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Fig. 1. Interactive visualizations built with D3, running inside Google Chrome. From left to right: calendar view, chord diagram, choro-
pleth map, hierarchical edge bundling, scatterplot matrix, grouped & stacked bars, force-directed graph clusters, Voronoi tessellation.

Abstract—Data-Driven Documents (D3) is a novel representation-transparent approach to visualization for the web. Rather than hide
the underlying scenegraph within a toolkit-specific abstraction, D3 enables direct inspection and manipulation of a native represen-
tation: the standard document object model (DOM). With D3, designers selectively bind input data to arbitrary document elements,
applying dynamic transforms to both generate and modify content. We show how representational transparency improves expressive-
ness and better integrates with developer tools than prior approaches, while offering comparable notational efficiency and retaining
powerful declarative components. Immediate evaluation of operators further simplifies debugging and allows iterative development.
Additionally, we demonstrate how D3 transforms naturally enable animation and interaction with dramatic performance improvements
over intermediate representations.

Index Terms—Information visualization, user interfaces, toolkits, 2D graphics.

1 INTRODUCTION

When building visualizations, designers often employ multiple tools
simultaneously. This is particularly true on the web, where interactive
visualizations combine varied technologies: HTML for page content,
CSS for aesthetics, JavaScript for interaction, SVG for vector graph-
ics, and so on. One of the great successes of the web as a platform
is the (mostly) seamless cooperation of such technologies, enabled by
a shared representation of the page called the document object model
(DOM). The DOM exposes the hierarchical structure of page content,
such as paragraph and table elements, allowing reference and manip-
ulation. In addition to programming interfaces, modern browsers in-
clude powerful graphical tools for developers that display the element
tree, reveal inherited style values, and debug interactive scripts.

Unfortunately, this blissful interoperability is typically lost with vi-
sualization toolkits due to encapsulation of the DOM with more spe-
cialized forms. Rather than empowering direct manipulation of the
existing model, such toolkits [2, 9, 18] supplant it with custom scene-
graph abstractions. This approach may provide substantial gains in ef-
ficiency—reducing the effort required to specify a visualization—but
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it incurs a high opportunity cost: it ignores developers’ knowledge of
standards, and the tools and resources that augment these standards.

The resulting cost to accessibility—the difficulty of learning the
representation—may trump efficiency gains, at least for new users.
Scarcity of documentation and ineffectual debugging exacerbate the
problem, impeding users from gaining deeper understanding of toolkit
abstractions and limiting the toolkit’s potential. Systems with inter-
mediate scenegraph abstractions and delayed property evaluation can
be particularly difficult to debug: internal structures are exposed only
when errors arise, often at unexpected times.

Furthermore, intermediate representations may diminish expres-
siveness—the diversity of possible visualizations—and introduce sub-
stantial runtime overhead. Certain tasks that could be offloaded to a
more suitable tool, such as specifying fonts via CSS, may be stymied
by encapsulation. Similarly, while graphical features such as clipping
may be supported by the underlying representations, they may not be
exposed by the toolkit. Even if extensibility is available as a means for
greater expression, it requires in-depth knowledge of toolkit internals
and poses a substantial barrier to the average user.

Our awareness of these issues comes in part from thousands of user
observations over the two years since releasing Protovis [2], despite
our attempt to balance expressiveness, efficiency and accessibility. We
now refine these three goals with specific objectives:

Compatibility. Tools do not exist in isolation, but within an ecosys-
tem of related components. Technology reuse utilizes prior knowledge
and reference materials, improving accessibility. Offloading a subset
of tasks to specialized tools can improve efficiency, avoiding the gen-
erality and complexity of a monolithic approach. And, full access to
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Fig. 2. Treemaps made with D3. The visualizations are implemented in pure HTML & CSS, improving browser compatibility. A stable layout
algorithm enables animated transitions for changing cell values (from left to right) without disorienting rearrangements.

the native representation removes limits on expressiveness.

Debugging. Trial and error is a fundamental part of development
and the learning process; accessible tools must be designed to support
debugging when the inevitable occurs. Better tools facilitate poking
and prodding to explore the side-effects of operations interactively.
While encapsulation of control flow and representation often improves
efficiency, it may also lead to an “impedance mismatch” if internal
state is exposed, violating the user’s mental model.

Performance. Visualizations can be greatly enhanced by interac-
tion and animation [15]. However, high-level abstractions may limit a
developer’s ability to execute fast incremental scene changes if the sys-
tem lacks sufficient information (such as a dependency graph) to avoid
redundant computation. Focusing on transformation rather than repre-
sentation shifts this responsibility to the developer, improving perfor-
mance while enabling animation and interaction.

To address these concerns, we contribute Data-Driven Documents
(D3), an embedded domain-specific language [16] for transforming
the document object model based on data. With D3, designers selec-
tively bind input data to arbitrary document elements, applying dy-
namic transforms to both generate and modify content; the document
is the scenegraph. This is a generalization of Protovis, and through
declarative helper modules built on top of these transforms, we can
achieve specifications with comparable notational efficiency. And yet,
D3’s standardized representation improves expressiveness and acces-
sibility, while transforms offer dramatic performance gains and enable
animated transitions.

We argue these claims by comparing D3 to existing web-based
methods for visualization, considering how language design achieves
our objectives; we also describe several applications to convey repre-
sentative usage. Through performance benchmarks, we demonstrate
that D3 is at least twice as fast as Protovis. Lastly, we share anecdotes
that suggest D3’s potential for dynamic visualization.

2 RELATED WORK

D3 is not a traditional visualization framework. Rather than introduce
a novel graphical grammar, D3 solves a different, smaller problem:
efficient manipulation of documents based on data. Thus D3’s core
contribution is a visualization “kernel” rather than a framework, and
its closest analogues are other document transformers such as jQuery,
CSS and XSLT. As the document model directly specifies graphical
primitives, D3 also bears a resemblance to low-level graphics libraries
such as Processing and Raphaël. For high-level capability, D3 includes
a collection of helper modules that sit on top of the selection-based
kernel; these modules are heavily influenced by prior visualization
systems, including Protovis.

2.1 Document Transformers

Although browsers have built-in APIs for manipulating the DOM,
these interfaces are verbose and cumbersome, likely due to standards
bodies’ emphasis on unambiguous designs that can be implemented
consistently by vendors and survive future revision. As a result,

JavaScript libraries [19, 23, 29, 33] that enable more convenient ma-
nipulation are hugely popular. Of these, jQuery, is so successful it is
often considered synonymous with JavaScript among novices.

These libraries share the concept of a selection: identify a set of
elements using simple predicates, then apply a series of operators that
mutate the selected elements. The universality of this concept is no co-
incidence; the idea originates from Cascading Style Sheets [21] (CSS):
a declarative language for applying aesthetics (e.g., fonts and colors)
to elements. JavaScript-based selections provide flexibility on top of
CSS, as styles can be computed dynamically in response to user events
or changing data.

var ps = document.getElementsByTagName("p");

for (var i = 0; i < ps.length; i++) {

  var p = ps.item(i);

  p.style.setProperty("color", "white", null);

}

$("p").css("color", "white");

d3.selectAll("p").style("color", "white");

a

c

d

p { color: white; } b

Fig. 3. A simple document transformation that colors paragraphs white.
(a) W3C DOM API; (b) CSS; (c) jQuery; (d) D3.

For data visualization, document transformers must handle the cre-
ation and deletion of elements, not just the styling of existing nodes.
This is impossible with CSS, and tedious with jQuery as it lacks a
mechanism for adding or removing elements to match a dataset; data
must be bound to nodes individually (if at all), rather than through a
high-level data join (see §3.2). This makes jQuery incapable of data-
driven transformations, and thus ill-suited for dynamic visualizations
involving complex transitions.

Extensible Stylesheet Language Transformations [41] (XSLT) is
another declarative approach to document transformation. Source data
is encoded as XML, then transformed into HTML using an XSLT
stylesheet consisting of template rules. Each rule pattern-matches the
source data, directing the corresponding structure of the output docu-
ment through recursive application. XSLT’s approach is elegant, but
only for simple transformations: without high-level visual abstrac-
tions, nor the flexibility of imperative programming, XSLT is cum-
bersome for any math-heavy visualization task (e.g., interpolation, ge-
ographic projection or statistical methods).

2.2 Graphics Libraries

Dealing directly with graphical marks provides a close cognitive map-
ping between the toolkit representation and the desired result, reducing
the gulf of execution [24] for designers and improving accessibility.
Yet, as previously discussed [2], low-level graphics libraries such as
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Fig. 4. Google Chrome’s developer tools. The top regions inspect (a) the document hierarchy and (b) inherited style properties; underneath, (c) the
console allows interactive evaluation of JavaScript. (d) The current document: an area chart. (e) The area chart modified through the console.

Processing [28] and Raphaël [30] are tedious for complex visualiza-
tion tasks as they lack convenient abstractions.

Furthermore, many graphics libraries do not provide a scene-
graph that can be inspected for debugging. For example, Process-
ing uses immediate mode rendering, and Raphaël encapsulates SVG
and Microsoft’s proprietary Vector Markup Language (VML). Toolkit-
specific scenegraph abstractions diminish compatibility and expres-
siveness: elements cannot be styled using external stylesheets, and
graphical effects such as dashed strokes and composite filters may be
unusable even if supported natively.

Minor variations in graphical abstractions also present a hurdle to
new users. Consider drawing a wheel. In Processing, the ellipse
operator draws a circle, which takes four arguments: x and y of the cen-
ter, width and height. Raphaël provides a circle operator that takes
three arguments, preferring radius. Protovis defines Dot and Wedge
mark types, either of which can render circles, as well as the Line
type with polar interpolation. Each abstraction differs slightly from the
standard SVG circle element. Standards further benefit from a net-
work effect: the more people that use a technology, the more demand
for documentation, and thus the greater supply. Despite the efforts of
developers to document their work, there are far more reference and
training materials for standards than for custom libraries.

2.3 Information Visualization Systems

Researchers have developed a variety of toolkits for facilitating visu-
alization design. One class of framework [8, 38] provides a hierarchy
of visualization components. New visualizations are introduced ei-
ther by authoring new components or subclassing existing ones. A
second class of framework [9, 14] explicitly instantiates the InfoVis
Reference Model [5, 12] using a set of composable operators for data
management, visual encoding, and interaction. Though new combina-
tions of operators can enable customized views, we have observed in
practice that most novel visualizations require programmers to author
completely new operators. Thus both classes of framework work well
when visualization creators have software engineering expertise, but
are prohibitive to more general audiences such as web designers.

With our prior work on Protovis [2, 13] we have instead advocated
for declarative, domain specific languages (DSLs) for visualization
design. By decoupling specification from execution details, declara-
tive systems allow language users to focus on the specifics of their ap-
plication domain, while freeing language developers to optimize pro-
cessing. Similar to Protovis, D3 provides a declarative framework for
mapping data to visual elements. However, unlike Protovis and other
grammar-based declarative models [39, 40], D3 does not strictly im-
pose a toolkit-specific lexicon of graphical marks. Instead, D3 directly
maps data attributes to elements in the document object model.

Whether or not this design move is advantageous—or even
possible—depends on context: many programming environments do

not provide a standardized scenegraph abstraction. Moreover, toolkit-
specific scenegraph abstractions have compelling benefits. As demon-
strated in prior work [13], custom abstractions can facilitate portability
(cross-platform deployment) and performance optimization. A curated
lexicon of graphical marks can also improve notational efficiency [2].
Consequently, we maintain that toolkit-specific representations con-
tinue to be an important component of many visualization models, and
we address this with D3’s helper modules (see §3.4).

The technical constraints and entrenched standards of the web have
led us to a different approach for browser-based visualization. The
browser environment does not provide the same optimization oppor-
tunities as compiled programming languages; instead, the overhead
of mapping an internal representation to the DOM introduces perfor-
mance bottlenecks. Intermediate representations can also complicate
debugging, as the mapping between code (written in terms of abstract
graphical marks) and inspectable output (e.g., SVG elements in the
DOM) is often unclear. Custom abstractions may additionally limit ex-
pressiveness: they must be revisited to take advantage of new browser
features and due to encapsulation may be unable to exploit supporting
technologies such as CSS.

D3 is designed to sidestep these problems and complement web
standards. Critically, D3 also introduces features that may inform
other visualization frameworks: query-driven selection and data bind-
ing to scenegraph elements, document transformation as an atomic op-
eration, and immediate property evaluation semantics. In the next sec-
tion, we describe the design of the D3 system. We then go on to review
our design choices and their associated trade-offs in greater detail.

3 DESIGN

D3’s atomic operand is the selection: a filtered set of elements queried
from the current document. Operators act on selections, modifying
content. Data joins bind input data to elements, enabling functional
operators that depend on data, and producing enter and exit subselec-
tions for the creation and destruction of elements in correspondence
with data. While operators apply instantaneously by default, animated
transitions interpolate attributes and styles smoothly over time. Spe-
cial operators called event handlers respond to user input and enable
interaction. Numerous helper modules, such as layouts and scales,
simplify common visualization tasks.

3.1 Selections

D3 adopts the W3C Selectors API to identify document elements for
selection; this mini-language consists of predicates that filter elements
by tag (“tag”), class (“.class”), unique identifier (“#id”), attribute
(“[name=value]”), containment (“parent child”), adjacency (“before ∼
after”), and various other facets. Predicates can be intersected (“.a.b”)
or unioned (“.a, .b”), resulting in a rich but concise selection method.



JavaScript CSS
var x = function(d, i) { return i * 25; },

    y = function(d, i) { return 160 - d * 80; };a

var svg = d3.select("body").append("svg:svg")

    .data([[1, 1.2, 1.7, 1.5, .7, .5, .2]]);
b

svg.append("svg:path")

    .attr("class", "area")

    .attr("d", d3.svg.area().x(x).y0(160).y1(y));
c

svg.append("svg:path")

    .attr("class", "line")

    .attr("d", d3.svg.line().x(x).y(y));
d

var g = svg.selectAll("g")

    .data(d3.range(0, 2, .5))

  .enter().append("svg:g");
e

g.append("svg:line")

    .attr("class", function(d) { return d ? "minor rule" : "rule"; })

    .attr("x2", 160).attr("y1", y).attr("y2", y);
f

g.append("svg:text")

    .attr("x", 164).attr("y", y).attr("dy", ".3em")

    .text(d3.format(",.1"));
g

svg {

  width: 160px;

  height: 160px;

  font: 10px sans-serif;

  padding: 20px;

}

.area {

  fill: lightblue;

}

.line {

  fill: none;

  stroke: black;

  stroke-width: 1.5px;

}

.rule.minor {

  stroke: white;

}

.rule {

  stroke: black;

}

h

Fig. 5. Specification of the area chart shown in Figure 4. (a) Define scale functions for position encoding. (b) Add an SVG container to the document
body and bind data. (c) Add a path element for the area. (d) Add a path element to emphasize the top line. (e) Add containers for reference values.
(f) Add reference lines. (g) Add reference labels. (h) Assign colors and other aesthetics with CSS.

The global d3, also serving as a namespace, exports select and
selectAll methods for obtaining selections. These methods ac-
cept the selector mini-language; the former selects only the first el-
ement that matches the predicates, while the latter selects all match-
ing elements in document traversal order. These methods also accept
node references directly, for when nodes are accessed through external
means such as a third-party library or developer tool.

Any number of operators can be applied to selected elements.
These operators wrap the W3C DOM API, setting attributes (attr),
styles (style), properties (property), HTML (html) and text
(text) content. Operator values are specified either as constants or
functions; the latter are evaluated for each element. While the built-in
operators satisfy most needs, the each operator invokes an arbitrary
JavaScript callback for total generality. Since each selection is simply
an array, elements can also be accessed directly (e.g., [0]).

D3 supports method chaining for brevity when applying multiple
operators: the operator return value is the selection. (For example, the
pie chart in Figure 7 is a single statement.) The append and insert
operators add a new element for each element in the current selection,
returning the added nodes, thus allowing the convenient creation of
nested structures. The remove operator discards selected elements.

Whereas the top-level select methods query the entire document,
a selection’s select and selectAll operators restrict queries to
descendants of each selected element; we call this subselection. For
example, d3.selectAll("p").select("b") returns the first
bold (“b”) elements in every paragraph (“p”) element.

Subselecting via selectAll groups elements by ancestor. Thus,
d3.selectAll("p").selectAll("b") groups by paragraph,
while d3.selectAll("p b") returns a flat selection. Subselect-
ing via select is similar, but preserves groups and propagates data.
Grouping plays an important role in the data join (see §3.2), and func-
tional operators may depend on the numeric index of the current ele-
ment within its group (as in the x scale of Figure 5).

3.2 Data

The data operator binds input data to selected nodes. D3 uses for-
mat agnostic processing [13]: data is specified as an array of arbitrary
values, such as numbers, strings or objects. Once data is bound to el-
ements, it is passed to functional operators as the first argument (by

convention, d), along with the numeric index (i). These arguments
were chosen for parity with JavaScript’s built-in array methods, and
deviates from Protovis, which supplies extra arguments for any en-
closing panel data. This approach simplifies D3’s selection structure
(requiring only one level of grouping) and avoids variable arguments.

By default, data is joined to elements by index: the first element to
the first datum, and so on. For precise control over data-element cor-
respondence, a key function [13] can be passed to the data operator.
Matching key values preserve object constancy across transitions.

Data Nodes

Enter Update Exit

A B C D

KJIHGFE

E F G H

L

Fig. 6. When new data (blue) are joined with old nodes (orange), three
subselections result: enter, update and exit.

If data or elements are leftover after computing the data join, these
are available in the enter and exit subselections, respectively. The en-
tering data have no corresponding nodes; the exiting nodes have no
corresponding data. For example, if data is joined to the empty selec-
tion, the enter operator returns placeholder nodes for each incoming
datum; these nodes can then be instantiated via append or insert.
Similarly, if new data is joined to an existing selection, the exit op-
erator returns elements bound to outgoing data to allow removal. In
terms of relational algebra, given data D and nodes N, the enter selec-
tion is D ⊲ N (left), the exit selection is N ⊲ D (right), and the update
selection is D ⊲⊳ N (inner). The updating nodes are simply returned by
the data operator, convenient for the common case where the enter
and exit selections are empty.

The delineation of enter, update and exit allows precise control of
the element lifecycle. Properties that are constant for the life of the el-
ement are set once on enter, while dynamic properties are recomputed



per update. Animated transitions (see §3.3) can be defined for each of
the three states. More generally, data joins enable exact data-element
correspondence; although this is nonessential for static visualizations,
it is crucial for efficient dynamic visualizations.

Data is “sticky”; once bound to nodes, it is available on subsequent
re-selection without again requiring the data operator. This simpli-
fies subsequent transforms, as well as the implementation of key func-
tions: new data can be compared directly to old data, rather than re-
quiring the data key to be serialized in the document. Data can also be
used to reorder (sort) or cull elements (filter).

3.3 Interaction and Animation

The document object model supports event listeners: callback func-
tions that receive user input events targeted at specific elements. D3’s
on operator exposes this functionality for native event types. For con-
sistency with other functional operators, the callback receives the data
and index as arguments (d, i), allowing data-driven interaction. The
targeted node is this, and the current event is d3.event. Listeners
may coexist on elements through namespaces (e.g., “click.foo”).

D3’s focus on transformations simplifies the specification of scene
changes in response to user events; the semantics are the same as ini-
tialization. Furthermore, animated transitions can be derived from
selections using the transition operator. Transitions export the
style and attr operators of selections with identical syntax, but
interpolate from the current to specified value gradually over time. To
stagger animation for individual elements, the delay and duration of
transitions can be specified as functional operators. Easing can also
be customized; standard easing functions [17, 26] such as “elastic”,
“cubic-in-out” and “linear” are specified by name.

Powering D3’s transitions is a collection of interpolators for di-
verse types: numbers; strings with embedded numbers (e.g., font sizes,
path data); RGB and HSL colors; and arbitrary nested arrays or ob-
jects. If needed, custom interpolators can be specified. An example
of such customization is animating value changes in a pie chart; the
bound arc data are interpolated in polar coordinates, rather than inter-
polating the Cartesian coordinates of the path strings.

Transitions dispatch events to registered listeners as each element
finishes animating, allowing sequential transitions and post-animation
cleanup such as removing exiting elements. Due to staggering, ele-
ments may finish at different times. D3 automatically manages tran-
sition scheduling, guaranteeing per-element exclusivity and efficient,
consistent timing through a unified timer queue. This optimized de-
sign easily scales to thousands of concurrent timers.

3.4 Modules

D3’s kernel, as described in previous sections, achieves flexibility
through representational transparency; this also minimizes the li-
brary’s conceptual surface area by presenting less to learn. Yet more
is needed to alleviate the burden of common tasks. Although we strive
to enable custom visualization design, we recognize Tufte’s principle
[36]: “Don’t get it original, get it right.” D3’s optional modules encap-
sulate reusable solutions to common problems, increasing efficiency
and demonstrating the utility of higher-order programming through
functional operators.

As a replacement for the specialized graphical primitives of Proto-
vis, the d3.svg module provides various shapes suitable for chart-
ing. The arc function, for example, builds elliptical arcs as for pie and
donut charts by mapping arbitrary data to paths; typically this function
is bound to the “d” attribute of SVG path elements (as in Figure 7).
Note that the radii and angles of the arcs can be specified either as
constants or as functions—in the latter case, the functions are evalu-
ated per element with access to data—identical to D3’s core operators.
Thus, helper shapes provide specialized representations without new
semantics and without encapsulating the underlying form. Additional
shapes are provided for areas, lines, scatterplot symbols, and the like.

Augmenting its interpolators, D3’s scales simplify visual encoding.
These scales are similar to those of Protovis, supporting both ordinal
and quantitative (linear, logarithmic, exponential, quantile) values. We
have also packaged Cynthia Brewer’s useful color scales [10].

Layouts supply reusable, flexible visualization techniques by gen-
erating abstract data structures. The partition layout, for example,
computes a two-dimensional spatial subdivision of a hierarchy; each
node has a closed range in x and y. The nodes are bound to arcs for
a sunburst [32] (x 7→ θ , y 7→ r), or rectangles for an icicle tree. The
chord layout computes an angular partition from a weighted adja-
cency matrix, enabling radial diagrams in the style of Circos [20]. The
force layout combines physical simulation and iterative constraint
relaxation [7] for stable graph layout. The stack layout computes the
y0 baseline for stacked graphs [11, 4], while the squarified treemap
layout [31, 3] computes another spatial partition well-suited for ani-
mation (see §5.1). More layouts are in development.

Interaction techniques are reused through behaviors. The zoom

behavior implements panning and zooming by listening to mouse
events; on pan or zoom, a custom event is dispatched to report a two-
dimensional translation and scale. This event can be used for either
geometric or semantic zooming [27].

Functional operators have surprising depth. For example, the geo
module exports a path operator for projecting geographic data to
pixel coordinates. The projection is configurable, such as Albers
equal-area (for choropleth and cartograms where area conservation is
required), or spherical Mercator for overlaying web-based tile maps.
The path operator supports the GeoJSON format [34], including
boundaries with disconnected areas and holes, as well as centroid and
bounding box computation. The geom module exports various ge-
ometric operators, including Voronoi tessellation, marching squares,
convex hulls, polygon clipping and quadtrees.

D3 also includes sundry data-processing utilities, such as nest and
cross operators, a comma-separated values (CSV) parser, date and
number formats, etc. These are extremely useful for visualization, but
sufficiently distinct that we may bundle them separately in the future.
Future work is needed in this area; a rich collection of statistical meth-
ods, as in R [35], would be particularly valuable.

4 DESIGN RATIONALE

D3 is most closely related to our prior work on Protovis [2, 13], a
declarative language for visualization design. Although they seek sim-
ilar goals, D3 and Protovis differ in the type of visualizations they en-
able and the method of implementation. To put the contributions of
D3 in context, we describe our design rationale by focusing on three
differentiating factors: implicit or explicit transformation, deferred or
immediate evaluation, and access to a native representation. Whereas
Protovis excels at concise specifications of static scenes, D3’s trans-
formations make dynamic visualizations easier to implement. By
adopting immediate evaluation of operators and the browser’s native
representation, D3 improves compatibility and debugging.

4.1 Transformation

Transformations happen implicitly in Protovis: the data or property
definitions are changed, and a call to render updates the display by
recomputing property values and regenerating the scenegraph. This
is convenient but slow; without dependency information, Protovis
must re-evaluate all properties, even those whose definitions or input
data have not changed. In addition, Protovis must then propagate the
changes to the intermediate scenegraph out to the native SVG.

In D3, designers specify transformations of scenes (scene changes),
as opposed to representations (the scenes themselves). In both cases
the specifications are data-driven, but transformations better enable
dynamic visualizations through explicit control over which elements
are mutated, added or removed, and how so. This eliminates redun-
dant computation, touching only the elements and attributes that need
updating, rather than the entire scenegraph.

Explicit transformations naturally extend to animated transitions,
where attributes or styles are smoothly interpolated over time. We ex-
perimented with transitions in Protovis [13], influencing our design of
enter and exit (see §3.2), but its high-level property descriptions make
arbitrary scene changes difficult. This is apparent in how Protovis
modifies internal state in response to user events, allowing localized
changes to the representation. The “magic” local context is convenient



new pv.Panel()

    .data([[1, 1.2, 1.7, 1.5, .7]])

    .width(150)

    .height(150)

  .add(pv.Wedge)

    .data(pv.normalize)

    .left(75)

    .bottom(75)

    .outerRadius(70)

    .angle(function(d) d * 2 * Math.PI)

  .root.render();

a

d3.select("body").append("svg:svg")

    .data([[1, 1.2, 1.7, 1.5, .7]])

    .attr("width", 150)

    .attr("height", 150)

  .selectAll("path")

    .data(d3.layout.pie())

  .enter().append("svg:path")

    .attr("transform", "translate(75,75)")

    .attr("d", d3.svg.arc().outerRadius(70));

b

Fig. 7. A simple pie chart, . (a) Protovis; (b) D3.

for primitive modes of interaction, but not generalizable (for example,
one cannot modify elements other than the one that received the user
event). Additionally, the automatic context is a frequent source of user
confusion as it temporarily overrides system behavior.

Transformations have an additional benefit that they can modify
existing documents, decoupling manipulation from generation. This
could enable a hybrid architecture where visualizations are initially
constructed on the server and dynamic behavior is bound on the client.

4.2 Immediate Evaluation

By deferring evaluation of property functions to the rendering phase,
Protovis allows implicit re-evaluation of properties. Although conve-
nient, this can cause errors if references captured via closure change
(or disappear). For example, a global variable may be inadvertently
overwritten by another chart on the same page, remaining undetected
until interaction triggers a redraw. This language weakness is exac-
erbated by pervasive misunderstanding of JavaScript’s var keyword,
which is scoped by function rather than by block, as is typical of other
languages. To tighten the scope of reference capture, D3 applies oper-
ators immediately; for example, D3’s attr operator immediately sets
attributes on selected nodes and then returns.

Immediate evaluation reduces internal control flow, moving it up
to user code. Protovis, in contrast, has hidden control flow that is re-
vealed only when the system crashes—another confusing consequence
of delayed evaluation. Immediacy is also more compatible with stan-
dard JavaScript organizational constructs, such as functions and loops.
Protovis cannot generate arbitrary hierarchical scenegraphs because
the hierarchy depth is fixed to the number of nested panels declared in
code, whereas D3’s stateless evaluation allows transforms to be refac-
tored into functions invoked recursively by the each operator.

Internal mechanics complicate the implementation of Protovis lay-
outs, as developers must understand the order in which properties are
evaluated and the meaning of specialized, internal callbacks. D3’s
simplified control flow allows layouts to be decoupled from property
evaluation. D3 layouts (see §3.4) are simply helper classes that create
or modify arbitrary data structures, such as a description of a chord
diagram [20], or positions of nodes in a force-directed graph. The user
then binds the layout data to attributes and elements as desired.

4.3 Native Representation

One of the key contributions of Protovis is its choice of graphical prim-
itives, called marks. These marks were chosen to satisfy the needs of
common chart types: Line for line charts, Wedge for pie charts, and
so on. Protovis achieves greater expressiveness than charting libraries
because these simple shapes can be composed in various ways.

Protovis marks are intentionally homogeneous: properties have the
same meaning across mark types. This enables prototypal inheritance,
where derived marks reuse property definitions from existing marks,
reducing verbosity. It also facilitates iterative design, as mark types
can be changed without breaking related code. Related marks such as
text labels are easy to specify in Protovis using anchors.

Abandoning a specialized representation for a standard one, such as
SVG, relinquishes these advantages. For example, inheritance is not
appropriate for SVG’s heterogeneous shapes (e.g., attributes “cx” for
circles vs. “x” for rectangles). On the other hand, the native represen-
tation supports CSS for sharing simple property definitions, and has
advantages as previously discussed including interoperability, docu-
mentation and expressiveness.

Some of the benefits of specialization can be recovered through sim-
ple helper classes, without the cost of encapsulation. D3’s arc class
allows the convenient specification of pie chart wedges using SVG
path elements and elliptical arc path segments (as in Figure 7). The
output is identical to the Protovis Wedge, except native elements im-
prove tool compatibility and debugging. However, we note this decou-
pling does incur a slight decrease in notational efficiency.

Finally, a subtle yet significant advantage of native representation
is that selections can be retrieved from the document at any time. In
order to modify a Protovis visualization, one needs to modify the un-
derlying data or property definitions, and then redraw. This requires
bookkeeping (e.g., var) for affected marks in the scene. Shared prop-
erty definitions make it difficult to change specific marks—such as
the mark under the mouse cursor—without global side-effects. D3, in
contrast, uses selectors to identify document elements through a vari-
ety of means (such as tag names, class attributes, and associated data),
making local modifications trivial. Since selections are transient, they
can also overlap for greater flexibility than single inheritance.

5 EXAMPLE APPLICATIONS

Over the course of development, we have built numerous visualiza-
tions with D3, including real-world applications, tests of the frame-
work’s capability, and pedagogical examples for new users. We now
describe several example applications to convey representative usage
and unique capabilities. For brevity, full source code is not included
but is available online [6].

5.1 Animated HTML Treemaps

Using the treemap layout, we created a squarified treemap of classes
in the Flare [9] package hierarchy. Each node is mapped to a rectan-
gular HTML div element; although HTML is less expressive than
SVG, it is supported on older browsers and demonstrates the frame-
work’s flexibility. The x, y, ∆x and ∆y computed by the layout are
mapped to positional styles. For example, the style operator for
“left” is defined as function(d) { return d.x+"px"; }.
Similarly, the ordinal color scale d3.scale.category20 sets the
background color of nodes by package, while the text operator gen-
erates labels for class names.

Two area encodings are specified via the value operator on the
layout: by file size (d.value), and by file count (1). Thus, in the
latter case, each leaf node has equal size. Buttons with click event
handlers toggle between the two encodings, initiating animated transi-
tions. The treemap layout is configured “sticky”, such that the alloca-
tion of nodes into squarified horizontal and vertical rows is preserved
across updates; this allows nodes to be resized smoothly, without shuf-
fling or occlusion that would impede perception of changing values.
Although this results in a suboptimal layout for one of the two states,
the results are acceptable (see Figure 2). If desired, one could extend
the layout to compromise multiple states (by averaging values prior to
layout), or, a sequenced animation could resize and then reorient.

The static treemap is 21 lines of JavaScript—a negligible increase
over the 17 lines required for Protovis. Adding interaction and anima-
tion expands the specification to 54 lines.



Fig. 8. Noncontiguous cartogram of obesity rates (BMI ≥ 30) made with
D3. Values range from 10.0% (Colorado) to 20.1% (Indiana).

5.2 Noncontiguous Cartograms

D3’s geo module simplifies the specification of geographic visualiza-
tions. To demonstrate this, we built a noncontiguous cartogram [25]
that encodes values for geographic regions as area by scaling each re-
gion around its projected centroid.

A discontinuous Albers equal-area projection shows the 48 states,
Hawaii and Alaska as recommended by the USGS. The state bound-
aries are loaded asynchronously as GeoJSON, and then mapped to
SVG path elements using the geo.path operator. The state bound-
aries were previously downloaded from the U.S. Census Bureau, sim-
plified via MapShaper, and converted to GeoJSON using GDAL.

Three copies of the states are generated: one in the background
with a thick gray stroke for a halo, one in the middle with white fill to
mask internal strokes, and one in the foreground to encode data. The
gray halo effect for the country outline is helpful to assist viewers in
perceiving the distortion of area.

The states are scaled around their centroids using SVG’s “trans-
form” attribute. To scale around a position other than the origin, multi-
ple transforms are concatenated: “translate(x, y) scale(k) translate(−x,
−y)”. The x and y values are computed by the centroid method
of the path operator, while k is proportional to the square root of the
input value—here the obesity rate reported by the CDC, as of 2008.
To minimize overlap on adjacent states, k ≤ 1.

This example requires 34 lines of JavaScript, not including data or
comments. Stroke widths and colors are specified using CSS.

5.3 Bézier Curves Explained

D3 is not limited to standard data visualizations; mapping arbitrary
data to DOM elements enables a wide variety of data-driven graphics.
An interesting example comes from D3 contributor Jason Davies, who
designed a tutorial on the construction of parametric Bézier curves.
The tutorial is both animated and interactive: as the parameter t ani-
mates from 0 to 1, control points can be moved to affect the curve. The
intermediate interpolation steps are shown as colored spans (yellow for
quadratic, blue for cubic and green for quartic).

P0

P1 P2

P0

P1 P2

P3 P0

P1 P2

P3

P4

Fig. 9. Visual explanation of Bézier curve interpolation by Jason Davies.
From left to right: quadratic, cubic, and quartic curves with t=0.76.

SVG path elements display the curves, lines connect the con-
trol and interpolation points, and circle elements show the control
points. Event handlers on the circles respond to mouse events to allow
drag-and-drop. The backing data is an array of five control points (in
x and y); slices of this array generate small multiples for lower-order
curves. Thus, moving a control point in one curve simultaneously up-
dates the corresponding control point in the others. The red path is a
piecewise linear discretization of the partial Bézier curve for the cur-
rent t. The path is incrementally constructed as t advances, and cached
to optimize performance.

This example is 139 lines of JavaScript, not including comments.
Some styles are set with CSS while others are set from JavaScript.

6 PERFORMANCE BENCHMARKS

By using explicit transformations of a native representation, D3 can
avoid unnecessary computation (transformations can be limited to se-
lected attributes) and reduce overhead (the DOM is modified directly,
eliminating the indirection of an intermediate scenegraph). These de-
sign decisions improve performance compared to a higher-level frame-
work such as Protovis. We now substantiate this claim through a pair
of performance benchmarks comparing equivalent visualizations con-
structed with D3 and Protovis.

In addition, much recent fanfare concerns the increasing graphical
and interactive capabilities native to modern web browsers (typically
under the mantle of “HTML5”). Previously, designers relied upon
proprietary plug-ins, namely the Adobe Flash Player, to provide in-
teractive graphics. To assess the current state-of-the-art, we include
Flash-based visualizations in our benchmarks.

6.1 Methods

We compared initialization times and frame rates for D3, Protovis,
and Flash using two visualizations: an interactive scatterplot matrix
supporting brushing and linking [1] across four dimensions and an an-
imated stacked graph [37]. We thus compared a total of six different
visualization designs. Figure 11 shows examples of the two visualiza-
tion types. Both benchmark metrics are important for web-based vi-
sualization: longer page load times have been shown to increase user
attrition [22], while a sufficient frame rate is necessary for fluent inter-
action and animation.

We simulate interaction to benchmark the scatterplot matrix. On
each frame we randomly select a constituent plot and two coordi-
nates within it; these coordinates define a rectangular selection region
for brushing and linking. In response, each scatterplot highlights the
points contained within the selection. Both D3 and Protovis render
points using SVG circle elements. Within Flash, we represent each
point with its own underlying Flash Sprite object. Improved Flash
rendering performance is possible by rendering multiple points within
a single Sprite. However, this complicates mouse event processing
for single points—one has to implement hit testing manually. SVG
provides event callbacks for all shape elements. To provide a fair com-
parison, we maintain similar functionality across platforms.

For the stacked graph, we continuously animate between two fixed
sets of data values. The D3 and Protovis implementations use the
stacked graph layout routines bundled with each framework. The Pro-
tovis instance uses animated transition support introduced in version
3.3. In Flash, we use the stacked graph layout and animation support
provided by the Flare toolkit [9].

For each visualization we measure both the initialization time (the
time from page load to initial display of the visualization) and average
frame rate. Initializations were repeated ten times and averaged. As
the visualization cycles through simulated interactions or completed
animations, we record average frame rates for 10-second intervals over
a period of 5 minutes. We then compute the mean and variance of
frame rate samples. We repeat this analysis over an increasing number
of data points ranging from 500 to 20,000. In all cases the standard
deviations are smaller than the means by 1–2 orders of magnitude, and
so we omit them presently.

We performed our benchmarks on a MacBook Pro with a dual-core
2.66 GHz processor and 8GB RAM running MacOS X 10.6.7. We
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Fig. 10. Performance benchmarks. Initialization times (top) and frames rates (bottom) for a scatterplot matrix (left) and stacked graph (right).

conducted the benchmarks inside the Google Chrome browser version
11.0 beta with the Adobe Flash Player 10.2 plug-in.

6.2 Results and Discussion

Figure 10 presents our benchmarking results. For both visualizations,
the initialization time from page load to visualization view is typically
faster for browser-native tools. D3 results in significantly faster page
loads: twice as fast as Protovis and over three times as fast as Flash.
Presumably this discrepancy is due to initialization of the Flash plug-
in. As we calculate load times by triggering a browser refresh, our re-
sults take into account time savings due to caching previously-loaded
Flash libraries. We also note that our Flash visualizations do not make
use of an application framework such as Adobe Flex; doing so further
increases load times by over a second.

With respect to frame rate, Flash provides the best performance.
As the number of data points increases, Flash-based visualizations ex-
hibit 2–2.5 times more frames per second than D3. Meanwhile, D3
shows improved scalability among browser-native tools, exhibiting at
least double Protovis’ frame rate as the data set size increases. This
matches performance gains “from 30 to around 90” frames per second
reported by Davies, who previously implemented the Bézier curve tu-
torial (see §5.3) in Protovis. Others have similarly observed “much
faster” performance in D3.

Moreover, our comparison to Protovis is conservative, as in our
benchmarks the majority of the scene must be redrawn on each frame.
This provides a useful bound on performance, but obscures the com-
mon case of more localized updates. By limiting updates to the chang-
ing parts of a scene, D3 transforms provide greater scalability than
Protovis. D3 also allows more control over document structure, allow-
ing further optimization; for example, SVG’s use element efficiently
replicates shapes, while CSS3 provides hardware acceleration of cer-
tain animated transitions.

Our results confirm that D3’s use of explicit transformations and
native representation deliver improved performance: page load times
and frame rates in D3 outperform Protovis by at least a factor of two.
D3 visualizations load at least three times faster than equivalent Flash-
based examples. However, our results also indicate that browser ven-
dors still have some distance to cover in improving SVG rendering
performance. Flash provides consistently higher frame rates as the
number of data points increases.

7 FEEDBACK AND OBSERVATIONS

We (and our users) have solved diverse visualization tasks using D3
that would be difficult or impossible with Protovis. Examples include
pure HTML displays (§5.1), multi-stage animations [15], and inter-
active visualizations of complex structures, including a force-directed

graph with “expand-on-demand” clusters and convex hulls around leaf
nodes (see Figure 1). The ease with which transitions can be imple-
mented is also evident. One designer chose D3 for a recent visualiza-
tion contest, highlighting the emotional impact of dynamic graphics:
“These transitions are amazing! Just playing around with them gives
such great effects and inspiration for more.”

While we can quantify performance, accessibility is far more dif-
ficult to measure. The true test of D3’s design will be in user adop-
tion; initial feedback has been positive. A Protovis expert writes, “The
transformations are actually very easy to work with, perhaps even
more simple than in Protovis. It’s very straightforward.” However,
one user found the learning curve “much steeper than Protovis”, while
another writes, “It took me a little while to get my head around your
interface and general philosophy, but that process has given me valu-
able insights into the nature and meaning of our data.” Part of the issue
may be the complexity of the SVG specification: “The key [to] learn-
ing D3 at this stage seems to be to study the SVG spec, and to inspect
the SVG generated by D3 [emphasis added]. After a few iterations it
all begins to make perfect sense.” Users thus appreciate compatibility
with developer tools.

We also find that post-hoc manipulation of visualizations through
the developer console is a unique and compelling benefit of D3’s de-
sign. Using “sticky” data, elements can be selected and new operators
applied to change appearance or behavior. This facilitates rapid itera-
tion: for example, we adjusted the color scale of one user’s chart to im-
prove differentiation (Figure 4), and added event listeners to another’s
to coordinate views. Combined with the ability to view source on any
visualization, we have high hopes for D3’s collaborative potential.

By building on key standards, D3 keeps pace with the evolving tech-
nological ecosystem of the web, improving expressiveness and acces-
sibility. We believe D3 is well-positioned to let designers immediately
take advantage of new browser features as they are added. While work
remains to expand our collection of specialized modules, D3’s core
language provides an efficient foundation for specifying rich, dynamic
visualizations on the web.
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