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D-centro dominating sets in graphs
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Abstract
In this paper a new concept D-centro dominating set in graphs is introduced and graphs are characterized

with some results. A subset S ⊂V (G) of a connected graph G is said to be D-centro dominating set of G, if for

every v ∈V −S, there exists a vertex u in S such that D(u,v) = Rad(G). The minimum cardinality of the D-centro

dominating set is called D-centro domination number, denoted by DCγ(G). The D-centro dominating set with

cardinality DCγ(G) is called DCγ -set of G. Some bounds for the D-centro domination number are determined. An

important realization result on D-centro domination number is proved that for any integers a and b with 2 ≤ a ≤ b,

there exists a connected graph G such that DCγ(G) = a and DC(G) = b.
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1. Introduction

By a graph G = (V,E), we mean a finite undirected con-

nected graph without loops or multiple edges. The order and

size of G are denoted by n and m respectively. For basic graph

terminology we refer to Harary [7]. For vertices r and s in a

connected graph G, the detour distance D(r,s) is the length of

the farthest r-s path in G. For any vertex r of G, the detour

eccentricity of r is eD(r) = max{D(r,s) : s ∈V}. A vertex s

of G such that D(r,s) = eD(r) is called an detour eccentric

vertex of r. The detour radius R and detour diameter D of G

are defined by Rad(G) = min{eD(s) : s ∈V} and Diam(G) =
max{eD(s) : s ∈V} respectively. An r-s path of length D(r,s)
is called an r− s detour path. These concepts were studied

by Chartrand et al [6]. If eD(s) = Rad(G) then s is called a

detour central vertex of G and the subgraph induced by all

detour central vertices of G is called detour center of G and

is denoted by CD(G). Next we study the following definitions

given in [1]. For any vertex p in G, a set S of vertices of V

is an p-D-centro set if D(p,s) = Rad(G) for every s ∈ S, that

is, p and sare said to be D-centro to each other. It is denoted

by DCp(G). Let p be a vertex of G and S be the p-D-centro

set of G. Then p is said to be the D-centro vertex of G with

respect to S if the cardinality of S is the maximum among

all S. The maximum p-D-centro set is denoted as Sp. The

set of all D-centro vertices of G is called D-set of G and the

cardinality of D-set is said to be D-centro number of G and it

is denoted by Dn(G). A set S is said to be D-centro set of G if

D(r,s) = Rad(G) for every pair of vertices of S. That is, r and

s are D-centro to each other in S. The maximum cardinality

among all D-centro sets is called DC-set. It is denoted by

DC(G).

2. D-centro dominating set

Next we define and study the properties of D-centro domi-

nating set.

Definition 2.1. A subset S ⊂V (G) of a connected graph G is

said to be D-centro dominating set of G if for every v ∈V −S,

there exists a vertex u in S such that D(u,v) = Rad(G). The

minimum cardinality of the D-centro dominating set is called

D-centro domination number, denoted by DCγ(G). The D-

centro dominating set with cardinality DCγ(G) is called DCγ -
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set of G.

Sometimes, there exists no u-D-centro vertex in G for a vertex

u. Next we study these types of vertices in G

Definition 2.2. A vertex u ∈ G has no u-D-centro vertex is

called null D-centro vertex. The collection of null D-centro

vertices is called as null D-centro set of G.

Figure 1 A graph G with detour eccentricities

{u2,u3} is a DCγ -set. Thus DCγ(G) = |u2,u3| = 2. Here u2

is the null D-centro vertex.

Vertex(x) x- D-centro set

u1 {u3}
u2 {φ}
u3 {u1,u4,u5}
u4 {u3,u5}
u5 {u3,u4}

Theorem 2.3. Every null D-centro vertices belongs to every

D-centro dominating set.

Proof. Let x be a null D-centro vertex and Sx = φ . There

exists no w ∈ G such that D(x,w) = Rad(G). Let S be a D-

centro dominating set. For all r ∈V −S, there exists s∈ S such

that D(r,s) = Rad(G). We claim that x ∈ S. By the definition

of D-centro dominating set, each vertex r in V −S has atleast

one D-centro vertex in S. Since x is a null D-centro vertex, that

is x-D-centro set = φ , it must belongs to the set S. Suppose x

does not belongs to the set S. Then x ∈ V −S and therefore

there exists a vertex s ∈ S such that D(x,s) = Rad(G), which

is a contradiction. Hence the theorem.

Theorem 2.4. A D-centro dominating set S without null D-

centro vertices is a minimal D-centro dominating set if and

only if for each vertex r ∈ S one of the following two conditions

hold: (a) r is an isolate of S (b) there exists a vertex s ∈V −S

for which DCs(G)∩S = {r}

Proof. Suppose that the set S be a minimal D-centro dominat-

ing set without null D-centro vertices. For every vertex r ∈ S,

S−{r} is not a D-centro dominating set. There exists some

vertex s in (V −S)∪ r such that s has no D-centro vertex in

S−{u}.

Case(i): Suppose that r = s, then r is an isolate of S with

respect to D-centro domination

Case(ii): Suppose that s ∈V −S. If s has no D-centro vertex

in S−{u}, but it has D-centro vertex in S, then r is the only

D-centro vertex of s in S. Hence DCs(G)∩S = {r}.

For the converse part, we have to prove S is a minimal D-

centro dominating set. Suppose that S is not a minimal D-

centro dominating set. There exists a vertex r ∈ S such that

S−{r} is a D-centro dominating set. Therefore r is D-centro

to atleast one vertex s in S−{r} and r has an D-centro ver-

tex in S−{r}. Hence condition (a) does not hold. Further

if S−{r} is an D-centro dominating set, every element s in

V −S is D-centro to at least one vertex w in S−{r} and the

vertex r has a D-centro vertex in S−{r}. Hence, condition

(b) does not hold. This contradicts to our assumption that for

each r ∈ S, one of the following conditions hold.

Theorem 2.5. If DCγ(G) = p−1 where p is the order of G.

Then G has p−2 null D-centro vertices.

Proof. Let S be a D-centro dominating set of G with order p.

Since |S|= p−1, there is only one vertex r in V −S. By the

definition of DCγ(G), this vertex r is D-centro to any one of

the vertex in S say s. Suppose that the vertex is D-centro to

two or more vertices in G. Then D(v1,r) =D(v2,s) =Rad(G)
and D(vi,r) 6= Rad(G), where i = 3, . . . ., p− 1. Since, v1,

v2 are the D-centro vertices of r, it is enough to take the

vertex r instead of v1, v2 in S and DCγ(G)≤ p−2, which is

a contradiction by our hypothesis. Therefore, there are only

two vertices are null D-centro vertices. Hence, the cardinality

of null D-centro vertices is p−2.

Theorem 2.6. A graph G with no cycles does not contains

the null D-centro vertices.

Proof. Let G be a graph with no cycles. Suppose that G con-

tains a null D-centro vertex w and so DCw(G) = φ . Clearly

D(w,r) < Rad(G) for all r ∈ G is not possible since no pair

of vertices have detour distance less than detour radius. There-

fore D(w,r)> Rad(G) for all r ∈ G. Now, consider D(w,r) =
Rad(G)+1 where r ∈ G. Since no vertex in the path w-r has

detour length from w is equal to R, G contain a cycle. It is a

contradiction and so it completes the proof.

Next we develop a bound for DCγ(G).

Theorem 2.7. Let G be a graph with k null D-centro vertices.

Then 1 ≤ DCγ(G)− k ≤ n
2
.

Proof. Let K be the null D-centro set of G with k number

of vertices. By theorem 2.3, the null D-centro vertices lie

in D-centro dominating set. Therefore DCγ(G) ≥ k. But

Rad(G)≥ 1. Then there exists atleast a path of detour length

2 such that the set DCγ(G) must contain atleast one non null

D-centro vertex. Therefore DCγ(G) > k and so DCγ(G) ≥
k+ 1. Obviously, the set V −K contains atmost n

2
vertices.

Hence DCγ(G)≤ n
2
+ k. Thus, k+1 ≤ DCγ(G)≤ n

2
+ k and

so 1 ≤ DCγ(G)− k ≤ n
2
.
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Theorem 2.8. Let P be a diametral path in a Tree T and S

be the D-centro dominating set. Let a,b ∈ P are the vertices

D-centro to each other. Then DCγ(T ) = R if and only if for

each vertex in the set S satisfies one of the following condition:

(i) DCa(G)≥ 1 and DCb(G) = 1 ∀a,b ∈ P.

(ii) If 1 ≤ DCb(G)≤ DCa(G) and DCx(G)
⋂

V (P−{a}) 6= /0

for some x∈DCa(G), then there exists a vertex r ∈DCx(G)
⋂

V (P−
{a}) and DCy(G) = {r} where y and r are D-centro to each

other and y ∈V (P)

Proof. Assume that DCγ(T ) = R. Let G be a tree T with

radius R. We know that for any pair of distinct vertices of

T , there exists a unique path between them. Now consider a

diametral path P2n of 2n vertices in T . Then Rad(P2n) =
⌊

2n
2

⌋

.

Partitioned P into two subsets V1 = {a1,a2, .....,an} and V2

= {b1,b2, .....,bn} where an and b1 are the central vertices.

The vertices a2, . . .bn−1 in the diametral path P2n contains

branches whose length from V (P2n) is less than or equal to R.

Further, the D-centro vertices of the remaining vertices of the

branches must contains some D-centro vertices in P2n. So that

it is enough to take vertices in P2n as the member of S. Now for

each vertex ai where 1 ≤ i ≤ n in V1, either ai −D-centro set

contains singleton vertex or DCai
(G)≥ DCbi

(G). Therefore

condition (i) holds. Suppose that 1≤DCbi
(G)≤DCai

(G) and

DCx(G)
⋂

V (P−{ai}) = /0 for some x ∈ DCai
(G), then both

ai and bi belongs to the set S. Therefore DCγ(T )> R which

is a contradiction. Hence condition (ii) holds. Conversely,

assume that for each vertex in S satisfies one of the stated

conditions holds. It is notice that the cardinality of D-centro

dominating set increases when 1 ≤ DCbi
(G)≤ DCai

(G) and

DCx(G)
⋂

V (P−{ai}) = /0 for some x ∈ DCai
(G). Therefore

by the hypothesis, it is obvious that DCγ(T ) = R. This proof

is similar when the diametral path is odd.

Theorem 2.9. For a Tree T , R ≤ DCγ(T )≤ D−1, where R

and D be radius and diameter of T .

Proof. Let G be a tree T with radius R and diameter D. Sup-

pose DCγ(T ) < R. Let P be any diametral path of even ver-

tices in T . Let S be the DCγ -set. Since P is a diametral path,

the branches of T does not has length greater than R. So it

is dominated by any one of the vertex in P with respect to

D-centro domination. Therefore it is enough to choose S in

V (P). Each vertex of P has only one D-centro vertex in P

and the central vertices of odd path contains two end vertices

as D-centro vertex and viceversa. Suppose DCγ(T )≤ R−1.

Then there are atleast three or more vertices in the diametral

path as D-centro vertices to any vertex in the diametral path

which of them, two vertices forms a cycle with any vertices

of T , which is a contradiction. Therefore DCγ(T )≥ R. Now

take the path (Pn) where n is even. Partitioned V (P) into two

subsets V1 = {a1,a2, ....an} and V2 = {b1,b2, ....bn} where an

and b1 are the central vertices of P. Start with the vertex a1

which is D-centro to b1. For each vertex in S has the follow-

ing condition. (i) If DCai
(G) > 1 and DCbi

(G) = 1 where

1 ≤ i ≤ n, then ai ∈ S. (ii) If 1 ≤ DCbi
(G) ≤ DCai

(G) and

DCx(G)
⋂

V (P−{ai}) = /0 for some x ∈ DCai
(G), then both

ai and bi belongs to the set S. (iii) If 1 ≤ DCbi
(G)≤ DCai

(G)
and DCx(G)

⋂

V (P−{ai}) 6= /0 for some x ∈ DCai
(G), then

there exists a vertex b∈DCx(G)
⋂

V (P−{ai}) and DCy(G)=
{b} where y and b are D-centro to each other and y ∈V (P),
then ai ∈ S. From the above conditions, the set S contains n−1

maximum possible vertices. Now suppose DCγ(T )> D−1.

Then the graph G requires n number of vertices to dominate

all other vertices with respect to D-centro domination where n

is the total number of vertices in the diametral path Pn. There-

fore, DCγ(G)≤ D−2. This is a contradiction since S is not

minimum.

This proof is similar when the diametral path is odd.

Theorem 2.10. Every vertex except end vertices in a diame-

tral path P of a tree T is a support vertex. Then DCγ(T ) =
|S(T )| where S is the D-centro dominating set.

Theorem 2.11. (i) For a complete graph G = Kn, DCγ(G) =
1.

(ii) For a complete bipartite graph G=Km,n, DC(G)=DCγ(G)=
2, m,n ≥ 2.

Proof. (i) Let G = Kn and let V (G) = vi;1 ≤ i ≤ n. The de-

tour length of any two vertices is n−1. Every singleton set vi

(1 ≤ i ≤ n) forms a DCγ -set and so DCγ(G) = 1.

(ii) LetG = Km,n and be partitioned into two sets

V1 = {u1,u2, . . . . . . .un} and V2 = {v1,v2, . . . . . . ..vm} such

that every edge of G joins a vertex of V1 with a vertex of

V2.

Case(i): If m < n, then the detour distance between two ver-

tices from V1 is 2m and that of two vertices from V2 is 2m−1.

That is, eD(u) = 2m∀u ∈ V1 and eD(v) = 2m − 1∀v ∈ V2.

Therefore Rad(G) = 2m−1. The D-centro vertices of each

element of V1 is V2 and the set V2 is V1. Therefore the D-

centro set contains only two elements. That is, an element

from V1 and an element from V2. And also by the definition, it

is enough to take one element from V1 and one element from

V2 to satisfy the minimum D-centro dominating set. Hence

DC(G) = DCγ(G) = 2.

Case(ii): If m = n, the proof is same as case(i).

Theorem 2.12. (i) For a path Pn,

DCγ(Pn) =

{

n
2
, n is even

n−1
2
, n is odd

(ii) For a path Pn, DC(Pn) = 2.

Proof. (i) Let V (Pn) = {v1,v2, . . . . . . ..vn}. In a path Pn,

Rad(Pn) = ⌊ n
2
⌋ and Diam(Pn) = n−1. Let S be the D-centro

dom set.

Case(i): Suppose that n is odd. We take n = 2k+ 1, where

k is a positive integer. Now take the vertex vk+1. Then vk+1

has the minimum eccentricity R, where R is the eccentric

radius of Pn. Since Pn is a path, the two end vertices v1,

vn are the D-centro vertices of vk+1 and the detour distance
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of these two vertices v1, vn from the vertex vk+1 is equal

to detour radius and so vk+1 ∈ S. In the remaining vertices

v2, . . . . . . ,vk,vk+2, . . . ..,vk+i, . . . ..,vn−i for i from 2 to k, vi

and vk+i are D-centro to each other. In the set there are n−3
2

vertices, which are also in D-centro dominating set. Hence,

DCγ(G) = 1+ (n−3)
2

= (n−1)
2

.

Case(ii): Suppose that n is even and so n = 2k for every pos-

itive integer k. Each vertex has only one vertex as D-centro

vertex. Therefore DCγ(G) = n
2
.

(ii) Let V (Pn)= {v1,v2, . . . . . . ..,vn}. In the path Pn, Rad(Pn)=
⌊ n

2
⌋ and Diam(Pn) = n−1. Let S be the D-centro set. Since

each vertex has only one vertex as D-centro vertex, the set S

contains only two vertices. Hence, DC(G) = 2.

Theorem 2.13. For a cycle G =Cn where n ≥ 3, DCγ(G) =
⌈ n

3
⌉

Proof. Consider this cycle, G =Cn. By Theorem 2.5 in [1],

N(x) = DCx(G) for all x in Cn. That is, neighborhood vertices

of every vertex of G are D-centro vertices. Therefore, by the

definition of D-centro dominating set, DCγ(G) = ⌈ n
3
⌉

Theorem 2.14. For any wheel graph Wn, DCp(Wn) = 1 for

n ≥ 3.

Proof. Let V (Wn) = {u,v1,v2, . . . . . . vn−1} with u as its cen-

tral vertex. Since u is adjacent to all other vertices

v1,v2, . . . . . . ..vn−1, the detour distance between any pair of

vertices of V (Wn) is n−1. Therefore any one vertex of V (Wn)
is a D-centro dom set. Since it is minimum, DCγ(Wn) =
1.

Theorem 2.15. For a double star G = Sm,n,DCγ(G) = 2 and

DC(G) = 1+m where m ≥ n.

Proof. Consider the graph G = Sm,n whose vertex set is

{r,s,u1,u2, . . . ,um,v1,v2, ...,vn}. Now the eccentricity,

eD(x) = 2 if x ∈ r,s and eD(x) = 3 if x ∈ V (Sm,n − r,s) and

Rad(G) = 2. Therefore r-D-centro set of G is {v1,v2, ...,vn}
and s-D-centro set of G is {u1,u2, . . . ,um}. The ui-D-centro

set, DCui
(G) = {s,u1,u2, . . . ,ui−1,ui+1, ....,um} and the vi-D-

centro set,

DCvi
(G) = {r,v1,v2, ...,vi−1,vi+1, ...,vn}. Now S = r,s. Then

it is enough to take S as D-centro dominating set. Hence

DCγ(G) = 2. Now we see that every pair of vertices between

the sets {r,v1,v2, ...,vn} and {s,u1,u2, ...,um} are D-centro

to each other. Therefore by the definition, DCγ(G) = 1+m

where m ≥ n.

3. Realization Results

Next we develop three realization results on DC(G) and

DCγ(G).

Theorem 3.1. For every consecutive pair k,n of integers with

3 ≤ k < n, there exists a connected graph G of order n such

that DC(G) = k.

Proof. Suppose that 3 ≤ k < n.

Figure 2 A graph Kk

Construct a complete graph Kk of vertices {u1,u2, . . . . . . ,uk}
of order k. By previous results, DC(Kk) = k and Rad(G) =
k−1. Now add a new vertex x to any one of {u1,u2, . . . . . . ,uk}.

Now we join x to ui∀(1 ≤ i ≤ n) for some i. It forms a new

graph G of order n where n = k+1. Since x is an end vertex

adjacent to ui, it does not affect the radius. Hence the de-

tour eccentricity of ui is k−1 and eD(v) = {k/v 6= ui∀v ∈ G}.

Further since each vertex except x are adjacent to all other

vertices, D(u,v) = k − 1, for any pair of vertices u and v.

Hence there exists a graph of order n such that DC(G) = k

and 3 ≤ k ≤ n.

Theorem 3.2. For every pair r,s of positive integers with

2 ≤ r ≤ s, there exists a connected graph G of order s such

that DC(G) = r.

Proof. Let r and s be positive integers such that 2 ≤ r ≤ s.

Case (i): If 2 = r = s. Then there exists a path of length 2

such that DC(G) = 2.

Case (ii): Let s = 3.

Subcase (i): If s = 3 and 2 = r < s. Then there exists a path

of length 3 such that DC(G) = 2.

Subcase (ii): If s = 3 and 2 < r = s, that is 3 = r = s. Then

there exists a complete graph K3 such that DC(G) = 3.

Case (iii): Let s = 4.

Subcase (i): If s = 4 and 2 = r < s, then there exists a path of

length 4 such that DC(G) = 2.

Subcase (ii): If s = 4 and 2 < r = s, that is 4 = r = s, then

there exists a complete graph K4 such that DC(G) = 4.

Subcase (iii): If s = 4 and 2 < r < s, that is r = 3, then there

exists a graph G = K3 ∪K1 such that DC(G) = 3 by previous

theorem.

Case (iv): Take 2 ≤ r ≤ s where s ≥ 5. The graph G has

desired properties if 2 ≤ r = s by the above cases. Now we

have to prove 2 < r < s where s ≥ 5.

Figure 3 A graph G for case (iv)
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Construct a complete graph G = Kr where

V (Kr) = u1,u2, . . . . . . ur. Clearly r ≥ 4, since s > 4. Now add

new vertices

ur+1,ur+2, . . . . . . ,us−r to u1. It forms a new graph G of

order s. Since the vertices ur+1,ur+2, . . . . . . ,us−r are end

vertices adjacent to u1, it does not alter the radius. That

is, the eccentricity of u1 is r − 1 and eD(x) = {r + 1/x 6=
u1∀x ∈ G}. Further, each vertex of {u1,u2, . . . . . . ,ur} is ad-

jacent to all other vertices in G−{ur+1,ur+2, ...,us−r} and

D(x,y) = r − 1∀x,y ∈ {u1,u2, ...,ur}. Hence there exists a

graph G of order s such that DC(G) = r.

Theorem 3.3. For any integers a and b with 2 ≤ a ≤ b, there

exists a connected graph G of order n> 2 such that DCγ(G) =
a and DC(G) = b.

Proof. Let a and b be any integers with 2 ≤ a ≤ b. Then we

can have the following cases.

Case(i): Assume that 2 = a = b. Then there exists a com-

plete bipartite graph G = Km,n for any integer m,n such that

DCγ(G) = DC(G) = 2.

Case(ii): Suppose that 2 = a < b. Take G a double star Sm,n.

Then G satisfies the desired properties.

Case(iii): Suppose that 2 < a < b. Construct a complete

graph G = Kb of vertices with b > 2. Add a path Pa−2 :

v1,v2, ...,va−2 to ui for any i, between i and b and a−2 < b.

Further add a new pendant vertex x to any of the vertices

v1,v2, ...,va−2. It forms a new graph G of order n=(a+b)−1.

The subgraph induced by the set of vertices {u1,u2, ...,ub}
is complete and the path v1,v2, ...,va−2 joined to ui and join

x to v2 as shown in the Figure 4. Hence the eccentricity of

ui does not exceed b− 1. That is, eD(ui) = b− 1. There-

fore the new graph G does not alter its radius. Furthermore

eD(u)= (a+b)−3/u∈{u1, . . . . . . ,ui−1,ui+1, . . . ..,ub}. The

vertices from G − {v1,v2, ...,va−2,x} are D-centro to each

other. Therefore DC(G) = b. Further since eD(v)> b−1 for

all v ∈ {v1,v2, ...,va−2,x}, DCx(G) = φ for every

x∈ {v1,v2, . . . . . . ,va−2,x}. By definition, DCγ(G) = 1+(a−
2)+ 1. That is, DCγ(G) = a. Hence there exists a graph G

such that DCγ(G) = a and DC(G) = b.

Figure 4 For case (iii)

Case(iv): Let 2 < a = b. Construct a complete graph G =
Kb of vertices {u1,u2, . . . . . . ,ub} with n > 2. Add a path

Pa−1 : v1,v2, ...,va−1 to ui for any i, between i and b and

a− 1 < b. It forms a new graph G of order n = (a+ b)− 1.

The subgraph induced by the set of vertices {u1,u2, ...,ub}
is complete, the path {v1,v2, ...,va−1} join to ui as shown

in the Figure 5. Hence the eccentricity of ui does not ex-

ceed b− 1. That is, eD(ui) = b− 1 and so the new graph G

does not alter its radius. Furthermore eD(u) = (a+ b)− 2

for every u from the set {u1, . . . . . . ,ui−1,ui+1, ...,ub}. The

vertices from G−{v1,v2, ...,va−1} are D-centro to each other.

Therefore DC(G) = b. Further, since eD(v) > b− 1 for any

v from the set {v1,v2, ...,va−1} and DCx(G) = φ for any x

from the set {v1,v2, ...,va−1}. Hence DCγ(G) = 1+(a− 1)
and so, DCγ(G) = a. Thus there exists a graph G such that

DCγ(G) = a and DC(G) = b.

Figure 5 For case (iv)

Theorem 3.4. For positive integers R, D with R < D ≤ 2R,

there exists a connected graph G with Rad(G)=R, Diam(G)=
D and DC(G) = R+1 and DCγ(G) = R.

Proof. We prove this theorem by considering two cases relat-

ing this values of R and D.

Case (i): Assume that R < D = 2R. We construct a graph as

shown in the Figure 6:

Figure 6 For case (i)

Consider two positive integers R and D such that R < D = 2R.

Consider a complete graph KD−R+1 of vertices

u1,u2, ...,uD−R+1. Let PD−R be a path having v1,v2, ...,vD−R

as vertices. Construct a new graph G by joining PD−R with a

vertex ui of KD−R+1. The detour eccentricity of ui is R and that

of other vertices u1,u2, . . . ,ui−1,ui+1, . . . ,uD−R+1 is 2R. The

detour eccentricity of v1 is R+1, v2 is R+2 and so on. The de-

tour eccentricity of vD−R is 2R(= D). Further, since KD−R+1

is complete and by the definition, the remaining vertices from

G−KD−R+1 are null D-centro vertices. Therefore by the def-

inition of D-centro dom set DCγ(G) = 1+(D−R)− 1 = R

and every pair of vertices of KD−R+1 is D-centro to each other.

Therefore, DC(G) = R+1 and DCγ(G) = R.

Case (ii): Suppose that R < D < 2R, We construct a graph as

follows:
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Figure 7 For case (ii)

Consider two positive integers R and D such that R < D < 2R.

Consider a complete graph KR+1, with the vertices

u1,u2, ...,uR+1. Let K(D−R)+1 be another complete graph of

order (D−R)+1 with R+1 > (D−R)+1. Let the vertices

of K(D−R)+1 be ui,v1, ...,v(D−R). Let H be a graph obtained

from KR+1 and K(D−R)+1 by identifying ui as the common

vertex in KR+1 and K(D−R)+1. Now add the set S of new pen-

dant vertices {x1,x2, ...,x2R−D−1} to H and join each vertex

xi(1≤ i≤ 2R−D−1) to the vertex ui to obtain a new graph G

as shown in the Figure 7. The detour eccentricity of ui is R and

that of other vertices u1,u2, . . . ,ui−1,ui+1, . . . ,uR+1 are equal

to 2R. The detour eccentricity of vi(1 ≤ i ≤ (D−R) + 1)
is D and the detour eccentricity of xi(1 ≤ i ≤ 2R−D− 1)
is R + 1. Further, KR+1 and K(D−R)+1 are complete and

the detour length of any vertex from KR+1 to a vertex ui is

R. Hence, by the definition DC(G) = R+ 1. Now, since

K(D−R)+1 is complete and S contains all pendant vertices, the

remaining vertices from G−K(D−R)+1 −{ui}∪S are the null

D-centro vertices. Therefore, by the definition of D-centro

dom set, DCγ(G) = 1 + D − R + 2R − D − 1 = R. Hence

DCγ(G) = R.

4. Conclusion

In this paper, the D-centro dominating sets in graphs has

been studied, It is simply a dominating set of G with a detour

distance R(G). Also a special type of vertex, null D-centro

vertex has been defined and the bounds for D-centro domina-

tion number interms of the number of null D-centro vertices

have been found. The D-centro domination number for some

special graphs like complete graph, cycle, wheel and star have

been determined. Algorithms can be developed for finding the

parameter, D-centro domination number for arbitrary graphs.

This theory can be developed for finding k-center with respect

domination based detour distance.
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