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Decision-theoretic rough set is a quite useful rough set by introducing the decision cost into probabilistic approximations of the
target. However, Yao’s decision-theoretic rough set is based on the classical indiscernibility relation; such a relation may be too
strict in many applications. To solve this problem, a �-cut decision-theoretic rough set is proposed, which is based on the �-cut
quantitative indiscernibility relation. Furthermore, with respect to criterions of decision-monotonicity and cost decreasing, two
di
erent algorithms are designed to compute reducts, respectively. 	e comparisons between these two algorithms show us the
following: (1) with respect to the original data set, the reducts based on decision-monotonicity criterion can generate more rules
supported by the lower approximation region and less rules supported by the boundary region, and it follows that the uncertainty
which comes from boundary region can be decreased; (2) with respect to the reducts based on decision-monotonicity criterion, the
reducts based on cost minimum criterion can obtain the lowest decision costs and the largest approximation qualities. 	is study
suggests potential application areas and new research trends concerning rough set theory.

1. Introduction

Decision-theoretic rough set (DTRS) was proposed by Yao
et al. in the early 1990s [1, 2]. Decision-theoretic rough set
introduces Bayesian decision procedure and loss function
into rough set. In decision-theoretic rough set, the pair of
thresholds � and �, which are used to describe the tolerance
of approximations, can be directly calculated by minimizing
the decision costs with Bayesian theory. Following Yao’s
pioneer works, many theoretical and applied results related
to decision-theoretic rough set have been obtained; see [3–
13] for more details.

In decision-theoretic rough set, Pawlak’s indiscernibility
relation is a basic concept [14–19], and it is an intersection
of some equivalence relations in knowledge base. It should
be noticed that, in [20], Zhao et al. have made a further
investigation about indiscernibility relation and proposed
another two indiscernibility relations, which are referred to as

weak indiscernibility and �-cut quantitative indiscernibility
relations, respectively. Correspondingly, Pawlak’s indiscerni-
bility relation is called the strong indiscernibility relation. By
comparing such three binary relations, it is proven that the �-
cut quantitative indiscernibility relation is a generalization of
both strong and weak indiscernibility relations. 	erefore, it
is interesting to construct �-cut decision-theoretic rough set
based on �-cut quantitative indiscernibility relation. 	is is
what will be discussed in this paper.

Furthermore, attribute reduction is one of the most fun-
damental and important topics in rough set theory and has
drawn attention from many researchers. As far as attribute
reduction in decision-theoretic rough set, the properties of
nonmonotonicity and decision cost should be concerned.(1) On the one hand, as we all know, in Pawlak’s rough set
model, the positive region ismonotonicwith respect to the set
inclusion of attributes. However, the monotonicity property
of the decision regions with respect to the set inclusion of
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attributes does not hold in the decision-theoretic rough set
model [21, 22]. To �ll such a gap, Yao and Zhao proposed the
de�nition of decision-monotonicity criterion based attribute
reduction [23]; (2) on the other hand, decision cost is a very
important notion in decision-theoretic rough set model; to
deal with the minimal decision cost, Jia et al. proposed a
�tness function and designed a heuristic algorithm [24].

As a generalization of decision-theoretic rough set, in our�-cut decision-theoretic rough set, we conduct the attribute
reductions from above two aspects. Firstly, we introduce
the notion of decision-monotonicity criterion into attribute
reduction and design a signi�cance to measure attributes;
secondly, to deal with the minimum decision cost problem,
we regard it as an optimization problem and apply the generic
algorithm to obtain a reduct with the lowest decision cost.

To facilitate our discussions, we present the basic knowl-
edge, such as Pawlak’s rough set, �-cut quantitative rough set,
and Yao’s decision-theoretic rough set in Sections 2 and 3. In
Section 4, we propose a new �-cut decision-theoretic rough
set and present several related properties. In Section 5, we
discuss the attribute reductions by considering two criterions.
	e paper ends with conclusions in Section 6.

2. Indiscernibility Relations and Rough Sets

2.1. Strong Indiscernibility Relation. An information system is
a pair � = (�, ��), in which universe � is a �nite set of the
objects; �� is a nonempty set of the attributes, such that for
all 	 ∈ ��, and �� is the domain of 	. For all � ∈ �, 	(�)
denotes the value of � on 	. Particularly, when �� =  ∪ �
and  ∩ � = 0 ( is the set of conditional attributes and �
is the set of decisional attributes), the information system is
also called decision system.

Each nonempty subset � ⊆ �� determines a strong
indiscernibility relation ���(�) as follows:

��� (�) = {(�, �) ∈ �2 : 	 (�) = 	 (�) , ∀	 ∈ �} . (1)

A strong indiscernibility relation with respect to � is
denoted as ���(�). Two objects in � satisfy ���(�) if and
only if they have the same values on all attributes in �; it is
an equivalence relation. ���(�) partitions� into a family of
disjoint subsets �/���(�) called a quotient set of �:

���� (�) = {[�]� : � ∈ �} , (2)

where [�]� denotes the equivalence class determined by �
with respect to �; that is,

[�]� = {� ∈ � : (�, �) ∈ ��� (�)} . (3)

De�nition 1. Let � be an information system, let � be any
subset of��, and let� be any subset of�. 	e lower approx-
imation of� denoted as��(�) and the upper approximation

of� denoted as ��(�), respectively, are de�ned by

�� (�) = {� ∈ � : [�]� ⊆ �} ;
�� (�) = {� ∈ � : [�]� ∩ � ̸= 0} . (4)

	e pair [��(�), ��(�)] is referred to as Pawlak’s rough
set of� with respect to the set of attributes �.
2.2.Weak Indiscernibility Relation. In the de�nition of strong
indiscernibility relation, we can observe that two objects in�
satisfy ���(�) if and only if they have the same values on all
attributes in�; such casemay be too strict to be used inmany
applications. To address this issue, Zhao and Yao proposed
a notion which is called weak indiscernibility relation. 	e
semantic interpretation of weak indiscernibility relation is
that two objects are considered as indistinguishable if and
only if they have the same values on at least one attribute in�.

In an information system �, for any subset of ��, a weak
indiscernibility relation can be de�ned as follows [20]:

����(�) = {(�, �) ∈ �2 : 	 (�) = 	 (�) , ∃	 ∈ �} . (5)

From the description of the weak indiscernibility relation
we can �nd that a weak indiscernibility relation ����(�)
with respect to� only requires that two objects have the same
values on at least one attribute in �. A weak indiscernibility
relation is reexive and symmetric, but not necessarily
transitive. Such a relation is known as a compatibility or a
tolerance relation.

De�nition 2. Let � be an information system; for all � ⊆ ��,
for all � ⊆ �, the lower and upper approximations of �
based on weak indiscernibility relation, denoted as ��(�)
and ��(�), respectively, are de�ned by

�� (�) = {� ∈ � : [�]�� ⊆ �} ;
�� (�) = {� ∈ � : [�]�� ∩ � ̸= 0} , (6)

where [�]�� = {� ∈ � : (�, �) ∈ ����(�)} is the set of
objects, which are weak indiscernibility with � in terms of set
of attributes �.
2.3. �-Cut Quantitative Indiscernibility Relation. 	e strong
and weak indiscernibility relations represent the two extreme
cases, which include many levels of indiscernibility. With
respect to a nonempty set of attributes � ⊆ ��, a �-cut
quantitative indiscernibility relation is de�ned as a mapping
from � × � to the unit interval [0, 1].
De�nition 3 (see [20]). Let � be an information system; for
all � ⊆ ��, the �-cut quantitative indiscernibility relation!"#�(�) is de�ned by

!"#� (�) = {(�, �) ∈ �2 : %%%%{	 ∈ � : 	 (�) = 	 (�)}%%%%|�| ≥ �} ,
(7)

where | ⋅ | denotes the cardinality of a set.
By the de�nition of �-cut quantitative indiscernibility

relation, we can obtain the lower and upper approximations
as in the following de�nition.
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De�nition 4. Let � be an information system; for all � ⊆ ��,
for all � ⊆ �, the �-cut quantitative indiscernibility based
lower and upper approximations are denoted by ��(�) and��(�), respectively:

�� (�) = {� ∈ � : [�]�� ⊆ �} ;
�� (�) = {� ∈ � : [�]�� ∩ � ̸= 0} , (8)

where [�]�� = {� ∈ � : (�, �) ∈ !"#�(�)} is the set of
objects, which are �-cut indiscernibility with � in terms of
set of attributes �.
3. Decision-Theoretic Rough Set

	e Bayesian decision procedure deals with making a deci-
sion with minimum risk based on observed evidence. Yao
and Zhou introduced a more general rough set model called
a decision-theoretic rough set (DTRS) model [25–27]. In
this section, we briey introduce the original DTRS model.
According to the Bayesian decision procedure, the DTRS
model is composed of two states and three actions. 	e set
of states is given by Ω = {�, ∼ �} indicating that an object
is in � or not, respectively. 	e probabilities for these two
complement states can be denoted as 3(� | [�]�) = |� ∩[�]�|/|[�]�| and 3(∼ � | [�]�) = 1 − 3(� | [�]�). 	e set
of actions is given by A = {	�, 	�, 		}, where 	�, 	�, and 		
represent the three actions in classifying an object �, namely,
deciding that � belongs to the positive region, deciding that �
belongs to the boundary region, and deciding that� belongs
to the negative region, respectively. 	e loss functions are
regarding the risk or cost of actions in di
erent states. Let4��,4��, and 4	� denote the cost incurred for taking actions 	�,	�, and 		, respectively, when an object belongs to�, and let4�	, 4�	, and 4		 denote the cost incurred for taking the
same actions when an object belongs to ∼�.

According to the loss functions, the expected costs asso-
ciated with taking di
erent actions for objects in [�]� can be
expressed as follows:

5� = 5 (	� | [�]�)
= 4�� ⋅ 3 (� | [�]�) + 4�	 ⋅ 3 (∼ � | [�]�) ;

5� = 5 (	� | [�]�)
= 4�� ⋅ 3 (� | [�]�) + 4�	 ⋅ 3 (∼ � | [�]�) ;

5	 = 5 (		 | [�]�)
= 4	� ⋅ 3 (� | [�]�) + 4		 ⋅ 3 (∼ � | [�]�) .

(9)

	e Bayesian decision procedure leads to the following
minimum-risk decision rules:

(3) if 5� ≤ 5� and 5� ≤ 5	, then this decides that �
belongs to the positive region;

(8) if 5� ≤ 5� and 5� ≤ 5	, then this decides that �
belongs to the boundary region;

(�) if 5	 ≤ 5� and 5	 ≤ 5�, then this decides that �
belongs to the negative region.

Consider a special kind of loss functions with 4�� ≤4�� ≤ 4	� and 4		 ≤ 4�	 ≤ 4�	; that is to say, the loss of
classifying an object � belonging to� into the positive region
is no more than the loss of classifying � into the boundary
region, and both of these losses are strictly less than the loss
of classifying � into the negative region. 	e reverse order of
losses is used for classifying an object not in �. We further
assume that a loss function satis�es the following condition:

(4�	 − 4�	) ⋅ (4	� − 4��) > (4�� − 4��) ⋅ (4�	 − 4		) .
(10)

Based on the above two assumptions, we have the follow-
ing simpli�ed rules:

(31) if 3(� | [�]�) ≥ �, then this decides that � belongs to
the positive region;

(81) if � < 3(� | [�]�) < �, then this decides that �
belongs to the boundary region;

(�1) if 3(� | [�]�) ≤ �, then this decides that � belongs to
the negative region,

where

� = 4�	 − 4�	(4�	 − 4�	) + (4�� − 4��) ;
� = 4�	 − 4		(4�	 − 4		) + (4	� − 4��) ,

(11)

with 1 ≥ � ≥ � ≥ 0.
Using these three decision rules, for all � ⊆ �� and for

all� ⊆ �, we get the following probabilistic approximations:

�(
,�) (�) = {� ∈ � : 3 (� | [�]�) ≥ �} ;
�(
,�) (�) = {� ∈ � : 3 (� | [�]�) > �} . (12)

	e pair [�(
,�)(�), �(
,�)(�)] is referred to as decision-

theoretic rough set of � with respect to the set of attributes�. 	erefore, the positive region of � can be expressed
as POS(
,�)(�) = �(
,�)(�), the boundary region of � is

BND(
,�)(�) = �(
,�)(�)−�(
,�)(�), and the negative region
of� is NEG(
,�)(�) = � − �(
,�)(�).
4. �-Cut Decision-Theoretic Rough Set

As the discussion in Section 3, we can observe that the
classical decision-theoretic rough set is based on the strong
indiscernibility relation which is too strict since it requires
that the two objects have the same values on all attributes. In
this section, we introduce the concept of �-cut indiscernibil-
ity relation into the decision-theoretic rough set model.

4.1. De�nition of �-Cut Decision-	eoretic Rough Set

De�nition 5. Let � be an information system; for all� ⊆ ��, for all � ⊆ �, the decision-theoretic lower
and upper approximations based on the �-cut quantitative
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indiscernibility relation, denoted as ��(
,�)(�) and ��(
,�)(�),
respectively, are de�ned by

��(
,�) (�) = {� ∈ � : 3 (� | [�]��) ≥ �} ;
��(
,�) (�) = {� ∈ � : 3 (� | [�]��) > �} . (13)

	e pair [��(
,�)(�), ��(
,�)(�)] is referred to as a �-cut
decision-theoretic rough set of � with respect to the set of
attributes �.

A�er obtaining the lower and upper approximations, the
probabilistic positive, boundary, and negative regions are
de�ned by

POS�(
,�) (�) = ��(
,�) (�) ;
BND�(
,�) (�) = ��(
,�) (�) − ��(
,�) (�) ;
NEG�(
,�) (�) = � − POS�(
,�) (�) ∪ BND�(
,�) (�)

= � − ��(
,�) (�) .

(14)

Let�� be a decision system and let @� = {�1, �2, . . . , �}
be a partition of the universe �, which is de�ned by the
decision attribute �, representing A classes. By the de�nition
of quantitative decision-theoretic rough set, the lower and
upper approximations of the partition can be expressed as
follows:

��(
,�) (@�) = (��(
,�) (�1) , ��(
,�) (�2) , . . . , ��(
,�) (�)) ;
��(
,�) (@�) = (��(
,�) (�1) , ��(
,�) (�2) , . . . , ��(
,�) (�)) .

(15)

For this A-classes problem, it can be regarded as A two-
class problems; following this approach, the positive region,
boundary region, and negative region of all the decision
classes can be expressed as follows:

POS�(
,�) (@�) =
⋃
�=1

POS�(
,�) (��) ;

BND�(
,�) (@�) =
⋃
�=1

BND�(
,�) (��) ;
NEG�(
,�) (@�) = � − POS�(
,�) (@�) ∪ BND�(
,�) (@�) .

(16)

Based on the notions of the three regions in �-cut
decision-theoretic rough set model, three important rules
should be concerned, that is, positive rule, boundary rule, and
negative rule. Similar to Yao’s decision-theoretic rough set,
when � > �, for all �� ∈ @�, we can obtain the following
decision rules, that is, tie-break:

(�-3) if 3(�� | [�]��) ≥ �, then this decides that � ∈
POS�(
,�)(��);

(�-8) if � < 3(�� | [�]��) < �, then this decides that � ∈
BND�(
,�)(��);

(�-�) if 3(�� | [�]��) ≤ �, then this decides that � ∈
NEG�(
,�)(��).

Let�� be a decision system, � ∈ (0, 1]; for all�� ∈ @�, the
Bayesian expected costs of decision rules can be expressed as
follows:

(i) (�-3) cost:∑��∈�� ∑�∈POS(��)(4�� ⋅3(�� | [�]��)+4�	 ⋅3(∼ �� | [�]��));
(ii) (�-�) cost: ∑��∈�� ∑�∈NEG(��)(4	� ⋅ 3(�� | [�]��) +4		 ⋅ 3(∼ �� | [�]��));
(iii) (�-8) cost:∑��∈�� ∑�∈BND(��)(4��⋅3(�� | [�]��)+4�	⋅3(∼ �� | [�]��)).
Considering the special case where we assume zero cost

for a correct classi�cation, that is, 4�� = 4		 = 0, the
decision costs of rules can be simply expressed as follows:

(i) (�-31) cost: ∑��∈�� ∑�∈POS(��) 4�	 ⋅ 3(∼ �� | [�]��);
(ii) (�-�1) cost: ∑��∈�� ∑�∈NEG(��) 4	� ⋅ 3(�� | [�]��);
(iii) (�-81) cost: ∑��∈�� ∑�∈BND(��)(4�� ⋅ 3(�� | [�]��) +4�	 ⋅ 3(∼ �� | [�]��)).
For any subset of conditional attributes, the overall cost

of all decision rules can be denoted as COST(�), such that

COST (�) = COSTPOS
� + COSTNEG

� + COSTBND
�

= ∑
��∈��

∑
�∈POS(��)

4�	 ⋅ 3 (∼ �� | [�]��)
+ ∑
��∈��

∑
�∈NEG(��)

4	� ⋅ 3 (�� | [�]��)
+ ∑
��∈��

∑
�∈BND(��) (4�� ⋅ 3 (�� | [�]

�
�)

+4�	 ⋅ 3 (∼ �� | [�]��)) .
(17)

4.2. Related Properties

Proposition 6. Let � be an information system; if 4�	 =4	� = 1 and 4�� = 4		 = 4�� = 4�	 = 0, ∀� ⊆ �,
one has

��(
,�) (�) = �� (�) ;
��(
,�) (�) = �� (�) .

(18)

Proof. In this proposition, we suppose that there is a unit
misclassi�cation cost if an object in � is classi�ed into
the negative region or if an object in ∼ � is classi�ed
into the positive region; otherwise there is no cost; that is,4�	 = 4	� = 1 and 4�� = 4		 = 4�� = 4�	 = 0. By
the computational processes of � and �, we have � = 1 and
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� = 0 and by the de�nition of �-cut decision-theoretic rough
set, we can observe that

��(
,�) (�) = {� ∈ � : 3 (� | [�]��) ≥ 1}
= {� ∈ � :

%%%%%� ∩ [�]��%%%%%%%%%%[�]��%%%%% ≥ 1}
= {� ∈ � : [�]�� ⊆ �}
= �� (�) .

(19)

Similarly, it is not di�cult to prove ��(
,�)(�) = ��(�).
Proposition 7. Let � be an information system; for all � ⊆��, for all� ⊆ �, one has

��(
,�) (�) ⊇ �� (�) ;
��(
,�) (�) ⊆ �� (�) .

(20)

Proof. For all � ∈ ��(�) and by De�nition 4, we have [�]�� ⊆�; that is to say,3(� | [�]��) = |[�]��∩�|/|[�]��| = 1; since� ∈(0, 1], then 3(� | [�]��) ≥ �; by the probability, we have that� ∈ ��(
,�)(�) holds obviously, and it follows that ��(
,�)(�) ⊇��(�).
Similarly, it is not di�cult to prove ��(
,�)(�) ⊆ ��(�).
Propositions 6 and 7 show the relationships between �-

cut decision-theoretic rough set and classical �-cut quantita-
tive rough set. 	e details are given as follows: the classical�-cut quantitative indiscernibility lower approximation is
included into the �-cut decision-theoretic lower approxima-
tion and the �-cut decision-theoretic upper approximation is
included into the classical �-cut quantitative indiscernibility
upper approximation. Particularly, with some limitations,
the �-cut decision-theoretic rough set can degenerate to the
classical �-cut quantitative rough set. As the discussion above,
we can observe that the �-cut decision-theoretic rough set
is a generalization of classical �-cut quantitative rough set,
and it can increase lower approximation and decrease upper
approximation.

Proposition 8. Let � be an information system; if � = 1, then,
for all � ⊆ ��, for all � ⊆ �, one has

��(
,�) (�) = �
,� (�) ;
��(
,�) (�) = �
,� (�) .

(21)

Proof. It is not di�cult to prove this proposition by De�ni-
tions 3 and 5 and the de�nition of decision-theoretic rough
set.

Proposition 8 shows the relationships between �-cut
decision-theoretic rough set and Yao’s decision-theoretic
rough set. 	e details are the following: if we set the value

of �with 1, the lower and upper approximations based on our
decision-theoretic rough set are equal to those based on Yao’s
decision-theoretic rough set. By Proposition 8we can observe
that our decision-theoretic rough set is also a generalization
of Yao’s decision-theoretic rough set.

5. Attribute Reductions in Quantitative
Decision-Theoretic Rough Set

5.1. Decision-Monotonicity Criterion Based Reducts. In
Pawlak’s rough set theory, attribute reduction is an important
concept which has been addressed by many researchers
all around the world. In classical rough set, the reduct is
a minimal subset of attributes which is independent and
has the same power as all of the attributes. 	e positive
region, the boundary region, and the negative region are
monotonic with respect to the set inclusion of attributes in
classical rough set theory. However, in decision-theoretic
rough set model, the monotonicity property of the decision
regions with respect to the set inclusion of attributes does
not hold. To solve such a problem, Yao and Zhao have
proposed a decision-monotonicity criterion [23]. 	e
decision-monotonicity criterion requires two things. Firstly,
the criterion requires that by reducing attributes a positive
rule is still a positive rule of the same decision. Secondly, the
criterion requires that by reducing attributes a boundary rule
is still a boundary rule or is upgraded to a positive rule with
the same decision. Following their work, it is not di�cult
to introduce the decision-monotonicity criterion into our�-cut decision-theoretic rough set. 	e detailed de�nition is
shown in De�nition 9 as follows.

De�nition 9. Let �� = (�,  ∪ �) be a decision system,� ∈ (0, 1], and let � be any subset of conditional attributes;�
is referred to as a decision-monotonicity reduct in �� if and
only if � is the minimal set of conditional attributes, which

preserves �(
,�)(��) ⊆ ��(
,�)(��), for each�� ∈ @�.
Let �� be a decision system, � ∈ (0, 1], and let � be any

subset of conditional attributes and 	� ∈ �; we de�ne the
following coe�cients:

�Jsig
in (	�, �, �)

= ∑��∈�� (��(
,�) (��) ⊙ � − {	�}�(
,�) (��))N ⋅ A ;
�Jsig

out (	�, �, �)

= ∑��∈�� (��(
,�) (��) ⊙ � ∪ {	�}�(
,�) (��))N ⋅ A ,

(22)

whereN and A are the numbers of objects and decision classes,
respectively, and

� ⊙ 8 = {|8 − �| � ⊆ 8,− |� − 8| otherwise. (23)
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Input: Decision system�� = (�,  ∪ �), threshold �;
Output: A decision-monotonicity reduct OP#.
Step 1. 8 ← 0,J← , compute �(
,�)(��),�� ∈ @�;
Step 2. Compute the decision-monotonicity signi�cance for each 	� ∈  with�Jsig

in (	�, , �);
Step 3. 8 ← 	� where�Jsig

in (	�, , �) = max{�Jsig
in (	�, , �) : 	� ∈ };

Step 4. While J ̸= 0 do∀	� ∈  − 8, compute�Jsig
out(	�, 8, �);

Select the maximal�Jsig
out(	�, 8, �) and corresponding attribute 	�;

If �Jsig
out(	�, 8, �) > 08 = 8 ∪ {	�};

EndJ = J − {	�};
End

Step 5. ∀	� ∈ 8
If �Jsig

in (	�, , �) ≥ 08 = 8 − {	�};
End

Step 6. OP# = 8.
Algorithm 1: Heuristic algorithm for attribute reduction based on decision-monotonicity criterion.

Input: Decision system�� = (�,  ∪ �), threshold �;
Output: A optimal cost reduct OP#.
Step 1. Create an initial random population (number = 40);
Step 2. Evaluation the population;
Step 3. While Number of generations < 100 do

Select the �ttest chromosomes in the population;
Perform crossover on the selected chromosomes to create o
spring;
Perform mutation on the selected chromosomes;
Evaluate the new population;

End

Step 4. Selected the �ttest chromosome form current population and output it as OP#.
Algorithm 2: Genetic algorithm for attribute reduction based on cost minimum criterion.

Based on these measures, we can design a heuristic
algorithm to compute the decision-monotonicity reduct; the
details are shown as in Algorithm 1.

5.2. Cost Minimum Criterion Based Reducts. Cost is one
of the important features of the �-cut decision-theoretic
rough set. In Section 4.1 we have discussed the cost issue
of our �-cut decision-theoretic rough set. However, in the
reduction process, from the viewpoint of cost criterion, we
want to obtain a reduct with smaller or smallest cost. Similar
to the decision-monotonicity criterion, it is not di�cult to
introduce the cost criterion into our rough set model.

De�nition 10. Let �� = (�,  ∪ �) be a decision system,� ∈ (0, 1], and let � be any subset of conditional attributes;� is referred to as a cost reduct in �� if and only if �
is the minimal set of conditional attributes, which satis�es
COST(�) ≤ COST(), and, for each set 8 ⊂ �, COST(8) >
COST(�).

In this de�nition, we want to �nd a subset of conditional
attributes so that the overall decision cost will be decreased

Table 1: Data sets description.

ID Data sets Samples Features Decision classes

1 Annealing 798 38 5

2 Dermatology 366 34 6

3 Soybean 307 35 4

4 Zoo 101 17 7

or unchanged based on the reduct. In most situations, it
is better for the decider to obtain a smaller or smallest
cost in the decision procedure. We propose an optimization
problem with the objective of minimizing the cost values; the
minimum cost can be denoted as follows [3]:

min COST (�) . (24)

	en the optimization problem is described as �nding
a proper attributes set to make the whole decision cost
minimum. 	erefore, in the following, we will present a
genetic algorithm to compute cost minimum based reducts.
	e details of genetic algorithm are described in Algorithm 2.



	e Scienti�c World Journal 7

Table 2: 	e decision rules between raw data and decision-monotonicity criterion based reducts (Annealing).

� (3) rules (8) rules (�) rules

Raw Reduct Raw Reduct Raw Reduct

0.1 319.2 ± 412.1 650.4 ± 311.2 558.6 ± 385.5 221.4 ± 356.5 3112 ± 252.3 3118 ± 233.4

0.2 399 ± 420.6 650.4 ± 311.2 1117 ± 1077 590.4 ± 582.1 2473 ± 878.2 2749 ± 516.0

0.3 399 ± 420.6 576.6 ± 356.5 638.4 ± 733.3 442.8 ± 622.3 2952 ± 757.0 2971 ± 498.1

0.4 638.4 ± 336.5 724.2 ± 336.5 159.6 ± 336.5 73.80 ± 233.4 3192 ± 0.000 3192 ± 0.000

0.5 239.4 ± 385.5 429.0 ± 388.9 638.4 ± 504.7 442.8 ± 516.0 3112 ± 252.3 3118 ± 233.4

0.6 319.2 ± 412.1 583.4 ± 346.6 798.0 ± 995.3 503.6 ± 947.5 2873 ± 770.9 2903 ± 686.7

0.7 363.5 ± 384.7 523.7 ± 310.4 611.3 ± 519.9 438.2 ± 480.2 3015 ± 335.2 3028 ± 307.4

0.8 379.3 ± 312.8 648.9 ± 221.6 729.8 ± 592.7 437.9 ± 638.3 2881 ± 417.8 2903 ± 519.3

0.9 713.2 ± 34.81 727.5 ± 52.72 161.1 ± 54.24 119.4 ± 96.12 3116 ± 39.46 3143 ± 50.72

1.0 798 ± 0 798 ± 0 0 ± 0 0 ± 0 3192 ± 0 3118 ± 0

Mean values 456.8 ± 311.9 631.2 ± 253.2 541.2 ± 519.9 334.4 ± 470.6 2992 ± 370.4 3024 ± 327.8

Table 3: 	e decision rules between raw data and decision-monotonicity criterion based reducts (Dermatology).

� (3) rules (8) rules (�) rules

Raw Reduct Raw Reduct Raw Reduct

0.1 0 ± 0 1.100 ± 3.478 1134 ± 952.1 1154 ± 848.9 1061 ± 952.1 1041 ± 847.3

0.2 0 ± 0 0.500 ± 1.269 512.4 ± 602.6 534.7 ± 583.3 1683 ± 602.6 1661 ± 582.9

0.3 0 ± 0 0.200 ± 0.426 512.3 ± 715.5 448.8 ± 650.2 1683 ± 715.5 1747 ± 650.1

0.4 0 ± 0 0.000 ± 0.000 878.2 ± 915.9 860.4 ± 822.4 1317 ± 915.9 1335 ± 822.4

0.5 0 ± 0 0.4000 ± 0.699 534.0 ± 703.5 505.9 ± 643.8 1662 ± 703.5 1689 ± 643.5

0.6 0 ± 0 2.000 ± 0.943 688.5 ± 754.3 671.3 ± 779.7 1507 ± 754.3 1522 ± 779.3

0.7 29.20 ± 5.473 33.20 ± 12.35 539.0 ± 522.5 536.0 ± 525.2 1627 ± 522.5 1627 ± 521.6

0.8 139.9 ± 5.953 139.9 ± 5.953 458.6 ± 314.6 458.6 ± 314.6 1597 ± 313.8 1597 ± 313.8

0.9 212.9 ± 9.036 219.9 ± 9.036 292.4 ± 124.3 292.4 ± 124.3 1691 ± 117.7 1691 ± 117.7

1.0 328.2 ± 1.932 328.2 ± 1.932 66.8 ± 24.14 66.8 ± 24.14 1801 ± 23.73 1801 ± 23.73

Mean values 71.02 ± 2.239 71.84 ± 3.608 561.7 ± 562.9 552.8 ± 531.6 1563 ± 562.2 1571 ± 530.3

5.3. Experimental Analyses. In this subsection, by experi-
mental analyses, we will illustrate the di
erences between
Algorithms 1 and 2. All the experiments have been carried
out on a personal computer with Windows 7, Intel Core
2 DuoT5800 CPU (4.00GHz), and 4.00GB memory. 	e
programming language is Matlab 2012b.

We download four public data sets from UCI Reposi-
tory of Machine Learning Databases, which are described
in Table 1. In the experiment, 10 di
erent groups of loss
functions are randomly generated.

Tables 2, 3, 4, and 5 show the experimental results of (3)
rules, (8) rules, and (�) rules. 	e number of these rules
is equivalent to the number of objects in positive region,
boundary region, and negative region, respectively. 	is is
mainly because each object in positive/boundary/negative
region can induce a (3)/(8)/(�) decision rule.

Based on these four tables, it is not di�cult to draw the
following conclusions.

(1) With respect to the original data set, decision-
monotonicity reducts can generate more (3) rules;
this is mainly because the condition of decision-
monotonicity reducts requires that, by reducing
attributes, a positive rule is still a positive rule, or

a boundary rule is upgraded to a positive rule. 	is
mechanism not only keeps the original (3) rules
unchanged, but also increases the (3) rules.

(2) With respect to the original data set, decision-
monotonicity reducts can generate less (8) rules; this
is mainly because the second condition of decision-
monotonicity reducts requires that, by reducing
attributes, a boundary rule is still a boundary rule
or is upgraded to a positive rule; that is to say, the
number of (8) rules may be equal to or less than those
of original data set.

In order to compare the di
erences between decision-
monotonicity criterion based reducts and cost minimum
criterion based reducts, we conduct the experiments from
three aspects, that is, decision costs, approximation qualities,
and running times. On the one hand, Figure 1 shows the
costs comparisons between these two attribute reduction
algorithms; on the other hand, Tables 6, 7, 8, and 9 show the
di
erences between decision-monotonicity criterion based
reducts and costminimum criterion based reducts in approx-
imation qualities and running times, respectively.

In Figure 1, each sub�gure is corresponding to a data
set. In each sub�gure, the �-coordinate pertains to di
erent



8 	e Scienti�c World Journal

Table 4: 	e decision rules between raw data and decision-monotonicity criterion based reducts (Soybean).

� (3) rules (8) rules (�) rules

Raw Reduct Raw Reduct Raw Reduct

0.1 244.3 ± 128.7 295.7 ± 20.52 94.4 ± 149.0 52.1 ± 98.76 889.3 ± 96.77 880.2 ± 95.80

0.2 280.4 ± 43.59 285.1 ± 30.39 85.2 ± 101.5 93.2 ± 96.18 862.4 ± 97.91 849.7 ± 98.14

0.3 277.9 ± 8.212 282.3 ± 14.11 76.3 ± 73.26 69.3 ± 78.64 873.8 ± 67.97 876.4 ± 69.86

0.4 269.2 ± 2.821 272.6 ± 12.33 63.8 ± 19.17 59.0 ± 27.68 895.0 ± 17.98 825.9 ± 19.50

0.5 275.2 ± 5.827 289.2 ± 15.64 81.1 ± 67.07 112.9 ± 153.8 871.7 ± 67.63 825.9 ± 155.0

0.6 304.7 ± 2.312 305.5 ± 1.581 9.90 ± 14.65 9.30 ± 14.96 913.4 ± 15.04 913.2 ± 14.98

0.7 302.9 ± 3.755 305.7 ± 1.059 5.70 ± 4.423 2.80 ± 2.573 919.4 ± 2.413 919.5 ± 1.958

0.8 298.2 ± 1.932 304.8 ± 4.638 17.5 ± 4.836 5.70 ± 9.956 912.3 ± 3.713 917.5 ± 5.797

0.9 307 ± 0 307 ± 0 0 ± 0 0 ± 0 921 ± 0 921 ± 0

1.0 307 ± 0 307 ± 0 0 ± 0 0 ± 0 921 ± 0 921 ± 0

Mean values 286.6 ± 19.72 295.5 ± 10.03 43.39 ± 43.40 40.43 ± 48.26 897.9 ± 36.92 892.1 ± 46.11

Table 5: 	e decision rules between raw data and decision-monotonicity criterion based reducts (Zoo).

� (3) rules (8) rules (�) rules

Raw Reduct Raw Reduct Raw Reduct

0.1 0 ± 0 43 ± 0 141.4 ± 70.62 69.60 ± 59.90 565.6 ± 70.72 594.4 ± 59.90

0.2 0 ± 0 43 ± 0 153 ± 55.23 116 ± 66.97 554 ± 55.23 548 ± 66.97

0.3 0 ± 0 43 ± 0 210.7 ± 197.1 131 ± 127.1 496.3 ± 197.1 532.1 ± 127.1

0.4 0 ± 0 43 ± 0 246.3 ± 216.9 163.7 ± 158.5 460.7 ± 216.9 500.3 ± 158.5

0.5 1.9 ± 3.143 2.6 ± 3.406 178.6 ± 173.9 167.8 ± 126.4 526.5 ± 174.1 536.6 ± 124.3

0.6 36.5 ± 3.689 36.5 ± 3.689 102.4 ± 68.08 102.4 ± 68.08 568.1 ± 69.54 568.1 ± 69.54

0.7 66.2 ± 8.377 67.5 ± 8.657 66.6 ± 39.14 62.60 ± 43.91 574.2 ± 38.29 576.9 ± 41.53

0.8 78.7 ± 8.795 78.7 ± 8.795 46.3 ± 20.95 46.30 ± 20.95 582 ± 15.24 582 ± 15.24

0.9 95.0 ± 0 95.0 ± 0 11.40 ± 0.9661 11.40 ± 0.9661 600.6 ± 0.9661 600.6 ± 0.9661

1.0 101 ± 0 101 ± 0 0 ± 0 0 ± 0 606 ± 0 606 ± 0

Mean values 37.93 ± 2.40 55.33 ± 2.45 115.7 ± 84.28 87.17 ± 67.28 553.4 ± 83.80 564.5 ± 66.39

Table 6: 	e comparison between decision-monotonicity criterion based reducts and cost based reducts (Annealing).

� Approximation qualities Run times (s)

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

0.1 0.8150 ± 0.3899 0.4000 ± 0.5164 12.43 ± 0.3997 311.3 ± 25.18

0.2 0.8150 ± 0.3899 0.6401 ± 0.3762 12.11 ± 0.0070 261.8 ± 63.63

0.3 0.7226 ± 0.4467 0.6855 ± 0.2790 12.12 ± 0.0143 186.5 ± 26.66

0.4 0.9075 ± 0.2925 0.8397 ± 0.1122 12.12 ± 0.0190 205.6 ± 22.68

0.5 0.5376 ± 0.4874 0.7153 ± 0.1350 12.12 ± 0.0076 223.3 ± 29.21

0.6 0.7311 ± 0.4343 0.8429 ± 0.0509 36.03 ± 39.38 200.2 ± 8.255

0.7 0.6563 ± 0.3890 0.9244 ± 0.0368 43.91 ± 40.84 209.6 ± 40.87

0.8 0.8132 ± 0.2777 0.9754 ± 0.0070 50.46 ± 42.55 270.1 ± 67.62

0.9 0.9117 ± 0.0661 0.9984 ± 0.0021 53.12 ± 36.45 359.5 ± 106.0

1.0 1.0000 ± 0.0000 1.0000 ± 0.0000 25.94 ± 32.02 389.1 ± 129.9

Mean values 0.7910 ± 0.3174 0.8022 ± 0.1516 27.04 ± 19.17 261.7 ± 52.00

values of �, whereas the �-coordinate concerns the values
of costs. 	rough an investigation of Figure 1, it is not
di�cult to observe that, in all the ten used values of �,
the decision costs of cost minimum criterion based reducts
are the same or lower than those obtained by decision-
monotonicity criterion based reducts.

Tables 6 to 9 show the di
erences between decision-
monotonicity criterion based reducts and cost minimum
criterion based reducts in approximation qualities and run-
ning times, respectively. It is not di�cult to note that, from
the viewpoint of approximation qualities, the approximation
qualities of decision-monotonicity criterion based reducts are
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Figure 1: Reducts’ costs comparison between decision-monotonicity and cost minimum criterions.

larger than those of cost minimum criterion based reducts at
times. However, in most cases, the approximation qualities of
cost minimum criterion based reducts are larger than those
of decision-monotonicity criterion based reducts. From the
point of running times, it is easy to observe that the run
times of genetic algorithm are greater than those of heuristic
algorithm.

To sum up, we can draw the following conclusions.

(1) From the viewpoint of decision monotonicity, our
heuristic algorithm based on decision-monotonicity
criterion can generate more (3) rules and less (8)
rules with respect to the original data set. Such
approach not only increases the certainties which

are expressed by (3) rules and (�) rules, but also
decreases the uncertainty coming from (8) rules.

(2) From the viewpoint of decision costs, the generic
algorithm based on cost minimum criterion can
obtain the lowest decision costs and the largest
approximation qualities by comparing with heuristic
algorithm based on decision-monotonicity criterion.
However, such approach loses the property of deci-
sion monotonicity and it wastes larger running times
than heuristic algorithm.

6. Conclusion

In this paper, we have developed a generalized frame-
work of decision-theoretic rough set, which is referred
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Table 7: 	e comparison between decision-monotonicity criterion based reducts and cost based reducts (Dermatology).

� Approximation qualities Run times (s)

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

0.1 0.0030 ± 0.0095 0.0913 ± 0.1191 2.524 ± 0.9840 60.14 ± 12.11

0.2 0.0014 ± 0.0035 0.1795 ± 0.0996 3.531 ± 2.9403 47.88 ± 14.01

0.3 0.0005 ± 0.0012 0.2197 ± 0.0345 4.444 ± 4.6011 42.23 ± 3.884

0.4 0.0000 ± 0.0000 0.2128 ± 0.0283 2.183 ± 0.1003 43.43 ± 3.094

0.5 0.0011 ± 0.0019 0.2014 ± 0.0166 6.589 ± 7.1960 42.18 ± 3.991

0.6 0.0055 ± 0.0026 0.3954 ± 0.1061 18.14 ± 0.2819 46.62 ± 6.518

0.7 0.0907 ± 0.0338 0.5462 ± 0.0488 17.71 ± 0.1935 44.46 ± 5.502

0.8 0.3822 ± 0.0163 0.5402 ± 0.0680 16.13 ± 0.7679 49.32 ± 6.926

0.9 0.5817 ± 0.0247 0.7533 ± 0.0358 13.91 ± 0.1070 51.12 ± 10.22

1.0 0.8967 ± 0.0053 0.8975 ± 0.0053 13.36 ± 0.0263 58.57 ± 2.361

Mean values 0.1963 ± 0.0099 0.4037 ± 0.0562 9.853 ± 1.719 48.80 ± 6.863

Table 8: 	e comparison between decision-monotonicity criterion based reducts and cost based reducts (Soybean).

� Approximation qualities Run times (s)

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

0.1 0.9632 ± 0.0669 0.9013 ± 0.0584 6.976 ± 3.1845 22.13 ± 4.443

0.2 0.9287 ± 0.0990 0.9459 ± 0.0691 7.672 ± 2.3621 23.36 ± 3.463

0.3 0.9195 ± 0.0460 0.9492 ± 0.0578 7.638 ± 1.7622 27.05 ± 6.543

0.4 0.8879 ± 0.0402 0.9866 ± 0.0129 7.247 ± 2.2257 28.93 ± 5.668

0.5 0.9420 ± 0.0510 0.9948 ± 0.0054 2.217 ± 0.9900 31.09 ± 8.096

0.6 0.9951 ± 0.0052 0.9896 ± 0.0103 7.869 ± 0.1669 33.91 ± 9.279

0.7 0.9958 ± 0.0035 0.9964 ± 0.0047 6.398 ± 2.7240 41.46 ± 6.722

0.8 0.9928 ± 0.0151 1.0000 ± 0.0000 2.738 ± 2.6772 37.79 ± 8.939

0.9 1.0000 ± 0.0000 1.0000 ± 0.0000 7.529 ± 0.2508 32.97 ± 9.095

1.0 1.0000 ± 0.0000 1.0000 ± 0.0000 7.299 ± 0.2905 35.63 ± 12.27

Mean values 0.9625 ± 0.0327 0.9764 ± 0.0218 6.3586 ± 1.1663 31.435 ± 7.453

Table 9: 	e comparison between decision-monotonicity criterion based reducts and cost based reducts (Zoo).

� Approximation qualities Run times (s)

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

0.1 0.4257 ± 0.0000 0.2644 ± 0.2690 0.0938 ± 0.0163 4.2872 ± 0.4856

0.2 0.4257 ± 0.0000 0.2911 ± 0.3063 0.0915 ± 0.0053 4.4342 ± 0.1583

0.3 0.4257 ± 0.0000 0.3762 ± 0.2777 0.0961 ± 0.0032 4.7973 ± 0.4250

0.4 0.4257 ± 0.0000 0.3257 ± 0.2638 0.0877 ± 0.0065 4.4749 ± 0.4790

0.5 0.0257 ± 0.0337 0.3277 ± 0.3271 0.2077 ± 0.1580 4.1559 ± 0.3482

0.6 0.3614 ± 0.0365 0.7129 ± 0.0417 0.3875 ± 0.0067 4.4908 ± 0.5544

0.7 0.6683 ± 0.0857 0.8554 ± 0.0896 0.3477 ± 0.0757 5.2780 ± 1.1886

0.8 0.7792 ± 0.0871 0.9564 ± 0.0344 0.3747 ± 0.0244 6.6658 ± 1.6919

0.9 0.9406 ± 0.0000 1.0000 ± 0.0000 0.3857 ± 0.0048 6.4638 ± 1.4479

1.0 1.0000 ± 0.0000 1.0000 ± 0.0000 0.3799 ± 0.0143 6.5578 ± 1.8033

Mean values 0.5478 ± 0.0243 0.6110 ± 0.1610 0.2452 ± 0.0315 5.1806 ± 0.8582

to as a �-cut decision-theoretic rough set. Di
erent from
Yao’s decision-theoretic rough set model, our model is
constructed based on �-cut quantitative indiscernibility
relation, and it can degenerate to Yao’s decision-theoretic
rough set with some limitation. Based on the proposed
model, we discussed the attribute reductions from two

criterions; the experiments show that, on the one hand,
the decision-monotonicity criterion based reducts can gen-
erate more positive rules and less boundary rules; on the
other hand, the cost minimum criterion based reducts can
obtain the lowest decision costs with high approximation
qualities.
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	e present study is the �rst step towards �-cut decision-
theoretic rough set. 	e following are challenges for further
research.

(1) �-cut decision-theoretic rough set approach to com-
plicated data type, such as interval-valued data, is
one of the challenges; incomplete data may be an
interesting topic.

(2) 	e threshold learning of � in this paper is also a
serious challenge.
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