D-centro dominating sets in graphs

A. Anto Kinsley ${ }^{1 *}$ and P. Siva Ananthi ${ }^{2}$

Abstract

In this paper a new concept D-centro dominating set in graphs is introduced and graphs are characterized with some results. A subset $S \subset V(G)$ of a connected graph G is said to be D-centro dominating set of G, if for every $v \in V-S$, there exists a vertex u in S such that $D(u, v)=\operatorname{Rad}(G)$. The minimum cardinality of the D-centro dominating set is called D-centro domination number, denoted by $D C_{\gamma}(G)$. The D-centro dominating set with cardinality $D C_{\gamma}(G)$ is called $D C_{\gamma}$-set of G. Some bounds for the D-centro domination number are determined. An important realization result on D-centro domination number is proved that for any integers a and b with $2 \leq a \leq b$, there exists a connected graph G such that $D C_{\gamma}(G)=a$ and $D C(G)=b$.

Keywords
Detour distance, detour eccentricity, detour radius, D-centro sets.

AMS Subject Classification

05C12, 05C69.
1,2 Department of Mathematics, St. Xavier's College, Tirunelveli-627002, Tamil Nadu, India.
Affiliated to Manonmaniam Sundaranar University, Tamil Nadu, India.
*Corresponding author: ${ }^{1}$ antokinsley@yahoo.com; ${ }^{2}$ sivaananthi22@gmail.com
Article History: Received 30 January 2020; Accepted 03 February 2020
(C)2020 MJM.

Contents

1 Introduction 253
$2 D$-centro dominating set 253
3 Realization Results 256
4 Conclusion 258
References 258

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph terminology we refer to Harary [7]. For vertices r and s in a connected graph G, the detour distance $D(r, s)$ is the length of the farthest r-s path in G. For any vertex r of G, the detour eccentricity of r is $e_{D}(r)=\max \{D(r, s): s \in V\}$. A vertex s of G such that $D(r, s)=e_{D}(r)$ is called an detour eccentric $v e r t e x$ of r. The detour radius R and detour diameter D of G are defined by $\operatorname{Rad}(G)=\min \left\{e_{D}(s): s \in V\right\}$ and $\operatorname{Diam}(G)=$ $\max \left\{e_{D}(s): s \in V\right\}$ respectively. An $r-s$ path of length $D(r, s)$ is called an $r-s$ detour path. These concepts were studied by Chartrand et al [6]. If $e_{D}(s)=\operatorname{Rad}(G)$ then s is called a detour central vertex of G and the subgraph induced by all detour central vertices of G is called detour center of G and
is denoted by $C D(G)$. Next we study the following definitions given in [1]. For any vertex p in G, a set S of vertices of V is an $p-D$-centro set if $D(p, s)=\operatorname{Rad}(G)$ for every $s \in S$, that is, p and sare said to be D-centro to each other. It is denoted by $D C_{p}(G)$. Let p be a vertex of G and S be the p - D-centro set of G. Then p is said to be the D-centro vertex of G with respect to S if the cardinality of S is the maximum among all S. The maximum p - D-centro set is denoted as S_{p}. The set of all D-centro vertices of G is called D-set of G and the cardinality of D-set is said to be D-centro number of G and it is denoted by $\operatorname{Dn}(G)$. A set S is said to be D-centro set of G if $D(r, s)=\operatorname{Rad}(G)$ for every pair of vertices of S. That is, r and s are D-centro to each other in S. The maximum cardinality among all D-centro sets is called $D C$-set. It is denoted by $D C(G)$.

2. D-centro dominating set

Next we define and study the properties of D-centro dominating set.

Definition 2.1. A subset $S \subset V(G)$ of a connected graph G is said to be D-centro dominating set of G iffor every $v \in V-S$, there exists a vertex u in S such that $D(u, v)=\operatorname{Rad}(G)$. The minimum cardinality of the D-centro dominating set is called D-centro domination number, denoted by $D C_{\gamma}(G)$. The D centro dominating set with cardinality $D C_{\gamma}(G)$ is called $D C_{\gamma^{-}}$
set of G.
Sometimes, there exists no u-D-centro vertex in G for a vertex u. Next we study these types of vertices in G

Definition 2.2. A vertex $u \in G$ has no u - D-centro vertex is called null D-centro vertex. The collection of null D-centro vertices is called as null D-centro set of G.

Figure 1 A graph G with detour eccentricities $\left\{u_{2}, u_{3}\right\}$ is a $D C_{\gamma}$-set. Thus $D C_{\gamma}(G)=\left|u_{2}, u_{3}\right|=2$. Here u_{2} is the null D-centro vertex.

Vertex (x)	x - D-centro set
u_{1}	$\left\{u_{3}\right\}$
u_{2}	$\{\phi\}$
u_{3}	$\left\{u_{1}, u_{4}, u_{5}\right\}$
u_{4}	$\left\{u_{3}, u_{5}\right\}$
u_{5}	$\left\{u_{3}, u_{4}\right\}$

Theorem 2.3. Every null D-centro vertices belongs to every

 D-centro dominating set.Proof. Let x be a null D-centro vertex and $S_{x}=\phi$. There exists no $w \in G$ such that $D(x, w)=\operatorname{Rad}(G)$. Let S be a D centro dominating set. For all $r \in V-S$, there exists $s \in S$ such that $D(r, s)=\operatorname{Rad}(G)$. We claim that $x \in S$. By the definition of D-centro dominating set, each vertex r in $V-S$ has atleast one D-centro vertex in S. Since x is a null D-centro vertex, that is x - D-centro set $=\phi$, it must belongs to the set S. Suppose x does not belongs to the set S. Then $x \in V-S$ and therefore there exists a vertex $s \in S$ such that $D(x, s)=\operatorname{Rad}(G)$, which is a contradiction. Hence the theorem.

Theorem 2.4. A D-centro dominating set S without null D centro vertices is a minimal D-centro dominating set if and only iffor each vertex $r \in S$ one of the following two conditions hold: (a) r is an isolate of $S(b)$ there exists a vertex $s \in V-S$ for which $D C_{S}(G) \cap S=\{r\}$

Proof. Suppose that the set S be a minimal D-centro dominating set without null D-centro vertices. For every vertex $r \in S$, $S-\{r\}$ is not a D-centro dominating set. There exists some vertex s in $(V-S) \cup r$ such that s has no D-centro vertex in $S-\{u\}$.
Case(i): Suppose that $r=s$, then r is an isolate of S with respect to D-centro domination
Case(ii): Suppose that $s \in V-S$. If s has no D-centro vertex
in $S-\{u\}$, but it has D-centro vertex in S, then r is the only D-centro vertex of s in S. Hence $D C_{s}(G) \cap S=\{r\}$.
For the converse part, we have to prove S is a minimal D centro dominating set. Suppose that S is not a minimal D centro dominating set. There exists a vertex $r \in S$ such that $S-\{r\}$ is a D-centro dominating set. Therefore r is D-centro to atleast one vertex s in $S-\{r\}$ and r has an D-centro vertex in $S-\{r\}$. Hence condition (a) does not hold. Further if $S-\{r\}$ is an D-centro dominating set, every element s in $V-S$ is D-centro to at least one vertex w in $S-\{r\}$ and the vertex r has a D-centro vertex in $S-\{r\}$. Hence, condition (b) does not hold. This contradicts to our assumption that for each $r \in S$, one of the following conditions hold.

Theorem 2.5. If $D C_{\gamma}(G)=p-1$ where p is the order of G. Then G has $p-2$ null D-centro vertices.

Proof. Let S be a D-centro dominating set of G with order p. Since $|S|=p-1$, there is only one vertex r in $V-S$. By the definition of $D C_{\gamma}(G)$, this vertex r is D-centro to any one of the vertex in S say s. Suppose that the vertex is D-centro to two or more vertices in G. Then $D\left(v_{1}, r\right)=D\left(v_{2}, s\right)=\operatorname{Rad}(G)$ and $D\left(v_{i}, r\right) \neq \operatorname{Rad}(G)$, where $i=3, \ldots, p-1$. Since, v_{1}, v_{2} are the D-centro vertices of r, it is enough to take the vertex r instead of v_{1}, v_{2} in S and $D C_{\gamma}(G) \leq p-2$, which is a contradiction by our hypothesis. Therefore, there are only two vertices are null D-centro vertices. Hence, the cardinality of null D-centro vertices is $p-2$.

Theorem 2.6. A graph G with no cycles does not contains the null D-centro vertices.

Proof. Let G be a graph with no cycles. Suppose that G contains a null D-centro vertex w and so $D C_{w}(G)=\phi$. Clearly $D(w, r)<\operatorname{Rad}(G)$ for all $r \in G$ is not possible since no pair of vertices have detour distance less than detour radius. Therefore $D(w, r)>\operatorname{Rad}(G)$ for all $r \in G$. Now, consider $D(w, r)=$ $\operatorname{Rad}(G)+1$ where $r \in G$. Since no vertex in the path $w-r$ has detour length from w is equal to R, G contain a cycle. It is a contradiction and so it completes the proof.

$$
\text { Next we develop a bound for } D C_{\gamma}(G)
$$

Theorem 2.7. Let G be a graph with k null D-centro vertices. Then $1 \leq D C_{\gamma}(G)-k \leq \frac{n}{2}$.

Proof. Let K be the null D-centro set of G with k number of vertices. By theorem 2.3, the null D-centro vertices lie in D-centro dominating set. Therefore $D C_{\gamma}(G) \geq k$. But $\operatorname{Rad}(G) \geq 1$. Then there exists atleast a path of detour length 2 such that the set $D C_{\gamma}(G)$ must contain atleast one non null D-centro vertex. Therefore $D C_{\gamma}(G)>k$ and so $D C_{\gamma}(G) \geq$ $k+1$. Obviously, the set $V-K$ contains atmost $\frac{n}{2}$ vertices. Hence $D C_{\gamma}(G) \leq \frac{n}{2}+k$. Thus, $k+1 \leq D C_{\gamma}(G) \leq \frac{n}{2}+k$ and so $1 \leq D C_{\gamma}(G)-k \leq \frac{n}{2}$.

Theorem 2.8. Let P be a diametral path in a Tree T and S be the D-centro dominating set. Let $a, b \in P$ are the vertices D-centro to each other. Then $D C_{\gamma}(T)=R$ if and only if for each vertex in the set S satisfies one of the following condition:
(i) $D C_{a}(G) \geq 1$ and $D C_{b}(G)=1 \forall a, b \in P$.
(ii) If $1 \leq D C_{b}(G) \leq D C_{a}(G)$ and $D C_{x}(G) \bigcap V(P-\{a\}) \neq \emptyset$ for some $x \in D C_{a}(G)$, then there exists a vertex $r \in D C_{x}(G) \bigcap V$ $\{a\})$ and $D C_{y}(G)=\{r\}$ where y and r are D-centro to each other and $y \in V(P)$

Proof. Assume that $D C_{\gamma}(T)=R$. Let G be a tree T with radius R. We know that for any pair of distinct vertices of T, there exists a unique path between them. Now consider a diametral path $P_{2 n}$ of 2 n vertices in T. Then $\operatorname{Rad}\left(P_{2 n}\right)=\left\lfloor\frac{2 n}{2}\right\rfloor$. Partitioned P into two subsets $V_{1}=\left\{a_{1}, a_{2}, \ldots ., a_{n}\right\}$ and V_{2} $=\left\{b_{1}, b_{2}, \ldots ., b_{n}\right\}$ where a_{n} and b_{1} are the central vertices. The vertices $a_{2}, \ldots b_{n-1}$ in the diametral path $P_{2 n}$ contains branches whose length from $V\left(P_{2 n}\right)$ is less than or equal to R. Further, the D-centro vertices of the remaining vertices of the branches must contains some D-centro vertices in $P_{2 n}$. So that it is enough to take vertices in $P_{2 n}$ as the member of S. Now for each vertex a_{i} where $1 \leq i \leq n$ in V_{1}, either $a_{i}-D$-centro set contains singleton vertex or $D C_{a_{i}}(G) \geq D C_{b_{i}}(G)$. Therefore condition (i) holds. Suppose that $1 \leq D C_{b_{i}}(G) \leq D C_{a_{i}}(G)$ and $D C_{x}(G) \bigcap V\left(P-\left\{a_{i}\right\}\right)=\emptyset$ for some $x \in D C_{a_{i}}(G)$, then both a_{i} and b_{i} belongs to the set S. Therefore $D C_{\gamma}(T)>R$ which is a contradiction. Hence condition (ii) holds. Conversely, assume that for each vertex in S satisfies one of the stated conditions holds. It is notice that the cardinality of D-centro dominating set increases when $1 \leq D C_{b_{i}}(G) \leq D C_{a_{i}}(G)$ and $D C_{x}(G) \bigcap V\left(P-\left\{a_{i}\right\}\right)=\emptyset$ for some $x \in D C_{a_{i}}(G)$. Therefore by the hypothesis, it is obvious that $D C_{\gamma}(T)=R$. This proof is similar when the diametral path is odd.

Theorem 2.9. For a Tree $T, R \leq D C_{\gamma}(T) \leq D-1$, where R and D be radius and diameter of T.

Proof. Let G be a tree T with radius R and diameter D. Suppose $D C_{\gamma}(T)<R$. Let P be any diametral path of even vertices in T. Let S be the $D C_{\gamma}$-set. Since P is a diametral path, the branches of T does not has length greater than R. So it is dominated by any one of the vertex in P with respect to D-centro domination. Therefore it is enough to choose S in $V(P)$. Each vertex of P has only one D-centro vertex in P and the central vertices of odd path contains two end vertices as D-centro vertex and viceversa. Suppose $D C_{\gamma}(T) \leq R-1$. Then there are atleast three or more vertices in the diametral path as D-centro vertices to any vertex in the diametral path which of them, two vertices forms a cycle with any vertices of T, which is a contradiction. Therefore $D C_{\gamma}(T) \geq R$. Now take the path $\left(P_{n}\right)$ where n is even. Partitioned $V(P)$ into two subsets $V_{1}=\left\{a_{1}, a_{2}, \ldots . a_{n}\right\}$ and $V_{2}=\left\{b_{1}, b_{2}, \ldots . b_{n}\right\}$ where a_{n} and b_{1} are the central vertices of P. Start with the vertex a_{1} which is D-centro to b_{1}. For each vertex in S has the following condition. (i) If $D C_{a_{i}}(G)>1$ and $D C_{b_{i}}(G)=1$ where $1 \leq i \leq n$, then $a_{i} \in S$. (ii) If $1 \leq D C_{b_{i}}(G) \leq D C_{a_{i}}(G)$ and
$D C_{x}(G) \cap V\left(P-\left\{a_{i}\right\}\right)=\emptyset$ for some $x \in D C_{a_{i}}(G)$, then both a_{i} and b_{i} belongs to the set S. (iii) If $1 \leq D C_{b_{i}}(G) \leq D C_{a_{i}}(G)$ and $D C_{x}(G) \bigcap V\left(P-\left\{a_{i}\right\}\right) \neq \emptyset$ for some $x \in D C_{a_{i}}(G)$, then there exists a vertex $b \in D C_{x}(G) \bigcap V\left(P-\left\{a_{i}\right\}\right)$ and $D C_{y}(G)=$ $\{b\}$ where y and b are D-centro to each other and $y \in V(P)$, then $a_{i} \in S$. From the above conditions, the set S contains $n-1$ maximum possible vertices. Now suppose $D C_{\gamma}(T)>D-1$. Then the graph G requires n number of vertices to dominate all other vertices with respect to D-centro domination where n is the total number of vertices in the diametral path P_{n}. Therefore, $D C_{\gamma}(G) \leq D-2$. This is a contradiction since S is not minimum.
This proof is similar when the diametral path is odd.
Theorem 2.10. Every vertex except end vertices in a diametral path P of a tree T is a support vertex. Then $D C_{\gamma}(T)=$ $|S(T)|$ where S is the D-centro dominating set.

Theorem 2.11. (i) For a complete graph $G=K_{n}, D C_{\gamma}(G)=$ 1.
(ii) For a complete bipartite graph $G=K_{m, n}, D C(G)=D C_{\gamma}(G)=$ $2, m, n \geq 2$.

Proof. (i) Let $G=K_{n}$ and let $V(G)=v_{i} ; 1 \leq i \leq n$. The detour length of any two vertices is $n-1$. Every singleton set v_{i} $(1 \leq i \leq n)$ forms a $D C_{\gamma}$-set and so $D C_{\gamma}(G)=1$.
(ii) $\operatorname{Let} G=K_{m, n}$ and be partitioned into two sets
$V_{1}=\left\{u_{1}, u_{2}, \ldots \ldots . u_{n}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots \ldots . . v_{m}\right\}$ such that every edge of G joins a vertex of V_{1} with a vertex of V_{2}.
Case(i): If $m<n$, then the detour distance between two vertices from V_{1} is $2 m$ and that of two vertices from V_{2} is $2 m-1$. That is, $e_{D}(u)=2 m \forall u \in V_{1}$ and $e_{D}(v)=2 m-1 \forall v \in V_{2}$. Therefore $\operatorname{Rad}(G)=2 m-1$. The D-centro vertices of each element of V_{1} is V_{2} and the set V_{2} is V_{1}. Therefore the D centro set contains only two elements. That is, an element from V_{1} and an element from V_{2}. And also by the definition, it is enough to take one element from V_{1} and one element from V_{2} to satisfy the minimum D-centro dominating set. Hence $D C(G)=D C_{\gamma}(G)=2$.
Case(ii): If $m=n$, the proof is same as case(i).
Theorem 2.12. (i) For a path P_{n},

$$
D C_{\gamma}\left(P_{n}\right)= \begin{cases}\frac{n}{2}, & n \text { is even } \\ \frac{n-1}{2}, & n \text { is odd }\end{cases}
$$

(ii) For a path $P_{n}, D C\left(P_{n}\right)=2$.

Proof. (i) Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots \ldots \ldots v_{n}\right\}$. In a path P_{n},
$\operatorname{Rad}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ and $\operatorname{Diam}\left(P_{n}\right)=n-1$. Let S be the D-centro dom set.
Case(i): Suppose that n is odd. We take $n=2 k+1$, where k is a positive integer. Now take the vertex v_{k+1}. Then v_{k+1} has the minimum eccentricity R, where R is the eccentric radius of P_{n}. Since P_{n} is a path, the two end vertices v_{1}, v_{n} are the D-centro vertices of v_{k+1} and the detour distance
of these two vertices v_{1}, v_{n} from the vertex v_{k+1} is equal to detour radius and so $v_{k+1} \in S$. In the remaining vertices $v_{2}, \ldots \ldots, v_{k}, v_{k+2}, \ldots ., v_{k+i}, \ldots ., v_{n-i}$ for i from 2 to k, v_{i} and v_{k+i} are D-centro to each other. In the set there are $\frac{n-3}{2}$ vertices, which are also in D-centro dominating set. Hence, $D C_{\gamma}(G)=1+\frac{(n-3)}{2}=\frac{(n-1)}{2}$.
Case(ii): Suppose that n is even and so $n=2 k$ for every positive integer k. Each vertex has only one vertex as D-centro vertex. Therefore $D C_{\gamma}(G)=\frac{n}{2}$.
(ii) Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n}\right\}$. In the path $P_{n}, \operatorname{Rad}\left(P_{n}\right)=$ $\left\lfloor\frac{n}{2}\right\rfloor$ and $\operatorname{Diam}\left(P_{n}\right)=n-1$. Let S be the D-centro set. Since each vertex has only one vertex as D-centro vertex, the set S contains only two vertices. Hence, $D C(G)=2$.

Theorem 2.13. For a cycle $G=C_{n}$ where $n \geq 3, D C_{\gamma}(G)=$ $\left\lceil\frac{n}{3}\right\rceil$

Proof. Consider this cycle, $G=C_{n}$. By Theorem 2.5 in [1], $N(x)=D C_{x}(G)$ for all x in C_{n}. That is, neighborhood vertices of every vertex of G are D-centro vertices. Therefore, by the definition of D-centro dominating set, $D C_{\gamma}(G)=\left\lceil\frac{n}{3}\right\rceil$

Theorem 2.14. For any wheel graph $W_{n}, D C_{p}\left(W_{n}\right)=1$ for $n \geq 3$.

Proof. Let $V\left(W_{n}\right)=\left\{u, v_{1}, v_{2}, \ldots \ldots v_{n-1}\right\}$ with u as its central vertex. Since u is adjacent to all other vertices
$v_{1}, v_{2}, \ldots \ldots \ldots v_{n-1}$, the detour distance between any pair of vertices of $V\left(W_{n}\right)$ is $n-1$. Therefore any one vertex of $V\left(W_{n}\right)$ is a D-centro dom set. Since it is minimum, $D C_{\gamma}(W n)=$ 1.

Theorem 2.15. For a double star $G=S_{m, n}, D C_{\gamma}(G)=2$ and $D C(G)=1+m$ where $m \geq n$.

Proof. Consider the graph $G=S_{m, n}$ whose vertex set is $\left\{r, s, u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}\right\}$. Now the eccentricity, $e_{D}(x)=2$ if $x \in r, s$ and $e_{D}(x)=3$ if $x \in V\left(S_{m, n}-r, s\right)$ and $\operatorname{Rad}(G)=2$. Therefore r - D-centro set of G is $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and s - D-centro set of G is $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$. The u_{i}-D-centro set, $D C_{u_{i}}(G)=\left\{s, u_{1}, u_{2}, \ldots, u_{i-1}, u_{i+1}, \ldots ., u_{m}\right\}$ and the $v_{i}-D-$ centro set,
$D C_{v_{i}}(G)=\left\{r, v_{1}, v_{2}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}\right\}$. Now $S=r, s$. Then it is enough to take S as D-centro dominating set. Hence $D C_{\gamma}(G)=2$. Now we see that every pair of vertices between the sets $\left\{r, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{s, u_{1}, u_{2}, \ldots, u_{m}\right\}$ are D-centro to each other. Therefore by the definition, $D C_{\gamma}(G)=1+m$ where $m \geq n$.

3. Realization Results

Next we develop three realization results on $D C(G)$ and $D C_{\gamma}(G)$.

Theorem 3.1. For every consecutive pair k, n of integers with $3 \leq k<n$, there exists a connected graph G of order n such that $D C(G)=k$.

Proof. Suppose that $3 \leq k<n$.

Figure 2 A graph K_{k}
Construct a complete graph K_{k} of vertices $\left\{u_{1}, u_{2}, \ldots \ldots, u_{k}\right\}$ of order k. By previous results, $D C\left(K_{k}\right)=k$ and $\operatorname{Rad}(G)=$ $k-1$. Now add a new vertex x to any one of $\left\{u_{1}, u_{2}, \ldots \ldots, u_{k}\right\}$. Now we join x to $u_{i} \forall(1 \leq i \leq n)$ for some i. It forms a new graph G of order n where $n=k+1$. Since x is an end vertex adjacent to u_{i}, it does not affect the radius. Hence the detour eccentricity of u_{i} is $k-1$ and $e_{D}(v)=\left\{k / v \neq u_{i} \forall v \in G\right\}$. Further since each vertex except x are adjacent to all other vertices, $D(u, v)=k-1$, for any pair of vertices u and v. Hence there exists a graph of order n such that $D C(G)=k$ and $3 \leq k \leq n$.

Theorem 3.2. For every pair r,s of positive integers with $2 \leq r \leq s$, there exists a connected graph G of order s such that $D C(G)=r$.

Proof. Let r and s be positive integers such that $2 \leq r \leq s$.
Case (i): If $2=r=s$. Then there exists a path of length 2 such that $D C(G)=2$.
Case (ii): Let $s=3$.
Subcase (i): If $s=3$ and $2=r<s$. Then there exists a path of length 3 such that $D C(G)=2$.
Subcase (ii): If $s=3$ and $2<r=s$, that is $3=r=s$. Then there exists a complete graph K_{3} such that $D C(G)=3$.
Case (iii): Let $s=4$.
Subcase (i): If $s=4$ and $2=r<s$, then there exists a path of length 4 such that $D C(G)=2$.
Subcase (ii): If $s=4$ and $2<r=s$, that is $4=r=s$, then there exists a complete graph K_{4} such that $D C(G)=4$.
Subcase (iii): If $s=4$ and $2<r<s$, that is $r=3$, then there exists a graph $G=K_{3} \cup K_{1}$ such that $D C(G)=3$ by previous theorem.
Case (iv): Take $2 \leq r \leq s$ where $s \geq 5$. The graph G has desired properties if $2 \leq r=s$ by the above cases. Now we have to prove $2<r<s$ where $s \geq 5$.

Figure 3 A graph G for case (iv)

Construct a complete graph $G=K_{r}$ where
$V\left(K_{r}\right)=u_{1}, u_{2}, \ldots \ldots u_{r}$. Clearly $r \geq 4$, since $s>4$. Now add new vertices
$u_{r+1}, u_{r+2}, \ldots \ldots, u_{s-r}$ to u_{1}. It forms a new graph G of order s. Since the vertices $u_{r+1}, u_{r+2}, \ldots \ldots, u_{s-r}$ are end vertices adjacent to u_{1}, it does not alter the radius. That is, the eccentricity of u_{1} is $r-1$ and $e_{D}(x)=\{r+1 / x \neq$ $\left.u_{1} \forall x \in G\right\}$. Further, each vertex of $\left\{u_{1}, u_{2}, \ldots \ldots, u_{r}\right\}$ is adjacent to all other vertices in $G-\left\{u_{r+1}, u_{r+2}, \ldots, u_{s-r}\right\}$ and $D(x, y)=r-1 \forall x, y \in\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$. Hence there exists a graph G of order s such that $D C(G)=r$.

Theorem 3.3. For any integers a and b with $2 \leq a \leq b$, there exists a connected graph G of order $n>2$ such that $D C_{\gamma}(G)=$ a and $D C(G)=b$.

Proof. Let a and b be any integers with $2 \leq a \leq b$. Then we can have the following cases.
Case(i): Assume that $2=a=b$. Then there exists a complete bipartite graph $G=K_{m, n}$ for any integer m, n such that $D C_{\gamma}(G)=D C(G)=2$.
Case(ii): Suppose that $2=a<b$. Take G a double star $S_{m, n}$. Then G satisfies the desired properties.
Case(iii): Suppose that $2<a<b$. Construct a complete graph $G=K_{b}$ of vertices with $b>2$. Add a path P_{a-2} : $v_{1}, v_{2}, \ldots, v_{a-2}$ to u_{i} for any i, between i and b and $a-2<b$. Further add a new pendant vertex x to any of the vertices $v_{1}, v_{2}, \ldots, v_{a-2}$. It forms a new graph G of order $n=(a+b)-1$. The subgraph induced by the set of vertices $\left\{u_{1}, u_{2}, \ldots, u_{b}\right\}$ is complete and the path $v_{1}, v_{2}, \ldots, v_{a-2}$ joined to u_{i} and join x to v_{2} as shown in the Figure 4. Hence the eccentricity of u_{i} does not exceed $b-1$. That is, $e_{D}\left(u_{i}\right)=b-1$. Therefore the new graph G does not alter its radius. Furthermore $e_{D}(u)=(a+b)-3 / u \in\left\{u_{1}, \ldots . ., u_{i-1}, u_{i+1}, \ldots ., u_{b}\right\}$. The vertices from $G-\left\{v_{1}, v_{2}, \ldots, v_{a-2}, x\right\}$ are D-centro to each other. Therefore $D C(G)=b$. Further since $e_{D}(v)>b-1$ for all $v \in\left\{v_{1}, v_{2}, \ldots, v_{a-2}, x\right\}, D C_{x}(G)=\phi$ for every $x \in\left\{v_{1}, v_{2}, \ldots \ldots, v_{a-2}, x\right\}$. By definition, $D C_{\gamma}(G)=1+(a-$ $2)+1$. That is, $D C_{\gamma}(G)=a$. Hence there exists a graph G such that $D C_{\gamma}(G)=a$ and $D C(G)=b$.

Figure 4 For case (iii)
Case(iv): Let $2<a=b$. Construct a complete graph $G=$ K_{b} of vertices $\left\{u_{1}, u_{2}, \ldots \ldots, u_{b}\right\}$ with $n>2$. Add a path $P_{a-1}: v_{1}, v_{2}, \ldots, v_{a-1}$ to u_{i} for any i, between i and b and $a-1<b$. It forms a new graph G of order $n=(a+b)-1$. The subgraph induced by the set of vertices $\left\{u_{1}, u_{2}, \ldots, u_{b}\right\}$ is complete, the path $\left\{v_{1}, v_{2}, \ldots, v_{a-1}\right\}$ join to u_{i} as shown in the Figure 5. Hence the eccentricity of u_{i} does not exceed $b-1$. That is, $e_{D}\left(u_{i}\right)=b-1$ and so the new graph G
does not alter its radius. Furthermore $e_{D}(u)=(a+b)-2$ for every u from the set $\left\{u_{1}, \ldots \ldots, u_{i-1}, u_{i+1}, \ldots, u_{b}\right\}$. The vertices from $G-\left\{v_{1}, v_{2}, \ldots, v_{a-1}\right\}$ are D-centro to each other. Therefore $D C(G)=b$. Further, since $e_{D}(v)>b-1$ for any v from the set $\left\{v_{1}, v_{2}, \ldots, v_{a-1}\right\}$ and $D C_{x}(G)=\phi$ for any x from the set $\left\{v_{1}, v_{2}, \ldots, v_{a-1}\right\}$. Hence $D C_{\gamma}(G)=1+(a-1)$ and so, $D C_{\gamma}(G)=a$. Thus there exists a graph G such that $D C_{\gamma}(G)=a$ and $D C(G)=b$.

Figure 5 For case (iv)

Theorem 3.4. For positive integers R, D with $R<D \leq 2 R$, there exists a connected graph G with $\operatorname{Rad}(G)=R, \operatorname{Diam}(G)=$ D and $D C(G)=R+1$ and $D C_{\gamma}(G)=R$.

Proof. We prove this theorem by considering two cases relating this values of R and D.
Case (i): Assume that $R<D=2 R$. We construct a graph as shown in the Figure 6:

Figure 6 For case (i)
Consider two positive integers R and D such that $R<D=2 R$. Consider a complete graph K_{D-R+1} of vertices
$u_{1}, u_{2}, \ldots, u_{D-R+1}$. Let P_{D-R} be a path having $v_{1}, v_{2}, \ldots, v_{D-R}$ as vertices. Construct a new graph G by joining P_{D-R} with a vertex u_{i} of K_{D-R+1}. The detour eccentricity of u_{i} is R and that of other vertices $u_{1}, u_{2}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{D-R+1}$ is $2 R$. The detour eccentricity of v_{1} is $R+1, v_{2}$ is $R+2$ and so on. The detour eccentricity of v_{D-R} is $2 R(=D)$. Further, since K_{D-R+1} is complete and by the definition, the remaining vertices from $G-K_{D-R+1}$ are null D-centro vertices. Therefore by the definition of D-centro dom set $D C_{\gamma}(G)=1+(D-R)-1=R$ and every pair of vertices of K_{D-R+1} is D-centro to each other. Therefore, $D C(G)=R+1$ and $D C_{\gamma}(G)=R$.
Case (ii): Suppose that $R<D<2 R$, We construct a graph as follows:

Figure 7 For case (ii)
Consider two positive integers R and D such that $R<D<2 R$. Consider a complete graph K_{R+1}, with the vertices
$u_{1}, u_{2}, \ldots, u_{R+1}$. Let $K_{(D-R)+1}$ be another complete graph of order $(D-R)+1$ with $R+1>(D-R)+1$. Let the vertices of $K_{(D-R)+1}$ be $u_{i}, v_{1}, \ldots, v_{(D-R)}$. Let H be a graph obtained from K_{R+1} and $K_{(D-R)+1}$ by identifying u_{i} as the common vertex in K_{R+1} and $K_{(D-R)+1}$. Now add the set S of new pendant vertices $\left\{x_{1}, x_{2}, \ldots, x_{2 R-D-1}\right\}$ to H and join each vertex $x_{i}(1 \leq i \leq 2 R-D-1)$ to the vertex u_{i} to obtain a new graph G as shown in the Figure 7. The detour eccentricity of u_{i} is R and that of other vertices $u_{1}, u_{2}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{R+1}$ are equal to $2 R$. The detour eccentricity of $v_{i}(1 \leq i \leq(D-R)+1)$ is D and the detour eccentricity of $x_{i}(1 \leq i \leq 2 R-D-1)$ is $R+1$. Further, K_{R+1} and $K_{(D-R)+1}$ are complete and the detour length of any vertex from K_{R+1} to a vertex u_{i} is R. Hence, by the definition $D C(G)=R+1$. Now, since $K_{(D-R)+1}$ is complete and S contains all pendant vertices, the remaining vertices from $G-K_{(D-R)+1}-\left\{u_{i}\right\} \cup S$ are the null D-centro vertices. Therefore, by the definition of D-centro dom set, $D C_{\gamma}(G)=1+D-R+2 R-D-1=R$. Hence $D C_{\gamma}(G)=R$.

4. Conclusion

In this paper, the D-centro dominating sets in graphs has been studied, It is simply a dominating set of G with a detour distance $R(G)$. Also a special type of vertex, null D-centro vertex has been defined and the bounds for D-centro domination number interms of the number of null D-centro vertices have been found. The D-centro domination number for some special graphs like complete graph, cycle, wheel and star have been determined. Algorithms can be developed for finding the parameter, D-centro domination number for arbitrary graphs. This theory can be developed for finding k-center with respect domination based detour distance.

References

${ }^{\text {[1] A A Anto Kinsley and P. Siva Ananthi, D-centro sets in }}$ graphs, IJSRD - International Journal for Scientific Research and Development- Vol. 4, Issue 01, 2016 ISSN (online): 2321-0613.
${ }^{[2]}$ F. Buckley and F. Harary, Distance in graphs, AddisonWesley, Longman, 1990.
${ }^{\text {[3] G. Chartrand, T.W. Haynes, M.A. Henning, and Ping }}$ Zhang, Detour domination in graphs, Ars Combin. 71 (2004) 149 - 160.
${ }^{\text {[4] G. Chartrand, David Erwin, G. L. Johns and P. Zhang, }}$ On boundary vertices in graphs, J.Combin. Math. Combin.Comput. 48, (2004), 39-53.
${ }^{[5]}$ G. Chartrand, David Erwin, G. L. Johns and P. Zhang, Boundary vertices in graphs, Disc.Math. 263 (2003), 2534.
${ }^{\text {[6] }}$ G. Chartrand and P. Zang, Introduction to Graph Theory, Tata McGraw-Hill, (2006).
${ }^{[7]}$ F. Harary, Graph theory, Addison- Wesley, 1969.
${ }^{\text {[8] T.N. Janakiraman, M. Bhanumathi and S. Muthammai, }}$ Eccentric domination in graphs, International Journal of Engineering Science, advanced Computing and BioTechnology, Volume 1, No.2, pp 1-16, 2010.
${ }^{[9]}$ KM. Kathiresan, G. Marimuthu and M. Sivanandha Saraswathy, Boundary domination in graphs, Kragujevac J. Math. 33, (2010), 63-70.
${ }^{[10]}$ A. P. Santhakumaran, P. Titus, The vertex detour number of a graph, AKCE International J. Graphs. Combin., 4(2007), 99-112.
$\operatorname{ISSN}(\mathrm{P}): 2319-3786$
Malaya Journal of Matematik
ISSN(O):2321-5666

