

https://doi.org/10.26637/MJM0S20/0048

©2020 MJM.

D-centro dominating sets in graphs

A. Anto Kinsley^{1*} and P. Siva Ananthi²

Abstract

In this paper a new concept *D*-centro dominating set in graphs is introduced and graphs are characterized with some results. A subset $S \subset V(G)$ of a connected graph *G* is said to be *D*-centro dominating set of *G*, if for every $v \in V - S$, there exists a vertex *u* in *S* such that D(u,v) = Rad(G). The minimum cardinality of the *D*-centro dominating set is called *D*-centro domination number, denoted by $DC_{\gamma}(G)$. The *D*-centro dominating set with cardinality $DC_{\gamma}(G)$ is called DC_{γ} -set of *G*. Some bounds for the *D*-centro domination number are determined. An important realization result on *D*-centro domination number is proved that for any integers *a* and *b* with $2 \le a \le b$, there exists a connected graph *G* such that $DC_{\gamma}(G) = a$ and DC(G) = b.

Keywords

Detour distance, detour eccentricity, detour radius, D-centro sets.

AMS Subject Classification 05C12, 05C69.

^{1,2} Department of Mathematics, St. Xavier's College, Tirunelveli-627002, Tamil Nadu, India.
Affiliated to Manonmaniam Sundaranar University, Tamil Nadu, India.
*Corresponding author: ¹ antokinsley@yahoo.com; ²sivaananthi22@gmail.com
Article History: Received 30 January 2020; Accepted 03 February 2020

Contents

1	Introduction
2	D-centro dominating set 253
3	Realization Results256
4	Conclusion
	References

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of *G* are denoted by *n* and *m* respectively. For basic graph terminology we refer to Harary [7]. For vertices *r* and *s* in a connected graph *G*, the detour distance D(r,s) is the length of the farthest *r*-*s* path in *G*. For any vertex *r* of *G*, the *detour* eccentricity of *r* is $e_D(r) = max\{D(r,s) : s \in V\}$. A vertex *s* of *G* such that $D(r,s) = e_D(r)$ is called an *detour* eccentric vertex of *r*. The *detour* radius *R* and *detour* diameter *D* of *G* are defined by $Rad(G) = min\{e_D(s) : s \in V\}$ and $Diam(G) = max\{e_D(s) : s \in V\}$ respectively. An *r*-*s* path of length D(r,s) is called an r - s detour path. These concepts were studied by *Chartrand* et al [6]. If $e_D(s) = Rad(G)$ then *s* is called a *detour* central vertex of *G* and the subgraph induced by all detour central vertices of *G* is called *detour* center of *G* and

is denoted by CD(G). Next we study the following definitions given in [1]. For any vertex p in G, a set S of vertices of Vis an p-D-centro set if D(p,s) = Rad(G) for every $s \in S$, that is, p and sare said to be D-centro to each other. It is denoted by $DC_p(G)$. Let p be a vertex of G and S be the p-D-centro set of G. Then p is said to be the D-centro vertex of G with respect to S if the cardinality of S is the maximum among all S. The maximum p-D-centro set is denoted as S_p . The set of all D-centro vertices of G is called D-set of G and the cardinality of D-set is said to be D-centro number of G and it is denoted by Dn(G). A set S is said to be D-centro set of G if D(r,s) = Rad(G) for every pair of vertices of S. That is, r and s are D-centro to each other in S. The maximum cardinality among all D-centro sets is called DC-set. It is denoted by DC(G).

2. D-centro dominating set

Next we define and study the properties of *D*-centro dominating set.

Definition 2.1. A subset $S \subset V(G)$ of a connected graph G is said to be D-centro dominating set of G if for every $v \in V - S$, there exists a vertex u in S such that D(u,v) = Rad(G). The minimum cardinality of the D-centro dominating set is called D-centro domination number, denoted by $DC_{\gamma}(G)$. The Dcentro dominating set with cardinality $DC_{\gamma}(G)$ is called DC_{γ} -

set of G.

Sometimes, there exists no u-D-centro vertex in G for a vertex u. Next we study these types of vertices in G

Definition 2.2. A vertex $u \in G$ has no u-D-centro vertex is called null D-centro vertex. The collection of null D-centro vertices is called as null D-centro set of G.

Figure 1 A graph G with detour eccentricities $\{u_2, u_3\}$ is a DC_{γ} -set. Thus $DC_{\gamma}(G) = |u_2, u_3| = 2$. Here u_2 is the null *D*-centro vertex.

Vertex(x)	x- D-centro set
<i>u</i> ₁	${u_3}$
u_2	$\{oldsymbol{\phi}\}$
u_3	$\{u_1, u_4, u_5\}$
u_4	$\{u_3, u_5\}$
u_5	$\{u_3, u_4\}$

Theorem 2.3. *Every null D-centro vertices belongs to every D-centro dominating set.*

Proof. Let *x* be a null *D*-centro vertex and $S_x = \phi$. There exists no $w \in G$ such that D(x, w) = Rad(G). Let *S* be a *D*-centro dominating set. For all $r \in V - S$, there exists $s \in S$ such that D(r,s) = Rad(G). We claim that $x \in S$. By the definition of *D*-centro dominating set, each vertex *r* in V - S has atleast one *D*-centro vertex in *S*. Since *x* is a null *D*-centro vertex, that is *x*-*D*-centro set = ϕ , it must belongs to the set *S*. Suppose *x* does not belongs to the set *S*. Then $x \in V - S$ and therefore there exists a vertex $s \in S$ such that D(x,s) = Rad(G), which is a contradiction. Hence the theorem.

Theorem 2.4. A *D*-centro dominating set *S* without null *D*centro vertices is a minimal *D*-centro dominating set if and only if for each vertex $r \in S$ one of the following two conditions hold: (a) *r* is an isolate of *S* (b) there exists a vertex $s \in V - S$ for which $DC_s(G) \cap S = \{r\}$

Proof. Suppose that the set *S* be a minimal *D*-centro dominating set without null *D*-centro vertices. For every vertex $r \in S$, $S - \{r\}$ is not a *D*-centro dominating set. There exists some vertex *s* in $(V - S) \cup r$ such that *s* has no *D*-centro vertex in $S - \{u\}$.

Case(i): Suppose that r = s, then r is an isolate of S with respect to D-centro domination

Case(ii): Suppose that $s \in V - S$. If *s* has no *D*-centro vertex

in $S - \{u\}$, but it has *D*-centro vertex in *S*, then *r* is the only *D*-centro vertex of *s* in *S*. Hence $DC_s(G) \cap S = \{r\}$.

For the converse part, we have to prove *S* is a minimal *D*-centro dominating set. Suppose that *S* is not a minimal *D*-centro dominating set. There exists a vertex $r \in S$ such that $S - \{r\}$ is a *D*-centro dominating set. Therefore *r* is *D*-centro to atleast one vertex *s* in $S - \{r\}$ and *r* has an *D*-centro vertex in $S - \{r\}$. Hence condition (a) does not hold. Further if $S - \{r\}$ is an *D*-centro dominating set, every element *s* in V - S is *D*-centro to at least one vertex w in $S - \{r\}$ and the vertex *r* has a *D*-centro vertex in $S - \{r\}$. Hence, condition (b) does not hold. This contradicts to our assumption that for each $r \in S$, one of the following conditions hold.

Theorem 2.5. If $DC_{\gamma}(G) = p - 1$ where *p* is the order of *G*. Then *G* has p - 2 null *D*-centro vertices.

Proof. Let *S* be a *D*-centro dominating set of *G* with order *p*. Since |S| = p - 1, there is only one vertex *r* in *V* – *S*. By the definition of $DC_{\gamma}(G)$, this vertex *r* is *D*-centro to any one of the vertex in *S* say *s*. Suppose that the vertex is *D*-centro to two or more vertices in *G*. Then $D(v_1, r) = D(v_2, s) = Rad(G)$ and $D(v_i, r) \neq Rad(G)$, where $i = 3, \ldots, p - 1$. Since, v_1 , v_2 are the *D*-centro vertices of *r*, it is enough to take the vertex *r* instead of v_1, v_2 in *S* and $DC_{\gamma}(G) \leq p - 2$, which is a contradiction by our hypothesis. Therefore, there are only two vertices are null *D*-centro vertices. Hence, the cardinality of null *D*-centro vertices is p - 2.

Theorem 2.6. A graph G with no cycles does not contains the null D-centro vertices.

Proof. Let *G* be a graph with no cycles. Suppose that *G* contains a null *D*-centro vertex *w* and so $DC_w(G) = \phi$. Clearly D(w,r) < Rad(G) for all $r \in G$ is not possible since no pair of vertices have detour distance less than detour radius. Therefore D(w,r) > Rad(G) for all $r \in G$. Now, consider D(w,r) = Rad(G) + 1 where $r \in G$. Since no vertex in the path *w*-*r* has detour length from *w* is equal to *R*, *G* contain a cycle. It is a contradiction and so it completes the proof.

Next we develop a bound for $DC_{\gamma}(G)$.

Theorem 2.7. Let G be a graph with k null D-centro vertices. Then $1 \le DC_{\gamma}(G) - k \le \frac{n}{2}$.

Proof. Let *K* be the null *D*-centro set of *G* with *k* number of vertices. By theorem 2.3, the null *D*-centro vertices lie in *D*-centro dominating set. Therefore $DC_{\gamma}(G) \ge k$. But $Rad(G) \ge 1$. Then there exists atleast a path of detour length 2 such that the set $DC_{\gamma}(G)$ must contain atleast one non null *D*-centro vertex. Therefore $DC_{\gamma}(G) > k$ and so $DC_{\gamma}(G) \ge$ k+1. Obviously, the set V - K contains atmost $\frac{n}{2}$ vertices. Hence $DC_{\gamma}(G) \le \frac{n}{2} + k$. Thus, $k+1 \le DC_{\gamma}(G) \le \frac{n}{2} + k$ and so $1 \le DC_{\gamma}(G) - k \le \frac{n}{2}$. **Theorem 2.8.** Let P be a diametral path in a Tree T and S *be the D-centro dominating set. Let* $a, b \in P$ *are the vertices D*-centro to each other. Then $DC_{\gamma}(T) = R$ if and only if for each vertex in the set S satisfies one of the following condition: (i) $DC_a(G) \ge 1$ and $DC_b(G) = 1 \ \forall a, b \in P$.

(ii) If $1 \leq DC_b(G) \leq DC_a(G)$ and $DC_x(G) \cap V(P - \{a\}) \neq \emptyset$ $\{a\}$ and $DC_{v}(G) = \{r\}$ where y and r are D-centro to each other and $y \in V(P)$

Proof. Assume that $DC_{\gamma}(T) = R$. Let G be a tree T with radius R. We know that for any pair of distinct vertices of T, there exists a unique path between them. Now consider a diametral path P_{2n} of 2n vertices in T. Then $Rad(P_{2n}) = \lfloor \frac{2n}{2} \rfloor$. Partitioned P into two subsets $V_1 = \{a_1, a_2, \dots, a_n\}$ and V_2 = $\{b_1, b_2, \dots, b_n\}$ where a_n and b_1 are the central vertices. The vertices $a_2, \ldots b_{n-1}$ in the diametral path P_{2n} contains branches whose length from $V(P_{2n})$ is less than or equal to R. Further, the D-centro vertices of the remaining vertices of the branches must contains some *D*-centro vertices in P_{2n} . So that it is enough to take vertices in P_{2n} as the member of S. Now for each vertex a_i where $1 \le i \le n$ in V_1 , either $a_i - D$ -centro set contains singleton vertex or $DC_{a_i}(G) \ge DC_{b_i}(G)$. Therefore condition (i) holds. Suppose that $1 \leq DC_{b_i}(G) \leq DC_{a_i}(G)$ and $DC_x(G) \cap V(P - \{a_i\}) = \emptyset$ for some $x \in DC_{a_i}(G)$, then both a_i and b_i belongs to the set S. Therefore $DC_{\gamma}(T) > R$ which is a contradiction. Hence condition (ii) holds. Conversely, assume that for each vertex in S satisfies one of the stated conditions holds. It is notice that the cardinality of D-centro dominating set increases when $1 \leq DC_{b_i}(G) \leq DC_{a_i}(G)$ and $DC_x(G) \cap V(P - \{a_i\}) = \emptyset$ for some $x \in DC_{a_i}(G)$. Therefore by the hypothesis, it is obvious that $DC_{\gamma}(T) = R$. This proof is similar when the diametral path is odd.

Theorem 2.9. For a Tree T, $R \leq DC_{\gamma}(T) \leq D-1$, where R and D be radius and diameter of T.

Proof. Let G be a tree T with radius R and diameter D. Suppose $DC_{\gamma}(T) < R$. Let P be any diametral path of even vertices in T. Let S be the DC_{γ} -set. Since P is a diametral path, the branches of T does not has length greater than R. So it is dominated by any one of the vertex in P with respect to *D*-centro domination. Therefore it is enough to choose S in V(P). Each vertex of P has only one D-centro vertex in P and the central vertices of odd path contains two end vertices as *D*-centro vertex and viceversa. Suppose $DC_{\gamma}(T) \leq R-1$. Then there are atleast three or more vertices in the diametral path as D-centro vertices to any vertex in the diametral path which of them, two vertices forms a cycle with any vertices of T, which is a contradiction. Therefore $DC_{\gamma}(T) \ge R$. Now take the path (P_n) where *n* is even. Partitioned V(P) into two subsets $V_1 = \{a_1, a_2, ..., a_n\}$ and $V_2 = \{b_1, b_2, ..., b_n\}$ where a_n and b_1 are the central vertices of P. Start with the vertex a_1 which is *D*-centro to b_1 . For each vertex in S has the following condition. (i) If $DC_{a_i}(G) > 1$ and $DC_{b_i}(G) = 1$ where $1 \leq i \leq n$, then $a_i \in S$. (ii) If $1 \leq DC_{b_i}(G) \leq DC_{a_i}(G)$ and

 $DC_x(G) \cap V(P - \{a_i\}) = \emptyset$ for some $x \in DC_{a_i}(G)$, then both a_i and b_i belongs to the set S. (*iii*) If $1 \leq DC_{b_i}(G) \leq DC_{a_i}(G)$ and $DC_x(G) \cap V(P - \{a_i\}) \neq \emptyset$ for some $x \in DC_{a_i}(G)$, then there exists a vertex $b \in DC_x(G) \cap V(P - \{a_i\})$ and $DC_v(G) =$ $\{b\}$ where y and b are D-centro to each other and $y \in V(P)$, then $a_i \in S$. From the above conditions, the set *S* contains n-1for some $x \in DC_a(G)$, then there exists a vertex $r \in DC_x(G) \cap V(P \text{ maximum possible vertices. Now suppose <math>DC_y(T) > D - 1$. Then the graph G requires n number of vertices to dominate all other vertices with respect to D-centro domination where nis the total number of vertices in the diametral path P_n . Therefore, $DC_{\gamma}(G) \leq D-2$. This is a contradiction since *S* is not minimum.

> This proof is similar when the diametral path is odd.

> **Theorem 2.10.** Every vertex except end vertices in a diametral path P of a tree T is a support vertex. Then $DC_{\gamma}(T) =$ |S(T)| where S is the D-centro dominating set.

> **Theorem 2.11.** (i) For a complete graph $G = K_n$, $DC_{\gamma}(G) =$ 1.

(ii) For a complete bipartite graph $G = K_{m,n}$, $DC(G) = DC_{\gamma}(G) =$ 2, $m, n \ge 2$.

Proof. (i) Let $G = K_n$ and let $V(G) = v_i$; $1 \le i \le n$. The detour length of any two vertices is n-1. Every singleton set v_i $(1 \le i \le n)$ forms a DC_{γ} -set and so $DC_{\gamma}(G) = 1$.

(ii) Let $G = K_{m,n}$ and be partitioned into two sets

 $V_1 = \{u_1, u_2, \dots, u_n\}$ and $V_2 = \{v_1, v_2, \dots, v_m\}$ such that every edge of G joins a vertex of V_1 with a vertex of V_2 .

Case(i): If m < n, then the detour distance between two vertices from V_1 is 2m and that of two vertices from V_2 is 2m - 1. That is, $e_D(u) = 2m \forall u \in V_1$ and $e_D(v) = 2m - 1 \forall v \in V_2$. Therefore Rad(G) = 2m - 1. The *D*-centro vertices of each element of V_1 is V_2 and the set V_2 is V_1 . Therefore the Dcentro set contains only two elements. That is, an element from V_1 and an element from V_2 . And also by the definition, it is enough to take one element from V_1 and one element from V_2 to satisfy the minimum *D*-centro dominating set. Hence $DC(G) = DC_{\gamma}(G) = 2.$

Case(ii): If m = n, the proof is same as case(i).

Theorem 2.12. (i) For a path P_n ,

$$DC_{\gamma}(P_n) = \begin{cases} \frac{n}{2}, & n \text{ is even} \\ \frac{n-1}{2}, & n \text{ is odd} \end{cases}$$

(*ii*) For a path P_n , $DC(P_n) = 2$.

Proof. (i) Let $V(P_n) = \{v_1, v_2, \dots, v_n\}$. In a path P_n , $Rad(P_n) = \lfloor \frac{n}{2} \rfloor$ and $Diam(P_n) = n - 1$. Let S be the D-centro dom set.

Case(i): Suppose that *n* is odd. We take n = 2k + 1, where k is a positive integer. Now take the vertex v_{k+1} . Then v_{k+1} has the minimum eccentricity R, where R is the eccentric radius of P_n . Since P_n is a path, the two end vertices v_1 , v_n are the *D*-centro vertices of v_{k+1} and the detour distance

of these two vertices v_1 , v_n from the vertex v_{k+1} is equal to detour radius and so $v_{k+1} \in S$. In the remaining vertices $v_2, \ldots, v_k, v_{k+2}, \ldots, v_{k+i}, \ldots, v_{n-i}$ for *i* from 2 to *k*, v_i and v_{k+i} are *D*-centro to each other. In the set there are $\frac{n-3}{2}$ vertices, which are also in *D*-centro dominating set. Hence, $DC_{\gamma}(G) = 1 + \frac{(n-3)}{2} = \frac{(n-1)}{2}$.

Case(ii): Suppose that *n* is even and so n = 2k for every positive integer *k*. Each vertex has only one vertex as *D*-centro vertex. Therefore $DC_{\gamma}(G) = \frac{n}{2}$.

(ii) Let $V(P_n) = \{v_1, v_2, \dots, v_n\}$. In the path P_n , $Rad(P_n) = \lfloor \frac{n}{2} \rfloor$ and $Diam(P_n) = n - 1$. Let *S* be the *D*-centro set. Since each vertex has only one vertex as *D*-centro vertex, the set *S* contains only two vertices. Hence, DC(G) = 2.

Theorem 2.13. For a cycle $G = C_n$ where $n \ge 3$, $DC_{\gamma}(G) = \lfloor \frac{n}{3} \rfloor$

Proof. Consider this cycle, $G = C_n$. By Theorem 2.5 in [1], $N(x) = DC_x(G)$ for all x in C_n . That is, neighborhood vertices of every vertex of G are D-centro vertices. Therefore, by the definition of D-centro dominating set, $DC_\gamma(G) = \lceil \frac{n}{3} \rceil$

Theorem 2.14. For any wheel graph W_n , $DC_p(W_n) = 1$ for $n \ge 3$.

Proof. Let $V(W_n) = \{u, v_1, v_2, \dots, v_{n-1}\}$ with *u* as its central vertex. Since *u* is adjacent to all other vertices

 $v_1, v_2, \ldots, v_{n-1}$, the detour distance between any pair of vertices of $V(W_n)$ is n-1. Therefore any one vertex of $V(W_n)$ is a *D*-centro dom set. Since it is minimum, $DC_{\gamma}(Wn) = 1$.

Theorem 2.15. For a double star $G = S_{m,n}$, $DC_{\gamma}(G) = 2$ and DC(G) = 1 + m where $m \ge n$.

Proof. Consider the graph $G = S_{m,n}$ whose vertex set is

 $\{r, s, u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n\}$. Now the eccentricity, $e_D(x) = 2$ if $x \in r, s$ and $e_D(x) = 3$ if $x \in V(S_{m,n} - r, s)$ and Rad(G) = 2. Therefore *r*-*D*-centro set of *G* is $\{v_1, v_2, \ldots, v_n\}$ and *s*-*D*-centro set of *G* is $\{u_1, u_2, \ldots, u_m\}$. The u_i -*D*-centro set, $DC_{u_i}(G) = \{s, u_1, u_2, \ldots, u_{i-1}, u_{i+1}, \ldots, u_m\}$ and the v_i -*D*centro set,

 $DC_{v_i}(G) = \{r, v_1, v_2, ..., v_{i-1}, v_{i+1}, ..., v_n\}$. Now S = r, s. Then it is enough to take *S* as *D*-centro dominating set. Hence $DC_{\gamma}(G) = 2$. Now we see that every pair of vertices between the sets $\{r, v_1, v_2, ..., v_n\}$ and $\{s, u_1, u_2, ..., u_m\}$ are *D*-centro to each other. Therefore by the definition, $DC_{\gamma}(G) = 1 + m$ where $m \ge n$.

3. Realization Results

Next we develop three realization results on DC(G) and $DC_{\gamma}(G)$.

Theorem 3.1. For every consecutive pair k, n of integers with $3 \le k < n$, there exists a connected graph G of order n such that DC(G) = k.

Proof. Suppose that $3 \le k < n$.

Figure 2 A graph K_k

Construct a complete graph K_k of vertices $\{u_1, u_2, \ldots, u_k\}$ of order k. By previous results, $DC(K_k) = k$ and Rad(G) = k - 1. Now add a new vertex x to any one of $\{u_1, u_2, \ldots, u_k\}$. Now we join x to $u_i \forall (1 \le i \le n)$ for some i. It forms a new graph G of order n where n = k + 1. Since x is an end vertex adjacent to u_i , it does not affect the radius. Hence the detour eccentricity of u_i is k - 1 and $e_D(v) = \{k/v \ne u_i \forall v \in G\}$. Further since each vertex except x are adjacent to all other vertices, D(u, v) = k - 1, for any pair of vertices u and v. Hence there exists a graph of order n such that DC(G) = kand $3 \le k \le n$.

Theorem 3.2. For every pair r, s of positive integers with $2 \le r \le s$, there exists a connected graph G of order s such that DC(G) = r.

Proof. Let *r* and *s* be positive integers such that $2 \le r \le s$. Case (i): If 2 = r = s. Then there exists a path of length 2 such that DC(G) = 2.

Case (ii): Let s = 3.

Subcase (i): If s = 3 and 2 = r < s. Then there exists a path of length 3 such that DC(G) = 2.

Subcase (ii): If s = 3 and 2 < r = s, that is 3 = r = s. Then there exists a complete graph K_3 such that DC(G) = 3.

Case (iii): Let s = 4.

Subcase (i): If s = 4 and 2 = r < s, then there exists a path of length 4 such that DC(G) = 2.

Subcase (ii): If s = 4 and 2 < r = s, that is 4 = r = s, then there exists a complete graph K_4 such that DC(G) = 4.

Subcase (iii): If s = 4 and 2 < r < s, that is r = 3, then there exists a graph $G = K_3 \cup K_1$ such that DC(G) = 3 by previous theorem.

Case (iv): Take $2 \le r \le s$ where $s \ge 5$. The graph *G* has desired properties if $2 \le r = s$ by the above cases. Now we have to prove 2 < r < s where $s \ge 5$.

Figure 3 A graph G for case (iv)

Construct a complete graph $G = K_r$ where

 $V(K_r) = u_1, u_2, \dots, u_r$. Clearly $r \ge 4$, since s > 4. Now add new vertices

 $u_{r+1}, u_{r+2}, \ldots, u_{s-r}$ to u_1 . It forms a new graph *G* of order *s*. Since the vertices $u_{r+1}, u_{r+2}, \ldots, u_{s-r}$ are end vertices adjacent to u_1 , it does not alter the radius. That is, the eccentricity of u_1 is r-1 and $e_D(x) = \{r+1/x \neq u_1 \forall x \in G\}$. Further, each vertex of $\{u_1, u_2, \ldots, u_r\}$ is adjacent to all other vertices in $G - \{u_{r+1}, u_{r+2}, \ldots, u_{s-r}\}$ and $D(x, y) = r - 1 \forall x, y \in \{u_1, u_2, \ldots, u_r\}$. Hence there exists a graph *G* of order *s* such that DC(G) = r.

Theorem 3.3. For any integers *a* and *b* with $2 \le a \le b$, there exists a connected graph *G* of order n > 2 such that $DC_{\gamma}(G) = a$ and DC(G) = b.

Proof. Let *a* and *b* be any integers with $2 \le a \le b$. Then we can have the following cases.

Case(i): Assume that 2 = a = b. Then there exists a complete bipartite graph $G = K_{m,n}$ for any integer m, n such that $DC_{\gamma}(G) = DC(G) = 2$.

Case(ii): Suppose that 2 = a < b. Take *G* a double star $S_{m,n}$. Then *G* satisfies the desired properties.

Case(iii): Suppose that 2 < a < b. Construct a complete graph $G = K_b$ of vertices with b > 2. Add a path P_{a-2} : $v_1, v_2, ..., v_{a-2}$ to u_i for any i, between i and b and a - 2 < b. Further add a new pendant vertex x to any of the vertices $v_1, v_2, ..., v_{a-2}$. It forms a new graph G of order n = (a+b) - 1. The subgraph induced by the set of vertices $\{u_1, u_2, ..., u_b\}$ is complete and the path $v_1, v_2, ..., v_{a-2}$ joined to u_i and join x to v_2 as shown in the Figure 4. Hence the eccentricity of u_i does not exceed b - 1. That is, $e_D(u_i) = b - 1$. Therefore the new graph G does not alter its radius. Furthermore $e_D(u) = (a+b) - 3/u \in \{u_1, ..., u_{a-2}, x\}$ are D-centro to each other. Therefore DC(G) = b. Further since $e_D(v) > b - 1$ for all $v \in \{v_1, v_2, ..., v_{a-2}, x\}$, $DC_x(G) = \phi$ for every

 $x \in \{v_1, v_2, \dots, v_{a-2}, x\}$. By definition, $DC_{\gamma}(G) = 1 + (a - 2) + 1$. That is, $DC_{\gamma}(G) = a$. Hence there exists a graph *G* such that $DC_{\gamma}(G) = a$ and DC(G) = b.

Figure 4 For case (iii)

Case(iv): Let 2 < a = b. Construct a complete graph $G = K_b$ of vertices $\{u_1, u_2, \ldots, u_b\}$ with n > 2. Add a path $P_{a-1} : v_1, v_2, \ldots, v_{a-1}$ to u_i for any *i*, between *i* and *b* and a - 1 < b. It forms a new graph *G* of order n = (a+b) - 1. The subgraph induced by the set of vertices $\{u_1, u_2, \ldots, u_b\}$ is complete, the path $\{v_1, v_2, \ldots, v_{a-1}\}$ join to u_i as shown in the Figure 5. Hence the eccentricity of u_i does not exceed b - 1. That is, $e_D(u_i) = b - 1$ and so the new graph *G*

does not alter its radius. Furthermore $e_D(u) = (a+b)-2$ for every *u* from the set $\{u_1, \ldots, u_{i-1}, u_{i+1}, \ldots, u_b\}$. The vertices from $G - \{v_1, v_2, \ldots, v_{a-1}\}$ are *D*-centro to each other. Therefore DC(G) = b. Further, since $e_D(v) > b - 1$ for any *v* from the set $\{v_1, v_2, \ldots, v_{a-1}\}$ and $DC_x(G) = \phi$ for any *x* from the set $\{v_1, v_2, \ldots, v_{a-1}\}$. Hence $DC_\gamma(G) = 1 + (a-1)$ and so, $DC_\gamma(G) = a$. Thus there exists a graph *G* such that $DC_\gamma(G) = a$ and DC(G) = b.

Theorem 3.4. For positive integers R, D with $R < D \le 2R$, there exists a connected graph G with Rad(G) = R, Diam(G) = D and DC(G) = R + 1 and $DC_{\gamma}(G) = R$.

Proof. We prove this theorem by considering two cases relating this values of *R* and *D*.

Case (i): Assume that R < D = 2R. We construct a graph as shown in the Figure 6:

Figure 6 For case (i)

Consider two positive integers *R* and *D* such that R < D = 2R. Consider a complete graph K_{D-R+1} of vertices

 $u_1, u_2, ..., u_{D-R+1}$. Let P_{D-R} be a path having $v_1, v_2, ..., v_{D-R}$ as vertices. Construct a new graph *G* by joining P_{D-R} with a vertex u_i of K_{D-R+1} . The detour eccentricity of u_i is *R* and that of other vertices $u_1, u_2, ..., u_{i-1}, u_{i+1}, ..., u_{D-R+1}$ is 2*R*. The detour eccentricity of v_1 is $R+1, v_2$ is R+2 and so on. The detour eccentricity of v_{D-R} is 2R(=D). Further, since K_{D-R+1} is complete and by the definition, the remaining vertices from $G - K_{D-R+1}$ are null *D*-centro vertices. Therefore by the definition of *D*-centro dom set $DC_{\gamma}(G) = 1 + (D-R) - 1 = R$ and every pair of vertices of K_{D-R+1} is *D*-centro to each other. Therefore, DC(G) = R+1 and $DC_{\gamma}(G) = R$.

Case (ii): Suppose that R < D < 2R, We construct a graph as follows:

Figure 7 For case (ii)

Consider two positive integers *R* and *D* such that R < D < 2R. Consider a complete graph K_{R+1} , with the vertices

 $u_1, u_2, ..., u_{R+1}$. Let $K_{(D-R)+1}$ be another complete graph of order (D-R) + 1 with R+1 > (D-R) + 1. Let the vertices of $K_{(D-R)+1}$ be $u_i, v_1, \dots, v_{(D-R)}$. Let H be a graph obtained from K_{R+1} and $K_{(D-R)+1}$ by identifying u_i as the common vertex in K_{R+1} and $K_{(D-R)+1}$. Now add the set S of new pendant vertices $\{x_1, x_2, \dots, x_{2R-D-1}\}$ to H and join each vertex $x_i (1 \le i \le 2R - D - 1)$ to the vertex u_i to obtain a new graph G as shown in the Figure 7. The detour eccentricity of u_i is R and that of other vertices $u_1, u_2, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{R+1}$ are equal to 2*R*. The detour eccentricity of $v_i(1 \le i \le (D-R)+1)$ is D and the detour eccentricity of $x_i (1 \le i \le 2R - D - 1)$ is R + 1. Further, K_{R+1} and $K_{(D-R)+1}$ are complete and the detour length of any vertex from K_{R+1} to a vertex u_i is *R*. Hence, by the definition DC(G) = R + 1. Now, since $K_{(D-R)+1}$ is complete and S contains all pendant vertices, the remaining vertices from $G - K_{(D-R)+1} - \{u_i\} \cup S$ are the null D-centro vertices. Therefore, by the definition of D-centro dom set, $DC_{\gamma}(G) = 1 + D - R + 2R - D - 1 = R$. Hence $DC_{\gamma}(G) = R.$

4. Conclusion

In this paper, the *D*-centro dominating sets in graphs has been studied, It is simply a dominating set of *G* with a detour distance R(G). Also a special type of vertex, null *D*-centro vertex has been defined and the bounds for *D*-centro domination number interms of the number of null *D*-centro vertices have been found. The *D*-centro domination number for some special graphs like complete graph, cycle, wheel and star have been determined. Algorithms can be developed for finding the parameter, *D*-centro domination number for arbitrary graphs. This theory can be developed for finding *k*-center with respect domination based detour distance.

References

[1] A. Anto Kinsley and P. Siva Ananthi, D-centro sets in graphs, IJSRD - International Journal for Scientific Research and Development— Vol. 4, Issue 01, 2016 — ISSN (online): 2321-0613.

- [2] F. Buckley and F. Harary, Distance in graphs, Addison-Wesley, Longman, 1990.
- [3] G. Chartrand, T.W. Haynes, M.A. Henning, and Ping Zhang, Detour domination in graphs, Ars Combin. 71 (2004) 149 – 160.
- [4] G. Chartrand, David Erwin, G. L. Johns and P. Zhang, On boundary vertices in graphs, J.Combin. Math. Combin.Comput. 48, (2004), 39-53.
- [5] G. Chartrand, David Erwin, G. L. Johns and P. Zhang, Boundary vertices in graphs, Disc.Math. 263 (2003), 25-34.
- ^[6] G. Chartrand and P. Zang, Introduction to Graph Theory, Tata McGraw-Hill, (2006).
- ^[7] F. Harary, Graph theory, Addison- Wesley, 1969.
- ^[8] T.N. Janakiraman, M. Bhanumathi and S. Muthammai, Eccentric domination in graphs, International Journal of Engineering Science, advanced Computing and Bio-Technology, Volume 1, No.2, pp 1-16, 2010.
- [9] KM. Kathiresan, G. Marimuthu and M. Sivanandha Saraswathy, Boundary domination in graphs, Kragujevac J. Math. 33, (2010), 63-70.
- ^[10] A. P. Santhakumaran, P. Titus, The vertex detour number of a graph, AKCE International J. Graphs. Combin., 4(2007), 99-112.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******