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We calculate the D'Der and B*Bx couplings using @CD sum rules on the light cone. In this
approach, the large-distance dynamics is incorporated in a set of pion wave functions. We take into
account two-particle and three-particle wave functions of twist 2, 3, and 4. The resulting values of
the coupling constants are g~ ~ = 12.5 + 1 and g~ ~ ——29 6 3. From this we predict the partial
width 1'(D'+ + D 7r+) = 32 + 5 keV. We also discuss the soft-pion limit of the sum rules which is

equivalent to the external axial 6eld approach employed in earlier calculations. Furthermore, using

g~ ~ and g~ ~ the pole dominance model for the B ~ x and D ~ 7r semileptonic form factors is
compared with the direct calculation of these form factors in the same framework of light-cone sum
rules.
PACS number(s): 11.55.Hx, 13.20.Fc, 13.20.He, 13.25.Ft

I. INTRODUCTION

The extraction of fundamental parameters from data
on heavy-Havored hadrons inevitably requires some in-
formation about the physics at large distances. Numer-
ous theoretical studies have been devoted to making this
extraction as reliable as possible. While the inclusive
B and D decays appear to be the most clean reactions
theoretically, exclusive decays are often much easier to
measure experimentally. However, for their interpreta-
tion one needs accurate estimates of decay form factors
and other hadronic matrix elements. In the exceptional
case B —+ Dev, the form factor at zero recoil can be cal-
culated in the heavy quark limit [1, 2]. In most other
important cases, one has to rely on less rigorous nonper-
turbative approaches. Among those, QCD sum rules [3]
have proved to be particularly powerful.

In this paper we employ sum rule methods in or-
der to calculate the D*Dm and B*Bvr coupling con-
stants. These couplings are interesting for several rea-
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sons. In particular, they determine the normalization
of the heavy-to-light form factors D + vr and B + m

near zero pionic recoil, where the D* and B* poles are
believed to dominate. For further discussion one may
consult Refs. [4, 5]. Recently, it has been argued that
in the combined heavy quark and chiral limit vector me-
son dominance becomes even exact [6]. As noted in Refs.
[7, 8], B* dominance is also compatible with the depen-
dence of the B ~ vr form factor on the momentum trans-
fer p predicted by QCD sum rules at low values of p2.
A similar conclusion is reached in Ref. [9] concerning D*
dominance in the D ~ vr form factor. In addition, the
D'Dm coupling can be directly measured in the decay
D' ~ Der and. thus provides one more independent test
of the sum rule approach.

Calculations of couplings of heavy mesons to a pion
have already been undertaken several times in the frame-
work of QCD sum rules. Unfortunately, the sum rules
obtained in Refs. [10—13] differ in nonleading terms and,
to some extent, also in numerical results. Here, we sug-
gest an alternative method known as QCD sum rules on
the light cone. In this approach, the ideas of duality and
matching between parton and hadron descriptions, in-
trinsic to the QCD sum rules, are combined with the spe-
ci6c operator product expansion (OPE) techniques used
to study hard exclusive processes in QCD [14, 15]. In
contrast to the conventional sum rules based on the Wil-
son OPE of the T product of currents at small distances,
one considers expansions near the light cone in terms of
nonlocal operators, the matrix elements of which define
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hadron wave functions of increasing twist. As one ad.—

vantage, this formulation allows one to incorporate ad-
ditional information about the Euclidean asymptotics of
correlation functions in QCD for arbitrary external mo-
menta. These new features are related to the (approxi-
mate) conformal invariance of QCD and are coded in the
hadron wave functions. Many of the theoretical results
obtained in the context of exclusive processes (see, e.g. ,
Ref. [16]) are very useful in the present context as well.
In turn, we will see that heavy-flavor decays can provide
valuable constraints on the wave functions.

Previous applications of light-cone sum rules include
calculations of the amplitude of the radiative decay E ~
pp [17], the nucleon magnetic moments [18], the strong
couplings 9 ~~ and 9~ [18], form factors of sernilep-
tonic and radiative J3 and D--meson decays [8,19—21],
the pion form factor at intermediate momentum trans-
fers [22], and the irAp* form factors [23]. In all these
cases the results are encouraging.

The light-cone sum rule for the coupling of heavy
mesons to a pion is the principal result of the present
paper which is organized as follows. In Sec. II we discuss
possible strategies in constructing sum rules for coupling
constants and explain the concept of light-cone sum rules.
The derivation of the sum rule for the B*Baand D*Dvr
couplings is then completed in Sec. III, taking into ac-
count the pion two- and. three-particle wave functions up
to twist 4. Section IV is devoted to a detailed numerical
analysis. In Sec. V we show that in a simplified case,
putting the external momenta in the correlation func-
tion equal to each other and performing a Borel trans-
formation in one momentum instead of two, we obtain
the sum rule proposed previously in Refs. [10—13]. We
demonstrate that despite the slightly different terminol-
ogy of these papers the sum rules must coincide with each
other, and. elaborate on possible subtleties in these earlier
calculations. Furthermore, in Sec. VI using our results
on the B*Bm and D*Dm coupling constants, we confront
the pole model for the heavy-to-light form factors B + vr

and D —+ 7r with a direct calculation of these form factors
in the same &amework of light-cene sum rules following
Ref. [8]. A comprehensive comparison of our results on
the D*Dvr and B*Bvr couplings with other estimates and
our conclusions are presented in Sec. VII.

Technical details are collected in two appendixes. Ap-
pendix A summarizes the relevant features of the pion
wave functions and specifies the input in our numerical
calculations. In Appendix 8 we derive a simple rule how
to subtract the contribution from excited. resonances and
continuum states in the sum rule.

II. I IG HT-CONE
VER.SUS SHORT-DISTANCE EXPANSION

I"„(p,q) = i d xe*"*

To the best of our knowledge, the study of correlation
functions with the T product of currents sandwiched be-
tween the vacuum and one-pion state was first suggested
in Ref. [24].

With the pion being on mass shell, q = m, the cor-
relation function (3) depends on two invariants p and
(p + q) . Throughout the paper we set m = 0. The
contribution of interest is the one having poles in p and
(p + q)':

m&m~ fD f~ 9D
m, (p2 —m2D. ) [(p + q) 2 —m2~]

m2~ 5
x q. +-l1-

2 ( mD. j (4)

Obviously, this term stems from the ground states in the
(dc) and (cu) channels. To derive Eq. (4) we have made
use of Eq. (1) and the decay constants fD and f~. de-
fined by the matrix elements

m2
(D l

cip5u
l 0) =

mc

and

(0
l
dp„c

l
D*) = m~. fD.e„, (6)

respectively.
The main theoretical task is the calculation of the cor-

relation function (3) in QCD. This problem can be solved
in the Euclidean region where both virtualities p and
(p+ q) are negative and large, so that the charm quark
is sufIiciently far off shell. Substituting, as a first approx-
imation, the free c-quark propagator

(GIT(c(*)c(0))lo)= i~.'(*)
d4k, .„g+ m,

e
(2ir) 4i m2 —k2

for the different charge states are related by isospin sym-
metry:

9D'Dm = 9D'+D m+ ~~9D'+D+vr ~~9D' D vr

go' D+m—

Most of what is said. below applies equally to B*B7r cou-
plings. The corresponding relations are obtained by the
obvious replacements c —+ 6, D* ~ B*, and D ~ B.

Following the general strategy of QCD sum rules,
we want to obtain quantitative estimates for go- D by
matching the representations of a suitable correlation
function in terms of hadronic and quark-gluon degrees
of freedom. For this purpose, we choose

For definiteness, we focus on the D*D7r coupling de-
fined by the on-mass-shell matrix element

(D +(p)~ (q) l
D'(p+ q)) = —m- -q e". (1)

where the momentum assignment is specified in brackets
and e~ is the polarization vector of the D*. The couplings

d4x d4k, („„)
(2ir) 4(m2 —k')

x [m, (ir(q) ld(x)p„»u(0) l0)

+k (~(q) ld(*)~~~-»u(0) 10)1 .

I"„(p,q) =i

into Eq. (3), one readily obtains

(8)
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Diagrammatically, this contribution is depicted in
Fig. 1(a). Applying the short-distance expansion (SDE)
in terms of local operators to the first matrix element of
F.q. (8),

1
d(*)q„q,u(O) = ) —,d(0)(D ~)"q„q,u(0)

F*(p', (p+ q)') = F.

47m~ay
0 3

'
dug (u)
(p+ uq)' '

(13)

one has, after integration over x and k,

m. . (2p q)"

where

with calculable radiative corrections, and with power cor-
rections suppressed by the photon virtualities. Here,
p (u) is the pion wave function of leading twist, defined
by the following matrix element of a nonlocal operator
on the light cone x = 0:

(~(q)ld D,D, . D „p„psul0)
{~(q)ld(*)~„~,u(0) lo) = —tq„ due'"~ p (u) .

('L) qpq~q q~2 ...q~ M~ +

D being the covariant derivative, has been used. One
immediately encounters the following problem. If the
ratio

& =2(p q)/( .' —p') = [(p+q)' p']/( —'.—p')

(ll)
is finite, one must keep an infinite series of local operators
in Eq. (10). All these operators give contributions of the
same order in the heavy quark propagator 1/(m, —p ),
difI'ering only by powers of the dimensionless parameter

Therefore, SDE of Eq. (8) is useful only if ( ~ 0,
i.e. , if p (p+ q) or, equivalently, q 0. Under this
condition, the series in Eq. (10) can be truncated after
a few terms involving only a small number of unknown
matrix. elements M . However, for general momenta with
p g (p + q) one has to sum up the infinite series of
matrix elements of local operators in some way.

This formidable task is solved by using the techniques
developed for hard exclusive processes in @CD [15, 16].
We illustrate the solution for the correlation function

d ~ e ~*(~ (q) lT(q(~)~„gq(~), q(0)p. gq(o)) lo)

=....,p-q'F (p', (p+q)'), (»)
which is similar to Eq. (3) and defines the form factor
of the coupling of a pion to a pair of virtual photons
[16, 25]. In Eq. (12), Q is a matrix of electromagnetic
charges, and q is a row vector composed of the up and
down quark flavors. As is well known [14], for sufficiently
virtual photons, pz -+ —oo and (p + q) + —oo, this
form factor can be calculated in perturbative @CD. The
principal result reads

Physically, p represents the distribution in the fraction
of the light-cone momentum q0 + q3 of the pion carried
by a constituent quark. Note the normalization of p to
unity following &om Eq. (14) for x = 0 .

Let us first concentrate on the form factor (13) at
(almost) equal photon virtualities, i.e., at ( = (2p .

q)/( —p2) (& l. Expanding the denominator in Eq. (13)
around ( = 0 one obtains a sum over moments of the
pion wave function:

1

F*(p', (I + q)') = —,).(" duu"V-(u) (»)I 0

From the definition (14) it is easy to see that these mo-
ments are given by vacuum-to-pion transition matrix ele-
ments involving increasing powers of the covariant deriva-
tive. For p = (p+q), i.e. , q = 0, only the lowest moment
n = 0 contributes in Eq. (15), and the form factor re-
duces to Fo/p which is the classical result. In contrast,
if the photon virtualities difFer strongly from each other,
then many moments contribute to Eq. (15). In this case,
the calculation of the form factor requires knowledge of
the shape of the pion wave function.

Returning to the correlation function (3) one realizes
that the same technique may be used to obtain a repre-
sentation analogous to Eq. (13). The only new element
in the correlation function (3) is the virtual heavy quark
propagating between the points x and 0 instead of the
light quarks present in Eq. (12). This gives rise to im-
portant di8'erences which, however, do not change the
formalism substantially. For the present discussion it is
sufIicient to stick to the approximation (8) and confine
ourselves to the first term proportional to m . The com-
plete analysis of this expression and the calculation of
further corrections will be carried out in the next sec-
tion. Furthermore, writing F„ in terms of invariant am-
plitudes,

This feature is also observed in deep inelastic scattering,
with the variables {Q, v, xj playing the role of (—p, p .

q, (). As is well known, there one applies an expansion near
the light cone in terms of operators of increasing twist, rather
than of increasing dimension.

Fp(p q) =F(p' (p+q)')qp+F(p' (p+q)')pp (16)

we focus on the function F Using the defini. tion Eq. (14)
of the leading twist wave function and integrating over x
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and A: one finds

E(p, (p+q) ) =m f du p (u)
m2 —(p+ uq)2

(17)

( 2
( )2)

mDmD'fDfD'gD'Der
m, (p2 —m2~. ) [(p + q)

2 —m2~]

p"(si, s2)dsids2

(» - p') [» —(p+ q)']

pi (sl)dsi. P2 (s2)ds2+
8y —P s2 —(p+ q)

Thus, the infinite series of matrix elements of local op-
erators encountered before in Eq. (10) is efFectively re-
placed by an unknown wave function. The expression
(17) is rather similar to the one quoted in Eq. (13) for
the vr p*p* form factor. Most noteworthy is the fact that
the large-distance dynamics is described by one and the
same pion wave function. This universal property is es-
sential for the whole approach.

Next we indicate how the relation (17) can be turned
into a sum rule for the coupling constant gD-D . The key
idea is to write a hadronic representation of E by means
of a double dispersion integral:

The first term arises from the ground state contribution
already indicated in Eq. (4), while the spectral func-
tion p"(si, s2) is supposed to take into account higher
resonances and continuum states in the D* and D chan-
nels. The additional single dispersion integrals originate
in subtractions which are generally necessary to make
the double dispersion integral Rnite. Then, considering
p2 and (p+ q)2 as independent variables one can perform
the usual Borel improvement in both channels. Applying
the Borel operator

(g2) (n+i)
f(Q') =, l, , „, i

—d, i
f(&') = f(M')

to Eq. (18) with respect to p and (p+ q), we obtain

2 2

C
(20)

where Mz and M2 are the Borel parameters associated
with p and (p+q)2, respectively. Note that contributions
from heavier states are now exponentially suppressed by

factors exp( —", ' ) as desired, while the subtrac-

tion terms depending only on one of the variables, p or
(p+ q), vanish.

The same transformation has to be applied to the
expression (17). To this end we rewrite (p + uq)
(1 —u) p + u(p + q), and use

(~ —1)'
x ™2[m2 (1 u)p2 u(p+ q)2]l

= (M ) 'e .~ h(u —uo), (21)

M1 2 1 2
M2 + M2 ' M2 + M2 (22)

Finally, equating the quark-gluon and the hadronic rep-
resentations of I" (Mi, M22) and discarding for a moment
contributions of higher states, we end up with the sum
rule

m~m~. f~ f~-2

gD Dn.

=m, f y (uo)M
2 2 2 2mQ m mD m

where the Borel parameters Mz and M2 have been re-
placed by

I

The ellipsis refers to higher-twist contributions which we
discuss in detail later. Since Mz and M2 are expected
to be quite similar in magnitude, the coupling constant
gD D is determined by the value of the pion wave func-
tion at u 1/2, that is, by the probability for the quark
and the antiquark to carry equal momentum fractions in
the pion [17]. This interesting feature is shared by the
sum rules for many other important hadronic couplings
involving the pion.

The quantity p (1/2) is considered to be a nonpertur-
bative parameter, similar to quark and gluon condensates
in the standard approach. It may be determined from
suitable sum rules in which the phenomenological part is
known experimentally. We use the value

(1/2) = 1.2 + 0.2

obtained in Ref. [18] and comment on this choice in Sec.
IV.

The dependence on the pion wave function disappears
in the kinematical limit q ~ 0 as can be seen from Eq.
(17). This is just the limit where the correlation func-
tion (3) can be treated in the SDE. The condition q 0
is implicitly assumed in Refs. [10, 12] where the corre-
lation function (3) is calculated using the external field
method. This technique is equivalent to the soft-pion ap-
proximation used in Refs. [11, 13] as will become clear
later. For comparison, we present the sum rule following
from Eqs. (17) and (18) by putting q = 0 or, equiva-
lently, (p + q) = p . Since p is the only variable left,
one now can only perform a single Borel transformation
and, hence, the subtraction terms in the double disper-
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sion relation (18) are no longer eliminated. Moreover,
the contributions to Eq. (18) of transitions from excited
states to ground states are not suppressed after Borel
transformation [26]. This point will be explained in more
detail later in Sec. V. In the approximation considered
in Eq. (23) one obtains

mDmD. f~ fz). M Ag~-~ +M A
mc

Just the opposite is the case for the sum rule (25) at
q = 0. Here the @CD part is straightforward, while the
hadronic representation now involves an additional un-
known quantity, which is nonuniversal and specific for
this particular sum rule. A comparison of the results ob-
tained in these two approaches should allow one to check
the reliability and improve the accuracy of the predic-
tions.

2M2 2M2

(25)

where A is an unknown constant corresponding to the
contributions of unwanted transitions and subtraction
terms.

From Eqs. (23) and (25) one can clearly see the ad-
vantages and disadvantages of the two approaches. In
the light-cone sum rule (23) the hadronic input is sim-
ple, whereas the theoretical expression involves a new
universal nonperturbative parameter, namely, p (I/O).

I

III. LIGHT-CONE SUM RULE
FOR gg)~g)~ AND yg~~~

In this section we systematically derive the light-cone
sum rule for the D*Dvr and B*Bvr couplings taking into
account the two- and three-particle pion wave functions
up to twist 4. First, we complete the calculation of the
diagram Fig. 1(a) which represents the contribution from
quark-antiquark wave functions. To this end we return
to the expression (8). In the first matrix element we
include the twist-4 corrections in addition to the leading
twist term already given in Eq. (14):

1 1

(vr(q)ld(x)p„p, u(0)l0) = iq„f —due*"'*[@ (u) + x'gi(u) + O(x )]+ f~ l
*„— " due'"'*g2(u)

0 qx )
(26)

&p7v = —iCrpv + g@v (27)

and express the result in terms of the twist-3 wave func-
tions y& and y de6ned by the matrix elements

m2
(~(q) ld(x)i»u(0) I0) =

mQ + m(g
du e'"~*y„(u)

(28)

and

Qn the right-hand side (RHS) of this relation one sees
the first few terms of the light-cone expansion in x of
the matrix element on the LHS. While p„parametrizes
the leading twist-2 contribution, gq and g2 are associated
with twist-4 operators. In the second matrix element of
Eq. (8) we substitute

m2
(m(q) l

d(x) o.„psu(0) l0) = i (q„x„—q„x„) ™" " 6(m„+m)
due*"~ y (u) . (29)

It should be noted that in Eqs. (26), (28), and (29) the
path-ordered gauge factors

1

P exp ig, dnx~A~ o.x
0

(30)

appearing in between the quark fields and assuring gauge
invariance, are not shown for brevity since they formally
disappear in the light-cone gauge x„A" = 0 assumed
throughout this paper. More details on these wave func-
tions can be found in Refs. [18, 27, 28] and in Appendix
A.

Collecting all terms, we obtain the following result for
the invariant function F as defined in Eq. (16):

I'll f m2
m, f &p (u) +m2 —(p+ uq)2 m~+ mQ

2ug2(u)
m2 —(p+ uq)2

.I&~( ) + +*("))
)[m —(p + uq) ]2

1 ( p'+m.'
uV, (u) + —

I
2+, , I ~-(u)6 ( m2 —p+uq 2)

(31)

where

G2(u) = — g2(v)dv .
0

The superscript (a) refers to the diagram in Fig. 1(a) which represents the leading twist term in the light-cone
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expansion of the c-quark propagator given in Eq. (7).
In addition, to the accuracy of Eq. (31) we must also take into account higher-twist terms in the propagator up to

twist 4 which are numerous, in general. The complete expansion is given in Ref. [27]. One has contributions &om
qGq, qGGq, and qqqq nonlocal operators, G denoting the gluon field strength. Here we only consider operators with
one gluon field, corresponding to quark-antiquark-gluon components in the pion, and neglect components with two
extra gluons, or with an additional qq pair. This is consistent with the approximation of the twist-4 two-particle
wave functions derived in Ref. [28] and used here. Taking into account higher Fock-space components would demand
corresponding modifications in the two-particle functions via the equations of motion. Formally, the neglect of the
qGGq and qqqq terms can be justified on the basis of an expansion in conformal spin [28]. In this approximation the
c-quark propagator reads

(0IT{c(x)c(0))l0)= '~.'(x) —ig
d4k

(2') 4 dv —, ,', G" (vx)o.„„+, ,vx„G""(vx)p
2 m2 —k2 ~ m2 —k2

C C

where G„=G' "2 with tr(A A ) = 28, and g, is the strong coupling constant.
Substituting Eq. (32) into Eq. (3) and using Eq. (16) one obtains the contribution to the invariant function F

represented by the diagram in Fig. 1(b):

F„"'(p', (» + q)') = 'g. e' " (~ld(x)y„vxpGP (vx)P), + ' —GP (vx)op), Psu(0)IO) .f+m, 1

With Eq. (27) and the identities

b
p» (gpp&& gp&&p) + ps»~& &&

and

(34)

cxP
7ppvopp (Kppgvp oppg~g) + i(gpss g~p gppgvp) ep~pp+5 xe~pgo g happ 75 &

one is led to the three-particle pion wave functions [25, 28] defined by

(35)

(~Id(*)g.&..(»)~.o~«(o)lo) ='f. f(~.~ q u
—.s q g.u~-)

—(vua.~g. —~ ~ogu )I f&~-v"-(~)~*"' ""',
(36)

(~ld(x)~p»g G-~(vx)u(0) Io) = f- qn I g-p — "
I

—q- I gap — "
I

&~'v ~(~*)e"*' '+""'

+f.'" (q.x, —q, x—.) ~~, &,((~,)e"*l"+"-
qx

q. I'g,„ )
)

ay~(cxq en+)3

(~ld(x)~pg G-) (vx)~(0)Io) ='f- q~ I
g-p—

+if "(q xp —qpx )—
qx

( ) iqx(n +en )

(38)

where G p = 2e p G and 17m, = dnidn2dosh(1 —ni —n2 —as). While ps (o.;) is a twist-3 wave function, the
remaining functions y~, y~(, g~, and &p~( are all of twist 4. Substitution of these expressions in Eq. (33), finally, yields

~'"'(~' (~+ q)') = dv Bo!z,

4f.-q.-( ') (Sq) ~ ( ') —~((( *)+ ~~( ') —~((( *), , +m.f(m.' —
ll + (~ + v~ )q]') ' (m! —0 + (~ + v~ )ql')'

(39)

In addition to Fig. 1(b) there are further gluonic diagrams such as the ones depicted in Figs. 1(c) and l(d).
Note, however, that it is not necessary to take the diagram in Fig. 1(c) into account separately, since its contribution
(to twist-4 accuracy) is already included in the two-particle wave functions. In contrast, the two-loop perturbative
corrections exemplified in Fig. 1(d) should be included in a systematic way, but their calculation lies beyond the scope
of this paper.

Putting together Eqs. (31) and (39) and applying the double Borel transformation (21) with respect to p and
(p+ q), we end up with the following expression for the invariant amplitude I":
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Z(M,', M,') —= S(M', u. ) = e—.e;I"(p', (p+ q)')

f.m'.= e ~M M mc f~ p~(uo) + uopp(uo) + —&p~(uo)m~+mg (
m.'+—uo

d
(uo) + p (uo)

2f m, 4f ms I, (,)+ 2 upg2(up) 4 [gl (up) + G2(up)] + 2fsmIs (up) + mc fw (40)

Here, I3 and I4 involve the three-particle wave functions of twist 3 and 4, respectively:

ic. ~ ~ po (co, & —ooo ooo —co) jdo!y

0 Q 0 —O.'y
tCO —Ct1

ps~(o'x, 1 —o'z —o's~ o's)
do!3

0"3
(41)

'Vp do!
I4 (uo) = d~l [2pJ (o'i) —y~~(o'i) + 2PJ (o'a) —p~((o't)] .

0 'llP —&XI

(42)

The Borel parameters M and uo are given in Eq. (22). The above is the desired quark-gluon representation of the
invariant amplitude I" in the correlation function (3).

The remaining task now is to match Eq. (40) with the corresponding hadronic representation (20) and to extract the
coupling gD D . As usual, invoking duality, we assume that above certain thresholds in Sq and 82 the double spectral
density p (sz, s2) associated with higher resonances and continuum states coincides with the spectral density derived
from the diagrams in Fig. 1. The procedure is explained in detail in Appendix B. For M& ——M2 ——2M and u0 ——2,
and for standard polynomial wave functions, the effect of the continuum subtraction is remarkably simple [17, 18]. It
amounts to the following replacement of the exponential factor multiplying the twist-2 and -3 terms proportional to
M2 in Eq. (40):

e ~~-+ le ~~ —e (43)

sp being the threshold parameter defined in Eq. (B10). The higher-twist terms which are suppressed in Eq. (40) by
inverse powers of M with respect to the leading one remain unaffected. With Eqs. (20), (40), and (43) it is then
easy to derive the following QCD sum rule for the DD*7r coupling:

2 2 2

f~ fD g~ z) = e 2M M [e M —e M ] (p (up)
mD mD

p~ ( 1 1 dp~ ) 2fs+
I

uov .(up) + -~-(up) + -uo (uo)
l
+ Is (uo)

m, ( " 3 6 du ) m

m2 4m
+e ~M p~(uo) + 2uog2(uo) —

2 [gz(uo) + G2(uo)] + I4 (up)
up=i/2

where

mm
2

7A~ + mQ
(45)

In Eq. (45) we have used the familiar PCAC (partial con-
servation of axial vector current) relation between m
f, the quark masses, and the quark condensate density
(qq). Note that the twist-2 and -3 and the twist-4 wave
functions have different dimensions (see Appendix A). G
parity implies g2(1/2) = dp /du(1/2) = 0, so that these
terms vanish in the sum rule (44).

For completeness, we also repeat the standard two-
point sum rules for the decay constants f~ and f~. .'

fDm~
m2

C

and

2 2m& —m—m, (qq)e M'
3 " -~ (s —m2) 2-

M2
Sm2 8

C

m.' l
2M2)l

m2
x 1+

l

1—

( — .')' l&

—m~ f m2m2 )—m, (qq)e M'
l

1 — ' l, (47)4M

where mo —— (qo p G ~q) /(qq) is a conventional
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n (q)

(a)

n (q) n(q)

(c)

FIG. 1. Diagrams contributing to the correlation function
(3). Solid lines represent quarks, dashed lines glnons, wavy
lines are external currents, and the ovals denote vr meson wave
functions on the light cone.

parametrization for the quark-gluon condensate. In the
above, we have omitted numerically insignificant contri-
butions of the gluon and four-quark condensates. For
consistency, we do not take into account perturbative
O(n, ) corrections to these sum rules, since they are also
not included in the sum rule (44).

IV. NUMERICAL ANALY SIS

The principal nonperturbative inputs in the sum rule
(44) are pion wave functions on the light cone. In Ref.
[14] a theoretical framework has been developed to study
these functions. In particular, it has been shown that
the wave functions can be expanded in terms of matrix
elements of conformal operators which in a leading loga-
rithmic approximation do not mix under renormalization.
For example, for the leading twist pion wave function one
finds an expansion in Gegenbauer polynomials,

(p (u, p, ) = 6u(1 —u) 1+ a2(p)| / (2u —1)

+a4(p)C4 (2u —1) +3/2
(48)

where all the nonperturbative information is included in
the set of multiplicatively renormalizable coefIicients a
n = 2, 4, . . . . The corresponding anomalous dimensions
are such that the coeKcients a vanish for p ~ oo, and
the wave function is uniquely determined by the first
term in the expansion. Therefore, this term is called the
asymptotic wave function. Similar expansions also exist
for the wave functions of nonleading twist [28].

For practical applications it is important that the
expansion in conformal spin converges sufFiciently fast.
How fast the wave functions approach their well-known
asymptotic form is still under debate. However, there are
indications [29] that nonasymptotic deviations have been

f~ = 170 + 10 MeV, fry. = 240 6 20 MeV . (49)

The uncertainty quoted characterizes the variation with
the Borel parameter M in the interval 1 GeV ( M
2 GeV2

Having fixed the input parameters, one must find the
range of values of M for which the sum rule (44) is
reliable. The lowest possible value of M is usually de-
termined by the requirement that the terms proportional
to the highest inverse power of the Borel parameter stay
reasonably small. The upper limit is determined by de-
manding that the continuum contribution does not get
too large. In the D*Dvr sum rule we take the interval
2 GeV ( M ( 4 GeV . In this interval the twist-4
term proportional to M does not exceed 5%. Simul-
taneously, higher states contribute less than 30%. The
dependence of the RHS of Eq. (44) on the Borel param-
eter is shown in Fig. 2(a). As can be seen, in the fiducial
range of M given above, the sum rule is quite stable.
From Fig. 2(a) one can directly read off the prediction

fD fry. gLi. ~~ = 0.51+ 0.05 GeV (50)

Dividing this product of couplings by the decay constants
(49) finally yields, for the D*D7r coupling constant,

overestimated previously. Corrections to the asymp-
totic expressions in next-to-leading (and in some cases
also next-to-next-to-leading) order in conformal spin are
known for all wave functions which appear in the sum
rule (44). For details, we must refer the reader to the
original literature [16, 28].

However, we should comment on the choice of the pa-
rameter p (1/2) specified in Eq. (24). Current knowl-
edge of the coeflicients in the expansion (48) is not suffi-
cient to derive a reliable value for p (u) at a particular
point, e.g. , at u = 1/2. Presently, the only reasonable
way is to determine p (1/2) directly from a light-cone
sum rule for a known physical parameter and to apply
the result in order to predict other physical quantities.
This is exactly the standard procedure of the QCD sum
rule approach. In this spirit, we use the value (24) as de-
termined in Ref. [18] from the light-cone sum rule for the
pion-nucleon coupling. If we instead calculated &p (1/2)
from the model wave function suggested in Ref. [16]
which satisfies the constraints on the lowest moments,
the resulting value would be considerably lower than in
Eq. (24) and would therefore disagree with the light-
cone sum rule for the pion-nucleon coupling. Note that
the wave function p (u) used in Sec. VI to calculate the
D ~ vr and B —+ vr form factors is consistent with both
Eq. (24) and the lowest moments considered in Ref. [16].

In our numerical analysis we use the set of nonlead-
ing twist wave functions proposed in Ref. [28]. The ex-
plicit expressions and the values of the various parame-
ters are collected in Appendix A. Furthermore, we take
f = 132 MeV, p, (1 GeV) = 1.65 GeV, corresponding
to (qq) = —(243 MeV)s, mo2 ——0.8 GeV2, and, in the
charmed meson channels, m, = 1.3 GeV, So ——6 GeV,
mD ——1.87 GeV, and mD ——2.01 GeV. The same param-
eters are also used to determine the decay constants fD
and f~. from the sum rules (46) and (47). One obtains
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V. SUM R.ULES
FROM THE SHORT-DISTANCE EXPANSION

invariant amplitude F(M ) can be written as

&(p') =, , 1+ 12+

Iob' (+
l

1—
9(m,'—p') q

m.'
!m,.' —p' ) (58)

where the parameter b is specified in Appendix A. After
Borel transformation in p one has

%Pith the results of Sec. IV at hand we are now also
in a position to study in more detail the soft-pion limit
(25) of the sum rule (44) which is obtained from the
correlation function (3) at p = (p+ q) or, equivalently,
for q —+ 0. As discussed in Sec. II, in this limit one
can apply a short-distance expansion in terms of local
operators with increasing dimensions in contrast to the
light cone expansion involving nonlocal operators with
increasing twist. In technical terms, at q —+ 0 only the
lowest moments of the wave functions contribute. Thus
the integrals reduce to overall normalization factors. The
explicit expression for the invariant function E in this
limit is directly obtained from Eqs. (31) and (39):

2 2 2D~+~D m*
Xe 2M2 + Ce

where the constant A incorporates all unsuppressed con-
tributions of the type (61), while the term proportional
to C contains all exponentially suppressed contributions.

To get rid of the contaminating term AM we follow
Ref. [26] and apply the operator

( 2 d ) -a +-5
]

dM2) («)

to both representations (59) and (63). Now it is possible
to subtract the continuum contribution by the same sub-
stitution (43) which we have already employed to get the
light-cone sum rule (44). In this way we obtain a new
sum rule for g~.~

m2f f d ) m +m, —~m

fg) fg). g~.~ = ' "
l

1 —M
l

e
m~~m~. ( dM2 )

2Vx M'(1 —e '-)11+
3m, )

p m 10 2 5mb
9 9M2 (65)

5m.'b'
9M4 (59)

For the same input parameters and the range of M lead-
ing to the prediction (51) this sum rule yields

(61)

As indicated in Eq. (25), the price for simplifying the
@CD representation of the correlation function is a more
complicated hadronic representation. This in turn makes
it more dificult to extract the ground state contribution
containing the D*Dvr coupling. For illustration, we con-
sider the contribution in the dispersion representation of
the correlation function (3) from the transition of a given
excited state in the D* channel with mass m, ) m~. to
the ground state D meson at q ~ 0. This contribution
is proportional to

(m'„—p') (m~2 —p') (6o)

and, after Borel transformation, to

M2 —p ~M

m2 —m~ ( )
Similar expressions hold for the ground state transition
D* + D with m, = m~ . In the limit m~ ——m~», one
has a double pole instead of Eq. (60) and

M2 (62)

instead of Eq. (61). Clearly, the contribution (61) is
not exponentially suppressed relative to the ground state
contribution (62), and can therefore not be subtracted
assuming duality. On the other hand, transitions in-
volving excited states in both the initial and the final
states are suppressed by Borel transformation with re-
spect to the ground state transitions and cause no prob-
lems. Schematically, the complete hadronic part of the

gg7+g7~: 11 6 2 (66)

Similarly, replacing in Eq. (65) the charmed meson pa-
rameters by the corresponding quantities in the beauty
channel, one finds

g~.~ ——28 + 6 . (67)

E~(p, q) = (q —m ) d x d y e*t"*

(o
l
T(d(*)~ (*) &-(y) (0)~ (0)} I o)

(68)

where P (y) is the interpolating pion field. According to
PCAC

4 (y) = ~"i„'(y)
m 2 (69)

j„(y) = u(y)p„lsd(y) being the axial vector current.

As compared with the predictions (51) and (57) the un-
certainties are larger by a factor of 2 due to the worse
stability of the sum rule (65) against variation of M .
The agreement of the results indicates self-consistency of
the sum rule approach and gives support to the approx-
imations used in the pion wave functions.

Furthermore, one can show that the sum rule (65) is ac-
tually equivalent to the sum rule obtained in Ref. [10] us-

ing external field techniques. Indeed, applying the usual
reduction formalism to the pion, one can rewrite the cor-
relation function (3) in the form



D Dm' AND B*Brr COUPLINCrS IN QCD 6187

with

T~~(p q) = d4 d4 i(px —qy)

(olT(d(*)~„( ), ~,'( ), -(o), (0))lo)
(71)

Instead of dealing with the three-point correlation
function T~~(p, q) directly, it is more convenient to con-
sider the following two-point correlation function in the
constant external axial vector Geld A

T~(p q) = d4 ipse

x(O
I T(d(*)~„c(*),c(0)~.u(0)) [O)

(72)

Substituting Eq. (69) into Eq. (68) and integrating by
parts, one gets

2 —m2
F~(p q) =&, T~~(» q) q' = — T~~(» q) q'f.m2 ' f.

(7o)

Hence, for comparison we need also the second invari-
ant function F, which we have not discussed so far, but
which can be calculated along the same lines. Adding
this contribution to Eq. (59), we have checked that our
result for the invariant amplitude A coincides with the
one presented in Ref. [13],apart from terms proportional
to mo which, being associated with twist-5 contributions
in the light-cone sum rules, are neglected in our approxi-
mation. Numerically, these terms are not important. On
the other hand, we disagree with Ref. [10] in the non-
leading terms proportional to b .

Although it is legitimate to use diferent Lorentz de-
compositions of the correlation function (3) in order to
derive the desired sum rule, we think that the choice
adopted in the present paper is more adequate for the
following reason. Since the vector current gynic is not con-
served, it not only couples to J = 1 vector mesons, but
also to J+ = 0+ scalar mesons (Do). The corresponding
transition matrix element is proportional to the momen-
tum p„:

(01 qp„c I Do) = fa.m~.p„.
It is assumed that a term A "j corresponding to the
interaction of the external Geld with the light quarks is
added to the QCD Lagrangian. To first order in the
external field, this correlation function is given by

T„"(p,q) = T~p(p, q)&"

with T„~(p, q) as defined in Eq. (71). In the above sense,
the two-point correlation function (72) in the constant
axial vector field is equivalent to the three-point function
(71) and, via the PCAC relation (69), also to the two
point correlation function (3) at q —+ 0. Consequently,
the sum rules obtained in Refs. [10] and [13] should coin-
cide with each other and with the sum rule (65) derived
in this paper.

In particular, the expression (59) for I"(I ) can be
compared with the result given in Eq. (19) of Ref. [10]
and in Eq. (2.15) of Ref. [13], after normalization and
kinematical structures are adjusted properly. In Refs.
[10, 13] the correlation function (3) is separated as

I"„=A.q„+B(2p„+q„),
and the sum rule is obtained by evaluation of the in-
variant function A for q ~ 0. In terms of the invariant
amplitudes defined in Eq. (16) one has

The mass of the ground state Do meson is expected to be
in the vicinity of 2400 MeV which is not far from the mass
of the D* and below the accepted continuum threshold
in the D* channel. For this reason, the Do contribution.
should be added to the sum rule. Unfortunately, this
introduces additional uncertainties in the hadronic rep-
resentation as is the case, for example, in Ref. [13]. In
contrast, our sum rules based on the invariant function

defined in Eq. (16) are not affected by scalar meson
contributions, which is a clear advantage.

A calculation rather similar to Ref. [13],but with par-
ticular emphasis on the heavy quark limit, has been car-
ried out in Ref. [11]. Very recently, another calculation
in the heavy quark limit appeared in Ref. [12] using the
external Geld technique. In this paper, a wrong expres-
sion for the induced quark condensate in the external
field is used, as can be seen by consulting Refs. [10,32].
The error can be traced back to the equation of motion
for the quark Geld in presence of the external field which
is modified from iraq = 0 to iljq =+q. By this modifica-
tion the axial vector current insertions into the vacuum
quark legs are properly taken into account. The numer-
ical comparison of these difI'erent calculations is left for
the concluding section.

A=E ——,2' B= —.
2

' (74) VI. POLE MODEI FOR D —+ m

AND H m m FOR,M FACTORS
AND +CD SUM HULKS

In addition, one obtains turbo-point correlation functions be-
cause of contact terms. These do not lead to double poles in
p in the relevant dispersion relation and are therefore elimi-
nated by applying the differeutiation operator (64).

As a side remark, the light-cone approach leading to Hq.
(44) corresponds to a calculation in the background of a vari-
able external axial vector field [17, 18].

The couplings g~-~ and g~ ~ Gx the normalization
of the form factors of the heavy-to-light transitions D —+
vr and B —+ vr, respectively, in the pole model description
[5,6]. This model is based on the vector dominance idea,
suggesting a momentum dependence dominated by the
D* and H* poles, respectively. More definitely, the form
factor f~+(p ) defined by the matrix element
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(~(q) I
d~ ~

I D(p+ q)) = 2f'(p')q.
+[fD(p') + fD(p')]p~ (76)

is predicted to be given by

(77)

An analogous expression holds for the form factor f& (p ).
It is dificult to justify the pole model from first prin-

ciples. Generally, it is believed that the vector domi-
nance approximation is valid at zero recoil, that is, at
p2 ~ mo2. Arguments based on heavy quark symmetry
suggest a somewhat larger region of validity character-
ized by (mD —p )/m 1 GeV. However, there are no
convincing arguments in favor of this model to be valid
also at small values of p which are the most interesting
&om a practical point of view. Therefore, the ending
[7, 9] that the pole behavior is consistent with the p
dependence at p + 0 predicted by sum rules is very
remarkable. Meanwhile, this claim has been confirmed
by independent calculations within the &amework of the
light-cone suin rules [8].

In this section we want to demonstrate that not only
the shape but also the absolute normalization of the
above form factors appears to be comparable with the
pole model description. This assertion is nontrivial, since
contributions of several low-lying resonances in the D*
or B* channel could still mimic the p dependence of
a single pole, but the relation to the coupling gD D or

I

g~.~ should then be lost [4]. However, despite the over-
all agreement in the mass range of D and B mesons, there
is a clear disagreement on the asymptotic dependence of
the form factors on the heavy mass. The @CD sum rules
on the light cone provide a unique framework to exam-
ine these issues, since both the form factors fD &(p ) at
m b

—p & 1 GeV and the couplings gD D and gI3.~
can be calculated from the same correlation function (3)
using the same technique. In addition, contrary to con-
ventional sum rules [7], this approach leads to consistent
results in the heavy quark limit [21].

The detailed derivation of the light-cone sum rules for
the D ~ vr and B —+ vr form factors is discussed in
Ref. [8] (see also Refs. [19—21]). Here we just mention
that the sum rule for fD(p ) is obtained by matching
the expressions (31) and (39) for the invariant amplitude
I"(p, (p + q) ) in terms of the pion wave functions with
the hadronic representation

p( 2
( )2) 2mDfDfD(p ) p (p s)"s

m, [m2D —(p+ q)2], s —(p+ q)2
'

(78)
In the above, the pole term is due to the ground state
in the heavy channel, while the excited and continuum
states are taken into account by the dispersion integral
above the threshold 80. Invoking duality, the latter con-
tributions are canceled against the corresponding pieces
in Eqs. (31) and (39). After Borel transformation in the
variable (p+ q), the resulting sum rule takes the form

m2

2 fDm2D ~ u M2
m2 —p2(l —u)

uM2 4g(u, M, p )

1

u&u
0

'Dn;H(ni + uns —2 ) mD
exp

(ni + uns)' M2
m — 1 —o.' —uo!P ( 2 2) o ( M2 2))(ni + uns)M (79)

where

C'2=~-( )+ v, ( )+ -~-( ) I
2+p, 1 ( m.'+ p'l

m. " 6 q uM'

4 .'g, ( ) 2G, ( ) ) .'+p'l
u2M4 uM2 ( uM2 )

2 fsvr m2- —p@'s =
V s~(n')f m ' (ai + uns)M2

1—
M, 2«(n*) —

V (i(n*) + 2«(n') —
V ~((n*)uM2

(80)

(81)

I

sum rules are applicable is estimated to be about 15 GeV
for B mesons and 1 GeV for D mesons. For numerical
evaluation we use the approximations of the wave func-
tions given in Appendix A. We emphasize that the in-
put here is exactly the same as in the calculation of the
couplings gD. D and gD. D The form fa.ctor fD(p ) re-
sulting from the sum rule (79) is plotted in Fig. 3(a),
together with the corresponding prediction (77) of the
pole model. We see that in the region of overlap both
calculations approximately agree with each other. To a
lesser extent, this also applies to the form factor f& (p )
illustrated in Fig. 3(b). Quantitatively, at p = 0 we
And

and A = (m2 —p2)/(so —p2). The notation is as in
Eq. (44). Improving the approximation given in Ref. [8]
we have added the contributions of three-particle wave
functions of twist 4. The analogous sum rule for the
B —+ m form factor follows from the above by replacing
c —+ 6 and D m B', and by rescaling p and the wave
function parameters from p to pb.

The maximum momentum transfer p at which these

and

fD (0)sR = 0.66, fD (0)pM = 0.75 (82)

The dependence of Eq. (79) on the Borel parameter is
weak [8]. For definiteness, we take here M = 4 GeV for the
D ~ vr form factor and M = 10 GeV for the B ~ vr form
factor.
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fB (o)SR = 0.29, fB (0)pM = 0.44 . (83)

fB/mB = fB, fB./mB = fB. , (84)

and

2m+
gB Be- g (85)

which are expected to be valid at mb —+ oo modulo log-
arithmic corrections, one obtains

fB(0)pM - I/gmB,
whereas the light-cone sum rule (79) yields [19]

(86)

JB (0)SR 1/mB

Thus, in the regions m&2 —p2 + 1 GeV2 with Q = c
and 6, respectively, the numerical agreement between the
light-cene sum rule and the pole model is better than 15%
for fD+, but only within 50% for fB+

At this point, we must add a word of caution concern-
ing the applicability of the pole model too far away from
the zero recoil point, in particular at p = 0. The two de-
scriptions differ markedly in the asymptotic dependence
of the form factors on the heavy mass. Focusing on B
mesons and using the familiar scaling laws

This result rests on the @CD prediction [14] of the be-
havior of the leading twist pion wave function near the
end point, that is, Ip (u) 1 —u at u —+ l. It should be
noted that the contribution estimated by the sum rules
corresponds to the so-called Feynman mechanism. In
the case of heavy-to-light transitions it leads to the same
asymptotic behavior as the hard rescattering mechanism
[19,33]. Recently it has been shown [34] that the power
behavior {87) of hard rescattering is not modified by the
Sudakov-type double logarithmic corrections. We believe
that the light cone sum rules reproduce the true asymp-
totic behavior, although a rigorous proof in @CD is still
lacking. On the other hand, we see no theoretical jus-
tification for extrapolating the pole model to the region
p = 0. The solution suggested by Fig. 3 is to match the
two descriptions in the region of intermediate momentum
transfer p m —I GeV .Q

Referring for a detailed discussion to Refs. [21] and
[35] we want to emphasize that the light-cone sum rules
seem to be generally consistent with the heavy quark
expansion. In particular, the light-cone sum rule (44)
correctly reproduces the heavy quark mass dependence
of the coupling g~- ~~. Fitting our predictions for g~.~~
and gD. D to the form

2m~ „
gB Bn. = g 1 +

2.5

&D(p')

/

()
/

r g = 0.32+0.02, A = (0.7+0.1) GeV . (89)

and the analogous expression for gD. D, we And for the
coupling g and the strength A of the I/mg correction:

1.5

Furthermore, we are able to make a numerical predic-
tion for the theoretically interesting ratio

0.5

gB.B fB.&mD 0.92 .
gD'D7rfD /mB (9o)

0
0

fB(P')

0.5 1.5
I

25 3

p [GeV']

(b)
I

I
I

I
I

I
I

I
/

/
/

/
/

/
/

/r

This ratio is unity in the heavy quark limit and is shown
to be subject to I/mq corrections only in the next-to-
leading order [5]. Our result (90) is nicely consistent with
this expectation. The deviation Rom unity also agrees
in magnitude with the estimate in Ref. [13], but has a
different sign. This is due to a sizable difference in the
ratio fB./fD-. While the values of the decay constants
given in Eqs. (47) and (55) yield

fD- gmD

in agreement with the expectation quoted in Ref. [5], the
latter ratio turns out to be larger by 30% if calculated
&om fB. and fD. as assumed in Ref. [13].

10 15 20 25
p-'[GeV ]

VII. SUMMARY AND CONCLUSIONS

FIG. 3. The form factors for the transitions (a) D ~ vr

and (b) B —+ 7r as predicted by the light-cone sum rule (solid
lines) in comparison to the single-pole approximation (dashed
lines) with the normalization fixed by the coupling constants
gz & and g& z, respectively.

We have presented a comprehensive analysis of the
pion couplings to heavy mesons in the framework of /CD
sum rules. The main new result of this paper is the light-
cone sum rule (44) providing the numerical estimates for
gD. D and gB.B given in Eqs. (51) and (57), respec-
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tively. The decay width I'(D* —+ Dn) predicted in Eq.
(52) turns out to be 3 times smaller than the present ex-
perimental upper limit. We have compared our results to
earlier @CD sum rule calculations [10—13], and resolved
the existing discrepancies.

Clearly, our predictions for go D and g~*~ de-

pend crucially on the value of the pion wave function
&p (u, p, , g) at u 1/2. We have used the value ex-
tracted from a light-cone sum rule for the pion-nucleon
coupling. Conversely, a measurement of the decay width
for D* ~ Dm could be used to fix this important non-
perturbative parameter. The B*Bm coupling can then

TABLE I. Summary of theoretical estimates.

Reference gB~B~ I'(D"+ m D 7r+) (keV)

This paper

This paper

0.32 + 0.02 29 + 3

28 + 6

32 *6

12.5 + 1.0

0.2—0.7

[13] 0.39 + 0.16

[13] ' 0.21 + 0.06 10 + 3

[37]' 0.7

[4)'

[38] 0.75—1.0 100—180

[39]' 0.6-0.7 61—78

[40] 0.4—0.7

[41]' 0.3

[42]' 16.2

195+10 76 + 7

[44]" 16.2 + 0.3 53.3 + 2.0

[43]' 8.9

[46]& 13.8

Experiment" ( 89

QCD sum rules in external axial vector field or soft-pion limit.
Including perturbative correction to the heavy meson decay constants.

'Quark model + chiral HQET.
Chiral HQET with experimental constraints on D* decays.
Extended NJL model + chiral HQET .
Quark model + scaling relation.

@Relativistic quark model.
"Bag model.
'SU(4) symmetry.
~Reggeon quark-gluon string model.

Combination of ACCMOR [33] and CLEO [34] measurements.
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be predicted using this result.
A rather complete compilation of estimates on the

pion couplings to heavy mesons is given in Table I. In
the first row we show predictions on the reduced cou-
pling g defined in Eq. (85). As one can see, the values ob-
tained by combining the nonrelativistic constituent quark
model with PCAC [4, 37, 38] are roughly 2 times larger
than the values favored by our sum rule. However, more
recent analyses [39,40] combining chiral heavy quark ef-
fective theory (HQET) with experimental constraints on
D* decays tend to give somewhat smaller values of g.
Moreover, another recent calculation [41] based on the
extended Nambu —Jona-Lasinio model and chiral HQET
is in perfect agreement with our estimate.

The next two rows list the estimates of the couplings
g~.~~ and gD D~. These predictions are even more
widely spread. Quark models [42, 43] as well as the bag
model [44] seein to give the strongest couplings, whereas
SU(4) symmetry [45] and the Reggeon quark-gluon string
model [46] predict a relatively small coupling. Two com-
ments are in order concerning the analysis of Ref. [13].
First, these predictions are consistently lower than ours.
There are several reasons for that: the difFerent Lorentz
decompositions (16) and (73) of the correlation function
(3), the differences between the sum rule (44) and the
soft-pion limit (65) of it, the different regions of the Borel
parameter M, and the difFerent values used for the de-
cay constants f~&.~

and f&&.&. In fact, as can be seen in
Fig. 2, the couplings shrink with M . However, given
the reliability criteria, generally accepted for sum rules,
we see no possibility to shift M to larger values beyond
the regions considered in this paper, in contrast with Ref.
[13]. Second, we find it inconsistent to include the per-
turbative gluon correction in the estimates of fD ~. and
f~ ~. , since they are not included in the sum rule for the
combination of couplings fD fD- g~. ~» and f~ fg*gIi. g»
At least, we see no convincing argument in favor of such
a procedure. For these two reasons we believe that the
couplings are underestimated in Ref. [13].

For convenience and direct comparison with future
measurements the decay width I'(D*+ +D 7r+) a-s cal-
culated from gD ~ or g is quoted in the last row of
Table I. The widths in the channels D*+ ~ D+vr and
D* ~ D m are related to the above by coefficients
which can be read off from Eq. (53). Note that in con-
trast with the evaluation of I'(D* +D7r) from -gD*~» in
this paper and in Ref. [13] the estimates in Refs. [38, 39]
using the reduced coupling g do not include 1/m correc-
tions. However, the latter are important as can be seen
froin Eq. (89).

In addition, we have examined the pole model for the
B ~ vr and D ~ vr form factors. Using our results on the
g~- ~ and gD D coupling constants, we have found ap-
proximate numerical agreement between the pole model
description and the direct sum rule calculation. How-
ever, the dependence on the heavy quark mass is found
to be completely difFerent in the region of small momen-

We have not included the results of Ref. [10] since to our
knowledge this analysis is being reconsidered [36].
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ful to DAAD for financial support during his visit at the
University of Munich. This work was supported by the
German Federal Ministry for Research and Technology
under Contract No. 05 6MU93P and partially also by
EC Grant No. INTAS-93-283.

APPENDIX A

For convenience, we collect here the explicit expres-
sions for the pion wave functions used in our numerical
calculations and specify the values of the parameters in-
volved.

For the leading twist-2 wave function we take [18]

p (u, p) = 6u(1 —u) 1+ a2(p)C,'~'(2u —1)

+a4(p)C4~ (2u —1), (Al)

with the Gegenbauer polynomials

C,'i'(2u —1) = —[5(2u —1)' —1],
2

C4 (2u —1) = —[21(2u —1) —14(2u —1) + 1],
(A2)

and the coefficients a2 ——3, a4 ——0.43 corresponding
to the normalization point p = 0.5 GeV. In the present
applications the appropriate scales are set by the typical
virtuality of the heavy quark. We choose

p = mD2 —m2 1.3GeV,

2~ —m~q —2.4 GeV .
(A3)

Renormalization group evolution of the coefficients a2
and a4 to these higher scales yields

a2(p, ) = 0.41, a4(p, ) = 0.23,
a2(pb) = 0 35 a4(yb) = 0.18 . (A4)

We stress that the value of p at u = 1/2 varies by
only 2% when the scale p, is increased from 0.5 GeV to
2.4 GeV. Obviously, one can neglect this efFect given the

turn transfers. We have argued in favor of the sum rule
approach. Moreover, writing a heavy quark expansion
for the couplings g~ ~ and gD. D we have determined
the expansion coeKcients, in particular, the leading 1/m
correction.

Last but not least, we have discussed in some detail the
theoretical foundations and advantages of the light-cone
sum rules, complementing the work of Refs. [14—19]. We
believe that this approach is especially suitable for the
study of heavy-to-light decay form factors, and coupling
constants of the type considered in this paper. Further
obvious applications include the radiative decays D* ~
Dp and B* ~ Bp. Since the photon wave functions
are expected to deviate less from their asymptotic forms
than the pion wave functions [17], these decays should
provide a rather conclusive consistency check of the light
cone approach.

ACKNOMI KDC MENTS
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15%%uo uncertainty in the value of p (u = 1/2, p, = 0.5
Ge V) quoted in Eq. (24) .

According to the analysis in Refs. [18, 28] the set of
wave functions of twist 3 is uniquely specified by the
choice of the three-particle wave function p3 . Taking
into account the contributions to p3 up to next-to-next-
to-leading order in conformal spin, one has

p37r (ill) = 360clln2 n3 [1 + wl o —(7n3 3)2 1

+&2 0(2 4olcl2 SQ3 + 8n3)

+(d1 1 (3A1c12 —2cl3 + 3cx3)] (A5)

This implies, for the two-particle wave functions of twist
3 [28],

1
p„(u) = 1+B2—[3(u —u)' —1]

2

where u = 1 —u and

B2 ——30R,
3

B4 = —B(4&2 P
—cd1 1 —2(d1 0),

1
C2 ——B

i
5 ——ur10 ~,2 ')

1
C4 — +(4~2 0 ~1 1) )

with

(A8)

(A9)

1
+B4—[35(u —u) —30(u —u) + 3]

8
(A6)

The coefficients f3 and ur, b have been determined at
the normalization point p, = 1 GeV from QCD sum rules
[16]:

3
(p (u) = 6uu 1+C, —[5(u —u)' —1]

2
f3 ——0.0035 GeV, ~1 &

———2.88, (A10)

+C4 [21(u —u) —14(u —u) + 1]
15 4 2

8

(d2 0 = 10.5, &y y = 0

After renormalization [27] to the relevant scales (A3), we
get

f3 (p, ) = 0.0032 GeV, ~1 o(p, ) = —2.63, ~2 o(p ) = 9.62, ~1,1(p,) = —1.05,
f3 (pb) = 0.0026 GeV, ~1p(pb) = —2.18, w2 p(pb) = 8.12, (u11(pb) = —2.59 (A11)

The corresponding numerical values of the coefFicients (A8) are

B2(p, ) = 0.41, B4(p, ) = 0.925, C2(p,,) = 0.087, C4(p, ) = 0.054,
B2(pb) = 0.29, B4(pb) = 0.58) C2(pb) = 0.059, C4(pb) = 0.034. (A12)

In addition, the running of light quark masses induces a
scale dependence of the parameter p = m /(m„+ mg):

I

conformal spin they involve no new parameters and are
given by

p (1GeV) =1.65GeV, p, (p, ) = 1.76GeV,

p (pb) = 2.02GeV. (A13)
g1(u) = —h u u + —s8

1

2 2

The wave functions of twist 4 are more numerous. The
complete set given in Ref. [28] (see also Ref. [25]) in-
cludes four three-particle wave functions. However, in
leading and next-to-leading order in conformal spin, these
are specified by only two parameters:

p1 (o.;) = 308 (a1 —n2)n3 —+ 2s(1 —2n3)2 2 1

3

S(~1 il2)C11C12C13

p~ (n, ) = 30b n3 (1 —n3) —+ 2s (1 —2n3)2 2 1

3

2 1
(p~((n, ) = —1208 col n2n3 —+ s'(1 —3n3) . (A14)3

The two-particle twist-4 wave functions are related to
these by equations of motion. To the above order in

x uu(2+ 13uu) + 10u lnu
~

2 —3u+ —u( 6,)
5 )

6,)+10u lnu 2 —3u+ —u

10
g2(u) = —6 uu(u —u),3

G2(u) = —8 u u
3 (A15)

One of the parameters is defined by the matrix element

(vr~g, dG „p u~0) =i8 f q„. (A16)

The QCD sum rule estimate of Ref [47] yield. s 6
0.2 GeV at p = 1 GeV. The remaining parameter is
associated with the deviation of twist-4 wave functions
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8 (p, ) = 0.19 GeV, e(p,,) = 0.45,
h (pb) = 0.17 GeV, e(pb) = 0.36. (A17)

This completes the description of the pion wave func-
tions, as far as is needed for the applications in this pa-
per.

&om their asymptotic form. At p = 1 GeV it takes the
value e = 0.5 [28]. Renormalization to the relevant scales
(A3) gives

(s —m', &

y (u) =) ab(l —u)" =) ab
i (B4)

Substituting this representation into Eq. (B3) and intro-
ducing formally two variables 8~ and 82 instead of 8, it is
easy to rewrite this expression in the form (Bl) with the
double spectral density

In general, the wave function y (u) can be expressed as
a power series in (1 —u):

APPENDIX B

+(n' (u+q)') =f
x p&cD(s„s,) .

d82

. s2 —(p + q)2

(Bl)

Focusing first on the leading contribution (17),

I"(p', (p + q) ') = m, f

mc

du p (u)
m2 —(p+ uq)'

du (p (u)
m2 —(p + q) 2u —p2(1 —u)

'

(B2)

and changing variable from u to (m —p )/(s —p ), one
obtains

Here we derive the substitution (43) used in the sum
rule (44) in order to subtract the continuum contribution.
For this purpose we have to write the invariant amplitude

given by Eqs. (31) and (39) in the form of a double
dispersion integral:

8~.8~.+( / » / 2) = p ( /a'» /02) . (B6)

Details and useful examples can be found in Ref. [49].
To proceed, we apply a double Borel transformation

to the dispersion integral (Bl) with p~ given by Eq.
(»):

(—1)"a
8M28M~I' = m, f ) dsi ds2 I' @+I

Jg c C

x (s m2)k$(k) (s s2)e
—8&/Mx e

—8&/Ma

(B7)

p&~D(s„s2) = m, f ) "(si—m )"b~"l(si—s2) .- r(k+ I)

(B5)
The validity of Eq. (B5) can easily be checked by di-
rect calculation. The above derivation may seem tricky.
However, there is a convenient general method [48] to find
the appropriate double spectral densities. One takes the
Borel-transformed invariant amplitude I" (Mi, M2) and
performs two more Borel transformations in the variables
ri ——1/M2 and r2 ——1/M22, to get

~(p', (p+ q)') = ds p (u(s))
; Is-(p+q)'l(s- p')

(B3)

Introducing again new variables s = si+s2 and v = si/s
we can use the b function to evaluate the integral over e.
The result is

v

m, l ( svM2 + s(1 —v)Mi l
exp ~— (B8)

At M& ——M2 ——2M the e dependence of the exponent
disappears and the difFerentiation of the bracket gives a
factor k!. We then get

I(M )=m f ) „dse
TA

=m, f y (1/2)M e

which is the leading contribution in the sum rule (44).
For arbitrary values of Mz and M2 a similar expression
is obtained, with the argument of the wave function and Si + 82 + 8p (Blo)

t

the Borel parameter in Eq. (B9) generalized to uo and
M, respectively, as defined in Eq. (22).

We now turn to the problem of subtracting the contri-
butions from excited and continuum states in sum rules.
In the usual approximation based on duality, one identi-
fies the spectral functions p and p" beyond a given
boundary in the (si, s2) plane. Then, the subtraction ef-
fectively amounts to restricting the dispersion integrals
in Eq. (Bl) to the region below this boundary. Ideally,
the result should not depend on the precise shape of this
region. To be specific, one may take
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where so plays the role of an effective threshold. Popular
choices of the duality region are triangles in the (si, s2)
plane corresponding to a = 1 and squares corresponding
to a —+ oo. Since the spectral density (B5) vanishes ev-
erywhere except at sq ——s2, it is actually irrelevant which
form of the boundary we adopt.

Using duality as outlined above we have to evaluate the
integral in Eq. (B7) with the integration region restricted
by Eq. (B10). Changing variables and integrating over v
one obtains an expression similar to Eq. (B8), but with
the upper limit of integration in s lowered to 2so and
with the addition of surface terms. The latter disappear
for Mi2 ——M22. Hence, one is again led to Eq. (B9) with
a simple modification of the integration limit:

This is literally true only if the power series de6ning the
wave function (B4) is truncated at some finite order, or if it
converges rapidly. However, this condition is always met at a
sufFiciently high normalization point where the wave function
deviates little from the asymptotic form.

= m, f~(p~(1/2)M e ~~ —e ~M

This proves the substitution rule quoted in Eq. (43).
It is important to note that the proportionality of the
Borel transform E(Mi, M2) given in Eq. (B8) to the
wave function &p at the point up = Mi/(Mi + M2) is
generally destroyed by the continuum subtraction. It is
only retained in the symmetric point Mz ——M2, implying
up ——1/2.

The above procedure is not possible for higher-twist
contributions which are proportional to zero or nega-
tive powers of the Borel parameters. The reason is that
the corresponding spectral densities are not concentrated
near the diagonal sq ——s2. In fact, the continuum sub-
traction is rather complicated in these cases. For fur-
ther discussion we refer the reader to the second paper of
Ref. [49]. Here, we neglect the continuum subtraction in
higher-twist terms altogether. This is justified to a good
approximation since the corresponding spectral densities
decrease fast with sq and s2 as a consequence of ultravi-
olet convergence and, hence, the continuum contribution
is expected to be small anyway.
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