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D-centro dominating sets in graphs

A. Anto Kinsley'* and P. Siva Ananthi?

Abstract

In this paper a new concept D-centro dominating set in graphs is introduced and graphs are characterized
with some results. A subset S C V(G) of a connected graph G is said to be D-centro dominating set of G, if for
every v € V — S, there exists a vertex u in S such that D(u,v) = Rad(G). The minimum cardinality of the D-centro
dominating set is called D-centro domination number, denoted by DC,(G). The D-centro dominating set with
cardinality DCy(G) is called DCy-set of G. Some bounds for the D-centro domination number are determined. An
important realization result on D-centro domination number is proved that for any integers a and b with 2 < a < b,
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1. Introduction

By a graph G = (V,E), we mean a finite undirected con-
nected graph without loops or multiple edges. The order and
size of G are denoted by n and m respectively. For basic graph
terminology we refer to Harary [7]. For vertices r and s in a
connected graph G, the detour distance D(r,s) is the length of
the farthest r-s path in G. For any vertex r of G, the detour
eccentricity of ris ep(r) = max{D(r,s) : s € V}. A vertex s
of G such that D(r,s) = ep(r) is called an detour eccentric
vertex of r. The detour radius R and detour diameter D of G
are defined by Rad(G) = min{ep(s) : s € V} and Diam(G) =
max{ep(s) : s € V} respectively. An r-s path of length D(r,s)
is called an r — s detour path. These concepts were studied
by Chartrand et al [6]. If ep(s) = Rad(G) then s is called a
detour central vertex of G and the subgraph induced by all
detour central vertices of G is called detour center of G and

is denoted by CD(G). Next we study the following definitions
given in [1]. For any vertex p in G, a set S of vertices of V
is an p-D-centro set if D(p,s) = Rad(G) for every s € S, that
is, p and sare said to be D-centro to each other. It is denoted
by DC,,(G). Let p be a vertex of G and S be the p-D-centro
set of G. Then p is said to be the D-centro vertex of G with
respect to S if the cardinality of S is the maximum among
all §. The maximum p-D-centro set is denoted as S,. The
set of all D-centro vertices of G is called D-set of G and the
cardinality of D-set is said to be D-centro number of G and it
is denoted by Dn(G). A set S is said to be D-centro set of G if
D(r,s) = Rad(G) for every pair of vertices of S. That is, r and
s are D-centro to each other in S. The maximum cardinality
among all D-centro sets is called DC-set. It is denoted by
DC(G).

2. D-centro dominating set

Next we define and study the properties of D-centro domi-
nating set.

Definition 2.1. A subset S C V(G) of a connected graph G is
said to be D-centro dominating set of G if for everyv €V —,
there exists a vertex u in S such that D(u,v) = Rad(G). The
minimum cardinality of the D-centro dominating set is called
D-centro domination number, denoted by DCy(G). The D-
centro dominating set with cardinality DCy(G) is called DC,-



set of G.
Sometimes, there exists no u-D-centro vertex in G for a vertex
u. Next we study these types of vertices in G

Definition 2.2. A vertex u € G has no u-D-centro vertex is
called null D-centro vertex. The collection of null D-centro
vertices is called as null D-centro set of G.

wi(4)
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Figure 1 A graph G with detour eccentricities
{uz,u3} is a DCy-set. Thus DCy(G) = |uz,u3| = 2. Here u,
is the null D-centro vertex.

Vertex(x)  x- D-centro set
u {us}
) {0}
u3 {u1,us,us}
Uug {M3,M5}
us {uz, uq}

Theorem 2.3. Every null D-centro vertices belongs to every
D-centro dominating set.

Proof. Let x be a null D-centro vertex and S, = ¢. There
exists no w € G such that D(x,w) = Rad(G). Let S be a D-
centro dominating set. For all r € V — S, there exists s € S such
that D(r,s) = Rad(G). We claim that x € S. By the definition
of D-centro dominating set, each vertex r in V — § has atleast
one D-centro vertex in S. Since x is a null D-centro vertex, that
is x-D-centro set = @, it must belongs to the set S. Suppose x
does not belongs to the set S. Then x € V — S and therefore
there exists a vertex s € S such that D(x,s) = Rad (G), which
is a contradiction. Hence the theorem. O

Theorem 2.4. A D-centro dominating set S without null D-
centro vertices is a minimal D-centro dominating set if and
only if for each vertex r € S one of the following two conditions
hold: (a) r is an isolate of S (b) there exists a vertexs €V — S
Sor which DC;(G)N S = {r}

Proof. Suppose that the set S be a minimal D-centro dominat-
ing set without null D-centro vertices. For every vertex » € S,
S —{r} is not a D-centro dominating set. There exists some
vertex s in (V — S) Ur such that s has no D-centro vertex in
S—{u}.

Case(i): Suppose that r = s, then r is an isolate of S with
respect to D-centro domination

Case(ii): Suppose that s € V —S. If s has no D-centro vertex
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in S — {u}, but it has D-centro vertex in S, then r is the only
D-centro vertex of s in S. Hence DCs(G) NS = {r}.

For the converse part, we have to prove S is a minimal D-
centro dominating set. Suppose that S is not a minimal D-
centro dominating set. There exists a vertex » € S such that
S —{r} is a D-centro dominating set. Therefore r is D-centro
to atleast one vertex s in S — {r} and r has an D-centro ver-
tex in S — {r}. Hence condition (a) does not hold. Further
if S — {r} is an D-centro dominating set, every element s in
V — S is D-centro to at least one vertex w in S — {r} and the
vertex r has a D-centro vertex in S — {r}. Hence, condition
(b) does not hold. This contradicts to our assumption that for
each r € S, one of the following conditions hold. O

Theorem 2.5. If DCy(G) = p — 1 where p is the order of G.
Then G has p — 2 null D-centro vertices.

Proof. Let S be a D-centro dominating set of G with order p.
Since |S| = p — 1, there is only one vertex r in V — S. By the
definition of DCy(G), this vertex r is D-centro to any one of
the vertex in S say s. Suppose that the vertex is D-centro to
two or more vertices in G. Then D(vy,7) = D(v2,s) = Rad(G)
and D(v;,r) # Rad(G), where i = 3,....,p— 1. Since, vi,
vy are the D-centro vertices of r, it is enough to take the
vertex r instead of vi, v; in S and DCy(G) < p —2, which is
a contradiction by our hypothesis. Therefore, there are only
two vertices are null D-centro vertices. Hence, the cardinality
of null D-centro vertices is p — 2. 0

Theorem 2.6. A graph G with no cycles does not contains
the null D-centro vertices.

Proof. Let G be a graph with no cycles. Suppose that G con-
tains a null D-centro vertex w and so DC,,(G) = ¢. Clearly
D(w,r) < Rad(G) for all r € G is not possible since no pair
of vertices have detour distance less than detour radius. There-
fore D(w,r) > Rad(G) for all r € G. Now, consider D(w,r) =
Rad(G) + 1 where r € G. Since no vertex in the path w-r has
detour length from w is equal to R, G contain a cycle. Itis a
contradiction and so it completes the proof. O

Next we develop a bound for DCy(G).

Theorem 2.7. Let G be a graph with k null D-centro vertices.
Then 1 < DCy(G) —k < 3.

Proof. Let K be the null D-centro set of G with k number
of vertices. By theorem 2.3, the null D-centro vertices lie
in D-centro dominating set. Therefore DCy(G) > k. But
Rad(G) > 1. Then there exists atleast a path of detour length
2 such that the set DCy(G) must contain atleast one non null
D-centro vertex. Therefore DCy(G) > k and so DCy(G) >
k+ 1. Obviously, the set V — K contains atmost % vertices.
Hence DCy(G) < 5 +k. Thus, k+1 < DCy(G) < 5 +k and
s0 1 <DCy(G) -k < 5. O
e
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Theorem 2.8. Let P be a diametral path in a Tree T and S
be the D-centro dominating set. Let a,b € P are the vertices
D-centro to each other. Then DC,(T) = R if and only if for
each vertex in the set S satisfies one of the following condition:
(i) DC4(G) > 1 and DC,(G) = 1 Va,b € P.

(ii) If 1 < DCp(G) < DC,(G) and DCx(G)\V(P—{a}) £ 0
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DC(G)NV (P —{ai}) = 0 for some x € DC,,(G), then both
a; and b; belongs to the set S. (iii) If 1 < DCy,(G) < DC,,(G)
and DC,(G) NV (P — {a;}) # 0 for some x € DC,;(G), then
there exists a vertex b € DC(G) NV (P—{a;}) and DC,(G) =
{b} where y and b are D-centro to each other and y € V(P),
then a; € S. From the above conditions, the set S contains n — 1

for some x € DCy(G), then there exists a vertex r € DC,(G) V(P aximum possible vertices. Now suppose DCy(T) > D — 1.

{a}) and DCy(G) = {r} where y and r are D-centro to each
other and 'y € V(P)

Proof. Assume that DC,(T) = R. Let G be a tree T with
radius R. We know that for any pair of distinct vertices of
T, there exists a unique path between them. Now consider a
diametral path P,,, of 2n vertices in 7. Then Rad(P,,) = L%"J .
Partitioned P into two subsets Vi = {aj,az,.....,a,} and V,
= {by,by,.....,b,} where a, and b, are the central vertices.
The vertices ay,...b,_ in the diametral path P, contains
branches whose length from V (P,) is less than or equal to R.
Further, the D-centro vertices of the remaining vertices of the
branches must contains some D-centro vertices in P,. So that
it is enough to take vertices in P, as the member of S. Now for
each vertex a; where 1 < i <n in Vi, either a; — D-centro set
contains singleton vertex or DC,,(G) > DCy,(G). Therefore
condition (i) holds. Suppose that 1 < DCy,(G) < DC,,(G) and
DC(G)NV (P —{a;}) = 0 for some x € DC,,(G), then both
a; and b; belongs to the set S. Therefore DC,(T') > R which
is a contradiction. Hence condition (ii) holds. Conversely,
assume that for each vertex in § satisfies one of the stated
conditions holds. It is notice that the cardinality of D-centro
dominating set increases when 1 < DC), (G) < DC,,(G) and
DC(G)NV (P —{a;}) = 0 for some x € DC,,(G). Therefore
by the hypothesis, it is obvious that DCy(T') = R. This proof
is similar when the diametral path is odd. O

Theorem 2.9. For a Tree T, R < DCy(T) < D — 1, where R
and D be radius and diameter of T.

Proof. Let G be a tree T with radius R and diameter D. Sup-
pose DCy(T) < R. Let P be any diametral path of even ver-
ticesin 7. Let S be the DCy-set. Since P is a diametral path,
the branches of T does not has length greater than R. So it
is dominated by any one of the vertex in P with respect to
D-centro domination. Therefore it is enough to choose S in
V(P). Each vertex of P has only one D-centro vertex in P
and the central vertices of odd path contains two end vertices
as D-centro vertex and viceversa. Suppose DCy(T) <R — 1.
Then there are atleast three or more vertices in the diametral
path as D-centro vertices to any vertex in the diametral path
which of them, two vertices forms a cycle with any vertices
of T, which is a contradiction. Therefore DCY(T) > R. Now
take the path (P,) where n is even. Partitioned V (P) into two
subsets V| = {ay,az, ....a, } and Vo = {by, by, ....b, } where a,
and b, are the central vertices of P. Start with the vertex a;
which is D-centro to by. For each vertex in S has the follow-
ing condition. (i) If DC,,(G) > 1 and DCp,,(G) = 1 where
1 <i<n,thenq; €S. (ii) If 1 <DGCy(G) < DC,(G) and
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Then the graph G requires n number of vertices to dominate
all other vertices with respect to D-centro domination where n
is the total number of vertices in the diametral path P,. There-
fore, DCy(G) < D —2. This is a contradiction since S is not
minimum.

This proof is similar when the diametral path is odd. O

Theorem 2.10. Every vertex except end vertices in a diame-
tral path P of a tree T is a support vertex. Then DCy(T) =
|S(T)| where S is the D-centro dominating set.

Theorem 2.11. (i) For a complete graph G = K, DCy(G) =
1.

(ii) For a complete bipartite graph G = K,y, 5, DC(G) = DC,(G)
2, myn>72.

Proof. (i) Let G =K, and let V(G) = v;;1 <i<n. The de-
tour length of any two vertices is n — 1. Every singleton set v;
(1 <i< n)forms a DCy-set and so DCy(G) = 1.

(ii) LetG = K,,, , and be partitioned into two sets

V] = {u],uz, ....... Mn} and V2 = {\/’1,\/’27 ........ Vm} such
that every edge of G joins a vertex of Vi with a vertex of
V5.

Case(i): If m < n, then the detour distance between two ver-
tices from V| is 2m and that of two vertices from V; is 2m — 1.
That is, ep(u) = 2mVu € Vi and ep(v) = 2m — Vv € V5.
Therefore Rad(G) = 2m — 1. The D-centro vertices of each
element of V; is V5 and the set V5 is V;. Therefore the D-
centro set contains only two elements. That is, an element
from V; and an element from V,. And also by the definition, it
is enough to take one element from V; and one element from
V> to satisfy the minimum D-centro dominating set. Hence
DC(G) = DCy(G) = 2.

Case(ii): If m = n, the proof is same as case(i). O

Theorem 2.12. (i) For a path P,,

nis even

n
DCy(Py) = { il nis odd

2

(ii) For a path B,, DC(P,) = 2.

Proof. (i) LetV(P,)={vi,va,........ vn }. In a path P,
Rad(P,) = | 5] and Diam(P,) = n— 1. Let S be the D-centro
dom set.

Case(i): Suppose that n is odd. We take n = 2k 4 1, where
k is a positive integer. Now take the vertex vg, . Then vy
has the minimum eccentricity R, where R is the eccentric
radius of P,. Since P, is a path, the two end vertices vy,
v, are the D-centro vertices of vi, | and the detour distance
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of these two vertices vy, v, from the vertex viy; is equal
to detour radius and so vxy; € S. In the remaining vertices
V2goounn. S Vs Vit e o« ony Vi« - - ooy Vp—i fOr i from 2 to k, v;
and vy; are D-centro to each other. In the set there are "53
vertices, which are also in D-centro dominating set. Hence,
DCy(G) 1 + ( 3) ("2 1)

Case(ii): Suppose that n is even and so n = 2k for every pos-
itive integer k. Each vertex has only one vertex as D-centro
vertex. Therefore DCy(G) = 5.

(i) LetV(P,) =
|5 ] and Diam(P,) = n— 1. Let S be the D-centro set. Since
each vertex has only one vertex as D-centro vertex, the set S
contains only two vertices. Hence, DC(G) = 2. O

Theorem 2.13. For a cycle G = C, where n > 3, DCy(G) =
5]

Proof. Consider this cycle, G = C,,. By Theorem 2.5 in [1],
N(x) = DC,(G) for all x in C,. That is, neighborhood vertices
of every vertex of G are D-centro vertices. Therefore, by the
definition of D-centro dominating set, DCy(G) = [§] O
Theorem 2.14. For any wheel graph W,, DC,(W,) = 1 for
n>3.

Proof. LetV(W,) = {u,vi,va,...... Vp—1} with u as its cen-
tral vertex. Since u is adjacent to all other vertices

VI V2yeeeeennn vu—1, the detour distance between any pair of
vertices of V(W,,) is n — 1. Therefore any one vertex of V(W,,)
is a D-centro dom set. Since it is minimum, DCy(Wn) =

1.

Theorem 2.15. For a double star G = S, ,,DCy(G) =
DC(G) = 1 +m where m > n.

2 and

Proof. Consider the graph G = §,, , whose vertex set is
{r,s,ui,uz,. .. ,ty,vi,v2,...,v, }. Now the eccentricity,
ep(x)=2ifxersand ep(x) =3 if x € V(S —r,s) and
Rad(G) = 2. Therefore r-D-centro set of G is {vi,va,...,v,}
and s-D-centro set of G is {uy,uy,. .., uy}. The u;-D-centro
set, DC,;(G) = {s,u1,u2,. .. ,ui—1,Ujt+1,...., Uy  and the v;-D-
centro set,

DC,,(G) ={r,vi,v2,...,Vi—1,Vit1;---,Vn}. Now S = ;5. Then
it is enough to take S as D-centro dominating set. Hence
DCy(G) = 2. Now we see that every pair of vertices between
the sets {r,vi,v2,...,v,} and {s,u;,us,...,u,,} are D-centro
to each other. Therefore by the definition, DCy(G) = 1+m
where m > n. O

3. Realization Results

Next we develop three realization results on DC(G) and
DCy(G).

Theorem 3.1. For every consecutive pair k,n of integers with
3 <k < n, there exists a connected graph G of order n such
that DC(G) = k.

{vi,vayeeeenn e ,Vn}. Inthe path B,, Rad(P,) =
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Proof. Suppose that 3 <k < n.

X
Figure 2 A graph K
Construct a complete graph K; of vertices {u,uz,...... Ui
of order k. By previous results, DC(K}) = k and Rad(G) =
k— 1. Now add a new vertex x to any one of {u,u,...... Uk}

Now we join x to 4,V (1 <i < n) for some i. It forms a new
graph G of order n where n = k+ 1. Since x is an end vertex
adjacent to u;, it does not affect the radius. Hence the de-
tour eccentricity of u; is k — 1 and ep(v) = {k/v # u;Vv € G}.
Further since each vertex except x are adjacent to all other
vertices, D(u,v) = k — 1, for any pair of vertices u and v.
Hence there exists a graph of order n such that DC(G) = k
and 3 <k <n. O

Theorem 3.2. For every pair r,s of positive integers with
2 <r <, there exists a connected graph G of order s such
that DC(G) =r

Proof. Let r and s be positive integers such that 2 < r <.
Case (i): If 2 = r = 5. Then there exists a path of length 2
such that DC(G) = 2.

Case (ii): Let s = 3.

Subcase (i): If s =3 and 2 = r < s. Then there exists a path
of length 3 such that DC(G) =2

Subcase (ii): If s=3 and 2 < r = s, that is 3 = r = 5. Then
there exists a complete graph K3 such that DC(G) = 3.

Case (iii): Let s = 4.

Subcase (i): If s =4 and 2 = r < s, then there exists a path of
length 4 such that DC(G) =

Subcase (ii): If s =4 and 2 < r =, that is 4 = r = s, then
there exists a complete graph K, such that DC(G) = 4.
Subcase (iii): If s =4 and 2 < r < s, that is r = 3, then there
exists a graph G = K3 UK such that DC(G) = 3 by previous
theorem.

Case (iv): Take 2 < r < s where s > 5. The graph G has
desired properties if 2 < r = s by the above cases. Now we
have to prove 2 < r < s where s > 5.

Us ¢

Ups3

Uy

Ups

Figure 3 A graph G for case (iv)
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Construct a complete graph G = K, where

V(K,) =uj,up,...... u,. Clearly r > 4, since s > 4. Now add
new vertices

Ups ]y UptDyeennn. ,us_r to uy. It forms a new graph G of
order s. Since the vertices uy41,Upi2,...... ,us_, are end
vertices adjacent to uj, it does not alter the radius. That
is, the eccentricity of u; is r — 1 and ep(x) = {r+1/x #
u1Vx € G}. Further, each vertex of {uj,up,...... ,ur} is ad-
jacent to all other vertices in G — {up11,U42,...,us—r} and
D(x,y) = r—1Vx,y € {uy,us,...,u,}. Hence there exists a
graph G of order s such that DC(G) =r. O

Theorem 3.3. For any integers a and b with2 < a < b, there
exists a connected graph G of order n > 2 such that DCy(G) =
a and DC(G) = b.

Proof. Let a and b be any integers with 2 < a < b. Then we
can have the following cases.

Case(i): Assume that 2 = a = b. Then there exists a com-
plete bipartite graph G = K, , for any integer m,n such that
DCy(G) =DC(G) =2.

Case(ii): Suppose that 2 = a < b. Take G a double star S,,, ,,.
Then G satisfies the desired properties.

Case(iii): Suppose that 2 < a < b. Construct a complete
graph G = K, of vertices with b > 2. Add a path P, :
Vi,V2,...,V4—2 to u; for any i, between i and b and a —2 < b.
Further add a new pendant vertex x to any of the vertices
V1,V2,...,Vq—2. It forms a new graph G of order n = (a+b) — 1.
The subgraph induced by the set of vertices {uj,us,...,up}
is complete and the path vy, vs,...,v,_> joined to u; and join
X to v, as shown in the Figure 4. Hence the eccentricity of
u; does not exceed b — 1. That is, ep(u;) = b — 1. There-
fore the new graph G does not alter its radius. Furthermore
eD(u) = (a—|—b) —3/Lt S {M], ...... SU_ 1 Uit ]y ..,I/lb}. The
vertices from G — {vy,vs,...,v,_2,x} are D-centro to each
other. Therefore DC(G) = b. Further since ep(v) > b —1 for
all v e {v,va,...,v4-2,x}, DCy(G) = ¢ for every
xe{vi,va,...... ,Va—2,x}. By definition, DCy(G) = 1+ (a—
2) + 1. That is, DCy(G) = a. Hence there exists a graph G
such that DCy(G) = a and DC(G) = b.

Va—2

Figure 4 For case (iii)

Case(iv): Let 2 < a = b. Construct a complete graph G =
K, of vertices {uj,up,...... ,upt with n > 2. Add a path
Pi—1 :vi,v2,...,v4—1 to u; for any i, between i and b and
a—1 < b. It forms a new graph G of order n = (a +b) — 1.
The subgraph induced by the set of vertices {uj,us,...,up}
is complete, the path {vi,v2,...,v,—1} join to u; as shown
in the Figure 5. Hence the eccentricity of u; does not ex-
ceed b — 1. That is, ep(u;) = b — 1 and so the new graph G

257
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does not alter its radius. Furthermore ep(u) = (a+b) — 2
for every u from the set {uj,...... Ui, Uit], .- Up}. The
vertices from G — {vy, vy, ...,v,—1 } are D-centro to each other.
Therefore DC(G) = b. Further, since ep(v) > b— 1 for any
v from the set {vi,v2,...,v,—1} and DCy(G) = ¢ for any x
from the set {vi,v,...,va—1}. Hence DCy(G) =1+ (a—1)
and so, DCy(G) = a. Thus there exists a graph G such that
DC,(G) = a and DC(G) = b.

u; Vi V2 Va-1

Figure 5 For case (iv) O

Theorem 3.4. For positive integers R, D with R < D < 2R,
there exists a connected graph G with Rad(G) = R, Diam(G) =
D and DC(G) = R+ 1 and DCy(G) = R.

Proof. We prove this theorem by considering two cases relat-
ing this values of R and D.

Case (i): Assume that R < D = 2R. We construct a graph as
shown in the Figure 6:

1 V1 v

Figure 6 For case (i)

Consider two positive integers R and D such that R < D =2R.
Consider a complete graph Kp_g4 of vertices
ui,un,...,up_g+1. Let Pp_g be a path having vy,v2,...,vp_g
as vertices. Construct a new graph G by joining Pp_g with a
vertex u; of Kp_pg+1. The detour eccentricity of u; is R and that
of other vertices uy,us,. .., uji_1,uiy1,...,up—r+1 18 2R. The
detour eccentricity of v is R+ 1, v, is R+2 and so on. The de-
tour eccentricity of vp_g is 2R(= D). Further, since Kp_g+1
is complete and by the definition, the remaining vertices from
G — Kp_g+1 are null D-centro vertices. Therefore by the def-
inition of D-centro dom set DCy(G) =14+ (D—R)—1=R
and every pair of vertices of Kp_g is D-centro to each other.
Therefore, DC(G) = R+ 1 and DC,(G) =R.

Case (ii): Suppose that R < D < 2R, We construct a graph as
follows:
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X1

@

—, X2
Il
h
‘f
[ ]

X2R-D-1

Figure 7 For case (ii)

Consider two positive integers R and D such that R < D < 2R.
Consider a complete graph Ky, with the vertices
up,uz,...,ug+1. Let Kip_gy ;1 be another complete graph of
order (D—R)+1 with R+ 1 > (D —R) + 1. Let the vertices
of K(p_pgy+1 be ui,vi,...,vp_g). Let H be a graph obtained
from Kg11 and K(p_g),1 by identifying u; as the common
vertex in Kg1 and K(p_g), 1. Now add the set S of new pen-
dant vertices {x,x2,...,X2r—p—1} to H and join each vertex
xi(1 <i<2R—D—1) to the vertex ; to obtain a new graph G
as shown in the Figure 7. The detour eccentricity of u; is R and
that of other vertices uy,us, ... ,uj—1,Ujt+1,...,Ug+1 are equal
to 2R. The detour eccentricity of v;(1 <i < (D—R)+1)
is D and the detour eccentricity of x;(1 <i<2R—-D—1)
is R+ 1. Further, Ky and K(p_g); | are complete and
the detour length of any vertex from Kr, to a vertex u; is
R. Hence, by the definition DC(G) = R+ 1. Now, since
K(p_g)+1 1s complete and S contains all pendant vertices, the
remaining vertices from G — K(p_g) 41 — {u;} US are the null
D-centro vertices. Therefore, by the definition of D-centro
dom set, DCy(G) =1+D—-R+2R—D—1=R. Hence
DCy(G) =R. O

4. Conclusion

In this paper, the D-centro dominating sets in graphs has
been studied, It is simply a dominating set of G with a detour
distance R(G). Also a special type of vertex, null D-centro
vertex has been defined and the bounds for D-centro domina-
tion number interms of the number of null D-centro vertices
have been found. The D-centro domination number for some
special graphs like complete graph, cycle, wheel and star have
been determined. Algorithms can be developed for finding the
parameter, D-centro domination number for arbitrary graphs.
This theory can be developed for finding k-center with respect
domination based detour distance.
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