It can be shown [102] that the moduli space of special Lagrangians
is also given by H1(L). Thus, locally, the moduli space of special Lagrangians agrees with
the moduli space of Lagrangians modulo Hamiltonian deformation. At first sight, this might
suggest that in each equivalence class of Lagrangians modulo Hamiltonian deformation there
is a unique special Lagrangian.

This is not actually true. It turns out the vast majority of Lagrangians have no special
Lagrangian equivalent to them by Hamiltonian deformation. From our perspective, the best
way to see this is to consider how special Lagrangians can “disappear”, or “decay”, as the
complex structure of the target space Y is deformed. Note that a Lagrangian submanifold
is defined purely in terms of the symplectic structure of Y induced by the Kähler form and
so has no dependence on the complex structure. Adding the “special” in special Lagrangian
does introduce a dependence on the complex structure.

A quite explicit picture for the decay of special Lagrangians was given by Joyce [103]
which we follow here.

Let us first consider special Lagrangian planes Rm ⊂ Cm. We may specify such a plane
by

Πφ = {(eiφ1x1, e
iφ2x2, . . . , e

iφmxm) : xj ∈ R}. (163)

This plane is determined by the real numbers φj. Using the standard holomorphic m-form
Ω = dz1 ∧ dz2 ∧ . . . ∧ dzm we obtain

ξ(Πφ) =
1

π
arg

∫

Πφ

Ω

=
1

π

m∑

j=1

φj (mod 2).
(164)

If we reverse the orientation of Πφ we shift ξ(Πφ) by one. Such a reversal of orientation
may be viewed as replacing an A-brane by an anti-A-brane. If we forget about the orientation
we are free to restrict the φj’s to the range 0 ≤ φj < π. In this case we have

m∑

j=1

φj = kπ, (165)

for 0 ≤ k < m. We say such an intersection of planes is of type k.
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Let us denote by Π0 the plane for which φ1 = φ2 = . . . = φm = 0. Now consider two D-
branes intersecting transversely at the origin in the form Π0 ∪Πφ. The transverse condition
amounts to φj > 0 for all j. One may therefore interpret these two D-branes as one singular
special Lagrangian so long as the type of the intersection is integral. The fact that such a
configuration is a BPS state was first noted in [104]

If the type of the intersection is 1, this singular A-brane can be written as a limit in
a family of smooth special Lagrangians following Lawlor [105]. A smooth member of this
family is called a “Lawlor neck” and can be described as follows [103,106]. Let

P (x) =

∏m
j=1(1 + ajx

2)− 1

x2
. (166)

Now fix a positive real number A. The positive real numbers a1, . . . , am are then implicitly
and uniquely determined by A and φ1, φ2, . . . , φm by the following equations:

φj = aj

∫ ∞

−∞

dx

(1 + ajx2)
√

P (x)

A =
ωm√

a1 · · ·am

,
(167)

where ωm is the volume of a unit sphere in Rm. These equations impose the condition
∑
φj = π, i.e., type 1. Note that if we include orientations, since the type is odd, we would

say that we have unbroken spacetime supersymmetry if one of the planes is viewed as a
D-brane and the other plane is viewed as an anti-D-brane.

Now define functions ηj : R→ C by

ηj(y) = exp

(

iaj

∫ y

−∞

dx

(1 + ajx2)
√

P (x)

)√

1

aj
+ y2. (168)

This allows the Lawlor neck to be defined as

Lφ,A = {(η1(y)x1, η2(y)x2, . . . , ηm(y)xm) : y ∈ R, xj ∈ R, x2
1 + . . .+ x2

m = 1}. (169)

One can then show that this is a smooth special Lagrangian submanifold of Cm which
approaches Π0 ∪ Πφ as A → 0. This submanifold also asymptotically approaches Π0 ∪ Πφ

as one moves far from the origin. For the precise analytical details of this we refer again
to [103]. Topologically this space looks like a cylinder Sm−1 × R. It is impossible to sketch
this space completely realistically since, for m = 1, the condition

∑
φj = 0 makes the case

trivial, and for m > 1 we are in at least four dimensions. The case m = 2 is shown roughly
in figure 6.

Now suppose we have a Calabi–Yau m-fold Y containing two A-branes L1 and L2 which
intersect transversely at a point p. We may use a U(m) transformation to rotate the tangent
plane of L1 into the standard plane Π0 as above. This same U(m) matrix rotates the tangent
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A= 0 A > 0

Figure 6: The Lawlor Neck.

plane of L2 into Πφ thus defining a type for the intersection as above. Again assume that
the type of intersection is equal to 1.

Let us consider a small deformation of complex structure of Y . Joyce [103] proved that,
close to the point of intersection of L1 and L2, the local geometry could produce a Lawlor
neck to smooth out the neighbourhood of the point of intersection. Let us now spell out in
details exactly what happens.

Suppose L1 and L2 are smooth submanifolds of Y . As we deform the complex structure
of Y we would like to find special Lagrangian submanifolds of the deformed Y which are
the deformed versions of L1 and L2. That is, we would like to be able to follow L1 and
L2 as we deform Y without these D-branes disappearing for some reason. As long as we
consider sufficiently small deformations, we are guaranteed to be able to do this [103, 107].
This means that we may define ξ(L1) and ξ(L2) as real numbers which vary continuously
over the moduli space for small deformations of Y . To be precise, fix the mod 2 ambiguity
in ξ(L1) arbitrarily, then we set ξ(L2) = ξ(L1) + 1 to reflect the fact that the intersection
is type 1. Now ξ(L1) and ξ(L2) are defined over the moduli space of Y at least in some
neighbourhood of the starting point. We will refer to the value of ξ defined in R as the
“grading” of a special Lagrangian.

A wall divides the moduli space into M + and M− corresponding to the sign of ξ(L1)−
ξ(L2) + 1. We begin at a point in the wall. As we deform the complex structure to the M +

side of this wall, the point of intersection is smoothed out by a Lawlor neck for A > 0. On
the other side, M−, no smoothing occurs.

On the M + side of the wall we use the notation L1#L2 to denote the smoothed new
special Lagrangian. Very close to the wall, L1#L2 looks asymptotically like L1 ∪ L2 away
from the point of intersection and the geometry near the point of intersection is replaced
by a Lawlor neck. The notation is intentionally asymmetric since L1#L2 is quite different
from L2#L1. Note that away from the wall, L1 ∪L2 is no longer a special Lagrangian since
the two components have a different value of grading ξ. The smooth space L1#L2 is the
smooth space homological to L1 ∪L2 which minimizes the volume, i.e., energy of a D-brane
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M+

L1#L2

ξ(L2) < ξ(L1#L2) < ξ(L1)+1 L1#L2 is stable.

Wall
L1

L2
ξ(L2) = ξ(L1#L2) = ξ(L1)+1

L1#L2 is marginally
stable.

M− L1

L2
ξ(L2) > ξ(L1) + 1 L1#L2 is unstable.

Figure 7: A-Brane Decay.

wrapped around these cycles. It follows that
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∣
∣
∣
, (170)

and we may choose
ξ(L2) < ξ(L1#L2) < ξ(L1) + 1. (171)

In M− there is no smooth special Lagrangian minimizing the volume of L1 ∪ L2 and
L1 ∪ L2 itself is not a BPS state. Thus spacetime supersymmetry is broken in M−.

To recap, in M + we have a BPS state L1#L2. We also have BPS states L1 and L2

but the mass of L1#L2 is less than the sum of the masses of L1 and L2. As we hit the
wall, L1#L2 becomes L1 ∪ L2. Beyond the wall in M− we only have BPS states L1 and
L2 which together break supersymmetry. What we have just described is a decay of a BPS
state L1#L2 into its products L1 and L2 as we pass from M + into M−. In M + we view
L1#L2 as a bound state of L1 and L2. We depict this story in figure 7.

This is familiar from the standard properties of BPS states in N = 2 theories in four
dimensions as studied, for example, by Seiberg and Witten [108]. We refer to [109] for
background in this subject.

In the above discussion, the period of the holomorphic 3-form is playing the rôle of the
central charge, Z, of the BPS state. That is

Z(L) =

∫

L

Ω. (172)
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This relationship may also be derived from the fact that both Z and the periods are subject
to the same rules of special geometry [29, 31, 108].30

6.1.3 Tachyon condensates

In the previous section we saw a fairly concrete geometrical picture for A-brane decay. The
same decay process can be motivated from a different perspective by using the idea of tachyon
condensation from [89] (see also [110] and references therein).

Consider an intersection of two special Lagrangian planes Π0 and Πφ in Cm as in section
6.1.2. One may analyze the masses of the open strings which begin on Π0 and end on Πφ

following [104] or section 13.4 of [10] (see also [8]). The result is that there are R sector
strings which are always massless and NS sector scalar fields which have a mass

M2 =
1

2π

(
m∑

j=1

φj − π
)

. (173)

These scalars fields are not projected out by the GSO process if one of the D-branes is viewed
as an anti-D-brane.

We now propose an equation which generalizes (164) to remove the mod 2 ambiguity. In
section 6.1.2 we gave a way of defining ξ to be valued in R by demanding continuity over
the moduli space of complex structures at least as long as the associated A-brane did not
decay. If L1 and L2 intersect at a point p with Floer index (i.e., ghost number) µ(p) then

ξ(L2)− ξ(L1) + µ(p) =
1

π

m∑

j=1

φj. (174)

This follows from continuity and the following fact. Suppose L1 and L2 intersect at two
points p1 and p2 and that each Lagrangian has a trivial Maslov class as in section 3.1.1.
Using the arguments of [64] one can show that the difference in µ(p1) and µ(p2) is equal to
the difference in

∑
φj for each point.

The equation (174) ties the ambiguity in defining the ghost number µ(p), which we dis-
cussed in section 3.1.3, to the ambiguity in the definition of the grading ξ. The ambiguity in
µ(p) was fixed by labeling each A-brane L with some integral ghost number µ(L). Borrowing
some notation from the derived category, let L[n] be exactly the same A-brane as L except
that we have increased its ghost number by n. It follows from (55) and (174) that

ξ(L[n]) = ξ(L) + n. (175)

Restricting attention to open strings with ghost number 0, i.e., Hom(L1, L2) in the Fukaya
category, we see that

2M2 = ξ(L2)− ξ(L1)− 1. (176)

30One might also try to derive this relationship directly from (10). See also section 19.3 of [8].
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Thus, comparing to the last section, in M + we have M2 < 0 and so the open string in
Hom(L1, L2) is tachyonic. This is entirely consistent with the fact that there is a ground
state L1#L2 lower in energy than L1∪L2. This tachyon condenses to form L1#L2. In M−

the open string is not tachyonic and no condensation occurs.
The tachyonic condensation picture therefore gives a very simple description of the hard

analysis performed by Joyce reviewed in section 6.1.2. What we would like to conjecture is
that this tachyon picture gives a complete criterion for how A-branes decay as one moves
in the moduli space of complex structures. This is certainly well-motivated from a physics
point of view but the differential geometry required to make such a statement rigorous is
difficult. Progress has been made in this direction in [111, 112] for example.

Note that since 0 ≤ φj < π, it follows from (174) that, if Y is a Calabi–Yau m-fold,

0 ≤ ξ(L2)− ξ(L1) + µ(p) < m. (177)

This relation is nicely consistent with the unitarity of representations of the superconformal
algebra as studied in [13]. Any open string vertex operator in the topological field theory
corresponds to a chiral primary field (in the NS sector) in the untwisted theory in the sense
of [14]. This field must have conformal weight h between 0 and c/6, where c is the central
charge. For a non-linear σ-model, c/3 = m. Finally, a vertex operator for a primary chiral
field of conformal weight h is associated to a mass of M2 = h− 1

2
. Thus, comparing to (173)

and (174), we see agreement.
We emphasize that the A-brane decay process occurs due to deformations of complex

structure of Y . This makes it essentially invisible to the topological A-brane since the latter
depends only upon B + iJ . This is consistent with the fact that, as far as the A-model is
concerned, A-branes are Lagrangian with no special condition applied. Without the special
condition there is no decay process.

Finally in this section we recall from standard string theory analysis that there are
open string states in the NS sector corresponding to vector particles in the uncompactified
dimensions. These have mass

2M2 = ξ(L2)− ξ(L1). (178)

These are therefore always massless when L1 = L2. In other words we have vectors associated
to L1 given by Hom(L1, L1). These are the vectors associated to gauge group present in the
D-brane — to be precise, Hom(L1, L1) is the complexification of the gauge algebra. In the
case of a single irreducible D-brane we expect a U(1) gauge group and thus Hom(L1, L1) = C.
If the gauge group is enhanced, either because we have two distinct D-branes, or because
we have coincident D-branes, the gauge group, and thus Hom(L1, L1) will be bigger. The
fact that the irreducibility of D-brane is equivalent to Hom(L1, L1) = C may be viewed as a
version of Schur’s Lemma in representation theory.

6.2 B-Branes

The message we keep repeating in these lectures is that the B-model should be easier to
analyze than the A-model. While this is true, it doesn’t necessarily mean that the B-model
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A-model B-model

A/B-branes Lagrangians Complexes of coherent sheaves

BPS A/B-branes Special Lagrangians Π-stable complexes

Dependence of corr. funcs. B + iJ complex structure

Dependence of stability complex structure B + iJ

Bound state A#B Cone(A→ B)

Table 2: Mirror symmetry for BPS A-branes and B-branes.

is easier to picture in classical terms. This is particularly true for D-brane decay. In the
case of the A-branes of section 6.1 we have a direct picture of how special Lagrangians decay
as the complex structure is varied. It should be pointed out however that this picture is
very difficult to make explicit in concrete cases. Conversely we will see in this section that
B-brane decay is not classical at all, thanks essentially due to nonperturbative α′ corrections.
This makes it hard to picture and we are forced to introduce more mathematics not familiar
to the typical physicist. Having said that, we can give fairly explicit examples of B-brane
decay.

In table 2 we review how mirror symmetry relates the ideas of stability between the
A-model and B-model. Notice in particular that the rôles of complex structure and B + iJ
are exchanged between the topological field theory dependence and the stability criteria.

6.2.1 Triangles

Just like the A-model, the B-model itself should not know about any stability issue. What
we do demand from the B-model though is some criterion of whether a given object in the
derived category can potentially decay into two other objects.

The discussion of A-brane decay via tachyon condensates in section 6.1.3 showed that,
when we were on the wall of marginal stability, the open string was massless. Thus it acts
like a marginal (but probably not truly marginal) operator in the conformal field theory. In
this sense a decay (or binding) process looks like a deformation. Thus it is the mapping cone
of (143) which defines a potential bound state of two D-branes.

The mapping cone construction in the derived category gives rise to a triangulated struc-
ture on the category. This mathematical structure turns out to be central to the notion of
D-brane stability. The fact we ignored it in section 6.1 turns out to be a problem as we will
see later. So let us now turn to the definition of this triangulated structure.

A triangulated category C is an additive category with two further ingredients:

1. A translation functor T : C → C which is an isomorphism. If A is an object (or
morphism) in C we will denote T n(A) by A[n].

2. A collection of distinguished triangles. A triangle is a set of three objects and three
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morphisms in the form

C

[1]

c

A
a B,

b

(179)

where the “[1]” on the arrow denotes that c is a map from C to A[1].

A triangle may also be written as

A a B b C c A[1]. (180)

A morphism between two triangles is simply a commutative diagram of the form

A
a

f

B
b

g

C
c

h

A[1]

f [1]

A′ a′

B′ b′

C ′ c′
A′[1].

(181)

This data is subject to the following axioms:

TR1: a) For any object A, the following triangle is distinguished:

0

[1]

A
id

A

(182)

b) If a triangle is isomorphic to a distinguished triangle then, it too, is distinguished.

c) Any morphism a : A → B can be completed to a distinguished triangle of the
form (179).

TR2: The triangle (179) is distinguished if and only if

C
c

A[1] [1]
−a[1]

B,

b

(183)

is also distinguished. That is, we may shuffle the edge containing “[1]” around the
triangle translating the objects and morphisms accordingly.

TR3: Given two triangles and the vertical maps f and g in (181), we may construct a
morphism h to complete (181).
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TR4: The Octahedral Axiom:

B

D

[1]

[1]

E

C [1] A

F

[1]

(184)

Four faces of the octahedron are distinguished triangles and the other four faces
commute. The relative orientations of the arrows obviously specify which is which.

The octahedral axiom specifies that, given A,B,C,D,E and the solid arrows in the
octahedron, there is an object F such that the octahedron may be completed with
the dashed arrows. The pairs of maps that combine to form maps between B and F
also commute.

For any abelian category C, the derived category D(C) is a triangulated category. The
translation functor is the same as the shift functor that we introduced earlier of course. The
distinguished triangles are provided by the mapping cone — any vertex of a distinguished
triangle is isomorphic to the mapping cone of the opposite edge when the “[1]” is shuffled
around to the appropriate edge. We refer to [58, 81] for the proof that D(C) satisfies the
above axioms.

Given a short exact sequence

0 A
a
B

b
C 0, (185)

in C, we induce a distinguished triangle (179) in D(C) for the corresponding single-entry
complexes with a and b induced in the obvious way. This short exact sequence can be also
phrased “B is an extension of C by A”. The group of extensions of C by A is given by
Ext(C,A) = Ext1(C,A) (see [113] for example). Thus, the short exact sequence determines
an element c which is a morphism in Ext1(C,A) which equals Hom(C,A[1]) in D(C). This
is the map c in (179). The derived category is not an abelian category since kernels and
cokernels do not always exist. Thus one cannot define short exact sequences in D(C). In
a sense, distinguished triangles are a weaker notion of short exact sequences that are “the
best one can do” for the derived category.

This definition of a triangulated category was invented by Verdier [114] for completely
abstract reasons of course, but it turns out to be precisely what is needed for the rules of
D-brane decay. The basic triangle (179) should be read as the D-branes A and C may bind
via the potentially tachyonic open string c to form B. We may then go through each axiom
in turn and say what it means:
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TR1: a) A binds with 0 (the empty brane) to produce A.

b) We consider two objects in D(X) which are isomorphic to be the same D-brane.
Thus this rule is required for consistency.

c) The existence of an open string from A to B means that B can potentially decay
into A and some other decay product C. This is not obvious but this axiom may
be rephrased after the following.

TR2: If B can potentially decay into A and C, then C can potentially decay into A[1] and
B. This is consistent with the observation in section 5.6 that A[1] could be interpreted
as an anti-A.

Note that using this axiom we may now rephrase TR1: c) as follows. Given an open
string from A to B we may potentially form a bound state of these two D-branes.

TR3: Given open strings between D-branes A and A′ and between B and B′, we may
construct open strings between the corresponding bound states.

TR4: This formidable looking axiom is little more than a statement of associativity in the
rules for combining D-branes. If we crudely write addition to represent rules for
combining, the distinguished triangles in (184) can be read (using TR2) as

C = A[1] +B

= A[1] + (E +D[−1])

= (A[1] + E) +D[−1]

= F +D[−1].

(186)

One may choose to regard these rules for D-brane decay as mainly self-evident, or as proven
since we have proven that the category of B-branes is the derived category and therefore
triangulated.

The triangulated structure encodes the long exact sequences associated to cohomology
as follows. A functor between two triangulated categories is exact if it preserves triangles.
An example of such an exact functor is Hom(M,−) for some fixed object M . This is a
functor from an arbitrary category to the category of vector spaces. As mentioned in section
5.3, the derived category of vector spaces is rather trivial in the sense that every complex is
quasi-isomorphic to a complex where all the differential maps are zero. Using this fact, let
us write the object Hom(M,A) in the derived category of vector spaces as

. . .
0

Ext−1(M,A)
0

Ext0(M,A)
0

Ext1(M,A)
0

. . . , (187)

where the Ext’s are vector spaces. The triangle

Hom(M,C)

[1]

Hom(M,A) Hom(M,B)

(188)
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then becomes the usual long exact sequence of vector spaces

. . . Ext0(M,A) Ext0(M,B) Ext0(M,C) Ext1(M,A) . . . (189)

6.2.2 Categorical mirror symmetry at last

Of course, there is a some vagueness in the word “potentially” whenever we refer to binding
or decay in section 6.2.1. We have stated explicitly above that if there is an open string from
A to B then we regard A+B as a potential bound state. In order for this to actually happen
there must be some region of moduli space where A and B are both themselves stable and
the open string from A to B is tachyonic. This is not guaranteed. Thus, the triangulated
structure appears when one has an optimistic view (which is as much as the topological field
theory can know) about what can bind to what.

Our discussion of A-brane stability in section 6.1 was approached directly rather than
using the topological field theory language. Because of this the Fukaya category need not
have a triangulated structure — it certainly knows about the A-branes which really are
stable but it need not include the potentially stable branes in the topological field theory
which never actually make it to stability. In particular there is no reason to suppose that
the Fukaya category is actually triangulated. That is, it may well violate axiom TR1: c).31

If the Fukaya category is not triangulated then the mirror symmetry proposal in section
5.7 cannot possibly be correct. The derived category D(X) is triangulated and thus cannot
be equivalent to a category which is not triangulated. The solution, of course, is to add the
extra “potentially stable” A-branes to the Fukaya category so that the result is triangulated.
This can be done in a precise mathematical way by following the procedure of Bondal and
Kapranov [115].

If F(Y ) is the Fukaya category of Y , then let TrF(Y ) be the triangulated category
produced by the method of Bondal and Kapranov.32 The current state-of-the-art conjecture
for mirror symmetry which follows from our topological field theory constructions is then:

If X and Y are mirror Calabi–Yau threefolds then the category D(X) is
equivalent to the category TrF(Y ).

We should warn that even this statement is subject to corrections when we go outside the
class of Calabi–Yau threefolds with zero b1 because of the appearance of extra coisotropic
A-branes [46].

This “homological mirror symmetry” statement has been demonstrated for 2-tori [69]
and quartic K3 surfaces [71].

31I thank R. Thomas for discussions on this point.
32This is often called the “derived Fukaya category” but it’s not derived in the sense of complexes etc.
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6.2.3 Π-Stability

Assuming mirror symmetry to be true we may now copy the description of the stability of
A-branes in section 6.1 over to the case of B-branes.

The first ingredient we need is how to compute the central charge Z of a given B-brane.
This author is not aware of a complete argument in the literature for how to compute this,
but we may proceed a little less than rigorously as follows.

The first step is to note that Z is given in the mirror by a period
∫

L
Ω for some 3-cycle

L. This varies with the complex structure of Y . Thus, Z must depend upon B + iJ for
X. We saw in section 2.4 that we can derive the periods exactly from the Picard–Fuchs
equations. These differential equations are written in terms of parameters that specify the
complex structure algebraically, such as the “ψ” in section 2.4. However, we also saw how
to relate such parameters to the complexified Kähler form B + iJ of X. Thus, a knowledge
of the Picard–Fuchs equations is sufficient to obtain exact (but transcendental) expressions
for the set of Z’s for objects in D(X).

Now, given a particular object E • in D(X), the next step is to find which particular
period computed above should be associated to the central charge Z(E •). In the case of the
A-model we may choose some basis γk of H3(Y ) and compute a basis of periods ̟k =

∫

γk
Ω.

The charge, Q, of an A-brane is given by its homology class in H3. Thus, if

Q =
∑

bkγk, (190)

then the central charge is given by
∑
bk̟k. We saw in section 5.6 that the D-brane charge of

a B-brane is given by ch(E •)
√

td(X). Thus, the formula for the central charge of a B-brane
must contain this expression linearly.

We saw in section 3.1.1 that the curvature, F , of a bundle associated to a D-brane is not
really a physical quantity by itself since it is not invariant under the gauge symmetry we
introduced. Instead we must always have the combination B −F . Since ch(E) = Tr eF , the
Chern character by itself it not gauge invariant and must always appear in the combination
e−B ch(E) in any physical quantity. Furthermore, holomorphy of supersymmetric theories
demands that B always appears in the combination B + iJ . All this suggests that the
simplest expression for the central charge should be

Z(E •) =

∫

X

e−(B+iJ) ch(E •)
√

td(X). (191)

Unfortunately this is not, in general, a solution to the Picard–Fuchs equations! However,
it is a familiar situation in mirror symmetry that any expression depending on B + iJ is
subject to quantum α′ corrections. Thus we should regard (191) as the asymptotic form of
Z near the large radius limit. If we know exactly just how asymptotic this formula is, we
have enough information to determine exactly which combination of periods give Z exactly.

The periods are associated to the prepotential in special geometry and so one expects
them to receive corrections in the same way. Such corrections were discussed in [21] and
appear in two ways:
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1. The perturbative corrections will be due to the 4-loop correction in the non-linear σ-
model as analyzed in [116]. These corrections will be three powers of B + iJ less than
the leading term in (191). Thus, in the case of Calabi–Yau threefolds this produces at
most a constant term.

2. The nonperturbative corrections will produce a power series, with no constant term,
in qi = exp 2πi(

∫

Ci
B + iJ) for some basis {Ci} of H2(X).

This finally provides enough information to determine the precise expression for Z(E •).
Having found the central charge we may now proceed with the next stage in copying the

stability condition from the A-brane model. Given E • we may choose a grading ξ(E •) such
that

ξ(E •) =
1

π
argZ(E •) (mod 2) (192)

and demand that ξ(E •) vary continuously with B + iJ so long as E • is stable. Following
(175) we have

ξ(E •[n]) = ξ(E •) + n. (193)

Finally we copy the picture in figure 7 by asserting that if we have a distinguished triangle
in D(X) of the form

C

[1]

c

A
a B,

b

(194)

with A and B stable, then C is stable with respect to the decay represented by this triangle
if and only if ξ(B) < ξ(A) + 1. Also, if ξ(B) = ξ(A) + 1 then C is marginally stable and we
may state that

ξ(C) = ξ(B) = ξ(A) + 1. (195)

We may use axiom TR2 in section 6.2.1 to rephrase this as follows. If A and C are stable
then B is stable with respect to decay into A and C so long as ξ(A) < ξ(C).

These criteria for stability are known as Π-stability and were studied in [83, 117–120].
As stated these rules are not sufficient to determine the set of stable B-branes at a

given point in the moduli space of B + iJ . If we happen to know the set of stable B-
branes (including their gradings) at some basepoint in the moduli space then these rules are
sufficient to determine how the stable spectrum changes as we move along some path in the
moduli space. The following rules are applied

• We begin with a stable set of B-branes together with a value of the grading ξ for
each B-brane. This set must be consistent with the rules of Π-stability. That is,
no distinguished triangle may allow a stable B-brane to decay into two other stable
B-branes.

• As we move along a path in moduli space the gradings will change continuously.

77



• Two stable B-branes may bind to form a new stable state.

• A stable B-brane may decay into other (marginally) stable states.

Note in the last case that a brane may decay into another state which becomes unstable at
exactly the same point in moduli space. This certainly can happen. We also emphasize that
we never make any reference to a value of ξ for an unstable object. This is probably not
defined.

These rules certainly do not imply that the stable set of B-branes is uniquely determined
by a point in the moduli space of B + iJ . In order to determine the stable set we explicitly
specified a path from the basepoint to the desired path. We will see in section 7.1.4 very
explicitly that there is nontrivial monodromy in D(X) which changes the set of stable objects
as we go around loops in the moduli space.

The monodromy occurs because of monodromy in the gradings. This corresponds to B-
branes acquiring zero Z, i.e., zero mass. If a stable B-brane becomes massless it necessarily
induces a singularity in the conformal field theory following the arguments of [121,122]. Let
us define the Teichmüller space T as the universal cover of the moduli space of B + iJ
with these singular CFT points deleted. Thus there should be no monodromy in T and we
expect the set of stable B-branes to be well-defined at any point in T .

The tachyon condensation picture sets the rather discontinuous behaviour of algebraic
geometry that we saw in section 5.5 in a more natural setting. There we found that the
cone of any map Cone(f : A→ B) is invariant under a rescaling of f by a nonzero complex
number. In the tachyon condensation picture, the scale of f is determined by minimizing
the tachyon potential. Thus, when the cone is unstable, f is fixed at zero and when the cone
becomes stable f acquires a definite value depending on the modulus B+ iJ . Thus, the only
discontinuity appears as the cone decays — as one should expect.

There is a consistency condition that any set of stable B-branes must obey. In section
6.1.3 we found a condition (177) equivalent to the unitarity constraint on the conformal field
theory. In B-model language this amounts to

ξ(A) > ξ(B) ⇒ Hom(A,B) = 0. (196)

This removes any states of conformal weight h < 0. By Serre duality (113) it also removes
states with h > m/2 for a Calabi–Yau m-fold.

6.2.4 Multiple decays

Every object in D(X) is either stable or unstable for a given point in the Teichmüller space
of B+iJ . A particle which is unstable must be unstable because it decays into a set of stable
objects. Thus the set of stable objects must be big enough to account for this property. This
puts a stronger constraint on stability than the previous section. For example, having no
stable objects at all would have been consistent with our earlier definition of Π-stability.

If an unstable object decays into 2 stable objects we know how to describe the decay by
a distinguished triangle. We now want to describe a decay of an object into 3 stable objects.

78



W1

W2

q

p0

q

p1

ξ(A1)<ξ(A2)<ξ(A3)

ξ(A3)<ξ(A2)<ξ(A1)

ξ(A2)<ξ(A1)

ξ(A2)<ξ(A3)

ξ(A1)<ξ(A2)

ξ(A3)<ξ(A2)

Figure 8: Walls of marginal stability for a decay into 3 objects.

We use the following octahedron to describe the process:

E2

A3

[1]
f2

[1]

E3

A2 [1]
f1

A1

F

[1]

(197)

Suppose that we begin at a point p0 in the Teichmüller space where ξ(A1) < ξ(A2) < ξ(A3)
and end at a point p1 where ξ(A1) > ξ(A2) > ξ(A3). Thus the open strings corresponding
to f1 and f2 in (197) go from tachyonic to massive as we pass from p0 to p1.

At p0, with respect to the triangles in this octahedron, E2 and F are stable. We may
also declare that E3 is stable (but this isn’t really necessary). Suppose there are two walls
W1 and W2 between p0 and p1 such that ξ(Ai)− ξ(Ai+1) is negative on the p0 side of Wi and
positive on the p1 side of Wi. We depict this in figure 8. Then there are two possibilities to
consider as we move from p0 to p1:

1. We cross W1 and then W2. As we cross W2 the object F will decay into A2 and A3.
At this instant ξ(F ) = ξ(A2) < ξ(A1) so we know that E3 must have already decayed
into F and A1. Thus E3 decays into A1, A2 and A3 by the time we reach p1.
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2. We cross W2 and then W1. As we cross W1 the object E2 will decay into A1 and A2.
At this instant ξ(E2) = ξ(A2) > ξ(A3) so we know that E3 must have already decayed
into E2 and A3. Thus E3 decays into A1, A2 and A3 by the time we reach p1.

Either way, the condition for E3 to decay into A1, A2 and A3 is that

ξ(A1) > ξ(A2) > ξ(A3). (198)

We may generalize this to the case of decays into any number of objects. For any object
E we define the following set of distinguished triangles

0 = E0 E1 E2 · · · En−1 En = E

A1

[1]

A2

[1]

A3

[1]

An−1

[1]

An

[1]

(199)

Then E decays into A1, A2, . . . , An so long as

ξ(A1) > ξ(A2) > . . . > ξ(An). (200)

Thus we motivate the following

Conjecture 1 At every point in the Teichmüller space of B + iJ there is a set of stable
objects in D(X) such that every object E can be written in the form (199) for some n
(meaning it decays into n stable objects) and for stable objects Ak satisfying (200).

Together with the unitarity constraint (196), this is the form of Π-stability proposed by
Bridgeland [123].

Note that we can’t claim to have proven this conjecture since there are many objects in
D(X) which are never stable. The argument at the start of the subsection cannot then be
used to follow the decay. We would also like to include a finiteness condition on n in (199).
This appears to be an additional assumption too.

All that said, Bridgeland’s form of the stability conditions does seem to work very
nicely [123,124] although many aspects are still poorly-understood in the case of Calabi–Yau
threefolds.

6.2.5 µ-stability

In order to determine the set of Π-stable objects it is best if we have a basepoint in the
moduli space of B + iJ from which we may follow paths as in section 6.2.3. The obvious
choice for such a basepoint is near the large radius limit of the Calabi–Yau threefold X.

At the large radius limit we should expect that the classical analysis of D-branes is
valid and therefore that D-branes correspond to vector bundles supported over subspaces
S ⊂ X. Furthermore, we may assume that the world-volume approach to D-branes should
be accurate. We refer to the general literature on D-branes such as [2] for more details.
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For simplicity let us assume that we have a 6-brane wrapping X associated to a holomor-
phic vector bundle E → X with curvature (1,1)-form F . At large radius, the BPS condition
reduces to the Hermitian–Yang–Mills condition [125]. That is, the curvature tensor obeys
the relation

gjk̄F β

αjk̄
= µ(E) · δβ

α, (201)

where α, β are indices in the fibre of E and µ(E) is a real number called the “slope” of E.
Following the analysis of [126], for example, one can integrate (201) and obtain33

µ(E) =
deg(E)

k ·Vol(X)
, (202)

where k is the rank of E and

deg(E) =

∫

X

J ∧ J ∧ c1(E), (203)

is the degree of the bundle E.
As usual, this condition for a supersymmetric vacuum is a first-order differential equation

(in the connection) and is a sufficient condition for a solution of the equations of motion,
i.e., the Yang–Mills condition, which is a second order differential equation.

The Hermitian–Yang–Mills condition (201) depends explicitly on the metric and thus the
Kähler form J . As such, whether we have a BPS solution can depend upon J . The existence
of Hermitian–Yang–Mills connections has been studied by Donaldson [127], and Uhlenbeck
and Yau [126], who proved the following theorem. Let E be the locally-free sheaf associated
to E. The bundle E is said to be µ-stable if every subsheaf F of E satisfies µ(F ) < µ(E ).
We then have:

Theorem 2 A bundle is µ-stable if and only if it admits an irreducible Hermitian–Yang–
Mills connection.

The stability of the BPS B-brane is thus equivalent to µ-stability in the classical limit where
α′ corrections are ignored.

If F is a subsheaf of E then we have a short exact sequence

0 F E G 0, (204)

for some sheaf G . If E is unstable then it decays into F and G .
The lower-dimensional branes can be analyzed similarly. We can focus on a subspace

S ⊂ X and look for stable vector bundles (or twisted bundles if S is not spin) within the
class of bundles on S. The subspaces do not interfere with each other in the following sense.
A bundle on X associated to E cannot decay into a subsheaf F supported only on S since

33Here we are following the conventions of [126] but µ is also often defined to remove the factor of Vol(X)
in (202).
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there is no homomorphism F → E . Equally, a bundle on S cannot decay into a subsheaf
on X since the quotient sheaf G in (204) would have negative rank.

It follows that µ-stability establishes a set of stable B-branes at the large radius limit.
We should now check that this set of stable B-branes is consistent with Π-stability.

From (191) we see that, for large J , the leading contribution to the central charge Z(A)
will be given by the lowest degree differential form in ch(A). The Grothendieck–Riemann–
Roch formula (154) can be used to show that the lowest component of ch(i∗F ) is given by
the (6− 2 dim(S))-form s which is Poincaré dual to S.34 Thus, for large J ,

Z ∼
∫

X

(−iJ)dim(S) ∧ s

∼
∫

S

(−iJ |S)dim(S)

∼ (−i)dim(S) Vol(S),

(205)

yielding
ξ(i∗E ) = −1

2
dim(S) (mod 2). (206)

If we choose the values of ξ to fix the mod 2 ambiguity arbitrarily we will violate the
unitarity condition (177). For example, let OX be the 6-brane wrapping X and let Op

be the 0-brane (skyscraper sheaf) at a point p ∈ X. Thus ξ(OX) = −3
2

(mod 2) and
ξ(Op) = 0 (mod 2). By restricting the value of a function on X to its value at p we see
that Hom(OX ,Op) = C and so we must insist ξ(OX) < ξ(Op) if these B-branes are stable.
Furthermore, by Serre duality, Hom(Op,OX [3]) = C and so ξ(Op) < ξ(OX) + 3.35 So the
only possibility at large radius is that ξ(OX) = ξ(Op)− 3

2
.

A consistent choice is to set

ξ(i∗E ) = −1
2
dim(S). (207)

Let us see what happens at the subleading order in J . We restrict attention to the case
of 6-branes, i.e., locally-free sheaves. Now ch(E ) = k + c1 + . . ., where k is the rank of the
associated vector bundle. Applying (191) we now obtain

ξ(E ) = −3

2
+

1

π
tan−1 µ(E )

2
+ . . . , (208)

where µ(E ) is, again, the slope of the sheaf E introduced above. Note from (202) that
|µ(E )| ≪ 1 in the large radius limit.

The short exact sequence (204) induces the triangle

G

[1]

E F ,

(209)

34Note that dim(S) is the complex dimension of S.
35OX [3] is the complex with OX in position −3 and zero elsewhere.
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in D(X) as explained in section 6.2.1. If we are near the large radius limit, then ξ(E ) and
ξ(F ) are both very close to −3

2
since they are locally-free sheaves. G is either locally free

or supported on a complex codimension one subspace. Thus ξ(G ) is close to either −3
2

or
−1. Since the D-brane charges add according to section 5.6, we have Z(F ) = Z(E )+Z(G ),
which implies that ξ(F ) lies between ξ(E ) and ξ(G ). The Π-stability condition for F

is ξ(E ) < ξ(G ), which is therefore equivalent to ξ(E ) < ξ(F ). By (208) this, in turn, is
equivalent to µ(E ) < µ(F ). Thus Π-stability reduces to µ-stability as first observed in [117].

In [125] some α′ corrections to the Hermitian–Yang–Mills condition were computed. This
brings the D-brane stability condition closer to Π-stability in a sense near the radius limit
but there is a very important qualitative difference between Π-stability and any version of
µ-stability as follows.

µ-stability is defined for the abelian category of coherent sheaves whereas Π-stability is
defined for the triangulated category D(X). When checking for µ-stability one looks for
decay into subobjects E ⊂ F . The notion of subobjects leads to a definite hierarchy within
the category of coherent sheaves. If F can decay into the subobject E (and some other
decay product G ) then there is no way E can decay into something including F . The notion
of a subobject is given by the injective map E → F , i.e., a map with zero kernel. This is
well-defined since kernels always exist in an abelian category.

This hierarchy does not extend to the derived category since we no longer have an abelian
category. Each vertex of a distinguished category may decay into the other two vertices.
This essentially arises due to the possibility of anti-branes as discussed in section 5.6. Thus,
generically within the moduli space of B + iJ we are forced to use the more difficult notion
of Π-stability on a triangulated category. At the large radius limit, however, the stability
structure simplifies and we may use an abelian category instead.

Does this simplification to a useful abelian structure exist elsewhere in the moduli space?
In section 7.3 we will see that this indeed happens for orbifolds. Douglas [83] has suggested
that this might be a key ingredient in a full understanding of Π-stability and some progress
in this direction has been made by Bridgeland [123]. We will not pursue this idea in these
lectures.

7 Applications

7.1 The Quintic Threefold

We are now in a position to give some examples of B-branes and, in particular, how α′

corrections modify the näıve picture of a B-brane as simply a holomorphic submanifold of
X. The obvious place to start is the quintic threefold, as introduced in section 2.4, since the
moduli space of B + iJ is one-dimensional. As emphasized in table 2, since we are focusing
on stability, rather than the structure of the topological field theory, we need to exchange
the rôles of X and Y relative to section 2.4. That is, in this section X is the quintic threefold
and Y is its mirror.
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7.1.1 Periods

The first thing we analyze is how to compute the exact form of the central charge Z for
any object E • in D(X). We argued in section 6.2.3 that Z was always a period of Ω on the
mirror Y .

Since dimH3(Y ) = 4, we have 4 independent periods
∫

Γ
Ω for the holomorphic 3-form

Ω. These periods satisfy the Picard-Fuchs equation (34). In terms of the moduli space
coordinate z introduced in section 2.4 we may use the following solutions (as in [21]):

̟j = −1
5

∞∑

m=1

α(2+j)mΓ(m
5
)

Γ(m)Γ(1− m
5
)4
z−

m
5 . (210)

Since ̟0 +̟1 + . . .+̟4 = 0, we may use ̟0, . . . , ̟3 as a basis.
These solutions may be analytically continued by using the Barnes’ integral method

(see [35, 39] for the precise method we have used here) to match this basis with the series
around the large radius limit. We use the following basis for solutions near z = 0:

Φ0 =
1

2πi

∫
Γ(5s+ 1)Γ(−s)

Γ(s+ 1)4
(eπiz)s ds

=
∞∑

n=0

(5n)!

n!5
zn

= 1 +O(e2πit)

= ̟0,

(211)

Φ1 = − 1

2πi
· 1

2πi

∫
Γ(5s+ 1)Γ(−s)2

Γ(s+ 1)3
zs ds

=
1

2πi
log z +O(z)

= t+O(e2πit)

= −1
5
(̟0 − 3̟1 − 2̟2 −̟3),

(212)

Φ2 = − 1

2π2
· 1

2πi

∫
Γ(5s+ 1)Γ(−s)3

Γ(s+ 1)2
(eπiz)s ds

= − 1

4π2
(log z)2 +

1

2πi
log z − 5

6
+O(z)

= t2 + t− 5
6

+O(e2πit)

= 2
5
(−2̟0 +̟2 +̟3),

(213)
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Φ3 =
1

(2πi)3
· (−6) · 1

2πi

∫
Γ(5s+ 1)Γ(−s)4

Γ(s+ 1)
zs ds

=
i

8π3
(log z)3 +

7i

4π
log z − 30iζ(3)

π3
+O(z)

= t3 − 7
2
t− 30iζ(3)

π3
+O(e2πit)

= −6
5
(2̟1 + 2̟2 +̟3),

(214)

where t = B + iJ = Φ1/Φ0 by the mirror map (and abuse of notation) of section 2.4. In
each case the contour integral is along the line s = ǫ + iy, where ǫ is a fixed real number
such that −1

5
< ǫ < 0 and y goes from −∞ to +∞. This contour is completed to the left or

to the right in order to get the analytic continuation. These contour integrals converge (and
thus the analytic continuation is valid) for

−2π < arg z < 0. (215)

Now consider the sheaves O(m) on P4 as discussed in section 4.1.3. These restrict to X
to form locally-free sheaves of rank one which we denote OX(m). Denoting the generator of
H2(X,Z) by e,

∫

X

exp(−te) ch(OX(m))
√

td(X) =

∫

X

exp(−te+me)
√

1 + 5
6
e2

= 5
12

(m− t)(2m2 + 2t2 − 4mt + 5).

(216)

Assuming that the term proportional to ζ(3) in (214) arises from the 4-loop correction in
section 6.2.3, we may determine the period associated to OX(m) exactly from this leading
behaviour. The result is that

Z(OX(m)) = 5
6
m(m2 + 5)Φ0 − 5

2
(m2 +m+ 2)Φ1 + 5

2
mΦ2 − 5

6
Φ3

= 1
6
(5m3 + 3m2 + 16m+ 6)̟0 − 1

2
(3m2 + 3m+ 2)̟1 −m2̟2 − 1

2
m(m− 1)̟3,

(217)

and, in particular, Z(OX) = ̟0 − ̟1. The conifold point, z = 5−5 lies at the edge of the
radius of convergence of the various power series above. One can show that the power series
(211) for Φ0 = ̟0 in terms of z is convergent at the conifold point and is clearly real. For

real z
1
5 , (210) tells us that ̟1 is the complex conjugate of ̟0. Thus, at the conifold point,

̟0 = ̟1 and so Z(OX) = 0, i.e., OX becomes massless.
We know that the conifold point corresponds to a singular conformal field theory since

a soliton, i.e., D-brane, becomes massless [121, 122]. Thus it seems natural to assume that
the B-brane OX is the one in question. Note that we have not quite proven this since we
haven’t proven that OX is stable at the conifold point. We will assume this stability in order
to proceed.
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We will have much to say about monodromy in section 7.1.4 but for now let us note
the following simple observation. Around the large radius limit of the quintic, monodromy
corresponds to B → B+1. From the gauge invariance discussed in section 3.1.1, such a shift
is accompanied by a shift F → F +1 in the curvature of the bundle over any D-brane. Thus
OX(m) becomes OX(m+1). This means that the D-brane corresponding to OX(m) becomes
massless at the conifold point if we circle the large radius limit m times before proceeding
towards the conifold point.

7.1.2 4-branes

We can now study the stability of 4-branes on the quintic. Consider the following short
exact sequence of sheaves:

0 OX(a)
f

OX(b) OS(b) 0, (218)

where b > a and f is a function of homogeneous degree b− a as discussed in section 4.1.1. S
is a divisor, i.e., a subspace of complex codimension one and OS(b) is the sheaf corresponding
to a line bundle of degree b over S. All 4-branes corresponding to B-branes on the quintic
correspond to OS(b) for some f and some b.

To leading order at large radius we have

ξ(OX(m)) =
1

π
arg

∫

X

exp((m− B − iJ)e)

=
1

π
arg
(
5(m− B − iJ)3

)

=
3

π
θm − 3,

(219)

where θm is the angle in the complex (B+ iJ)-plane made between the positive real axis and
the line from m to B + iJ . Applying the Π-stability criterion to the distinguished triangle
associated to (218) gives ξ(OX(b))− ξ(OX(a)) < 1 which yields

θb − θa <
π

3
. (220)

When this is satisfied, the open string corresponding to f in (218) is tachyonic. Simple
geometry yields that this corresponds to the points above a circular arc in the upper (B+iJ)-
plane with centre 1

2
(a + b) + 1

2
√

3
(b− a)i and radius 1√

3
(b− a).

As expected, these 4-branes are stable in the large radius limit. Below this arc of marginal
stability the 4-brane decays into OX(b) and OX(a)[−1], that is a 6-brane and anti-6-brane
with some 4-brane charges.

The classical µ-stability criterion of section 6.2.5 would imply that a 4-brane is always
stable since it has no subobjects. We emphasize that µ-stability does not fail because we have
not taken enough α′ corrections into account — after all (219) was only an approximation
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Figure 9: Stability of various D4-branes in the B + iJ-plane.

anyway. Rather µ-stability fails because of the qualitative aspect that it is defined for abelian
categories. This means it can never see decays caused by anti-branes.

We also draw attention to the fact that it is misleading to think that Π-stability cor-
rections can always be ignored at large radius. For very large values of b − a this line of
marginal stability can extend to large values of J .

Of course, we do not have the precise form of the line of marginal stability since we used
the large radius approximation in (219). We may use numerical computation techniques and
the exact form of the periods from (217) to plot these curves more precisely as was done
in [120]. The result is shown in figure 9 for a = 0 and b = N . The shaded areas of this figure
represent fundamental regions of the moduli space as in figure 1.

We see that the lines of marginal stability in figure 9 are not so far from being circular
arcs. Note that the lines of marginal stability end on the conifold points precisely where one
of the decay products becomes massless, and thus the grading becomes poorly-defined.

It should be emphasized that we have not strictly proven that either the 4-branes are
stable above the lines in figure 9 or that the 4-branes are unstable below the lines. The 4-
branes might decay by other channels before these lines are reached, and the decay products
might also be unstable by the time we reach a line of marginal stability. Having said that,
it seems hard to imagine that figure 9 is incorrect. We know the B-branes OX(m) are stable
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near the conifold points since they are supposed to be responsible for the singularities at the
conifold. Other more contrived modes of decay of 4-branes always seem to decay at smaller
radii.

7.1.3 Exotic B-branes

Having spent most of the lectures extolling the virtues of the derived category, we have yet
to see an example of a B-brane that doesn’t correspond to a single term complex — i.e., a
coherent sheaf. It is time to rectify this situation.

The idea, as suggested in [128], is to apply Serre duality to the 4-brane decay of section
7.1.2. The potential tachyons of that discussion lie in Hom(OX(a),OX(b)) which is nonzero
for b > a. By the Serre duality of section 4.2.4, this Hilbert space of open strings is isomorphic
to Hom(OX(b),OX(a)[3]). Thus, we may consider the distinguished triangle

Xa,b

[1]

OX(b)
g

OX(a)[3],

(221)

where Xa,b is defined as the cone of the map g.
The stability of Xa,b can now be determined (at least relative to the triangle (221)) from

the analysis above together with the relation (193). For stability we require ξ(OX(a)[3]) −
ξ(OX(b)) = 3 + ξ(OX(a)) − ξ(OX(b)) < 1. Using the approximation (219) this yields that
Xa,b is stable below a circular arc in the upper-half plane with centre 1

2
(a+ b)− 1

2
√

3
(b− a)i

and radius 1√
3
(b−a). In particular, Xa,b is always unstable in the large radius limit, although

we may make it stable at any given arbitrarily large radius by choosing a large enough value
of b− a.

Again we may use numerical techniques to plot a more precise version of the lines of
marginal stability. In figure 10 (again taken from [120]) we plot some examples. We should
note that something very interesting happens for X0,2. It is an example of a case where a
decay product can itself decay forcing the line of marginal stability to end on another line
of marginal stability (rather that a conifold point). We refer to [120] for a full discussion of
this case.

So, what, exactly is Xa,b? It is a B-brane that exists purely because of α′ effects. It does
not exist at large radius limit and does not have a world-volume interpretation. Let’s get a
feel of these exotic B-branes by examining X0,1, say, a little more closely. Suppose we have
an injective resolution for OX :

0 OX I 0 i0
I 1 i1

I 2 i2
I 3 i3

. . . (222)

Referring to section 4.2.4, an element of Ext3(OX(1),OX) corresponds to a map g : OX(1)→

88



0

0.5

1

1.5

2

2.5

3

-1 0 1 2 3 4 5 6 7

"N=1"
"N=2"
"N=3"
"N=4"
"N=5"
"N=6"

Figure 10: Stability of the exotic objects X0,N in the B + iJ-plane.

I3 such that i3g = 0. Thus X0,1 = Cone(g) corresponds to the complex

. . . 0 I 0
i0

I 1
( 0

i1 ) OX(1)
⊕
I 2

( g i2 )
I 3

i3 . . . , (223)

where we denote the zero position with a dotted underline.
The cohomology sheaves of this complex look like H −3 = OX and H −1 = OX(1), so

näıvely this B-brane looks like an anti-6-brane added to another anti-6-brane with a 4-brane
charge. This is certainly true if g is zero. More precisely, (223) is quasi-isomorphic to

. . . OX 0 OX(1) 0 . . . , (224)

if and only if g = 0. To prove this assertion we may use the discussion at the end of section
6.2.1 to compute Hom(X0,1,X0,1). After wading through several long sequences and using
the cohomology groups of OX(m) as defined in section 4.2.1 we obtain

Hom(X0,1,X0,1) =

{

C2 if g = 0,

C if g 6= 0.
(225)
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This ties in nicely with the comments at the end of section 6.1.3. If g 6= 0 we have a single
irreducible D-brane. When g = 0 we have a direct sum of two D-branes and thus a gauge
group U(1)× U(1).

X0,1 thus becomes a distinct object when the tachyon is turned on. All this shows that
X0,1 is a truly exotic object from the old point of view of D-branes. It cannot be written
as a complex with a single coherent sheaf and so it cannot be viewed as a vector bundle
supported on some subspace of X.

The reader should note that we were able to build these exotic D-branes because we were
able to use Extn’s for n > 1. This separated terms in the complexes far enough to avoid
everything collapsing back to a single term complex. That such Ext’s can ever be physically
relevant is traced back to fact that the grading ξ was defined to live in R rather than on
a circle. If we didn’t extend the definition of ξ in this way, we would never see the exotic
D-branes.

We should note that one can directly attack the question of identifying D-brane states at
the Gepner point itself using the notion of boundary conformal field theories. This was done
in [129–131]. We will not review this method here as it requires quite a bit of technology.
However, this method is not guaranteed to obtain all of the D-branes at the Gepner point.
It is possible to show that some of the charges of the exotic D-branes we found above can
coincide with charges found using this direct method. We should add that there has also
been recent progress in more advanced methods of analyzing the Gepner model [132–134]
which appear to fill in the missing states of the boundary conformal field theory method.

7.1.4 Monodromy

One of the easiest ways of seeing that B-branes as subspaces is an inadequate picture is to
think about monodromy in D-branes as we move around loops in the moduli space.

In the case of A-branes, such monodromy is purely classical. The periods of the holo-
morphic 3-form over integral 3-cycles undergo non-trivial monodromy as we go around non-
contractible loops in the moduli space of complex structure. Such monodromy may be
interpreted as an automorphism of H3(Y,Z) which preserves the intersection form between
3-cycles. Thus the homology classes of A-branes undergo monodromy and thus the A-branes
themselves undergo monodromy.

How is monodromy seen in the B-branes? In this case, the D-brane charge is an element
of Heven(X,Z). In the case of the quintic we know exactly how to map between H3(Y,Z)
and Heven(X,Z) thanks to the analysis of section 7.1.1. Thus we can copy the monodromy
action from the A-model into the B-model. If one begins with a particular sheaf F , one
can then compute the monodromy action on ch(F ) to get some idea of what this B-brane
becomes under monodromy. In this way, it looks as if 2-cycles may becomes mixtures of
2-cycles and 0-cycles etc., which is certainly not classical! Furthermore, it is not hard to
find examples where the resulting element of Heven(X,Z) cannot correspond to the Chern
character of any sheaf (for example, the rank of the bundle might be negative). Fortunately
going to the derived category solves these problems.
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Upon going around a loop in the moduli space the physics must be unchanged of course.
This means that monodromy may shuffle the objects in D(X) around but, at the end of the
day, we should be able to relabel everything to restore the original spectra of open strings etc.
In category language this means that monodromy induces an “autoequivalence” on D(X).
That is, we have a functor from D(X) to D(X) that is a bijection on the (isomorphism
classes of) objects and that preserves the corresponding morphisms.

Such an autoequivalence on D(X) is always induced by a so-called “Fourier–Mukai trans-
form’. To define a Fourier–Mukai transform one begins with a fixed object Z (called the
“kernel”) in the derived category of X ×X. We define the projection maps from X ×X to
its first and second factor:

X ×X
p1 p2

X X

(226)

Given any object A ∈ D(X) we then define the transformed object (or morphism)

TZ(A) = Rp2∗(Lp
∗
1A

L

⊗ Z). (227)

Some explanation of notation is required here. We sequentially apply three functors in (227)
which have been either “left-derived” or “right-derived” hence the “L” or “R”. This part is
taken care of automatically by the derived category machinery as follows. In each case, we
take an object in the derived category and choose a representative complex which satisfies
some nice property required by the functor. The functor can then be applied to the complex.
The three functors are:

1. Lp∗1: We take the complex to be a complex of locally-free sheaves or, equivalently,
vector bundles. p∗1 is then the usual pull-back map on vector bundles.36

2.
L

⊗ Z: Again the complex must be a complex of locally-free sheaves. ⊗ is then the
usual tensor product of sheaves. Acting on complexes, ⊗ produces a double complex
which can then be collapsed back to a single complex in the usual way.

3. Rp2∗: In this case the complex must be a complex of injective objects. p2∗ is then the
push-forward map for sheaves as defined in section 5.4.

Since the derived functor machinery is built into the derived category, we will usually
drop the L’s and R’s from the notation from now on.

Note that if p : X → {q} is map to a point, then p∗ is the global section functor. Thus,
its right derived functors Rp∗ amount to sheaf cohomology as explained in section 4.2.4. In
the above, p2 : X ×X → X is a fibration and therefore, roughly speaking, its right-derived
functors amount to taking cohomology in the fibres.

36Technically speaking p1 is flat so we don’t need to left-derive this functor.
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It was proven in [135] that any autoequivalence of D(X) could be written as (227) for a
suitable choice of Z. Conversely, Bridgeland [136] has established the conditions on Z for
(227) to yield an autoequivalence of D(X).

As a warm-up exercise let us consider how we produce the identity Fourier–Mukai trans-
form. Let the “diagonal” map ∆X : X → X × X be given by ∆X(x) = (x, x), and let us
denote ∆X∗OX by O∆X. Suppose F is a sheaf on X. Then p∗1F ⊗O∆X is a sheaf supported
on the image of ∆X . In fact, it is precisely F on the image of X under the map ∆X . This
image is mapped identically back to X by p2 and so TO∆X

(F ) = F . Thus O∆X generates
the identity Fourier–Mukai transform of sheaves and therefore the derived category.

The (stringy) moduli space ofB+iJ on the quintic is given by a 2-sphere with 3 punctures
corresponding to large radius limit, the Gepner point and the conifold point. Thus we just
need to find the monodromy around two of these points and the third may then be deduced.

The monodromy around the large radius limit is easy. We know that this corresponds to
B → B + 1 which is equivalent to a shift F → F + 1 in the curvature of the bundles. This
shift in curvature can be achieved by a transformation F → F⊗OX(1) on sheaves. In terms
of a Fourier–Mukai transform, this may be achieved by a kernel L = ∆∗OX(1) = O∆X(1) in
a similar way to the identity transform discussed above. We will denote this transform TL
by L.

Let us next consider the Fourier–Mukai transform associated to monodromy around the
conifold point. We will denote this transform K. Unlike the large radius limit, there is no
direct argument that yields K in a concrete way. Instead, let us first consider the action of
K on the D-brane charges. This may be deduced from the periods listed in section 7.1.1.
We may compose a loop around the large radius limit (given by z 7→ e2πiz for small z) by
a loop around the Gepner point (given by z 7→ e−2πi/5z for large z) to obtain monodromy
around the conifold point. For details of the explicit monodromy matrices see [21] and
also [43,137–139] for further details about this monodromy. The result may be expressed in
the following concise form:

ch(K(F )) = ch(F )− 〈OX ,F 〉 ch(OX), (228)

where 〈, 〉 is the natural inner product given by (158). We would like to do better than this
however. We want to know the monodromy transform K itself, rather than just the action
on charges.

Clearly, since Z(OX) has a simple zero at the conifold point, monodromy around this
point will shift ξ(OX) by 2. This means that stability conditions on any decay involving OX

may well be affected by this monodromy. For example, consider the 0-brane i∗Op given by
the inclusion of a point i : p →֒ X. For brevity, we will refer to this skyscraper sheaf as Op

as in section 4.1.6. From (77) we obtain the following distinguished triangle

Ip[1]

[1]
b

OX
a

Op.

c

(229)
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At large radius limit we expect OX and Op to be stable (as they are the basic 6-brane and
0-brane respectively) and Ip (and thus Ip[1]) to be unstable (since it doesn’t correspond
to a vector bundle over a subspace). The latter can be seen directly from the fact that
ξ(Op)− ξ(OX) = 3

2
> 1 at large radius, making the open string a massive in (229).

Near the conifold point Z(Op) and Z(Ip) are non-zero and so the ξ’s are roughly fixed
for these B-branes in a small neighbourhood of the conifold point when they are defined,
i.e., when the B-branes are stable. Thus, as we orbit the conifold point in the direction
of increasing ξ(OX), we can make ξ(Op) − ξ(OX) smaller and thus a tachyonic. That is,
Ip[1] becomes stable. At this instant ξ(Ip[1]) = ξ(Op) from our Π-stability rules. Thus
when these B-branes are stable, they have approximately the same value of ξ in a small
neighbourhood of the conifold point. This implies that the open string c in (229) is always
tachyonic as expected.

As we continue around the conifold point increasing ξ(OX) further, we can make ξ(OX)−
ξ(Ip[1]) > 0 and thus Op unstable. It is easy to see that this will happen an angle π later
than the formation of Ip[1]. The diagram (229) therefore encodes both the formation of
Ip[1] and the decay of Op as we encircle the conifold point. We refer to [120] for more
analysis of precisely where these events occur.

The monodromy action of D(X) should be seen as relabeling of the B-branes as objects
in the category so that the physics remains unchanged. Thus, since Op was stable to begin
with but has now become unstable, it must be replaced by something. The natural choice
would seem to be Ip[1]. Thus we conjecture K(Op) = Ip[1]. This is consistent with the
charges (228). Furthermore ξ(OX) has increased by 2 upon looping once around the conifold.
Thus, to restore physics, we should assert K(OX) = OX[−2] to compensate for this.

Let us define the notation A ⊠ B to mean p∗1A ⊗ p∗2B for A,B ∈ D(X). Now, consider
the Fourier–Mukai transform induced by

K =
(
OX ⊠ OX

r
O∆X

)
, (230)

where r is the obvious restriction map. Let us apply this transform to a sheaf F . We know
the O∆X in position zero of (230) acts as the identity. As OX ⊠ OX = OX×X , then p∗1F ⊗K
is simply p∗1F . Pushing this down via p2 will produce a sum of copies of OX since p∗1F is
trivial (i.e., free) in this direction. As mentioned above, the act of pushing down takes sheaf
cohomology in the fibre direction which in turn is equivalent to the functor Hom(OX,−).
This means that, in the derived category,

p2∗p
∗
1F = Hom(OX ,F )⊗ OX , (231)

which implies

TK(F ) = Cone
(

Hom(OX ,F )⊗ OX
r

F
)
, (232)

where r is now an obvious “evaluation” map. This Fourier–Mukai transform reproduces the
desired monodromy above on Op and OX. For example put F = OX . Then, from section
4.2.1 we may compute

Hk(X,OX) =

{

C if k = 0 or 3

0 otherwise,
(233)
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which implies Hom(OX ,F ) can be represented by a complex of vector spaces

. . . 0 C 0 0 C 0 . . . . (234)

Tensoring by OX simply replaces the C’s by OX ’s. The cone construction then shifts this one
place left and the first OX cancels with the OX on the right of the cone (since the evaluation
map is the identity) leaving OX [−2].

A result of Bridgeland and Maciocia [140] may now be used to show that (230) is actually
the only Fourier–Mukai transform which produces the desired monodromy on Op (for all
p ∈ X) and OX . We refer to [120] for more details. Thus we will assume that this gives the
correct monodromy on D(X) for loops around the conifold point. Note that this particular
transformation is well-known in the study of “helices and mutations” (see, for example, [141]
and references therein). It was first conjectured to be applicable to monodromy in the context
we are considering by Kontsevich [142] and was subsequently studied extensively by Seidel
and Thomas [143]. It is also a special case of Horja’s model of monodromy [144–146].

The monodromy around the Gepner point can then be constructed by composing the
monodromies around the large radius limit and the conifold point. In general, two Fourier–
Mukai transforms based on kernels A and B may be composed to form a transform with a
kernel

B ⋆A = p13∗
(
p∗12A⊗ p∗23B

)
, (235)

where pij are the obvious projection maps from X×X ×X to X×X. Therefore, if G is the
monodromy around the Gepner point, and G is the corresponding kernel, we may compute

G = K ⋆ L
=
(
OX(1) ⊠ OX O∆X(1)

)
.

(236)

Consider the result of monodromy G5, i.e., five times around the Gepner point. Given
that the Gepner model is a Z5-orbifold one might be forgiven that thinking that G5 induces
a trivial monodromy, i.e., G⋆5 = O∆X . Surprisingly this is not the case as we now show.37

We show the full details of this computation here so that the reader can get a good feel
for manipulations in the derived category. Anyone not interested in these details should, of
course, skip ahead to the answer!

Let S = OX(1) ⊠ OX so that G = Cone(S → O∆X(1)). The functors in (235) preserve
distinguished triangles in D(X ×X), so S ⋆ G = Cone(S ⋆ S → S ⋆ O∆X(1)). Now

S ⋆ S = p13∗(OX(1) ⊠ OX(1) ⊠ OX)

= OX(1) ⊠ O
⊕5
X ,

(237)

since,

Hk(X,OX(1)) =

{

C5 if k = 0,

0 otherwise.
(238)

37I thank S. Katz for guiding me in this computation. He in turn thanks A. Bondal for a related conver-
sation.
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Also, S ⋆ O∆X(1) is easily seen to be OX(1) ⊠ OX(1). Thus

S ⋆ G =
(

OX(1) ⊠ O
⊕5
X OX(1) ⊠ OX(1)

)

= OX(1) ⊠ Ω(1)|X [1].
(239)

This follows from the Euler exact sequence38

0 Ω(1) O⊕5 O(1) 0, (240)

on P4 restricted to X. Here Ω is the cotangent sheaf of P4 and Ω(1) = Ω⊗O(1). The latter
sheaf is restricted to X in (239).39 Also

O∆X(1) ⋆ G =
(
OX(2) ⊠ OX O∆X(2)

)
, (241)

and so

G ⋆ G = Cone
(
S ⋆ G → O∆X(1) ⋆ G

)

=
(
OX(1) ⊠ Ω(1)|X OX(2) ⊠ OX O∆X(2)

)
.

(242)

Similarly we may prove that

G ⋆ G ⋆ G =
(

OX(1) ⊠ Ω2(2)|X OX(2) ⊠ Ω(1)|X OX(3) ⊠ OX O∆X(3)
)
, (243)

where Ω2 is the second exterior power of Ω which, from (240), fits into the following exact
sequence:

0 Ω2(2) O⊕10 O(1)⊕5 O(2) 0. (244)

Continuing this process yields the desired kernel

G⋆5 =
(

OX(1) ⊠ Ω4(4)|X OX(2) ⊠ Ω3(3)|X
OX(3) ⊠ Ω2(2)|X OX(4) ⊠ Ω(1)|X OX(5) ⊠ OX O∆X(5)

)
. (245)

This looks very similar to an exact sequence due to Beilinson [148] for sheaves on P4 × P4:

0 O(−4) ⊠ Ω4(4) . . . O(−1) ⊠ Ω(1) O ⊠ O O∆ 0, (246)

where O∆ is the structure sheaf of the diagonally embedded P4. If we tensor (246) by
O(5) ⊠ O and restrict to X we obtain the complex G⋆5. This process does not preserve the
exactness of (246) so we need to be a little careful. We claim

G⋆5 = Cone
(

O∆(5)
L

⊗ OX×X → O∆X(5)
)

. (247)

38In this and subsequent computations we should really keep track of the precise forms of the morphisms.
We omit this for brevity. In each case the morphisms form representations of the PGL(5, C) symmetry
acting on the homogeneous coordinates of P4. These representations can be handled conveniently using
Young diagrams and Schur functors as in chapter 6 of [147].

39Do not confuse Ω|X with ΩX , the cotangent bundle of X !
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This is seen as follows. As stated earlier in this section, the operation
L

⊗ requires the object
on the left or right of this symbol to be expressed in terms of locally free sheaves. Then the
usual ⊗ operator may be applied. The exact sequence (246) tensored by O(5) ⊠O gives the

desired locally free resolution of O∆(5). The functor
L

⊗ OX×X is then precisely restriction
X ×X thus yielding the complex (245).

Alternatively we can compute (247) using a locally-free resolution of OX×X in the form

0 O(−5) ⊠ O(−5)
(
O ⊠ O(−5)

)
⊕
(
O(−5) ⊠ O

)
O ⊠ O OX×X 0.

(248)
This yields

G⋆5 =
(
O∆(−5) O∆ ⊕ O∆ O∆(5) O∆X(5)

)

=
(
O∆(−5) O∆ 0 0

)

= O∆X [2].

(249)

This is, of course, the identity Fourier–Mukai transform shifted left 2 places. This means
that we have proven, in general, that

The action of the monodromy on D(X) associated to looping five times around
the Gepner point corresponds to shifting the complexes two places to the left.

So how worried should we be that this is not the identity? It doesn’t contradict any
statement about physics. Monodromy five times around the Gepner point does not affect
physics — but then again monodromy once around the Gepner point is an invariance of
physics too!

What this computation is telling us is that any form of the topological field theory
associated to the Gepner model, or equivalently a Landau–Ginzburg orbifold theory, which
explicitly exhibits the derived category language for D-branes must not have a Z5 quantum
symmetry. This might make such a model rather awkward to construct.

While these notes were being completed, the paper [134] appeared which is based on the
work of [132, 133] which, in turn, is based upon the ideas of [149]. These interesting papers
apply the derived category description directly to Landau–Ginzburg theories and so should
provide exactly the model we are looking for. Unfortunately the shift-of-two ambiguity
above appears to be evaded in these papers by identifying such a shift with the identity. The
complete understanding of how these models fit into the full picture has yet to be completely
elucidated and so we will not attempt to review these ideas here, although clearly they have
much to offer.

We will see in section 7.3.5 that the geometrical orbifolds do not appear to be plagued by
this shift of two anomaly. It therefore seems to be intrinsic to the Landau–Ginzburg theories
in some sense.
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7.2 Flops

While the quintic Calabi–Yau threefold provides the simplest example of a compact Calabi–
Yau threefold, we may consider simpler examples of stability by going to noncompact cases.
Perhaps the easiest, and most interesting, is provided by the “flop”.

The geometry of flops has been extensively reviewed elsewhere. We refer to [3] for example
for more details. The general idea is that there is a singular algebraic variety X0 that contains
a conifold point. This singular space may be resolved by replacing the conifold point by a
P1 in two different ways to form smooth Calabi–Yau manifolds X or X ′. Generally X and
X ′ are topologically distinct.

Geometrically the process of blowing down X or X ′ back to X0 may be viewed as a
deformation of the Kähler form J . Indeed, in the space of Kähler forms, X and X ′ may be
considered to live on the two sides of a wall corresponding to X0. Let C be the P1 inside X.
As we approach the wall from the X side, the area of C shrinks down to zero. Continuing
past this wall would give C negative area but by reinterpreting the geometry in terms of X ′

we give positive area to the new C ′ ⊂ X ′. The process of passing from X to X ′ is called a
“flop”.

In the context of the non-linear σ-model, we have the B-field in addition to J . This
has a profound effect as described in [150]. The conformal field theory associated to the
singular target space X0 is perfectly well-defined and finite so long as the component of B
associated to C (or C ′) is nonzero. Thus, rather than having a real codimension one wall of
singular spaces in the moduli space of J , we have a complex codimension one subspace of
singular conformal field theories in the moduli space of B + iJ . It follows that one can pass
from the X1 “phase” to the X2 “phase” smoothly by going around this singular subset. The
conformal field theory does not witness any “jump” as we move between these phases.

Once we bring D-branes into the picture we see that we must have a jump in some
sense. At least to some degree of approximation, the Calabi–Yau target space is the moduli
space of 0-branes. Thus the moduli space of 0-branes must undergo some transition during
the flop even if we avoid the singular conformal field theory at B = 0. This discontinuity
is provided by 0-brane stability considerations as we now show. This calculation was first
suggested in [83] and performed in [151] (modulo sign conventions). The flop was studied
by Bridgeland [152] in the context of the derived category and many of the observations in
that paper are relevant here.

We imagine that we are in a Calabi–Yau threefold X where everything has a very large
area except for the flopping P1. The periods on the mirror of this may be analyzed simply in
this limit as explained in [35]. Essentially the only component of B + iJ of interest is given
by

t =

∫

C

B + iJ. (250)

This has a moduli space given by P1 as shown in figure 11. The flop takes place on the
equator and the singular conformal field theory exists at the point labeled O. Let z be the
affine coordinate on this P1 so that z = 0 in the large C limit, z = 1 corresponds to O and
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X
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Figure 11: The moduli space of B + iJ for the flop.

z =∞ gives the large C ′ limit after the flop transition. The analysis of [35] then yields the
simple result that the periods on the mirror have a general form

Φ = A1 + A2 log(z). (251)

Thus we have the exact relation given by the mirror map

t =
1

2πi
log(z). (252)

Let i : C → X be the inclusion map and let OC(m) denote i∗O(m). We will use Ox to
denote the skyscraper sheaf, i.e., 0-brane, associated with the point x ∈ X. Using the
Grothendieck–Riemann–Roch theorem of section 5.6 we see

∫

X

e−(B+iJ) ch(OC(m))
√

td(TX) = −t+m+ 1. (253)

Therefore Z(OC(m)) = −t + m + 1 exactly since t and 1 are periods. The most natural
statement would seem to be therefore that the brane corresponding to OC(−1) becomes
massless at O. Actually we are free to choose the branch of the logarithm however we feel
and we could, instead, say that OC becomes massless for simplicity. This is equivalent to
choosing a basepoint near the large radius limit but then going once around this large radius
limit before heading towards O. With this choice, we focus on this neighbourhood of O by
putting t = 1 + ǫeiθ for a small real and positive ǫ. We sketch this neighbourhood in figure
12.

Suppose x ∈ C. Then we have a short exact sequence

0 OC(−1) OC Ox 0. (254)

This leads to a distinguished triangle we write in the form

OC(−1)[1]

[1]
θ
π

OC
1− θ

π

Ox.

0

(255)
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θ

X
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Figure 12: The neighbourhood of O.

Near O, Z(OC) is very small and Z(Ox) = 1. It follows that ξ(Ox) = ξ(OC(−1)[1]) = 0 and
ξ(OC) = θ/π − 1. The morphisms in (255) are labeled by the differences in the ξ’s between
the head and tail of the arrow. Thus a vertex is Π-stable (with respect to that triangle)
when and only when the label on the opposite edge is < 1. Therefore, the 0-brane Ox decays
into OC and OC(−1)[1] as θ increases beyond π.

We also have a distinguished triangle

OC [1]

[1]
1− θ

π

OC(1)
θ
π

Ox,

0

(256)

which shows that Ox decays into OC(1) and OC[1] for θ < 0. Either way, we see that Ox

decays as we move from the X phase into the X ′ phase in figure 12.
Suppose y 6∈ C. Then, even though Oy has exactly the same D-brane charge as Ox it does

not decay by (255) or (256) since there are no morphisms from OC or OC(1) to Oy. Indeed,
we would not expect 0-branes away from C to be affected by the flop transition. Note again
the superiority of the derived category approach to D-brane physics. Any method based
solely on the notion of D-brane charges would not be able to distinguish between Ox and Oy

even though their properties are quite different with respect to a flop.
We should also be able to see the objects in the derived category of X which play the

rôle of points on C ′ after we do the flop. Before we do this we need to introduce a method of
computing some of the relevant Ext’s. Suppose we are given sheaves E and F on C. Given
the embedding i : C → X with a normal bundle N on C, there is a spectral sequence with

Ep,q
2 = Extp

C(E ,F ⊗ ∧qN), (257)

converging to Ep,q
∞ with

⊕

p+q=nE
p,q
∞ = Extn

X(i∗E , i∗F ).40

For example, consider Extn
X(OC,OC(−1)). Since N = O(−1) ⊕ O(−1), we have an E2

40A quick way of proving this is to use the “right adjoint” functor of i∗ which is written i! and whose
properties are well-understood [153] in the derived category.
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stage of the spectral sequence given by Ep,q
2 = Hp(C,OC(−1)⊗∧qN):

0 C2

0 C2

0 0
p

q

(258)

and thus

Extn
X(OC ,OC(−1)) =

{

C2 if n = 2 or 3,

0 otherwise.
(259)

Thus we may use morphisms f ∈ Hom(OC[−1],OC(−1)[1]) ∼= C2 to form new objects Df :

Df

[1]
θ
π
−1

OC[−1]
2− θ

π

f
OC(−1)[1],

0

(260)

which become stable for θ > π. As noted in section 5.5, rescaling f by a complex number
has no effect on Df , so we have a P1’s worth of Df ’s. These indeed represent the points on
C ′ which become stable as we flop into X ′ by increasing θ through π as argued in [152]. We
leave it to the reader to find the objects corresponding to points on C ′ which become stable
as we flop by decreasing θ through 0.

The objects Df are exotic in the same sense as those in section 7.1.3. They were described
as “perverse sheaves” in [152]. Note that it is a trivial observation that the derived category
of X is equal to that of X ′ in the context of the B-model. The B-branes yield D(X) and X
is converted into X ′ by a shift in B + iJ — but such a shift has no affect on the B-model.
The equivalence of D(X) and D(X ′) was established rigorously in [152, 154].

7.3 Orbifolds

Let G be a finite subgroup of SU(d). In this section we are interested in a string propagating
on the orbifold Cd/G. Of course, beginning with the seminal work of [155], orbifolds have
played an enormously important rôle in the understanding of stringy geometry. It should
therefore be no surprise that the subject of B-branes on orbifolds provides a rich laboratory
for further insight into the properties of D-branes. Much of what follows is a review of the
works [117–119,156–159]. We also refer to [139, 160] for related work.

One of the key concepts in studying the geometry of orbifolds is that these singularities
can be blown-up (at least in the case d ≤ 3) to produce a smooth manifold. This blow-
up process introduces an “exceptional divisor” to replace the orbifold singularity. We will
assume the reader is familiar with the basic ideas of this process. We refer to [161], for
example, for a review of this process in the context of conformal field theory.
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7.3.1 The McKay correspondence

We begin with the purely mathematical and beautiful observation of McKay [162] in the
case d = 2. Let G ⊂ SU(2) be a finite group. It is well-known that such groups have an
A-D-E classification and that the resulting exceptional divisor in the blow-up is given by a
collections of P1’s intersecting according to the corresponding Dynkin diagram. We refer to
section 2.6 of [163] for a review of these facts.

Let Vi, i = 1, . . . , r be the irreducible representations of G. In addition let Q be the fun-
damental 2-dimensional representation of G induced by the embedding G ⊂ SU(2). Consider
the following decompositions

Q⊗ Vi =

r⊕

j=1

ajiVj, (261)

for non-negative integers aij. The “McKay quiver” is defined by drawing r nodes, one for
each irreducible representation, and then drawing aij arrows from the node associated to Vi

to the node associated to Vj. In the case of d = 2, aij = aji but this is not necessarily true
for d > 2.

McKay’s observation was that the resulting quiver is precisely the extended Dynkin dia-
gram associated to G. For example, if G is the binary icosahedral group, it is associated to
E8 and the McKay quiver is:

◦ ◦
2

◦
4

◦
6

◦
5

◦
4

◦
3

◦
2 1

◦3

, (262)

where the numbers refer to the dimensions of the irreducible representations. Thus, except
for the extra node present in the extended diagram, the McKay quiver represents exactly the
configuration of P1’s in the exceptional divisor upon blowing-up the orbifold singularity. In
this latter context, the numbers in (262) refer to the multiplicity of the P1’s in the exceptional
divisor.

Within algebraic geometry we may give a quite different interpretation of the McKay
quiver which turns out to be very relevant for D-branes. We follow the description in [164].
Let V be a finite-dimensional complex vector space. Let us denote Cd by Q and, as usual,
Q∗ = Hom(Q,C). Now let S ∈ Hom(Q∗,End(V )) = Hom(V,Q⊗ V ), i.e., S defines a linear
action of the coordinates of Q on V . If x and y are any two coordinates in Q we demand
that S(x) commutes with S(y). We denote this condition S ∧ S = 0.

C[Q] denotes the polynomial ring of functions on Q and it is equal to ⊕k Symk Q∗. Thus
S defines an action of C[Q] on V . In other words it gives V the structure of a C[Q]-module.

Now let G ⊂ SU(d) act on V and on Q. V is an arbitrary representation of G and Q
is the standard d-dimensional representation. We now demand that S commutes with the
G-action by putting41

S ∈ HomG(V,Q⊗ V ), S ∧ S = 0. (263)

41The notation f ∈ HomG(A, B) means fg = gf for all g ∈ G.
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Such an S defines a “G-equivariant” C[Q]-module structure on V . In fact, we have defined
a G-equivariant sheaf on Q ∼= Cd. For a sheaf one would normally define a OX(U)-module
structure for all open sets U . We have only done this for U = Cd, i.e., we have only considered
global sections. However, since Cd is contractible, there is no information content beyond
these global sections.

Now decompose V into irreducible representations, V =
⊕

k mkVk. Schur’s lemma states
Hom(Vi, Vj) = Cδij. Thus, using (261), it follows that S is represented by a collection of
matrices of complex numbers. To be precise, there are aij matrices representing a map from
Cmi to Cmj for each i, j. In other words, we associate a number mi to each node in the
McKay quiver and a matrix of dimension mj ×mi to each arrow from the ith node to the
jth node. This collection of linear maps associated to the arrows on a McKay quiver is called
a representation of the quiver. We refer to [165] for more background in this subject.

The condition S ∧ S = 0 puts constraints on these matrices. For example, suppose G is
abelian. Then every irreducible representation is one-dimensional and thus Q∗ = q1 ⊕ q2 ⊕
. . .⊕ qd for suitable irreducible representations qα. It follows that there are d arrows leaving
each node in the McKay quiver. Let M i

α represent the matrix associated to the α’th arrow
leaving node i. Let α(i) be the node at the head of this arrow. Then the S ∧S = 0 relations
read

M
α(i)
β M i

α = Mβ(i)
α M i

β . (264)

These are said to be relations on the representation of the quiver.
Now we consider morphisms of G-equivariant sheaves. In the quiver language this

amounts to a morphism of C[Q]-modules respecting the G-action. It is not hard to find
the explicit form of these morphisms. Let W =

⊕

k nkVk. A G-invariant morphism from a
quiver representation associated to V to one associated to W will, by Schur’s lemma, be a
choice of a matrix in Hom(Cmk ,Cnk) for each node of the quiver. If these maps commute
with the arrows within each quiver then we preserve the C[Q]-module structure. For ex-
ample, suppose we have a quiver with two nodes and a single arrow connected them. A
morphism

◦
◦

m1

m2

◦
◦

n1

n2

(265)

is equivalent to the following commutative diagram

Cm2 Cn2

Cm1 Cn1

(266)

We have constructed a G-invariant morphism of C[Q]-modules. We can use this con-
struction to define a morphism of quiver representations and thus the category of quiver
representations.

Our definitions show that the category of G-equivariant sheaves on Cd is equivalent to
the category of representations of the McKay quiver with the relations S ∧ S = 0.
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The category of representations of the McKay quiver (with relations) is an abelian cate-
gory. Each quiver representation is associated to a vector space V as defined above. Kernels
and cokernels may easily be computed purely from this vector space structure. When we
start to write down exact sequences we see a new interpretation of the arrows in a quiver as
follows. Note that

0
◦
◦

0

1

◦
◦

1

1

◦
◦

1

0

0,f (267)

is a short exact sequence of quiver representations where the map f ∈ Hom(C,C) = C can
be multiplication by any complex number. Let Fi be the quiver representation with nj = δij ,
i.e., V is simply the irreducible representation Vi. Assuming there are no arrows beginning
and ending on the same node, all the maps in Fi are obviously zero and so Fi specifies a
unique object. The short exact sequence (267) represents an extension of F1 by F2. That
is Ext1(F1, F2) = C. This easily generalizes to an arbitrary quiver to give the following
result (even if relations are imposed): the number of arrows from node i to node j equals the
dimension of Ext1(Fi, Fj). Thus the quiver is often called an “Ext quiver”.

The most impressive generalization of the McKay correspondence was given by Bridge-
land, King and Reid (BKR) [166] who said the following.

Theorem 3 Suppose X is a smooth resolution (i.e., blow-up) of the orbifold Cd/G with G
a finite subgroup of SU(d) and d ≤ 3.42 Then the derived category D(X) is equivalent to the
derived category of G-equivariant sheaves on Cd.

In other words, D(X) is equivalent to the derived category of McKay quiver representations
associated to G with relations S ∧S = 0. Thus, whereas the original McKay correspondence
viewed the arrows in the Dynkin diagram (262) as something to do with the intersection
theory of the components of the exceptional divisor, in the generalization to three dimensions
it is best to view the arrows as a statement about Ext’s in the derived category.

Of course, the appearance of the derived category in the latter version of the McKay
correspondence is excellent news for B-brane physics! The blow-up of an orbifold singularity
is viewed as a deformation of B + iJ and so should not affect the B-model. It immediately
follows that

B-branes on the orbifold Cd/G and open strings between them are described
by the derived category of McKay quiver representations (with relations).

It follows that we have a distinguished set of D-branes on the orbifold associated to the
irreducible representations of G. These will be associated to the quivers representations Fi

above. These branes were dubbed fractional branes in [157].

42The only reason why this should fail for d > 3 is that smooth resolutions need not exist.
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The BKR result gives a precise recipe for mapping between these two derived categories
as follows. Consider the following diagram

Z
q

p

Cd

γ

X
π

Cd/G,

(268)

where Z is defined as the “fibre product” of X and Cd. That is, Z is the subspace of X×Cd

given by points (x, z) such that π(x) = γ(z). The map γ is the quotient by G and π is the
blow-down. The maps p and q are then the obvious projections on the fibre product. BKR
then say that q∗p

∗ gives the desired equivalence between D(X) and the derived category of
G-equivariant sheaves on Cd. Note that we think of sheaves on X as trivially G-equivariant.
The map p∗ then typically introduces some non-trivial G-action.

As an example, consider the skyscraper sheaf Ox on X for x at a point in X not fixed by
the G-action. Then p∗Ox will be a collection of |G| skyscraper sheaves on Z transforming
in the regular representation of G. This pushes forward to Cd to give the same collection of
skyscraper sheaves. Clearly the global sections of this sheaf on Cd form the regular repre-
sentation of G. Thus the 0-branes on X correspond to quivers for the regular representation
of G.

This means that, for 0-branes, the integer mi attached to each node in the quiver rep-
resentation is equal to the dimension of the corresponding irreducible representation. The
location of the 0-brane will be dictated by the matrices associated to the arrows of the
quiver. Once we study the stability of these B-branes we will see that the moduli space of
such stable quiver representations is equal to X as expected.

It also follows that the 0-brane is always composed of a nontrivial sum of fractional branes
(hence the name). We will see that, at the orbifold point, the 0-brane is always marginally
stable against decay into this set of underlying fractional branes.

7.3.2 The Douglas–Moore construction

We arrived at quivers from the mathematical direction of the McKay correspondence. While
this is probably the best approach for seeing the appearance of the full derived category
of quiver representations, there is a wonderfully direct physics way of seeing why quivers
themselves should appear in the context of D-Branes on orbifolds. This is due to Douglas
and Moore [156].

Suppose our full ten-dimensional spacetime looks like R1,3×C3/G and we have a 3-brane
that fills the space-like directions of R1,3 and so appears as a 0-brane in the C3/G directions.
The world-volume theory of this 3-brane yields an N = 1 supersymmetric field theory in
R1,3.

One should note that this theory may, for general D-branes, have anomalies. This is
because of the RR flux generated by the D-brane — an issue we have been able to ignore up
to this point. One can remove these anomalies by using more background RR fluxes along
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the lines of [92]. See also [167] for discussion of when these theories can be anomaly-free.
Actually all our discussion of this four-dimensional quantum field theory will essentially be
classical, so we will ignore this issue of anomalies.

The idea is that one can analyze this quantum field theory by analyzing a collection
of D-branes in C3 corresponding to the preimage of the quotient map, and then imposing
G-invariance.

Suppose we have m D-branes at the origin of C3 transforming in the representation V of
G. Let ρV (g) represent the m×m matrix representing g ∈ G in this representation. The field
theory will have a U(m) gauge symmetry. Let A be the corresponding gauge connection.
The action of G is given explicitly by

g(A) = ρV (g) ·A · ρV (g)−1 (269)

In other words, A transforms in the representation End(V ) = V ⊗ V ∗ and the G-invariant
part of this can be written HomG(V, V ). By Schur’s lemma, the resulting gauge group is
U(m1)× U(m2)× . . ., where V =

⊕

k mkVk as in the last section.
Before dividing by G, we have an N = 4 supersymmetric gauge theory in four dimensions.

The N = 4 gauge superfield contains three scalar fields Z which arise from the components of
the ten-dimensional connection pointing in the C3 directions. These fields transform under
G similarly to A except that G acts on the C3 directions too. This latter 3-dimensional
representation is clearly Q from the previous section. So the Z’s transform in Q⊗ End(V ).
In other words, theG-invariant subspace of invariant scalar fields is given by HomG(V,Q⊗V ).
Thus, from (263), the Z’s play the rôle of the matrices associated to the arrows in a quiver
representation.

Finally, to obtain complete agreement with the last section, we need to find the commu-
tation relations on the quiver. These arise from the superpotential of the N = 4 theory [168].
If we write Zµ, µ = 1, 2, 3, for the three scalar fields (each transforming in the adjoint of
U(m)) corresponding to the 3 directions in C3, this superpotential may be written

W = Tr(Z1[Z2, Z3]). (270)

The critical points of this superpotential impose precisely the relations S ∧ S = 0 from
section 7.3.1.

To recap, the N = 1 supersymmetric field theory in R1,3 is described by the McKay
quiver representations of section 7.3.1. The integers mi describe the effective gauge group.
The homomorphisms associated to the arrows are associated to “bifundamental” scalar fields
Z transforming accordingly in this gauge group. Finally, the commutation relations on the
quiver representation are given by the superpotential.

This Douglas–Moore construction of a D-brane world-volume is identical mathematically
to a problem studied by Sardo Infirri [169,170]. In this case one studies translation-invariant
G-equivariant holomorphic bundles on Q = Cd. Let the fibre of a vector bundle be given by
a representation V of G. Then, for G-equivariance, the connection on this bundle transforms
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yet again in HomG(V,Q⊗ V ). Let us write this connection in the form

d∑

µ=1

Zµdzµ − Z†
µdz̄µ. (271)

The (2, 0)-part of the curvature is then [169]

∑

µ,ν

(

−∂Zµ

∂zν
+ 1

2
[Zµ, Zν ]

)

dzµ ∧ dzν . (272)

If we impose translation invariance we demand that the derivatives of Zµ vanish. The
condition that the bundle be holomorphic then amounts to [Zµ, Zν ] = 0 which again imposes
the relations on the quiver representation.

Thus we have three interpretations for the quiver representation:

1. A G-equivariant sheaf.

2. The scalar fields in the world-volume of a D-brane on an orbifold.

3. A connection on a translation-invariant holomorphic G-equivariant vector bundle.

The fact that these descriptions coincide allow us to prove a fact about the gradings of
the fractional branes at the orbifold point. The scalar fields Zµ in our world-volume theory
must arise as open string states in the worldsheet description. That is, they occur as certain
Ext’s between the D-branes. The Ext-quiver language immediately tells us, of course, that
these scalars are actually associated to Ext1’s between the fractional branes. The discussion
around equation (176) and section 6.2.3 tells us that a scalar state associated with Ext1

is massless if and only if the ξ-gradings at the end of the string are equal. Thus we have
proven:

Theorem 4 The gradings are equal for all the fractional branes at the orbifold point.

A consequence of this theorem is, of course, that the central charges of fractional D-
branes align to have the same arg at the orbifold point. We will see this explicitly in an
example in section 7.3.6.

It is worth noting that the quiver language may be used in more general cases than
orbifolds. So long as the gradings of a set of branes are aligned, their Ext-quiver will
represent the field content of an N = 1 theory in four dimensions. This ties the derived
category picture into quiver-related work such as [167, 171–173] etc. Sadly we do not have
the space to expand on this relation further.
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7.3.3 θ-stability

We have established that the category of topological B-branes for an orbifold Cd/G corre-
sponds to the derived category of quiver representations with relations. Now we want to
impose the BPS condition again, that is, we want a stability condition. We already know
what the answer is — Π-stability. However, since we have a relatively simple description of
B-branes on an orbifold, we might expect there to be a simpler description of the stability
condition for the orbifold for a region of the moduli space of B + iJ around the orbifold
point (i.e., small blow-ups). In other words, we want something analogous to the way µ-
stability was a good description near the large radius limit. The answer is called θ-stability
as introduced by King [174]. This was studied in the context of D-branes in [117–119].

Both the Douglas–Moore D-brane world-volume picture and the Sardo Infirri picture of
a G-equivariant bundle yield the condition for a BPS state. As one might guess, in the G-
equivariant bundle picture we simply impose the condition that the connection is Hermitian–
Yang–Mills. In the D-brane language we are required to minimize the potential arising from
the “D-terms” in the action. Either way, the condition for a BPS state becomes43

∑

i

[Zµ, Z
†
µ] = 0. (273)

In section 7.3.1 we saw that the regular representation of G should correspond to the
skyscraper sheaf Ox. One can show [169] that the moduli space of Z’s associated to the
regular representation that satisfy (273) is indeed given by Cd/G as expected.

Now we want to resolve the orbifold a little. This means that we want to deform our
problem in such a way that the moduli space of Z’s associated to the regular representation
becomes X, a resolution of the orbifold. In the D-brane language one may do this by adding
“Fayet–Iliopoulos” terms to the action [156,175,176]. One such term may be added for each
unbroken U(1) of the gauge group, i.e., one for each irreducible representation of G. Let us
call the coefficients of these terms ζi, where i is an index running over the irreps of G. The
equivalent deformation is seen in the Sardo Infirri picture as a deformation of a “moment
map” [169].

The result is that (273) becomes

∑

µ

[Zµ, Z
†
µ] = diag(ζ1, ζ1, . . . , ζ1

︸ ︷︷ ︸

dim(V1)

, ζ2, ζ2, . . . , ζ2
︸ ︷︷ ︸

dim(V2)

, . . .). (274)

In the case that G is abelian and d = 3, Sardo Infirri proved that the resulting moduli
space of the 0-brane is indeed a resolution of Cd/G (see also [175]). The case d = 2 and an
arbitrary G was proven earlier by Kronheimer [177].

Since the blow-up of an orbifold singularity is obtained by a deformation of B + iJ , this
resolution should be produced by closed string marginal operators. To be precise, twisted

43Note that in order to define the Hermitian conjugate Z†
µ we require an inner product on the representa-

tion. This is intrinsic in the quantum field theory but is “extra data” in the abstract quiver language.
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closed string marginal operators. Twisted operators are labeled by conjugacy classes in
G [155] which we denote C. Let φC be a twisted operator present in the topological A-model
for closed strings for the conjugacy class C and consider a deformation of B + iJ produced
by adding a term

aC

∫

Σ

d2z φC , (275)

to the action. Turning on the ζi’s should be equivalent to turning on some aC ’s which implies
that φC should acquire a nonzero 1-point function in the D-brane background. This one-
point function was computed in [156, 175]. The result is, at least in a linear approximation
for very small blow-ups

aC =
∑

i

χi(C) ζi, (276)

where χi’s are the characters of the group G.
The operator φ1 associated to the conjugacy class of the identity is the closed string

tachyon and is removed by the GSO projection. Thus we require that a1 = 0, i.e.,

∑

i

dim(Vi) ζi = 0. (277)

Thus condition is also imposed by (274) since a commutator must be traceless.
So far we have discussed the effects of nonzero ζi’s on the 0-brane, i.e., regular representa-

tion of G. What about general representations? The set-up is essential identical except that
the Zµ’s now transform in another representation of G. Let us consider the representation
V =

⊕

imiVi. Then (274) is modified so that the right-hand side is a diagonal matrix with
each ζi appearing mi times. In this more general setting the condition (277) can prevent
(274) from having a solution.

In D-brane world-volume language this means that we cannot find a solution which makes
the contribution of the D-term to the potential equal to zero. At first sight, this would appear
to break supersymmetry. In fact, this is not the case as pointed out in [117]. If we simply
minimize the potential then a not-so-manifest N = 1 supersymmetry still exists implying we
do have a BPS state. We refer to [117] for more details. Suppose we minimize the potential
by setting

∑

µ

[Zµ, Z
†
µ] = diag(θ1, θ1, . . . , θ1

︸ ︷︷ ︸

m1

, θ2, θ2, . . . , θ2
︸ ︷︷ ︸

m2

, . . .), (278)

for some real numbers θi. The potential is then given by

∑

i

(ζi − θi)
2, (279)

which is minimized subject to the condition (277) by

θi = ζi −
∑

j mjζj
∑

j mj

. (280)
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The equation (278) may be written in a more quiver-friendly way as follows. Let a be
an arrow in the quiver with head h(a) and tail t(a). Let Za be the mh(a) × mt(a) matrix
associated with this arrow in a given quiver representation. Then (278) becomes

∑

h(a)=i

ZaZ
†
a −

∑

t(a)=i

Z†
aZa = θi id . (281)

This is exactly the equation studied by King [174]. Fix a representation of the quiver
associated to a representation V =

⊕

imiVi of G. For any representation W =
⊕

i niVi of
G we define

θ(W ) =
∑

i

θini. (282)

Thus, by the tracelessness of (278), we see θ(V ) = 0. We say that the quiver representation
is θ-stable if, for any nontrivial quiver subrepresentation associated to a representation W
of G, θ(W ) > 0. King proved the following

Theorem 5 A quiver representation satisfies (281) (with an inner product unique up to
obvious automorphisms) if and only if it a direct sum of θ-stable representations.

Thus, very close to the orbifold point we have a stability condition expressed purely in
terms of quivers.

7.3.4 Periods

For the remainder of these lectures we will focus on a particular example of an orbifold rather
than attempt to prove any general statements. The example is C3/Z3 where g generates Z3

and acts as g : (z1, z2, z3) 7→ (ωz1, ωz2, ωz3) for ω = exp(2πi/3). Much of the analysis of
D-branes on orbifolds has been done in this simplest example (e.g., [118, 157,159,175]).

Let Vi, i = 0, . . . , 2 be the one-dimensional irreducible representations of Z3 given by
ρ(g) = ωi. A representation V = ⊕imiVi is then associated to a quiver representation

◦ ◦
m2

◦

m1.
◦

m0

(283)

As is well-known, this orbifold is resolved with an exceptional divisor E ∼= P2. In this
case, X may be viewed as the total space of the line bundle corresponding to the sheaf
OE(−3).

The computation to compute the periods and thus the central charges can be done in
a way very similar to that of the quintic. In this section we perform the computations
corresponding to section 7.1.1.

Similarly to the quintic, we have a one-dimensional moduli space of B + iJ that can
be viewed as a P1. One point on this P1 corresponds to the large radius limit where the

109



exceptional divisor E is infinitely large. At the other extreme, we have the orbifold point
where we have no blow-up. At a third point on the P1, which we denote P0, we have the
analogue of the “conifold point” where B+ iJ have a special value that makes the associated
conformal field theory singular. Again, as in the quintic, we may use mirror symmetry to
analyze this moduli space and the associated periods exactly, as was first done in [35].

The Picard–Fuch’s equation in question is given by

(

z
d

dz

)3

Φ + 27z

(

z
d

dz

)(

z
d

dz
+ 1

3

)(

z
d

dz
+ 2

3

)

Φ = 0. (284)

Clearly any constant solves this differential equation. Putting z = (3e−πiψ)−3 we may write
a basis for the remaining solutions near ψ = 0 as:

̟j =
1

2πi

∞∑

n=1

Γ(n
3
)ωnj

Γ(n + 1)Γ(1− n
3
)2

(3ψ)n, (285)

where ω = exp(2πi/3). Thus 1, ̟0 and ̟1 form a basis for the solutions of the Picard–
Fuchs equation. The analytic continuation to a basis for small z (valid for | arg(z)| < π) is
performed similarly to section 7.1.1:

Φ0 = 1,

Φ1 =
1

2πi
· 3

2πi

∫
Γ(3s)Γ(−s)
Γ(1 + s)2

zs ds

=
1

2πi
log z +O(z)

= t

= ̟0,

Φ2 = − 1

4π2
· −6

2πi

∫
Γ(3s)Γ(−s)2

Γ(s+ 1)
(e−πiz)s ds

= − 1

4π2
(log z − iπ)2 − 5

12
+O(z)

= t2 − t− 1
6

+O(e2πit)

= −2
3
(̟0 −̟1),

(286)

where the mirror map is given by t =
∫

C
B+iJ = 1

2πi
log(z)+O(z), and C is a P1 hyperplane

in E. The analogue of figure 1 for the C3/Z3 orbifold is given in figure 13. Note that the
orbifold point lies at exactly B = J = 0.44

Now, using (155) and (191), we can compute the exact value for central charges. For
example, consider the 4-branes OE(m) wrapping the exceptional divisor:

Z(OE(m)) = −(m+ 4
3
)̟0 + 1

3
̟1 + 1

2
m2 + 3

2
m+ 4

3
. (287)

44There is a false assumption in [35] which shifts B by 1

2
. The correct argument appears in [178].
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Figure 13: Fundamental regions for the moduli space of the Z3-orbifold.

Consider the point P0 in the moduli space where ψ = 2πi/3 and we have a singular conformal
field theory. At P0 we have ̟0 = t = 1

2
+ iJ0 where J0 ≈ 0.4628. From (285) the value

of ̟1 at P0 will clearly be equal to the value of ̟0 at ψ = 4πi/3, namely −1
2

+ iJ0. Thus
̟0 − ̟1 = 1 at P0. It follows from (288) that OE(−1) becomes massless at P0. Similarly
OE(−2) becomes massless at the point ψ = 4πi/3.

We will therefore assume that the singularity in the conformal field theory at P0 is caused
by the stable B-brane OE(−1) becoming massless. This appears to be very similar to the
statement that OC(−1) became massless for the singular conformal field theory for the case
of the flop in section 7.2. In the latter case we reset our definitions so that OC became
massless instead. We will do the same here to make the results prettier. In effect we shift
t 7→ t+ 1 so that (287) becomes

Z(OE(m)) = −(m+ 1
3
)̟0 + 1

3
̟1 + 1

2
m2 + 1

2
m+ 1

3
, (288)

and now OE becomes massless at P0.
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7.3.5 Monodromy

In general orbifolds may exhibit a “quantum symmetry” which acts on a state twisted by
g ∈ G by multiplication by q(g), where

q ∈ Hom(G,C∗). (289)

The group Hom(G,C∗) is thus the group of quantum symmetries. It is not hard to show that
this is isomorphic to the abelianization of G, i.e., G/[G,G]. Yet another interpretation of
Hom(G,C∗) is the group of one-dimensional representations of G where the group operation
is the tensor product. Given a one-dimensional representation U of G we may act on the set
of representations by U ⊗ −. This gives a symmetry of the McKay quiver and thus shows
exactly how the quantum symmetries of an orbifold act on the category of D-branes.

It is manifest from (262) that the extended Dynkin diagram for E8 has no symmetries
and thus the quantum symmetry group associated to the binary icosahedral group is trivial.
That is, there is no quantum symmetry for this orbifold. Thus, we cannot possibly use
quantum symmetries as a tool for making general statements about orbifolds but they can
be very useful in examples. In particular, if G is abelian, the quantum symmetry group is
isomorphic to G and it acts transitively on the nodes of the McKay quiver. In our case, the
quantum symmetry group Z3 acts by rotating the McKay quiver by 2π/3.

In section 7.1.4 we analyzed the monodromy around the Gepner point and discovered
that the quantum Z5 symmetry one might expect in this context was in fact broken in the
derived category. In this section we will show that the quantum symmetry of an orbifold, at
least in our example, is not broken by the derived category.

Monodromy around the large radius limit corresponds to tensoring by OX(D) where D
is a divisor Poincaré dual to the component of the Kähler form which is being taken to be
very large. Thus we require D to intersect C (the P1 hyperplane of E) in one point. To fit
in with the notation used in the case of the quintic we will denote OX(D) by OX(1). This
notation is also consistent with the fact that OX(1) ⊗ OE = OE(1). Note that since the
normal bundle of E corresponds to OE(−3), the analogue of the exact sequence (85) is

0 OX(3) OX OE 0. (290)

The monodromy associated to the “conifold point” P0 must be associated to the fact that
OE becomes massless there. If K is the Fourier–Mukai transform associated to monodromy
around P0, then, comparing to (232) we would expect a transform

TK(F ) = Cone
(

Hom(E ,F )⊗ E
r

F
)
, (291)

where E is now OE. This corresponds to

K =
(
E ∨ ⊠ E

r
O∆X

)
, (292)

where E ∨ is the dual of E defined in the derived category as RHom(E ,OX). Thus, if G is
the transform associated to the orbifold point, we have

G =
(
E ∨(1) ⊠ E O∆X(1)

)

=
(
OE(−1)∨ ⊠ OE O∆X(1)

)
.

(293)
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The computation proceeds in a way very similar to section 7.1.4 to yield

G⋆3 =
(

OE(−1)∨ ⊠ Ω2
E(2) OE(−2)∨ ⊠ ΩE(1) OE(−3)∨ ⊠ OE O∆X(3)

)
. (294)

Using (290) we see that O∨
E is

(
OX OX(−3)

)
which is OE(−3)[−1]. We may then apply

the Beilinson sequence (246) for E ∼= P2 to yield

G⋆3 = Cone
(
O∆E[−1] O∆X(3)

)

= Cone
((

O∆X(3) O∆X

)
−→ O∆X(3)

)

= O∆X .

(295)

Thus G⋆3 is the identity on the nose with no shifts involved. The quantum Z3 symmetry is
therefore preserved even at the level of the derived category.

We may apply the BKR map of section 7.3.1 to determine the relationship between quiver
representations and coherent sheaves. The McKay equivalence may of course be composed
with any autoequivalence of D(X) and still give an equivalence. This gives a degree of
ambiguity to how we may associate the derived category of sheaves to the derived category
of quivers. We refer to [164, 179] for further details on how to compute the correspondence
exactly. Let ∆m0m1m2

denote a quiver representation of the form (283) and consider the frac-
tional branes F0 = ∆100, F1 = ∆010 and F2 = ∆001. A choice of the McKay correspondence
consistent with our conventions is then given by

F0 = ◦ ◦
0

◦

0
◦

1

= OE

F1 = ◦ ◦
0

◦

1
◦

0

= ΩE(1)[1]

F2 = ◦ ◦
1

◦

0
◦

0

= OE(−1)[2].

(296)

From the above analysis of G it is easy to show that

TG(OE) = ΩE(1)[1]

T 2
G(OE) = Ω2

E(2)[2] = OE(−1)[2].
(297)

Thus TG indeed corresponds to rotating the McKay quiver clockwise by 2πi/3 or, equivalently,
by tensoring by the representation F1. Perhaps we should emphasize that this picture does
not work if we were to assert that F2 = OE(−1) without the shift of 2 as is done in much of
the literature.

We may easily generalize the quintic hypersurface and the orbifold computation above
to other dimensions (i.e., degree d hypersurfaces in Pd−1 and orbifolds Cn/Zn). In each case
the quantum symmetry of the Landau–Ginzburg orbifold is broken to become a shift left
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by two and the quantum symmetry of the geometrical orbifold is preserved. Based on this
rather limited set of examples it is tempting to conjecture that this is a general result for all
Gepner models and for all orbifolds Cd/G. It would be interesting to prove this, or at least
study some more examples.

7.3.6 Examples of stability

In the case of the quintic we used the large radius limit as our base point for determining
stability. In the case of the orbifold, we can use the quantum symmetry to use the orbifold
point as the base point. First note that from (286) (with t shifted by 1) and (296) we have

Z(F0) = 1
3
(1−̟0 +̟1)

Z(F1) = 1
3
(1−̟0 − 2̟1)

Z(F2) = 1
3
(1 + 2̟0 +̟1).

(298)

Thus, at the orbifold point, the Fi’s all have central charge 1
3
. This is not surprising as the

Z3 quantum symmetry cyclically permutes the Fi’s are so their physics must be identical at
the orbifold point. In particular, they must all have the same value of ξ — a fact we proved
in general at the end of section 7.3.2. We may thus declare at the orbifold point that

ξ(F0) = ξ(F1) = ξ(F2) = 0. (299)

Given (285), to a linear approximation in ψ near the orbifold we therefore have

ξ(∆m0m1m2
) = −c(−m0 −m1 + 2m2) Re(ψ) + (m0 − 2m1 +m2) Re(ωψ)

m0 +m1 +m2

= c

∑

imiζi
∑

imi

,

(300)

for a positive constant c and we define the ζk by

ζk =
√

3 Re(e
πi
6

(4k−1)ψ), (301)

so that

ζ0 + ζ1 + ζ2 = 0

ζ0 + ωζ1 + ω2ζ2 = 3
√

3
2
e

πi
6 ψ̄

ζ0 + ω2ζ1 + ωζ2 = 3
√

3
2
e−

πi
6 ψ.

(302)

Clearly this is the analogue of (276) and the ζ ’s we have just introduced here correspond to
those of section 7.3.3. Indeed, we may now explicitly show that θ-stability is a limiting form
of Π-stability near the orbifold point. Suppose we have a short exact sequence of quiver
representations

0 ◦ ◦
n2

◦
n1

◦

n0

◦ ◦
m2

◦
m1

◦

m0

◦ ◦
m2−n2

◦
m1−n1

◦

m0−n0

0. (303)
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Near the orbifold point, the ξ’s of these 3 D-branes will be very close to zero. Thus, by the
way central charges add, the ξ of the middle entry in (303) must lie between the ξ’s of the
other two. For Π-stability of the middle entry we draw the distinguished triangle

◦ ◦
m2

◦
m1

◦

m0

◦ ◦
m2−n2

◦
m1−n1

◦

m0−n0

[1]
f

◦ ◦
n2

◦
n1

◦

n0

(304)

and look for the condition for f to be tachyonic. From (300) this is precisely
∑

i niζi
∑

i ni

<

∑

imiζi
∑

imi

, (305)

which, from (280) is equivalent to King’s θ-stability statement of section 7.3.3.
This θ-stability formulation allows us to completely classify the stable irreducible B-

branes near the orbifold point. As mentioned in section 6.1.3, the irreducibility for an object
A amounts to Hom(A,A) = C. A quiver representation satisfying this condition is known as
a “Schur representation”. The problem of finding such representations was discussed in [118].

Determining whether a quiver representation (with relations) is Schur is a purely algebra
question but turns out to be fairly awkward. In many cases it is actually more convenient
to use the BKR equivalence and rephrase the question in terms of coherent sheaves.

As an example of a non-Schur quiver representation, consider ∆211 with generic maps on
the arrows in the quiver. With some effort one can show that the short exact sequence

0 ◦ ◦
0

◦

0
◦

1

◦ ◦
1

◦

1
◦

2

◦ ◦
1

◦

1
◦

1

0, (306)

is split. This immediately implies that Hom(∆211,∆211) ⊃ C2. This fact becomes more
obvious when written in terms of sheaves. ∆111 is a 0-brane which is generically nowhere
near the exceptional divisor E, whereas ∆100 is the 4-brane OE wrapping E. Thus ∆211 is
a sum of two quite disjoint D-branes and is obviously reducible. Note that when the maps
on the arrows are not generic this quiver presentation might actually be Schur. This would
correspond to the 0-brane being on E leading to a possible irreducible bound state with the
4-brane.

We will not attempt to explicitly provide a complete solution to the classification problem
here but some Schur representations of interest are ∆111, and ∆abc, where {a, b, c} is any
permutation of {0, 1, n} for n ≤ 3.

The fractional branes Fk are obviously always stable near the orbifold point since they
have no nontrivial subobject in the category of quiver representations. Let us next focus on
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∆111, some of which correspond to 0-branes. The quiver

◦ ◦
1 6=0

◦

1

6=0

◦

1

6=0

(307)

with at least one nonzero map between each pair of nodes is stable since there is no injective
map from any possible subobject to it. According to the explicit computations in [169,170]
such a quiver represents a 0-brane away from the exceptional divisor E (or orbifold point if
we haven’t blown up). Indeed, one would expect that the stability of such a 0-brane should
not be affected by orbifold-related matters.

Now consider the following short exact sequence:

0 ◦ ◦
0

◦

0
◦

1

◦ ◦
1

◦

1
◦

1

0

◦ ◦
1

◦

1
◦

0

0. (308)

This ∆111 is stable against decay to ∆100 by θ-stability if ζ0 < 0. We also have the sequence

0 ◦ ◦
0

◦

1
◦

1

◦ ◦
1

◦

1
◦

1

0

◦ ◦
1

◦

0
◦

0

0, (309)

giving a further constraint ζ2 > 0 on the stability of this 0-brane. Thus this 0-brane is stable
in 2π/3 wedge coming out of the orbifold point. After blowing-up a little into this wedge, this
0-brane corresponds to a point on the exceptional divisor. Obviously a cyclic permutation
of the zero to another edge of the quiver results in similar statements with the ζ ’s permuted
accordingly. Thus, all other quivers ∆111 are unstable in the wedge ζ2 > 0, ζ0 < 0 and do
not correspond to 0-branes at all.

The quiver representations with zero maps on the left edge have a close connection to
sheaves on E as can be seen as follows. The general representation ∆abc falls into the sequence

0 ◦ ◦
0

◦

0
◦

1

◦ ◦
c

◦

b
◦

a

0

◦ ◦
c

◦

b
◦

a−1

0 0, (310)

and thus we iterate

◦ ◦
c

◦

b
◦

a

0 = Cone

(

◦ ◦
c

◦

b
◦

a−1

0

[−1]
OE

)

= Cone

(

◦ ◦
c

◦

b
◦

a−2

0

[−1]
O

⊕2
E

)

= Cone

(

◦ ◦
c

◦

b
◦

0

[−1]
O

⊕a
E

)

.

(311)
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−iψ

•

•
ΩE [1](1) massless

•
OE massless

•
OE(−1)[2] massless

ζ2 > 0, ζ0 < 0

ζ0 > 0, ζ1 < 0ζ1 > 0, ζ2 < 0

OC decays

Op decays
Op decays

∆101 decays

∆n10 decays

∆0n1 decays

Figure 14: Some lines of marginal stability for the Z3-orbifold.

Continuing this process yields

◦ ◦
c

◦

b
◦

a

0 =
(

OE(−1)⊕c ΩE(1)⊕b O
⊕a
E

)

, (312)

explicitly mapping this quiver representation into the derived category of coherent sheaves
on X (or E). This is precisely Beilinson’s construction of sheaves on P2 [148] and this
correspondence was identified in [118]. Thus, quiver representations with zero maps on the
left edge are seen to be associated to D-branes on E. We will get a pure sheaf of course only
if the cohomology of the complex in (312) is concentrated at one term.

We denote some lines of marginal stability for Π-stability in figure 14. In each case, the
arrow denotes the direction you cross the line to cause the relevant object to decay. Naturally
this agrees with θ-stability near the origin. The figure shows the moduli space in the form of
the complex (−iψ)-plane. We make this choice so that the picture is aligned with figure 13,
i.e., the large radius limit is upwards. Note that the lines of marginal stability corresponding
to Op, p ∈ E, (i.e., the corresponding ∆111 quivers above) follow the lines of constant arg(ψ)
even when the non-perturbative effects of Π-stability are taken into account.

Some decays of note are the following:

117



1. OC : This sheaf fits into the exact sequence

0 OE(−1) OE OC 0, (313)

and thus decays by Π-stability in a way essentially identical to the 4-branes in the
quintic as in section 7.1.2. Thus, these 2-branes are stable at large radius but decay
before the orbifold point is reached. Note that (313) implies that, in the derived
category of quiver representations we have

OC = Cone(F2[−2]→ F0). (314)

That is, this D-brane is essentially a complex of quivers and cannot be written in
terms of a single quiver. In other words, it is not in the abelian category of quiver
representations. It is therefore consistent with our picture that it decays before we get
close to the orbifold point.

2. ∆101: Following the logic of section 7.1.3 we can now look for an “exotic” D-brane by
taking the “Serre dual” of (314). This gives Cone(F0[−1], F2), i.e., an extension of F0

by F2. This is precisely ∆101. As expected from section 7.1.3, these objects should not
be stable at large radius but can become stable as we shrink the exceptional divisor
down. The line of marginal stability is shown in figure 14. Note that they do not
actually become stable until we shrink down to, or beyond, the orbifold point. These
objects generically have nonzero maps along the left edge of the triangle and so are
not classified by Beilinson’s construction (312).

We see a nice complementarity between the D-branes ∆101 and OC. OC is an object
in the category of coherent sheaves but is a complex in terms of quivers. ∆101 is
an object in the category of quiver representations but becomes an exotic complex
Cone(OE[−1],OE(−1)[2]) in the derived category of sheaves.

3. ∆n10: This fits into the sequence

0 ◦ ◦
0

◦

0
◦

1

◦ ◦
0

◦

1
◦

n

◦ ◦
0

◦

1
◦

n−1

0. (315)

The produces a decay as shown in figure 14. The identification (312) together with the
short exact sequence

0 ΩE(1) O
⊕3
E OE(1) 0, (316)

may be used to show that

∆210
∼= OC(1)

∆310
∼= OE(1).

(317)
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These D-branes are therefore simply objects both in terms of sheaves and quivers. It
is not surprising therefore that they are both stable at large radius limit and near the
orbifold point.

On the other hand ∆110 does not correspond to a simple sheaf since the complex in
(312) has cohomology in more than one place. In this case we have a sequence

0 ◦ ◦
0

◦

1
◦

1

◦ ◦
1

◦

1
◦

1

◦ ◦
1

◦

0
◦

0

0, (318)

which makes ∆110 only marginally stable at the large radius limit.

4. ∆0n1: This is similar to the ∆n10 case and again we plot the line of marginal stability
in figure 14. This time ∆011 corresponds to the ideal sheaf of a point IE,p[1] and is
again only marginally stable at the large radius limit.

Clearly the study of D-brane stability on orbifolds is a very interesting subject and we
have only just begun to scratch the surface. The results above, together with previous
analysis in the literature such as [118, 157, 159, 175] provide a good start to the analysis of
the subject but much remains to be done.

8 Conclusion

We hope that the reader is convinced that the derived category program is essential for
understanding D-branes on a Calabi–Yau threefold and thus, presumably, D-branes in any
nontrivial spacetime.

The essential ingredient is the extension of the näıve concept of “branes” and “anti-
branes” to grading branes by arbitrary integers. This inexorably leads one to discuss com-
plexes and soon the whole machinery of the derived category becomes unavoidable. While
the mathematics involved in this story might look excessive at first sight, it is hard to imagine
how one would understand B-branes without using this language or essentially reinventing
something identical.

Given this complexity of B-branes it is perhaps worrying to note that we still made some
drastic simplifications in these lectures. The most egregious is probably the assumption that
the string coupling is zero and thus the mass of any D-brane is infinite (unless it’s zero!). The
next step one might therefore wish for is the notion of “quantizing” the derived category
story which presumably introduces many many more complications. Clearly our current
knowledge of D-brane physics remains relatively poor.
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