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Abstract: We study the 6j symbol for the conformal group, and its appearance in three

seemingly unrelated contexts: the SYK model, conformal representation theory, and per-

turbative amplitudes in AdS. The contribution of the planar Feynman diagrams to the

three-point function of the bilinear singlets in SYK is shown to be a 6j symbol. We gen-

eralize the computation of these and other Feynman diagrams to d dimensions. The 6j

symbol can be viewed as the crossing kernel for conformal partial waves, which may be

computed using the Lorentzian inversion formula. We provide closed-form expressions for

6j symbols in d = 1, 2, 4. In AdS, we show that the 6j symbol is the Lorentzian inversion of

a crossing-symmetric tree-level exchange amplitude, thus efficiently packaging the double-

trace OPE data. Finally, we consider one-loop diagrams in AdS with internal scalars and

external spinning operators, and show that the triangle diagram is a 6j symbol, while

one-loop n-gon diagrams are built out of 6j symbols.
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Figure 1. The inner product of an s-channel conformal partial wave and a t-channel conformal

partial wave is a 6j symbol, represented by a tetrahedron. Each line represents a coordinate, and

each vertex is a conformal three-point function.

1 Introduction

Clebsch-Gordan coefficients are familiar quantities in quantum mechanics, encoding the

addition of two angular momenta. When adding three angular momenta, one encounters

the 6j symbol which, like the Clebsch-Gordan coefficients, is of fundamental importance

in the representation theory of SU(2). In adding three angular momenta, one has a choice

of combining the first two, and then the third, or the second and third, and then the first.

The overlap of these two choices involves a product of four Clebsch-Gordan coefficients,

summed over the mi quantum numbers. As such, the 6j symbol can be represented by

a tetrahedron, with each of the six sides labelled by a spin, and each of the four vertices

representing a Clebsch-Gordan coefficient.

These quantities, while most familiar for SU(2), can be defined for any group. Our in-

terest will be in the Euclidean conformal group, SO(d+1, 1). In mapping from SU(2) to the

conformal group, the angular momentum is replaced by the dimension and spin of the op-

erator, the z-component of angular momentum becomes the position x of the operator, and

the Clebsch-Gordan coefficient becomes a conformal three-point function. In this paper,

we will compute 6j symbols for the conformal group, in one, two, and four dimensions.

One context in which 6j symbols for the conformal group naturally appear is in the

framework of the conformal bootstrap, as emphasized in [1]: a four-point function can be

expanded in either s-channel or t-channel conformal blocks, and the equality of the two

yields powerful constraints on CFT data. One can define single-valued conformal partial

waves, as a sum of a conformal block and its “shadow”, as we will recall in the main text.

The overlap of an s-channel conformal partial wave with a t-partial conformal partial wave

is the definition of a 6j symbol, as shown diagrammatically in figure 1. This is equivalent

to a “crossing kernel” for the conformal group. This interpretation of the 6j symbol for

the conformal group is a direct analogue of the one in quantum mechanics, as an overlap

of the two different ways of combining three spins.

In this work, we reveal two other contexts in which these 6j symbols appear: Feynman

diagrams of the SYK model and their generalization to higher dimensions, and Witten

diagrams for tree-level and one-loop scattering amplitudes in AdS, dual to large N CFT

correlators at leading and subleading orders in 1/N .
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Figure 2. (a) The sum of the planar Feynman diagram contribution to the SYK three-point

function of bilinears is given by three conformal three-point functions glued together. The figure on

the right is not a Feynman diagram; each vertex is a three-point function. (b) The inner product

with a bare three-point function of shadow operators extracts the structure constant, and is equal

to a 6j symbol.

The one-dimensional SYK model [2–7] is part of a new class of solvable large N quan-

tum field theories, which are dominated by melonic Feynman diagrams at large N , and

are conformally invariant in the infrared. The three-point function of the bilinear O(N)

singlets was recently computed in [8], by summing all Feynman diagrams. The contribution

of the planar diagrams is shown in figure 2. There is a simple way to see that the planar

three-point diagram is actually a 6j symbol: by taking the inner product with a three-

point function of the shadow operators, one obtains a tetrahedron, i.e. a 6j symbol. This

argument establishes an intriguing connection: the overlap of two conformal partial waves

— a group-theoretic quantity — and the planar Feynman diagrams in an SYK correlation

function — a dynamical quantity — are just two different ways of splitting a tetrahedron.

The SYK model is formulated in one dimension, and one would clearly like to have

a higher-dimensional version. An obvious generalization is to take the SYK Lagrangian,

replace the fermions by bosons, and put the theory in d dimensions. Unfortunately, this

d-dimensional bosonic SYK theory is not well defined because the potential has negative di-

rections. Nevertheless, one can still study the theory formally, and this is what we will do in

this paper: we compute the correlation functions of the d-dimensional bosonic SYK theory,

in close analogy with the solution of the SYK model [8]. In fact, the extent to which a d-

dimensional SYK model exists is irrelevant for our purposes: we are simply taking the lead-

ing large N Feynman diagrams that appear in the standard one-dimensional SYK model,

and evaluating them in d dimensions, using a conformal bosonic propagator. A two di-

mensional generalization of SYK that is well-defined is the supersymmetric version [9], and

it should be straightforward to generalize our calculations to this context. There are also

promising signs that more higher-dimensional SYK-like theories may still be found [10, 11].

– 3 –
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In the AdS context, the appearance of the 6j symbol is quite natural, in the sense that

the AdS isometry group is the conformal group. Where exactly it appears is less obvious;

one answer, as we will show, is in the computation of tree- and loop-level scattering ampli-

tudes. There has been recent progress on loops in AdS,1 though there are still relatively few

explicit results for AdS diagrams beyond tree-level, especially compared to the extensive

and sophisticated knowledge of S-matrices. Perhaps the clearest demonstration of this fact

is the absence of a computation of the one-loop vertex correction in φ3 theory, a basic quan-

tity. We will show that this diagram in AdSd+1 is, in fact, given by a spectral integral over

the 6j symbol for SO(d + 1, 1). We also compute higher-point diagrams at one-loop with

cubic vertices — i.e. AdS “n-gons” — and find that they may be written as gluings of 6j

symbols. This includes the box diagram (n = 4), which had not previously been computed.

The overall picture, then, is of a triangle of relations amongst SYK planar diagrams,

the 6j symbol, and AdS one-loop diagrams, all of which can be expressed simply in terms

of the others.

In section 2 we study the d-dimensional bosonic SYK theory. In section 2.1 we compute

the four-point function of fundamentals, by summing ladder diagrams. Such calculations

have become standard in the SYK literature. We are able to both generalize and sim-

plify the computation, by recognizing that the conformal three-point integrals that appear

throughout are just shadow transforms, discussed in appendix D. In section 2.2 we turn to

the three-point functions of bilinears, and demonstrate that the contribution of the planar

Feynman diagrams is a 6j symbol. The contribution of the so called contact diagrams

is calculated in appendix C. The analytically extended three-point function of bilinears

plays an essential role in determining all higher-point correlation functions, as discussed in

section 2.3.

In section 3 we compute the 6j symbols, which we view as the overlap of two confor-

mal partial waves, as was shown in figure 1. This section can be read independently of

the rest of the paper. In one dimension, the conformal partial waves are the standard 2F1

hypergeometric functions of a conformally invariant cross ratio of four points. The overlap

of two partial waves is an integral of a product of two 2F1’s, which is a generalized hyper-

geometric function 4F3. This straightforward computation is done in appendix B. In two

and four dimensions, there are two conformal cross-ratios, and the conformal partial waves

are sums of products of two hypergeometric functions. The integral for the overlap of two

partial waves, as formulated in Euclidean signature, does not appear to factorize. However,

one can achieve factorization into one-dimensional integrals by an appropriate contour de-

formation into Lorentzian signature, i.e. by employing Caron-Huot’s Lorentzian inversion

formula [25, 26]; our integral is a special case of his more general formula, for a four-point

function that is a t-channel partial wave. In section 3.1 we generalize Caron-Huot’s for-

1For a long time, there were very few loop-level results. Progress was made via direct computation in

Mellin space [12–14]. This inspired a prescription for an “AdS unitarity method” which uses ideas from

CFT crossing symmetry [15]. These developments led to further progress in the case of AdS5×S5 [16–19], as

well as applications of large spin perturbation theory/Lorentzian inversion [19] and, more recently, progress

in direct computation of individual diagrams and their analytic structure [20–24]. The work of [23], in

particular, performs an extensive analysis of the analytic structure of wide classes of individual diagrams.
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mula in two dimensions to include external operators with spin (recovering the generalized

inversion formula in [27]), and compute the two-dimensional 6j symbol for arbitrary spin.

In section 3.2 we compute the four-dimensional 6j symbol, for external scalars. In both

two and four dimensions, the 6j symbol is expressed as a finite sum of products of two

4F3’s, as a result of the factorization into one-dimensional integrals. (See eqs. (3.35)–(3.38)

for d = 2 and (3.41) for d = 4.)2 We also explain how Lorentzian inversion allows one to

formally invert a conformal block rather than a partial wave.

In section 3.3, we analyze the 6j symbol in order to address the following question: on

what s-channel partial waves does the t-channel partial wave have support? The answer is

encoded in the locations of the poles of the 6j symbol, whose residues encode the OPE data.

That this is true can be seen from our method of using the Lorentzian inversion formula,

which produces a function whose poles in ∆ correspond to the physical operator spectrum.

We show that there are poles when the twists τi = ∆i−Ji of any three operators that share

a vertex obey τi = τj + τk + 2n with n ∈ Z≥0; in addition, for each of these poles, there is

a pole at the shadow location. These locations correspond to the twists of infinite towers

of “double-twist operators” in the s-channel, of the form Oj(∂
2)n∂µ1 . . . ∂µJ

Ok, whose

existence is required by crossing in the lightcone limit [29, 30]. The residues of these poles

thus encode the OPE coefficients and anomalous dimensions of the double-twist operators,

so the 6j symbol contains complete information about these quantities, even down to finite

spin J . As an example, we present explicit results for leading-twist (n = 0) anomalous

dimensions due to the Lorentzian inversion of a conformal block in eqs. (3.55) and (3.56),

valid for finite spin J .3

In section 4 we turn to the AdS story. In section 4.1 we start at tree-level. We show

that Lorentzian inversion of a sum over channels of AdS exchange diagrams yields the 6j

symbol; more precisely, it yields the Lorentzian inversion of a conformal block, which is

a projection of the 6j symbol. (See eq. (4.2).) Thus, the OPE function for leading-order

connected correlators in large N CFTs is a sum of 6j symbols, which in turn encode the

OPE data for double-trace operators. In large N CFTs with weakly curved, local AdS

duals, there are a finite number of light operators, so the double-trace data is determined

by a finite sum of 6j symbols. (There is a lower bound on the spin of the double-traces

that the 6j symbol captures, as we recall later.) In section 4.2, we turn to the one-

loop diagrams, in general dimension d. We begin with the one-loop, three-point triangle

diagram in AdS for arbitrary external spins and internal scalars, drawn in figure 7. This

2The 6j symbol for scalar principal series representations of SO(d+ 1, 1) was computed in [28] in terms

of a four-fold Mellin-Barnes integral. The expressions we find in d = 2, 4 are much simpler.
3There have been some recent works that compute anomalous dimensions from related perspectives [31–

35]. Comprehensive closed-form expressions for anomalous dimensions, valid to all orders in the 1/J ex-

pansion, may be found in [33–35] for leading-twist (n = 0) double-twist operators, with an extension to

subleading twists (n > 0) and external spins in [34, 35]. As a point of clarification, we emphasize that the 6j

symbol is not actually computed in [34, 35], but rather, parts of the residues of its poles. As such the use of

the term “crossing kernel” in those papers is non-standard; in this work, we compute the complete crossing

kernel in d = 1, 2, 4, from which the finite J OPE data may be extracted via residues. We explain in detail

the difference between our results for leading-twist anomalous dimensions at finite J , and the asymptotic

resummations of [33–35], in footnote 28.
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diagram — indeed, all one-loop diagrams considered in this paper — can be written as a

spectral integral over the “pre-amplitude”, which is defined as the same diagram but with

the bulk-to-bulk propagators replaced by harmonic functions (i.e. the propagator minus

the shadow propagator). There is some data on the analyticity properties of the triangle

pre-amplitude [23], but it, too, has never been computed. We show that the triangle pre-

amplitude equals a 6j symbol times a kinematic prefactor. (See eqs. (4.27) and (4.32).)

This fact essentially follows immediately from the split representation of the harmonic

function. This determines the full triangle amplitude by spectral integration of the 6j

symbol, whose poles are easily read off from our explicit expressions for the 6j symbol.

We then show that the pre-amplitude for n-gon diagrams (see figure 9) is equal to the

d-dimensional SYK bilinear n-point planar diagram with no exchanged melons, times a

kinematic prefactor. We give a more detailed exposition of the box diagram (n = 4), which

we write in a conformal block expansion. (See eqs. (4.37)–(4.38).) It takes the form of a sum

of two 6j symbols times a conformal partial wave. Higher n-gon pre-amplitudes can also

be written in terms of 6j symbols; in this sense, the 6j symbol is an atomic ingredient in

the computation of AdS loop diagrams. We close with some open questions in section 4.3.

In appendix A, we give some simple analysis of the d-dimensional SYK bilinear two-

point function. In appendix B, we present the one-dimensional 6j symbol. In appendix C,

we compute the contact diagram contributing to the d-dimensional bilinear three-point

function. In appendix D, we present derivations of some shadow transforms of three-point

functions.

2 SYK and d-dimensional generalizations

The SYK model is a theory of N ≫ 1 Majorana fermions χi with q-body all-to-all interac-

tions with Gaussian-random coupling. The Lagrangian is

L =
1

2
χi∂τχi +

i
q
2

q!
Ji1i2...iqχi1χi2 · · ·χiq , (2.1)

where the couplings have zero-mean and variance 〈Ji1i2...iqJi1i2...iq〉 = N q−1J2/(q − 1)! (no

index summation). After disorder averaging, the model has O(N) symmetry. In the UV,

the theory is free, and the fermions have a two-point function given by 1
2sgn(τ). At large N

the dominant Feynman diagrams are iterations of melons. In the infrared, for J|τ | ≫ 1, the

theory is nearly conformally invariant, with a two-point function, at leading order in 1/N ,

G(τ) = b
sgn(τ)

|Jτ |2∆ , ∆ = 1/q , bq =
1

2π
(1− 2∆) tanπ∆ , (2.2)

where ∆ is the IR dimension of the fermions.

It is natural to consider a d-dimensional generalization of SYK. It is simplest to take

a bosonic theory, of N scalars φi, with Lagrangian

L =
1

2
(∂φi)

2 +
1

q!
Ji1i2···iqφi1φi2 · · ·φiq . (2.3)

– 6 –
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It is clear that this theory will, at large N , be dominated by the same Feynman diagrams

as those appearing in SYK. Assuming an infrared fixed point, the correlation functions

would then be found from a straightforward generalization, to d dimensions, of the SYK

calculations. At the same time, it is clear that this d-dimensional bosonic theory is not

well-defined: the couplings are random, so generically the potential will have negative di-

rections.4 This will manifest itself in some unphysical properties of the four-point function;

however, as far as the diagrammatics are concerned, these will be irrelevant. Another dif-

ference with SYK is that a free scalar field φ in d > 2 is not dimensionless. As a result, in

d > 2, one must take q ≤ 2d
d−2 , in order for the interaction term to be marginal or relevant

(equivalently, if one were to take q larger than this and take an ansatz of an infrared fixed

point, one would find φ to have a dimension below the unitarity bound).5

Assuming an infrared fixed point, and performing the standard SYK analysis of drop-

ping the kinetic term in the Schwinger-Dyson equation,6 the large N two-point function

for the d-dimensional SYK model, in the infrared, is7

G(x) = b
1

|x|2∆φ
, ∆φ =

d

q
, J2bq = − 1

πd
Γ(∆φ)Γ(d−∆φ)

Γ(d2 −∆φ)Γ(∆φ − d
2)

. (2.4)

In the rest of this section we will compute the correlation functions in the d-dimensional

SYK model, assuming the above infrared fixed point. Equivalently, one can regard our

calculation as simply taking the Feynman diagrams that appear in the standard one-

dimensional SYK model, and evaluating them in d dimensions, using the above conformal

propagator.

2.1 Four-point function in 1d SYK

We start with the four-point function of the fundamentals φi. First, recall that in SYK,

the fermion four-point function is a sum of conformal blocks of the fermion bilinear O(N)

singlets, schematically of the form

Oh =
1

N
χi∂

1+2n
τ χi . (2.5)

If the anomalous dimensions were zero, the dimensions of the operators would be h =

2∆ + 2n + 1. In d-dimensional SYK, the result will be similar, except the operators now

have spin: the four-point function will be a sum of conformal blocks of the scalar bilinear

4Bosonic tensor models in d dimensions suffer from similar problems [10]. See [36–39] for some earlier

studies of tensor models.
5One could try to let q take any value, by modifying the kinetic term to be bilocal rather than local, as

was done for the SYK model in [40]. However with bosons, unlike with fermions, one will then encounter

UV divergences.
6As noted in [9], this may not be legitimate.
7The conventions in one dimension are that χ has dimension ∆, and the dimension of other operators

is denoted by h. In d dimensions, we will use ∆φ to denote the dimension of φ, and a general operator will

have dimension ∆ and spin J .

– 7 –
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O(N) singlets, schematically of the form,8

O∆,J =
1

N
φi(∂

2)n ∂µ1 · · · ∂µJ
φi . (2.6)

If the anomalous dimensions were zero, then the dimension of O∆,J would be ∆ = 2∆φ +

2n+ J .

2.1.1 SYK

We first briefly recall the results for the SYK four-point function, following the conventions

in [8]. The fermion four-point function is [6]

F(τ1, . . . , τ4) = G(τ12)G(τ34)

∫

C

dh

2πi
ρ(h)Ψh(τi) , (2.7)

where

ρ(h) = µ(h)
α0

2

k(h)

1− k(h)
, µ(h) =

2h− 1

π tan πh
2

, α0 =
2π∆

(1−∆)(2−∆) tanπ∆
, (2.8)

and the contour C consists of a piece parallel to the imaginary axis h = 1
2 + is, as well

as counter-clockwise circles around h = 2n for positive integer n. Here Ψh is a conformal

partial wave, defined as9

2
sgn(τ12) sgn(τ34)

|Jτ12|2∆|Jτ34|2∆
Ψh(τi) =

∫
dτ0 〈χ(τ1)χ(τ2)Oh(τ0)〉〈χ(τ3)χ(τ4)Oh̃

(τ0)〉 , (2.9)

and is given by the sum of a conformal block with dimension h and its shadow block of

dimension h̃ = 1− h,

2

|τ12|2∆|τ34|2∆
Ψh(τi) = β(h, 0)Fh

∆(τi) + β(h̃, 0)F h̃
∆(τi) , (2.10)

where Fh
∆(τi) denotes the conformal block

Fh
∆(τi) =

sgn(τ12) sgn(τ34)

|τ12|2∆|τ34|2∆
xh 2F1(h, h, 2h, x) , x ≡ τ12τ34

τ13τ24
. (2.11)

while the prefactor β(h,∆) is,

β(h,∆) =
√
π
Γ(h+∆

2 )Γ(h−∆
2 )

Γ( h̃+∆
2 )Γ( h̃−∆

2 )

Γ(12 − h)

Γ(h)
. (2.12)

After some manipulations involving trading h for h̃, the four-point function can be written

as

F(τ1, . . . , τ4) =
b2

J4∆

∫

C

dh

2πi
ρ(h)

Γ(h)2

Γ(2h)
Fh
∆(τi) . (2.13)

With this form, one can close the contour to the right, and pick up the poles of ρ(h),

obtaining a sum of conformal blocks.

8Instead of the bosonic SYK model, one could instead study the bosonic tensor model [10],

with fields φabc transforming in the tri-fundamental representation of O(N)3, with an interaction

φa1b1c1φa1b2c2φa2b1c2φa2b2c1 . At leading nontrivial order in 1/N , the correlators of the singlets
1

N3 φa1b1c1(∂
2)n ∂µ1 · · · ∂µJ

φa1b1c1 will be identical to the correlators of the O∆,J in SYK.
9In this paper, unlike in [8], we use conventions in which correlation function denote just the conformal

structure, unless otherwise noted.
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2.1.2 Higher dimensions

We now consider the scalar four-point function in d-dimensional bosonic SYK. We may

write it as (compare with the one-dimensional case, eq. (2.7)),

F(x1, . . . , x4) =

∞∑

J=0

∫ d
2
+i∞

d
2

d∆

2πi
ρ(∆, J)Ψ

∆φ

∆,J(xi) , (2.14)

for some ρ(∆, J), which is found by summing the ladder diagrams, and will be presented

later in section 2.1.3. Here Ψ
∆φ

∆,J is the conformal partial wave for dimension-∆ and spin-

J exchange between external φ’s, with propagators for the external operators included.

The sum and integral is over principal series representations of SO(d + 1, 1), which have

∆ ∈ d
2+iR. The significance of these representations is that the corresponding partial waves

Ψ
∆φ

∆,J form a complete set of eigenfunctions of the conformal Casimir in Euclidean space [41].

We may write Ψ
∆φ

∆,J as a sum of a conformal block and its shadow. In the notation

of [26] (compare with eq. (2.10)),10

Ψ∆i

∆,J = K∆3,∆4

∆̃,J
G∆i

∆,J(xi) +K∆1,∆2

∆,J G∆i

∆̃,J
(xi) , (2.15)

where ∆̃ = d−∆ and K∆1,∆2

∆,J = (−1
2)

JS∆1,∆2

[∆,J ] where

S∆1,∆2

[∆3,J ]
=
π

d
2Γ(∆3 − d

2)Γ(∆3 + J − 1)Γ( ∆̃3+∆1−∆2+J
2 )Γ( ∆̃3+∆2−∆1+J

2 )

Γ(∆3 − 1)Γ(d−∆3 + J)Γ(∆3+∆1−∆2+J
2 )Γ(∆3+∆2−∆1+J

2 )
. (2.16)

In our current case, the external dimensions ∆i are equal to ∆φ. Notice that in d = 1, for

J = 0, we recover the previous result in eq. (2.12),

K∆1,∆2

[h,0] = β(h̃,∆12) , d = 1 . (2.17)

We now insert (2.15) into (2.14) and change variables ∆ → ∆̃ for the second term,

F(x1, . . . , x4) =
∞∑

J=0

(∫ d
2
+i∞

d
2

d∆

2πi
ρ(∆, J) K

∆φ,∆φ

∆̃,J
G

∆φ

∆,J(xi)

+

∫ d
2

d
2
−i∞

d∆

2πi
ρ(∆̃, J)K

∆φ,∆φ

∆̃,J
G

∆φ

∆,J(xi)

)
. (2.18)

Using symmetries of the partial wave, one can show ρ(∆, J) = ρ(∆̃, J). Thus, we may

combine the two terms above,

F(x1, . . . , x4) =
∞∑

J=0

∫ d
2
+i∞

d
2
−i∞

d∆

2πi
ρ(∆, J) K

∆φ,∆φ

∆̃,J
G

∆φ

∆,J(xi) . (2.19)

10Our normalization for a conformal block is the same as in [26]. Specifically, for cross-ratios satisfying

χ ≪ χ ≪ 1, the conformal block is a product of standard dimensionful factors x#
ij , times χ

∆−J

2 χ
∆+J

2 .

Depending on context, we will use “conformal block” to refer to the function G∆i

∆,J(xi) with or without the

power-law prefactors.
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This expression should be compared with the one-dimensional equivalent, eq. (2.13). Clos-

ing the contour to the right, where the conformal block G
∆φ

∆,J is exponentially damped, we

get a sum of conformal blocks,

F(x1, . . . , x4) =

∞∑

J=0

∑

∆=∆n

c2∆,JG
∆φ

∆,J(xi) , (2.20)

where the OPE coefficients φiφi ∼ c2∆n,J
O∆n,J are,

c2∆n,J = −Res ρ(∆, J)K
∆φ,∆φ

∆̃,J

∣∣∣
∆=∆n

. (2.21)

These coefficients are what appear in a physical three-point function,

〈φ(x1)φ(x2)O∆,J(x0)〉phys = c∆,J b 〈φ(x1)φ(x2)O∆,J(x0)〉 , (2.22)

where the right-hand side denotes just the conformal structure of the correlator.

2.1.3 Summing ladders in d dimensions

In this section, we perform the computation of the four-point function for the d-dimensional

model by explicitly summing the ladder diagrams to determine ρ(∆, J) in (2.19). This may

be done via a conformally-invariant inner product between F and a partial wave Ψ
∆̃φ

∆̃,J
.

We first establish notation for conformal three-point integrals, which occur throughout

the calculation. Given an operator with dimension ∆ and spin J , the shadow representation

Õ has dimension ∆̃ = d−∆ and spin J . The shadow transform is a conformally invariant

map between the representation of O and the representation of Õ. It is defined by11

S[O](x) =

∫
ddy 〈Õ(x)Õ†(y)〉O(y) . (2.23)

Here, 〈Õ(x)Õ†(y)〉 denotes the unique conformally invariant two-point structure for the

given representation. Shadow coefficients are defined by,

〈S[O1]O2O3〉 = SO2O3
O1

〈Õ1O2O3〉 , (2.24)

where 〈Õ1O2O3〉 denotes a three-point structure for the given representations. (When the

operators have spin, there can be multiple three-point structures, and the shadow coefficient

becomes a matrix.) The result for S∆1,∆2

[∆3,J ]
was stated earlier (2.16), while,

S
∆1,[∆3,J ]
∆2

=
π

d
2Γ(∆2 − d

2)Γ(
∆̃2+∆1−∆3+J

2 )Γ( ∆̃2+∆3−∆1+J
2 )

Γ(d−∆2)Γ(
∆2+∆1−∆3+J

2 )Γ(∆2+∆3−∆1+J
2 )

. (2.25)

We give an elementary derivation of (2.16) and (2.25) in appendix D. They can also be

computed efficiently using weight-shifting operators or Fourier space [42]. When J = 0, the

shadow transform of a three-point function becomes the famous star-triangle integral [43].

11Here, if O transforms in the SO(d) representation ρ, then O† transforms in the dual reflected repre-

sentation (ρR)∗. We will work almost exclusively with traceless symmetric tensors, so the representation of

O† is equivalent to the representation of O. Consequently we will often omit †’s.
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+ +   . . .+

Figure 3. The four-point function is a sum of ladder diagrams.

The four-point function is given by a sum of ladder diagrams, as shown in figure 3.12

As is standard in SYK, one finds the spectrum of operators O∆,J by diagonalizing the

kernel that adds a rung to the ladder [3–6, 51, 52]. The eigenvector equation is,

∫
ddxad

dxbK(x1, x2;xa, xb)v(x0;xa, xb) = k(∆, J)v(x0;x1, x2) , (2.26)

where the kernel is,

K(x1, x2;xa, xb) = J2(q − 1)G(x1a)G(x2b)G(xab)
q−2 . (2.27)

We take the eigenvectors to be conformal three-point functions,

v(x0;xa, xb) = 〈φ(xa)φ(xb)O∆,J(x0)〉 . (2.28)

Inserting these into the kernel, we find that the left-hand side of (2.26) can be rewritten

as,
∫
ddxad

dxbK(x1, x2;xa, xb)v(x0;xa, xb)

= (q−1)J2bq
∫
ddxad

dxb 〈φ(x2)φ(xb)〉 〈φ(x1)φ(xa)〉 〈φ̃(xa)φ̃(xb)O∆,J(x0)〉

= (q−1)J2bqS
∆̃φ,[∆,J ]

∆̃φ

S
∆φ,[∆,J ]

∆̃φ

〈φ(x1)φ(x2)O∆,J(x0)〉 . (2.29)

Thus, the eigenvalues of the kernel are [11]

k(∆, J) = (q − 1)J2bqS
∆̃φ,[∆,J ]

∆̃φ

S
∆φ,[∆,J ]

∆̃φ

. (2.30)

The ∆ for which k(∆, J) = 1 correspond to the dimensions of the bilinear operators O∆,J

of (2.6).

We can now proceed to sum the ladder diagrams. The zero-rung ladder is proportional

to the four-point function of Mean Field Theory (MFT),

b2FMFT(xi) = b2〈φ(x1)φ(x3)〉〈φ(x2)φ(x4)〉+ (1 ↔ 2) . (2.31)

We would like to express FMFT as a conformal partial wave expansion,

FMFT(xi) =
∞∑

J=0

∫ d
2
+i∞

d
2

d∆

2πi
ρMFT(∆, J)Ψ

∆φ

∆,J(xi) . (2.32)

12Very similar ladder diagrams appear in correlation functions of certain operators in the fishnet the-

ory [44–50].
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This computation was originally done in [14]. We will follow essentially the same method,

though with slightly different language. This method is generalized to arbitrary spinning

operators in [53]. We first take a conformally invariant inner product of both sides with a

partial wave, (
FMFT,Ψ

∆̃φ

∆̃,J

)
= ρMFT(∆, J)n∆,J . (2.33)

The conformally invariant inner product is defined by,

(F ,G) =
∫
ddx1d

dx2d
dx3d

dx4
vol(SO(d+ 1, 1))

F(xi)G(xi) , (2.34)

and the normalization factor n∆,J is given by [26]13

(
Ψ

∆φ

d
2
+is,J

,Ψ
∆̃φ

d
2
−is′,J ′

)
= 2πδ(s− s′)δJ,J ′n∆,J , (2.35)

n∆,J =
K∆3,∆4

∆̃,J
K∆̃3,∆̃4

∆,J vol(Sd−2)

2dvol(SO(d− 1))

(2J + d− 2)πΓ(J + 1)Γ(J + d− 2)

2d−2Γ(J + d
2)

2
.

(Despite appearances, n∆,J is actually independent of ∆3,∆4.)
14

To compute the inner product, we use the shadow representation of the partial wave,

(
FMFT,Ψ

∆̃φ

∆̃,J

)
⊃
∫

ddx1 · · · ddx5
vol(SO(d+ 1, 1))

〈φ(x1)φ(x3)〉〈φ(x2)φ(x4)〉

× 〈φ̃(x1)φ̃(x2)Oµ1···µJ

∆,J (x5)〉〈Õ∆,J ;µ1···µJ
(x5)φ̃(x3)φ̃(x4)〉 . (2.36)

Here we have only written the contribution of the first term in (2.31). From the point of

view of the x1, x2 integrals this is the exact same computation we did for the kernel. The

result is a product of shadow factors

=S
∆̃φ,[∆,J ]

∆̃φ

S
∆φ,[∆,J ]

∆̃φ

∫
ddx3d

dx4d
dx5

vol(SO(d+1,1))
〈φ(x3)φ(x4)Oµ1···µJ

∆,J (x5)〉〈Õ∆,J ;µ1···µJ
(x5)φ̃(x3)φ̃(x4)〉

=S
∆̃φ,[∆,J ]

∆̃φ

S
∆φ,[∆,J ]

∆̃φ

(
〈φφO〉,〈φ̃φ̃Õ〉

)
. (2.37)

The remaining factor is a conformal three-point integral. As explained in [26], it doesn’t

require any actual integration because one can fix the positions of the three points using

conformal invariance. Setting (x3, x4, x5) = (0, e,∞) for some unit vector e, the three-point

pairing becomes,

t0 ≡
(
〈φφO〉, 〈φ̃φ̃Õ〉

)
=

1

2dvol(SO(d− 1))
〈φ(0)φ(1)Oµ1···µJ

∆,J (∞)〉〈Õ∆,J ;µ1···µJ
(∞)φ̃(0)φ̃(1)〉

=
ĈJ(1)

2dvol(SO(d− 1))
. (2.38)

13Our expression for n∆,J differs by a factor of 2−d from the one in [26], see below.
14Our definition of vol(SO(n)) is that vol(SO(n))/vol(SO(n− 1)) = vol(Sn−1). In all the physical quan-

tities in this paper, the volumes of orthogonal groups will appear in ratios that give volumes of spheres.

– 12 –



J
H
E
P
0
3
(
2
0
1
9
)
0
5
2

Here, SO(d−1) is the stabilizer group of three points, 2−d is the Faddeev-Popov determinant

for our gauge-fixing,15 and,

ĈJ(1) = (eµ1 · · · eµJ − traces)(eµ1 · · · eµJ
− traces) =

Γ(d−2
2 )Γ(J + d− 2)

2JΓ(d− 2)Γ(J + d−2
2 )

. (2.39)

Putting everything together, and including the 1 ↔ 2 term in (2.31), which contributes

the same thing times (−1)J , we find

ρMFT(∆, J) =
(1 + (−1)J)

n∆,J
t0 S

∆̃φ,[∆,J ]

∆̃φ

S
∆φ,[∆,J ]

∆̃φ

=
(1 + (−1)J)

n∆,J

t0
(q − 1)J2bq

k(∆, J) . (2.40)

Our final result for the sum over ladders is thus

ρ(∆, J) =
b2ρMFT(∆, J)

1− k(∆, J)
=

(1 + (−1)J)

n∆,J

b2 t0
(q − 1)J2bq

k(∆, J)

1− k(∆, J)
. (2.41)

Plugging into (2.19) gives the four-point function.

2.2 Three-point function of bilinears

In this section we consider the three-point function of the singlet, O(N)-invariant, bilinears

of the fundamental fields φi. The analysis in d dimensions closely resembles that of d =

1 [8, 54]. There are two classes of Feynman diagrams that contribute at leading nontrivial

order in 1/N : planar diagrams, which we study in this section and show are related to

6j symbols, and nonplanar “contact” diagrams which are discussed in appendix C. We

correspondingly write the three-point function as,

〈O∆1,J1O∆2,J2O∆3,J3〉phys = 〈O∆1,J1O∆2,J2O∆3,J3〉1 + 〈O∆1,J1O∆2,J2O∆3,J3〉2 , (2.42)

where the subscript 1 denotes the contribution of the contact diagrams, and subscript

2 denotes the contribution of the planar diagrams.16 In this work, correlators without

subscripts 〈OO〉 and 〈O1O2O3〉 represent conformally-invariant structures for the given

representations — i.e. they are known functions and do not include OPE coefficients. We

include the subscript “phys” on the left-hand side of (2.42) to emphasize that it represents

a physical correlation function — i.e. it does include an OPE coefficient.

The contribution of the planar diagrams is given by gluing together three partially

amputated three-point functions [54], as depicted in figure 2(a),

〈O∆1,J1(x1)O∆2,J2(x2)O∆3,J3(x3)〉2 =
∫
ddxad

dxbd
dxc〈O∆1,J1(x1)φ(xa)φ(xb)〉amp

× 〈O∆2,J2(x2)φ(xc)φ(xa)〉amp〈O∆3,J3(x3)φ(xb)φ(xc)〉amp , (2.43)

15Reference [26] used a different convention for vol(SO(d+1, 1)) which did not include the factor 2−d. We

have chosen to include it because it leads to nicer expressions for several quantities, such as the generalized

Lorentzian inversion formula [27].
16Intriguingly, similar diagrams appear in the calculation of the interaction vertex of three BFKL

pomerons [55–57]. We thank Evgeny Sobko for this observation.
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where the partially amputated three-point function involves stripping of the propagator on

the last leg. Since the inverse of the propagator is proportional to the two-point function

of the shadow of φ, we have that

〈O∆1,J1(x1)φ(xa)φ(xb)〉amp = J2bq−1

∫
ddx0〈O∆1,J1(x1)φ(xa)φ(x0)〉phys〈φ̃(x0)φ̃(xb)〉

= c∆1,J1 J
2bq S

∆φ,[∆1,J1]
∆φ

〈O∆1,J1(x1)φ(xa)φ̃(xb)〉 , (2.44)

where in getting from the first line to the second we made use of (2.22), and recall that

bq is the normalization of the two-point function in eq. (2.4), and S
∆φ,[∆,J ]
∆φ

was given in

eq. (2.25). Thus, our three-point function is

〈O∆1,J1(x1)O∆2,J2(x2)O∆3,J3(x3)〉2 =
(

3∏

i=1

c∆i,JiJ
2bq S

∆φ,[∆i,Ji]
∆φ

)
I
(2)
∆i,Ji

(xi) , (2.45)

where

I
(2)
∆i,Ji

(xi) =

∫
ddxad

dxbd
dxc〈O∆1,J1(x1)φ(xa)φ̃(xb)〉

× 〈O∆2,J2(x2)φ(xc)φ̃(xa)〉〈O∆3,J3(x3)φ(xb)φ̃(xc)〉 .
(2.46)

This is a straight-forward, yet formidable, integral. In one dimension, it was evaluated

explicitly in [8]. Here, we need only one additional step to notice that it is in fact a 6j

symbol (see e.g. [1]). We note that, by conformal invariance, the functional form of the

result is fixed,

I
(2)
∆i,Ji

(xi) =
∑

a

I(2)
∆i,Ji,a

〈O∆1,J1(x1)O∆2,J2(x2)O∆3,J3(x3)〉a , (2.47)

where the index a runs over possible three-point structures in a three-point function of

operators with spins J1, J2, J3.
17 To get the coefficient we are after, we contract both sides

with a shadow three-point structure,

(t0)
ab I(2)

∆i,Ji,a
=

∫
ddx1d

dx2d
dx3

vol(SO(d+ 1, 1))
I
(2)
∆i,Ji

(xi)〈Õ∆1,J1(x1)Õ∆2,J2(x2)Õ∆3,J3(x3)〉b (2.48)

where the constant t0 is simply a three-point pairing,

(t0)
ab =

∫
ddx1d

dx2d
dx3

vol(SO(d+ 1, 1))
〈O1O2O3〉a〈Õ1Õ2Õ3〉b

=
1

2dvol(SO(d− 1))
〈O1(0)O2(e)O3(∞)〉a〈Õ1(0)Õ2(e)Õ3(∞)〉b . (2.49)

For the case that two of the three operators are scalars, t0 was given previously in (2.38).

Using (2.46), we can therefore write,

I(2)
∆i,Ji;a

= (t−1
0 )ab

∫
ddx1d

dx2d
dx3 d

dxad
dxbd

dxc
vol(SO(d+ 1, 1))

× 〈O∆1,J1(x1)φ(xa)φ̃(xb)〉〈O∆2,J2(x2)φ(xc)φ̃(xa)〉
× 〈O∆3,J3(x3)φ(xb)φ̃(xc)〉〈Õ∆1,J1(x1)Õ∆2,J2(x2)Õ∆3,J3(x3)〉b . (2.50)

17These structures were classified in [58].
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Figure 4. A contribution to the bilinear four-point function. The shaded blob refers to the six-

point function of fundamentals; for SYK, the six-point function is given by a sum of the planar and

contact diagrams, though this is not relevant for our calculation, which relies only on the conformal

properties of the ingredients.

We now have an integral of four three-point structures, glued into a “tetrahedron” graph.

Specifically, each pair of three-point structures shares exactly one coordinate. This is a

particular example of a 6j symbol for the conformal group SO(d+ 1, 1).

The 6j symbol can also be thought of as an overlap between conformal partial waves as

follows. For simplicity, consider the case J1 = J2 = 0. There is then a unique three-point

structure for I
(2)
∆i,Ji

, and we can drop the structure label a. Performing the integrals over

xa and x3 in (2.50), we obtain,

I(2)
∆i,Ji

=
1

t0

∫
ddx1d

dx2d
dxbd

dxc
vol(SO(d+ 1, 1))

Ψ
∆̃2,∆̃1,∆φ,∆̃φ

∆̃3,J3
(x2, x1, xb, xc)Ψ

∆̃φ,∆1,∆2,∆φ

∆φ,0
(xb, x1, x2, xc) .

(2.51)

To go further, we must actually compute some 6j symbols, which we will do in sec-

tion 3. There we will denote a 6j symbol as Jd(∆, J ; ∆
′, J ′|∆1,∆2,∆3,∆4) (see eqs. (3.5)

and (3.6)). In that notation,

I(2)
∆i,Ji

=
1

t0
Jd(∆3, J3; ∆φ, 0|∆2,∆1, ∆̃φ,∆φ) . (2.52)

2.3 All-point correlation functions

The three-point function of bilinears provides the basic building block for constructing

higher-point correlation functions. In particular, the Feynman diagrams contributing to a

four-point function of bilinears consist of ladder diagrams glued together, as in figure 4,

summed over the three channels, with the diagram with no exchanged melons subtracted,

and a contact diagram added. This is discussed in detail in one dimension in [8]. The

discussion in higher dimensions is nearly identical, the only difference being slightly more

involved notation, to account for the spin of the operators. Here we will evaluate the

diagram in figure 4. One should note that the result is general, and holds for any four-

point functions that are glued together in this way; it only relies on having a CFT, and

expresses the sum of the diagrams of the type in figure 4 in terms of the four-point function

of fundamentals and the three-point function of bilinears.18

18The three-point function of bilinears that enters is really an analytically extended three-point function:

〈O1O2O3〉 viewed as an analytic function of the dimensions ∆i. We know this function, since in the

computation in the previous section we were allowed to take the dimensions ∆i to be arbitrary.

– 15 –



J
H
E
P
0
3
(
2
0
1
9
)
0
5
2

An arbitrary three-point function of operators with spin may be written as

〈O∆1,J1(x1)O∆2,J2(x2)O∆3,J3(x3)〉phys =
∑

a

C∆i,Ji;a〈O∆1,J1(x1)O∆2,J2(x2)O∆3,J3(x3)〉a .

(2.53)

The index a runs over possible three-point structures in a three-point function of operators

with spins J1, J2, J3. We will correspondingly also need a slightly more general form of the

conformal partial wave, in which the external operators have spin,

Ψ∆i,Ji,a,b
∆,J (xi) =

∫
ddx5 〈O∆1,J1(x1)O∆2,J2(x2)O∆,J(x5)

µ1···µJ 〉a

× 〈Õ∆,J ;µ1···µJ
(x5)O∆3,J3(x3)O∆4,J4(x4)〉b .

An equivalent form of this expression that will be useful is in terms of the shadow transform,

Ψ∆i,Ji,a,b
∆,J (xi)= [(S

[∆3,J3],[∆4,J4]
[∆,J ] )−1]bc

∫
ddx5 〈O∆1,J1(x1)O∆2,J2(x2)O∆,J(x5)

µ1···µJ 〉a

×〈S[O∆,J ]µ1···µJ
(x5)O∆3,J3(x3)O∆4,J4(x4)〉c .

(2.54)

If one were to do the integral, it would give a conformal block and its shadow,

Ψ∆i,Ji;a,b
∆,J = (K

[∆3,J3],[∆4,J4]

∆̃,J
)bcG

∆i,Ji;a,c
∆,J (xi) + (K

[∆1,J1],[∆2,J2]
∆,J )acG

∆i,Ji;c,b

∆̃,J
(xi) . (2.55)

We will not need to know the explicit form of the K prefactors that appear here. This

partial wave is just a generalization of the partial wave (2.15) to include external spins.

Now, turning to the diagram in figure 4, to evaluate it we make use of the internal

four-point function of fundamentals, in the form of (2.14) with the internal partial wave

written in terms of the split representation. We then recognize that the result involves two

three-point functions,

〈O∆1,J1(x1)O∆2,J2(x2)O∆3,J3(x3)O∆4,J4(x4)〉s =
∞∑

J=0

∫ d
2
+i∞

d
2

d∆

2πi

ρ(∆, J)

c∆,J c∆̃,J

(2.56)

×
∫
ddx5〈O∆1,J1(x1)O∆2,J2(x2)O∆,J(x5)

µ1···µJ 〉〈Õ∆,J ;µ1···µJ
(x5)O∆3,J3(x3)O∆4,J4(x4)〉 ,

where the subscript refers to the s-channel. To go further, we use the general form of the

three-point function (2.53), where we separate out the OPE coefficients of φφ ∼ c∆i,JiO∆iJi ,

C∆i,Ji;a =

(
3∏

i=1

c∆i,Ji

)
I∆1,J1,∆2,J2,∆3,J3;a . (2.57)

This serves as the definition of I∆1,J1,∆2,J2,∆3,J3;a. For SYK, the OPE coefficients c∆i,Ji

was given in (2.21), while the three-point structure constant was a sum of the contributions

from the contact and planar diagrams,

I∆1,J1,∆2,J2,∆3,J3;a = (q − 1)(q − 2)J2bq I(1)
∆i,Ji;a

+

(
3∏

i=1

J2bq S
∆φ,[∆i,Ji]
∆φ

)
I(2)
∆i,Ji;a

. (2.58)
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where I(2)
∆i,Ji;a

is a 6j symbol. However, our discussion will be completely general and will

not make use of this.

With this we have that (2.56) becomes,

〈O1(x1) · · · O4(x4)〉s =
(

4∏

i=1

c∆i,Ji

)
∞∑

J=0

∫ d
2
+i∞

d
2

d∆

2πi
ρ(∆, J) I∆1,J1,∆2,J2,∆,J ;a

× I
∆̃,J,∆3,J3,∆4,J4;b

Ψ∆i,Ji,a,b
∆,J (xi) .

This is almost our final answer. A more useful form will be one which just involves the

conformal block, rather than the full partial wave. By applying the shadow transform,

either to the I
∆̃,J,∆3,J3,∆4,J4;b

above, or to the four-point function of the fundamentals we

originally used, we can write this as

〈O1(x1) · · · O4(x4)〉s =
(

4∏

i=1

c∆i,Ji

)
(2.59)

×
∞∑

J=0

∫ d
2
+i∞

d
2

d∆

2πi

(S
[∆3,J3],[∆4,J4]
[∆,J ] )cb

S
∆φ,∆φ

[∆,J ]

ρ(∆, J) I∆1,J1,∆2,J2,∆,J ;aI∆,J,∆3,J3,∆4,J4;cΨ
∆i,Ji,a,b
∆,J (xi) .

Notice that in this expression, in comparison to the one on the previous line,

I
∆̃,J,∆3,J3,∆4,J4;b

has been replaced by I∆,J,∆3,J3,∆4,J4;b. We now insert the expression for

the partial wave in terms of conformal blocks (2.55), and change integration variables on

the second term, sending ∆ → d−∆. After some shadow transforming of the second term,

the integrands of both terms become the same, and we combine them to get

〈O1(x1) · · · O4(x4)〉s =
(

4∏

i=1

c∆i,Ji

)
∞∑

J=0

∫ d
2
+i∞

d
2
−i∞

d∆

2πi
K

∆φ,∆φ

[∆̃,J ]
ρ(∆, J)

× I∆1,J1,∆2,J2,∆,J ;a I∆,J,∆3,J3,∆4,J4;b G
∆i,Ji;a,b
∆,J (xi) . (2.60)

In getting to this we used,

(S
[∆3,J3],[∆4,J4]
[∆,J ] )cb(K

[∆3,J3],[∆4,J4]

[∆̃,J ]
)bc

S
∆φ,∆φ

[∆,J ]

=

(
−1

2

)J (S
[∆3,J3],[∆4,J4]
[∆,J ] )cb(S

[∆3,J3],[∆4,J4]

[∆̃,J ]
)bc

S
∆φ,∆φ

[∆,J ]

=

(
−1

2

)J S
∆φ,∆φ

[∆,J ] S
∆φ,∆φ

[∆̃,J ]

S
∆φ,∆φ

[∆,J ]

= K
∆φ,∆φ

[∆̃,J ]
, (2.61)

In the second equality we expressed K in terms of S, to get in the numerator a term that

is S2, which must be proportional to the identity, and thus independent of [∆3, J3] and

[∆4, J4] (see e.g. (D.20)). We can therefore replace it with the term in the numerator of

the third equality.

The result (2.60) is our final answer. It is a d-dimensional generalization of the corre-

sponding one-dimensional result, eq. 4.16 of [8].
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Figure 5. The SYK bilinear four-point planar diagram with no exchanged melons.

Note that (2.60) is not the full four-point function, but rather, the sum of Feynman

diagrams shown in figure 4 which are a contribution to the four-point function. To obtain

the full four-point function, one should add to this the same diagrams but in the t and

u channels, subtract a planar diagram with no exchanged melons (that will get double

counted, among the three channels), and add an additional “contact” diagram; see [8].

The planar diagram with no exchanged melons is shown in figure 5. It is similar to

the planar diagram for the three-point function, shown previously in figure 2(a) and given

in eq. (2.43) as three three-point functions glued together. We similarly write the diagram

in figure 5 as four three-point functions glued together,

〈O1(x1) · · · O4(x4)〉0s =
∫
ddxad

dxbd
dxcd

dxd〈O∆1,J1(x1)φ(xa)φ(xb)〉amp (2.62)

× 〈O∆2,J2(x2)φ(xd)φ(xa)〉amp〈O∆3,J3(x3)φ(xc)φ(xd)〉amp〈O∆4,J4(x4)φ(xb)φ(xc)〉amp .

In fact, there is a more appealing way of writing the answer, in terms of conformal blocks.

One notices that the diagram in figure 5 is really a special case of the diagram in figure 4

which we have been studying in this section, with the three-point function coefficients given

by those for the planar diagram, and the intermediate four-point function of fundamentals

given by that of free (mean) field theory. Thus,

〈O1(x1) · · · O4(x4)〉0s =
(

4∏

i=1

c∆i,Ji

)
∞∑

J=0

∫ d
2
+i∞

d
2
−i∞

d∆

2πi
K

∆φ,∆φ

[∆̃,J ]
b2ρMFT(∆, J)

× Ip
∆1,J1,∆2,J2,∆,J ;a I

p
∆,J,∆3,J3,∆4,J4;b

G∆i,Ji;a,b
∆,J (xi). (2.63)

where ρMFT(∆, J) was given in (2.40), while the planar three-point structure constant was

given in (2.45),

Ip
∆1,J1,∆2,J2,∆3,J3;a

=

(
3∏

i=1

J2bq S
∆φ,[∆i,Ji]
∆φ

)
I(2)
∆1,J1,∆2,J2,∆3,J3;a

. (2.64)

The result eq. (2.63) is a d-dimensional generalization of the corresponding one-dimensional

result, eq. 4.19 of [8].

Finally, on general grounds, a connected four-point function at leading order in large

N is expressible as a sum of single-trace and double-trace conformal blocks. Closing the
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Figure 6. The 6j symbol, represented as a tetrahedron.

contour in (2.60) gives a sum of conformal blocks, arising from the poles of the integrand.

The single-trace blocks are immediate, and come from the poles of ρ(∆, J). The double-

trace blocks should arise from the three-point function coefficients. A scalar four-point

function, for instance, will contain an exchange of double-trace blocks of the schematic form

O1(∂
2)n∂µ1 · · · ∂µJ

O2 , O3(∂
2)n∂µ1 · · · ∂µJ

O4 . (2.65)

where we take the Oi to be scalars for simplicity. This requires that I∆1,0,∆2,0,∆,J ,

regarded as a function of ∆, have simple poles at

∆ = ∆1 +∆2 + J + 2n . (2.66)

The explicit form of the 6j symbols that we will compute in the next section will indeed

have such singularities. Analogous poles exist for spinning operators, at twists τ1+τ2+2n,

dressed by labels for the appropriate spinning structure and Lorentz representations.

3 6j symbols

In this section, we compute 6j symbols for principal series representations of SO(d +

1, 1) in two and four dimensions. We define the 6j symbol for these representations as a

conformally-invariant integral of a product of four conformal three-point structures,

{
O1 O2 O6

O3 O4 O5

}abcd

=

∫
ddx1 · · · ddx6

vol(SO(d+ 1, 1))
〈Õ1Õ2Õ5〉a〈O5Õ3Õ4〉b〈O3O2O6〉c〈Õ6O1O4〉d ,

(3.1)

where Oi denotes an operator with dimension ∆i ∈ d
2 + iR, spin Ji, and position xi.

The shadow of an operator, Õi, has dimension ∆̃i = d − ∆i. In total, the 6j symbol

depends on the six representations O1, . . . ,O6, together with four indices a, b, c, d that

label conformally-invariant three-point structures. For most of this section, we consider

the case where there is a unique three-point structure for the given representations, so we

can drop the structure labels a, b, c, d.

It is useful to represent the 6j symbol graphically as a tetrahedron, shown in figure 6.

Each of the six edges represent positions which are integrated over. Each of the four
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vertices is a three-point structure. Notice that every one of the six operators appears once,

and every one of the shadow operators appears once. Our notation for the 6j symbol is

such that the columns of (3.1) and (3.3) contain edges that do not meet at a vertex. For

example, O1 and O3 are not both present in any of the four three-point structures.

The 6j symbol (3.1) is invariant under symmetries of the tetrahedron S4, which acts

by permuting the vertices. The action of a permutation also swaps some representations

with their shadows. For example, the symmetry group of the 6j symbol is generated by

the relations
{
O1 O2 O6

O3 O4 O5

}
=

{
Õ5 O3 O2

O6 Õ1 O4

}
=

{
O2 O5 Õ3

Õ4 O6 O1

}
=

{
O2 O1 Õ6

O4 O3 O5

}
, (3.2)

all of which are manifest in the expression (3.1).

In defining the 6j symbol (3.1), we made an arbitrary choice of which of the four three-

point structures contains the operator versus its shadow. A related object which does not

require these choices is
[
O1 O2 O6

O3 O4 O5

]
=

∫
ddx1· · ·ddx6ddx1′ · · ·ddx6′

vol(SO(d+ 1, 1))

×
6∏

i=1

〈ÕiÕi′〉〈O1′O2′O5′〉〈O5O3′O4′〉〈O3O2O6〉〈O6′O1O4〉 . (3.3)

This object is manifestly symmetric under S4, where permutations do not swap represen-

tations with their shadows. It is trivial to evaluate six of the integrals appearing in (3.3) to

relate it to (3.1), as these are simply the shadow transforms discussed in appendix D, and

the integrals give the shadow factors derived there. In particular, performing the integrals

over xi′ relates our two definitions,
[
O1 O2 O6

O3 O4 O5

]
= SO2O5

O1
SÕ1O5
O2

SO5O4
O3

SÕ3O5
O4

SÕ1Õ2
O5

SO1O4
O6

{
O1 O2 O6

O3 O4 O5

}
. (3.4)

It is clear that the manifest tetrahedral symmetry of the 6j symbol is broken by choices

of which integrals to perform first. In calculating the 6j symbol, we will be forced to make

such choices, and as a result, our answer will not be manifestly symmetric under S4; the

presence of this symmetry, nevertheless, constitutes a strong check of our calculation.

Continuing with (3.1), we see that the integrals over x5 and x6 are simple to evaluate,

each producing a conformal partial wave, and we recognize the 6j symbol to be the overlap

of two partial waves, as previously shown in figure 1 ,
{
O1 O2 O6

O3 O4 O5

}
=
(
Ψ∆̃1,∆̃2,∆̃3,∆̃4

∆̃,J
,Ψ∆3,∆2,∆1,∆4

∆′,J ′

)
(3.5)

=

∫
ddx1 · · ·ddx4

vol(SO(d+1,1))
Ψ∆̃1,∆̃2,∆̃3,∆̃4

∆̃,J
(x1,x2,x3,x4)Ψ

∆3,∆2,∆1,∆4

∆′,J ′ (x3,x2,x1,x4) ,

where we have changed notation from figure 1, (∆5, J5) → (∆, J) and (∆6, J6) → (∆′, J ′),

to reflect the distinction now present between external operators and internal operators.
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We have also dropped the spin indices for the external operators. We will refer to the

first factor in (3.5) as an “s-channel” partial wave (12 → 34), and the second factor as a

“t-channel” partial wave (14 → 23). Instead of the somewhat cumbersome multi-line {· · · }
notation, we will often use the following notation for the integral in (3.5) in what follows:

Jd(∆, J ; ∆
′, J ′|∆1,∆2,∆3,∆4) =

(
Ψ∆̃1,∆̃2,∆̃3,∆̃4

∆̃,J
,Ψ∆3,∆2,∆1,∆4

∆′,J ′

)
=

{
∆1 ∆2 [∆′, J ′]

∆3 ∆4 [∆, J ]

}
.

(3.6)

Our task is to evaluate the integral in (3.5). In fact, (3.5) is a special case of the more

general quantity,

I∆,J =
(
Ψ∆̃1,∆̃2,∆̃3,∆̃4

∆̃,J
, 〈O1O2O3O4〉

)
(3.7)

=

∫
ddx1 · · · ddx4

vol(SO(d+ 1, 1))
Ψ∆̃1,∆̃2,∆̃3,∆̃4

∆̃,J
(x1, x2, x3, x4)〈O1(x1)O2(x2)O3(x3)O4(x4)〉 .

To get (3.5), we specialize to the case where the four-point function is a single t-channel

conformal partial wave,

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = Ψ∆3,∆2,∆1,∆4

∆′,J ′ (x3, x2, x1, x4) . (3.8)

(3.7) is a Euclidean inversion formula. It may be obtained starting from a four-point

function written in contour integral form,

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∞∑

J=0

∫ d
2
+i∞

d
2

d∆

2πi

I∆,J

n∆,J
Ψ∆1,∆2,∆3,∆4

∆,J (xi)

=

∞∑

J=0

∫ d
2
+i∞

d
2
−i∞

d∆

2πi

I∆,J

n∆,J
K∆3,∆4

∆̃,J
G∆1,∆2,∆3,∆4

∆,J (xi)

(3.9)

and applying orthogonality of partial waves. The function I∆,J has poles at physical

operator locations with residues encoding the OPE coefficients,

Res
∆′=∆

I∆′,J ∝ C12O∆,J
C34O∆,J

, (3.10)

after contour deformation away from the principal series ∆ = d
2 + iν.19

Note that plugging (3.8) into (3.9) gives

Ψ∆3,∆2,∆1,∆4

∆′,J ′ (x3, x2, x1, x4) =
∞∑

J=0

∫ d
2
+i∞

d
2

d∆

2πi

(
Ψ∆̃1,∆̃2,∆̃3,∆̃4

∆̃,J
,Ψ∆3,∆2,∆1,∆4

∆′,J ′

)

n∆,J

×Ψ∆1,∆2,∆3,∆4

∆,J (x1, x2, x3, x4) . (3.11)

19The coefficient function generally contains additional spurious poles that are cancelled by poles in

the conformal blocks when deforming the contour from the principal series. Also, to write the partial wave

expansion (3.9), one must first subtract off “non-normalizable” contributions coming from the unit operator

and scalars with dimensions below d
2
, which we have suppressed above. See [26] for details on both of these

subtleties.
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Thus, the 6j symbol (3.6), divided by an appropriate normalization factor n∆,J , gives the

coefficients for the expansion of a t-channel partial wave in s-channel partial waves.20 For

this reason, 6j symbols are sometimes referred to as “crossing kernels.”

Instead of integrating over Euclidean space, an appropriate contour deformation

of (3.7) allows one to write it in terms of an integral of the double-commutator

〈[O4,O1][O2,O3]〉 over a Lorentzian region. The result is Caron-Huot’s Lorentzian in-

version formula [25, 26]. It may be expressed, in d dimensions, as a double integral over

cross-ratios,

I∆,J = α∆,J

[
(−1)J

∫ 1

0

∫ 1

0

dχdχ

(χχ)d
|χ− χ|d−2G∆̃i

J+d−1,∆−d+1(χ, χ)
〈[O3,O2][O1,O4]〉

T∆i
(3.12)

+

∫ 0

−∞

∫ 0

−∞

dχdχ

(χχ)d
|χ− χ|d−2Ĝ∆̃i

J+d−1,∆−d+1(χ, χ)
〈[O4,O2][O1,O3]〉

T∆i

]
,

where

T∆i =
1

|x12|∆1+∆2

1

|x34|∆3+∆4

( |x24|
|x14|

)∆12
( |x14|
|x13|

)∆34

, (3.13)

and

α∆,J =− t0
2d+1

(2π)d−2Γ(J+1)

Γ(J+ d
2)

Γ(∆− d
2)

Γ(∆−1)

Γ(∆12+J+∆
2 )Γ(∆21+J+∆

2 )Γ(∆34+J+∆̃
2 )Γ(∆43+J+∆̃

2 )

Γ(J+∆)Γ(J+d−∆)
.

(3.14)

Here ∆ij ≡ ∆i−∆j . The function Ĝ∆,J is defined in [26] as the conformal block normalized

as (−χ)∆−J
2 (−χ)∆+J

2 for |χ| ≪ |χ| ≪ 1 for negative cross ratios.

While in d = 1 the Euclidean integral for the 6j symbol (3.5) is straightforward (see

appendix B), in higher dimensions that integral appears more challenging. However, in

d = 2 and d = 4, using the Lorentzian inversion formula (3.12) instead will cause the

integral to factorize into a product of one-dimensional integrals that can be explicitly

performed. Carrying out this calculation is the goal of the next two subsections.

3.1 Two dimensions

In this section we compute the 6j symbol in two dimensions for arbitrary spinning opera-

tors.21 This requires that we generalize the inversion formula to arbitrary external spins,

which we do first.22

It is convenient to use holomorphic and antiholomorphic coordinates. We define prin-

cipal series weights h = (1 + J + ir)/2 and h = (1 − J + ir)/2 with J ∈ Z and r ∈ R.

20Note that it is not possible to express a t-channel conformal block in terms of s-channel blocks in a

canonical way because these two types of functions have different single-valuedness properties. In particular,

the s-channel blocks are single-valued in Euclidean space near z, z = 0, while t-channel blocks are not single-

valued in this region. Conformal partial waves, by contrast are single-valued in Euclidean space.
21The two-dimensional 6j symbols have recently been discussed from a different, more mathematical

viewpoint in [59, 60].
22A general version of the Lorentzian inversion formula for arbitrary spinning operators in arbitrary

spacetime dimension was derived in [27]. The result here is a special case of the one in [27]. However, we

include the discussion here because the computation is very simple.
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In terms of the weights, h + h = 1 + ir = ∆ is dimension and |h − h| = |J | is spin. The

integral for the 6j symbol is convergent when all weights lie on the principal series; for

more general weights, we define it by analytic continuation. In two dimensions,

Ψhi,hi

h,h
(z1, z2, z3, z4) =

∫
d2z5

1

[z51]
h1+h−h2 [z52]

h2+h−h1 [z12]
h1+h2−h

× 1

[z53]
h3+h̃−h4 [z54]

h4+h̃−h3 [z34]
h3+h4−h̃

Performing the integral yields [61]

Ψhi,hi

h,h
(z1, z2, z3, z4) = Kh3,h4,h3,h4

h̃,h̃
Tsk

hi

2h(χ) k
hi

2h
(χ) + (1 ↔ 3, 2 ↔ 4, h↔ h̃, h↔ h̃) , (3.15)

where khi

2h(χ) are one-dimensional conformal blocks,

khi

2h(χ) ≡ χh
2F1(h− h12, h+ h34, 2h, χ) , (3.16)

the Ts are leg factors,

Ts ≡
1

[z12]h1+h2 [z34]h3+h4

[z24]
h1−h2 [z14]

h3−h4

[z14]h1−h2 [z13]h3−h4
, (3.17)

and the prefactor is a ratio of gamma functions,

Kh1,h2,h1,h2

h,h
≡ πΓ(1− 2h̃)

Γ(2h̃)

Γ(h̃− h12)Γ(h̃+ h12)

Γ(h− h12)Γ(h+ h12)
. (3.18)

Also, we use the notation [z]h = zhzh and h̃ = 1− h, h̃ = 1− h. The leg factors Ts contain

the standard dimensionful factors in a four-point function. After factoring them out, the

remaining quantities are functions of conformal cross-ratios,

χ =
z12z34
z13z24

, χ =
z12z34
z13z24

. (3.19)

3.1.1 Lorentzian inversion for general spins in two dimensions

We begin by deriving the two-dimensional Lorentzian inversion formula, for general spin-

ning operators, following the derivation in [26]. This generalization could also be ob-

tained by applying the formula of [27] in two dimensions. The result can be found in

eqs. (3.26), (3.29) and (3.30).

We would like to compute the inner product,

P =

(
Ψh̃i,h̃i

h̃,h̃
, 〈O1O2O3O4〉

)
=

∫
d2z1 · · · d2z4
vol(SO(3, 1))

Ψh̃i,h̃i

h̃,h̃
(zi)〈O1O2O3O4〉 . (3.20)

We will often use shorthand notation 〈O1O2O3O4〉, where it is implicit that Oi is at position

zi. Plugging in the shadow representation for the partial wave, this becomes

P =

∫
d2z1 · · · d2z5
vol(SO(3, 1))

× 〈O1O2O3O4〉
[z51]

h̃1+h̃−h̃2 [z52]
h̃2+h̃−h̃1 [z12]

h̃1+h̃2−h̃[z53]
h̃3+h−h̃4 [z54]

h̃4+h−h̃3 [z34]
h̃3+h̃4−h

,
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As a first step, we choose the gauge (z1, z2, z3, z4, z5) = (1, 0, z3, z4,∞), giving

P =
1

22

∫
d2z3d

2z4
〈O1O2O3O4〉
[z34]

h̃3+h̃4−h
(3.21)

(the 2−2 is the Faddeev-Popov determinant). We now Wick rotate the integrals over z3, z4
to Lorentzian signature, obtaining lightcone coordinates u = x − t and v = x + t. The

integral becomes,

P = − 1

24

∫
du3du4dv3dv4 〈O1O2O3O4〉u−h̃3−h̃4+h

34 v−h̃3−h̃4+h
34 . (3.22)

In this expression, 〈O1 · · · O4〉 now represents a time-ordered correlator in Lorentzian sig-

nature. Now, the key observation is that the integral of O3 or O4 over the v direction kills

the vacuum if h is sufficiently negative (since one can deform the v contour away from the

real axis to obtain zero if O3 or O4 act on the vacuum). This lets us replace the four-point

function with a double-commutator,23

P = −(−1)jH

24

∫

R1

du3du4dv3dv4 〈[O3,O2] [O1,O4]〉uH43vH43

− 1

24

∫

R2

du3du4dv3dv4 〈[O4,O2] [O1,O3]〉uH34vH34 , (3.23)

where H = h− h̃3 − h̃4, jH = h− h− h̃3 + h̃3 − h̃4 + h̃4, and the regions R1, R2 are given

by,

R1 : v3 < 0, v4 > 1, 0 < u3 < u4 < 1 ,

R2 : v3 > 1, v4 < 0, 0 < u4 < u3 < 1 . (3.24)

Let us write |Ts| to indicate Ts in (3.17), where each zij , zij has been replaced with its

absolute value |zij |, |zij |.24 Factoring out |Ts|, we use,

χ =
u34

(u3 − 1)u4
, χ =

v34
(v3 − 1)v4

, (3.25)

to solve for u3, v3, and then integrate over u4, v4 to obtain,

P = − 1

24
Γ(h+ h12)Γ(h+ h21)Γ(1− h+ h43)Γ(1− h+ h34)

Γ(2h)Γ(2− 2h)

×
[
(−1)jH

∫ 1

0

∫ 1

0

dχ

χ2

dχ

χ2

〈[O3,O2][O1,O4]〉
|Ts|

kh̃i

2h(χ)k
h̃i

2h̃
(χ)

+

∫ 0

−∞

∫ 0

−∞

dχ

χ2

dχ

χ2

〈[O4,O2][O1,O3]〉
|Ts|

k̂h̃i

2h(χ)k̂
h̃i

2h̃
(χ)

]
. (3.26)

where we have defined

k̂hi

2h(χ) ≡ (−χ)h2F1(h− h12, h+ h34, 2h, χ). (3.27)

23See section 2 of [26] for more details.
24This is a slight abuse of notation, as hi, hi can be complex.
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To apply the Lorentzian inversion formula, we need to compute the double commu-

tators 〈[O3,O2][O1,O4]〉 and 〈[O4,O2][O1,O3]〉 for the kinematic regions R1, R2. We take

the four-point function to have the form,

〈O1O2O3O4〉 = Ts g(χ, χ), (3.28)

and applying the appropriate iǫ prescriptions we find,

〈[O3,O2][O1,O4]〉
|Ts|

= −2 cos(π(h2 − h1 + h3 − h4))g(χ, χ)

+ eiπ(h2−h1+h3−h4)g	(χ, χ) + e−iπ(h2−h1+h3−h4)g�(χ, χ)

≡ −2dDisct[g(χ, χ)], (3.29)

where g	 or g� indicates that we should take χ around 1 in the direction shown, while χ

is held fixed. Similarly,

〈[O4,O2][O1,O3]〉
|Ts|

= −2 cos(π(h2 − h1 + h4 − h3))g(χ, χ)

+ eiπ(h3−h4+h2−h1)g�(χ, χ) + e−iπ(h3−h4+h2−h1)g	(χ, χ)

≡ −2dDiscu[g(χ, χ)], (3.30)

where now g	 or g� indicated that we should take χ around −∞ in the direction shown,

while leaving χ fixed. The subscripts dDisct,u indicate the OPE limit around which we take

discontinuities. The t-channel is 1 → 4 and 2 → 3, while the u-channel is 1 → 3 and 2 → 4.

To derive (3.26), we had to assume that h = ∆−J
2 was sufficiently negative, so that

we could deform the v contour to obtain a double-commutator. In general dimensions,

Caron-Huot’s formula for (Ψ∆,J , 〈· · ·〉) is valid if J ≥ J0, where J0 is the rate of growth

of the correlator 〈· · ·〉 in the so-called Regge limit. The important fact for us is that a

t-channel partial wave has bounded growth in the Regge limit [62]. In particular, the

conformal Casimir equation can be used to show that a t-channel partial wave behaves

as Ψ∆i

∆,J(1 − χ, 1 − χ) ∼ (χχ)
∆12−∆34

2 + const. as χχ → 0 in general dimensions. Taking

the double-discontinuity simply introduces some phases. The factor 1/T∆i in the inversion

formula contributes additional factors of (χχ)
∆1+∆2

2 , so that altogether the t-channel partial

wave behaves like a four-point function that vanishes as (χχ)
2∆1−∆34

2 for small χχ. For

principal series representations, we have Re 2∆1 − ∆34 = d, so the Lorentzian inversion

formula is analytic down to spin J0 = 1− d when acting on a t-channel partial wave. This

implies that 6j symbols are analytic in J for all nonnegative integer J .

3.1.2 Inverting a t-channel partial wave

To compute the general 6j symbol in two dimensions, we apply (3.26) to the case where

the four-point function 〈O1O2O3O4〉 is a t-channel conformal partial wave, with exchanged

operator (h′, h
′
),

〈O1O2O3O4〉 → Ψhi,hi

h′,h
′ (zi)

∣∣∣
1↔3

= Kh1,h4,h1,h4

h̃′,h̃
′

Tt gt(χ, χ) + (1 ↔ 3, 2 ↔ 4, h′ ↔ h̃′, h
′ ↔ h̃

′
),

(3.31)
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where

gt(χ, χ) ≡ kh3,h2,h1,h4

2h′ (1− χ) kh3,h2,h1,h4

2h
′ (1− χ), (3.32)

and Tt = Ts|1↔3.

To compute the double-commutators, note that,

Tt
Ts
gt(χ, χ) ∼ (1− χ)h

′−h2−h3(1− χ)h
′
−h2−h3 × (1 +O(1− χ, 1− χ)). (3.33)

Thus, dDisct simply introduces a constant factor:

− 2dDisct

[
Tt
Ts
gt(χ, χ)

]
= −4 sin(π(h

′ − h1 − h4)) sin(π(h
′ − h2 − h3))

Tt
Ts
gt(χ, χ). (3.34)

To compute dDiscu, we must expand the hypergeometric function around χ = ∞:

Tt
Ts
kh3,h2,h1,h4

2h
′ (1− χ) ∼ #χh1−h2 +#χh4−h3 .

Applying (3.30), we find that dDiscu vanishes. Since the t-channel partial wave is a linear

combination of t-channel blocks, its dDiscu vanishes as well. This is a general result:

the double-discontinuity in one channel of a partial in another channel is zero. Let us

briefly summarize the explanation from [26]. The t-channel partial wave has a shadow

representation, of schematic form

Ψt ∼
∫
ddx〈O1O4O(x)〉〈Õ(x)O2O3〉.

The u-channel double-discontinuity is proportional to the commutator 〈[O2,O4][O1,O3]〉.
In order for this to be nonzero, Ψt must have a singularity when 2 and 4 become light-like

separated and also when 1 and 3 become light-like separated. (The discontinuities of these

singularities compute the commutators.) The integrand above has no singularity when 2

and 4 are light-like. However, the integral over x can generate such a singularity if x is near

a light-like line between 2 and 4. Similar statements apply to 1 and 3. However, generically

x cannot be simultaneously light-like from all four points 1, 2, 3, 4. Thus, dDiscuΨt vanishes.

In summary, we only need to include the integral over the region R1 in (3.26), i.e. the

integral over χ, χ ∈ [0, 1]. The final result for the 6j symbol is,

J2 = Kh1,h4,h1,h4

h̃′,h̃′
(B2)

hi,hi

[h,h],[h′,h
′
]
+Kh3,h2,h3,h2

h′,h
′ (B2)

hi,hi

[h,h],[h̃′,h̃
′
]
, (3.35)

where

(B2)
hi,hi

[h,h],[h′,h
′
]
=

(−1)jH

4

Γ(h+ h12)Γ(h+ h21)Γ(h̃+ h43)Γ(h̃+ h34)

Γ(2h)Γ(2− 2h)

× sin(π(h
′ − h1 − h4)) sin(π(h

′ − h2 − h3)) Ω
hi

h,h′,h2+h3
Ωhi

h̃,h
′
,h2+h3

.

(3.36)

Kh1,h2,h1,h2

h,h
was given in (3.18), jH was given below (3.23), and

Ωhi

h,h′,p ≡
∫ 1

0

dχ

χ2

(
χ

1− χ

)p

χh13kh̃1,h̃2,h̃3,h̃4

2h (χ)kh3,h2,h1,h4

2h′ (1− χ) . (3.37)
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The quantity B2 represents the Lorentzian inversion of a t-channel conformal block (as

opposed to a t-channel partial wave). The Ωhi

h,h′,p integral can be computed in closed form

using the Mellin-Barnes representation for the hypergeometric functions in the variable
χ

1−χ .
25 Performing the integral over χ gives a δ-function in Mellin space, which trivializes

one of the Mellin-Barnes integrals. To compute the remaining Mellin-Barnes integral, we

must sum two series of poles, leading to a sum of two 4F3 hypergeometric functions:

Ωhi

h,h′,p =
Γ(2h)Γ(h′ − p+ 1)Γ (h′ − h12 + h34 − p+ 1)Γ (−h′ + h12 + h+ p− 1)

Γ (h12 + h) Γ (h34 + h) Γ (h′ − h12 + h− p+ 1)

× 4F3

(
h′ + h23, h

′ − h14, h
′ − h12 + h34 − p+ 1, h′ − p+ 1

2h′, h′ − h12 + h− p+ 1, h′ − h12 − h− p+ 2
; 1

)

+
Γ(2h′)Γ (h′ − h12 − h− p+ 1)Γ (h13 + h+ p− 1) Γ (h42 + h+ p− 1)

Γ (h′ + h23) Γ (h′ − h14) Γ (h′ + h12 + h+ p− 1)

× 4F3

(
h13 + h+ p− 1, h42 + h+ p− 1, h34 + h, h12 + h

h′ + h12 + h+ p− 1, 2h,−h′ + h12 + h+ p
; 1

)
.

(3.38)

The ordering of the parameters of the 6j symbol may be read off from (3.20) and (3.31).

In the notation of (3.6), the ordering in (3.35) is J2(∆, J ; ∆
′, J ′|∆1,∆2,∆3,∆4).

3.2 Four dimensions

The four dimensional calculation is very similar to the one in two dimensions. For simplicity,

we only consider scalar external operators. We use (3.12) with d = 4. We can exclude the

integral over χ, χ ∈ (−∞, 0) because dDiscu of a t-channel block vanishes, as discussed in

the previous subsection. In four dimensions, the conformal block is given by [64, 65]

G∆i

∆,J(xi) = T∆i

(
χχ

χ− χ
k

∆i
2

∆+J(χ)k
∆i
2

∆+J̃
(χ)− (J ↔ J̃)

)
, (3.39)

where T∆i was given in (3.13) and khi

2h(χ) was given in (3.16). The four-dimensional partial

wave was given in terms of these blocks in eq. (2.15). For convenience, we have defined the

“spin shadow” affine Weyl reflection [27],

J̃ ≡ −2− J. (3.40)

From here, it is straightforward to proceed as in two dimensions. One difference is that

in the four dimensional case, both the s and t-channel partial waves contribute factors of

1/(χ− χ). However, these factors cancel the |χ− χ|2 in the measure in (3.12), once again

leading to a sum of factorized one-dimensional integrals.

25A similar integral was recently computed in [63].
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The final result for the 6j symbol is

J4 = K∆1,∆4

∆̃′,J ′
(B4)

∆i

[∆,J ],[∆′,J ′] +K∆3,∆2

∆′,J ′ (B4)
∆i

[∆,J ],[∆̃′,J ′]
(3.41)

(B4)
∆i

[∆,J ],[∆′,J ′] = (−1)Jα∆,J

(
Θ(∆′ + J̃ ′)Ω

∆i
2
∆+J

2
,∆

′+J′

2
,
∆2+∆3

2
−1

Ω
∆i
2

∆̃+J
2

,∆
′+J̃′

2
,
∆2+∆3

2
−1

− (J ′ ↔ J̃ ′)− (∆ ↔ ∆̃) + (J ′ ↔ J̃ ′,∆ ↔ ∆̃)

)
, (3.42)

with

Θ(x) ≡ 4π2

Γ(∆3+∆2−x
2 )Γ(1− ∆3+∆2−x

2 )Γ(∆1+∆4−x
2 )Γ(1− ∆1+∆4−x

2 )
. (3.43)

In the notation of (3.6), the ordering in (3.41) is J4(∆, J ; ∆
′, J ′|∆1,∆2,∆3,∆4).

This completes our evaluation of the 6j symbol. A simple check is that in the limit that

one of the operator dimensions goes to zero, the corresponding partial wave degenerates

into a product of two-point functions. For example, in four dimensions we have,

〈O1O2O3O4〉 →
4π2

∆′

1

|x14|2∆1

1

|x23|2∆2
, (3.44)

where we have taken J = J ′ = 0. In this limit, the 6j symbol is given by relatively simple

shadow integrals,

J4 →
4π2

∆′

∫
d4x1d

4x2d
4x3d

4x4d
4x5

vol(SO(5, 1))

1

|x14|2∆1

1

|x23|2∆2

〈
Õ1Õ2Õ5

〉〈
O5Õ3Õ4

〉

=
4π2

∆′
S∆̃2,∆̃

∆̃1
S∆̃1,∆

∆̃2

1

24vol(SO(3))
. (3.45)

3.3 Extracting CFT data from 6j symbols

On what s-channel partial waves does the t-channel partial wave have support? The answer

is given by the locations of poles of the 6j symbol. To see this, we recall that the output of

the Lorentzian inversion formula (3.12) is the OPE function I∆,J appearing in the four-point

function written as in (3.9), whose poles determine the locations of physical operators after

contour deformation away from the principal series. The 6j symbol is just one instance of

I∆,J for which 〈O1O2O3O4〉 is a single t-channel partial wave.

Let us determine the locations of these poles. We keep fixed the quantum numbers

(∆i, Ji) of the external operators and the (∆′, J ′) of the t-channel exchanged operator,

and search for poles in the s-channel dimension, ∆. Examining the expression for J2 for

simplicity, we notice that the factor Ωhi

h̃,h
′
,h2+h3

contains poles of the form

1

h1 + h2 − h+ n
(n ∈ Z≥0) , (3.46)

coming from the regime of the integral (3.37) near χ = 0. These correspond to the case

where O is a double-twist operator built out of O1,O2, with h = h1+h2+n and h = h+J ,
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where J is arbitrary.26 By tetrahedral symmetry (3.2), we deduce that every vertex of the

tetrahedron corresponding to a three-point structure 〈OiOjOk〉 contributes poles of the

form
1

hi + hj − hk + n
,

1

hj + hk − hi + n
,

1

hk + hi − hj + n
. (3.47)

There are also poles in h at shadow locations, e.g. h̃i = hj + hk + n.

This is a general feature of 6j symbols: in all spacetime dimensions d, each vertex

contributes double-twist poles

1
∆i−Ji

2 +
∆j−Jj

2 − ∆k−Jk
2 + n

(n ∈ Z≥0). (3.48)

When external dimensions are pairwise equal (e.g. h13 = h24 = 0), the 6j symbol devel-

ops double poles. We can see these features directly from the d-dimensional Lorentzian

inversion formula (3.12) without having to compute the full 6j symbol, where we take the

double commutator to be the dDisc of a t-channel partial wave. For simplicity, let us take

all external operators to be identical, Oi ≡ φ. Focusing on the first line of (3.12) (the

second line will contribute identically up to a (−1)J), we substitute the following:

〈[O3,O2][O1,O4]〉
T∆i

= −2dDisct

[(
χχ

(1− χ)(1− χ)

)∆φ (
K

∆φ,∆φ

∆̃′,J ′
G

∆φ

∆′,J ′(1− χ, 1− χ) + (∆′ ↔ ∆̃′)
)]

(3.49)

= −4 sin2(π(h′ −∆φ))

(
χχ

(1− χ)(1− χ)

)∆φ (
K

∆φ,∆φ

∆̃′,J ′
G

∆φ

∆′,J ′(1− χ, 1− χ) + (∆′ ↔ ∆̃′)
)

The relevant poles in h come from the region of the integral near χ = 0. Taking the χ≪ 1

limit of the “funny block” in the measure yields

G∆̃i

J+d−1,∆−d+1(χ≪ 1, χ) ∼ χd−1−(∆−J
2 )k∆+J(χ) (3.50)

On the other hand, the χ≪ 1 limit of (3.49) takes the block near its radius of convergence,

where its leading order behavior is

G
∆φ

∆′,J ′(1− χ, 1− χ)|χ≪1 ∼ f1(χ)g1(χ) logχ+ f2(χ)g2(χ) (3.51)

where the functions fi and gi are regular at χ = 1 and χ = 0, respectively. Collecting

factors, the first line of (3.12) becomes proportional to
∫ 1

0

dχ

χ2

(
χ

1− χ

)∆φ

k∆+J(χ)

∫ 1

0
dχχ−1−(∆−J

2 )+∆φ(f1(χ)g1(χ) logχ+ f2(χ)g2(χ)) (3.52)

The χ integral generates both single and double poles at twists ∆ − J = 2∆φ + 2n for

all n ∈ Z≥0 and any J . As explained in the introduction, these are the twists of the

double-twist operators27

[φφ]n,J = φ(∂2)n∂µ1 . . . ∂µJ
φ− (traces) (3.53)

26In our conventions, h = ∆−J
2

, and h = ∆+J
2

.
27The logχ term, and hence the anomalous dimensions, is absent when external operators do not have

pairwise equal dimensions.
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The parameter n is correlated with the order in the power series expansions of g1(χ) and

g2(χ) around χ = 0.

We are now in a position to extract the CFT data that we are after, because the

residues of the poles give the contribution to the double-twist OPE data: double poles

encode their anomalous dimensions, and single poles encode their OPE coefficients with

the external operators φ. The residues are determined by the χ integral, which depends

on the form of the conformal blocks via fi(χ). In all even dimensions, the fi(χ) may be

derived from the explicit expressions for the blocks [64, 65]. In d = 2 for instance,

f1(χ) = k
2h

′(1− χ). (3.54)

Plugging into (3.52), the χ integral is just Ω
hφ,hφ,hφ,hφ

h,h′,2hφ
, previously defined in (3.37). This

is exactly what one finds by analyzing the singularities of the two-dimensional 6j sym-

bol (3.35), as we did in (3.46). By keeping track of the various constant factors above and

using the explicit form of the conformal blocks in any even d, one can derive all anomalous

dimensions and OPE coefficients of the double-twist operators (3.53).

In particular, let us consider the contribution to anomalous dimensions from a single t-

channel conformal block. These are coefficients of double-poles in the Lorentzian inversion

of the block, divided by OPE coefficients of MFT. OPE coefficients of MFT are themselves

residues of single poles of the Lorentzian inversion of the unit operator. For example,

consider equal external operators hi = hφ, hi = hφ in d = 2. We find the following elegant

formula for the contribution of a t-channel operator with quantum numbers (h′, h
′
) to

leading-twist (n = 0) anomalous dimensions in the s-channel,

γ
(2d)
0,J = Res

∆=4hφ+J

(B2)
hφ,hφ

[h,h],[h′,h
′
]

(B2)
hφ,hφ

[h,h],[0,0]

= − 2 sin2(π(h
′ − 2hφ))

sin2(π(−2hφ))

Γ(h)2Γ(2h
′
)

Γ(2h)Γ(h
′
)2

Γ(h− 2hφ + 1)

Γ(h+ 2hφ − 1)

Ω
hφ

h,h′,2hφ

Γ(1− 2hφ)2

∣∣∣∣∣∣
∆=4hφ+J

. (3.55)

Here, B2 represents the Lorentzian inversion of a single conformal block, and is given

in (3.36). Similarly, in d = 4, for the contribution of an operator with quantum numbers

∆′, J ′ we find

γ
(4d)
0,J = Res

∆=2∆φ+J

(B4)
∆φ

∆,J,∆′,J ′

(B4)
∆φ

∆,J,0,0

=
2Γ(∆φ)

2

Γ(∆φ − ∆′−J ′

2 )2
Γ(∆+J

2 )2

Γ(∆ + J)

Γ(∆+J
2 −∆φ + 1)

Γ(∆+J
2 +∆φ − 1)

1

Γ(1 + ∆′−J ′

2 −∆φ)2
(3.56)

×
(
Γ(∆′ − J ′ − 2)

Γ(∆
′−J ′−2

2 )2
Ω

∆φ
2

∆+J
2

,∆
′+J′

2
,∆φ−1

− Γ(∆′ + J ′)

Γ(∆
′+J ′

2 )2
Ω

∆φ
2

∆+J
2

,∆
′−J′−2

2
,∆φ−1

)∣∣∣∣∣
∆=2∆φ+J

,
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where B4 is given in (3.42). These results agree with large-spin perturbation theory [29,

30, 35, 66, 67] when expanded at large J .28 In addition to capturing the contribution to

anomalous dimensions of a single t-channel block, these formulas can also be interpreted

as the contribution of a t-channel Witten diagram for the exchange of a bulk field with

quantum numbers ∆′, J ′, since the dDisc of a Witten diagram is the same as the dDisc

of a block [68]. (See section 4.1.) It is completely straightforward to obtain anomalous

dimensions for higher n = 1, 2, . . . by taking residues of other families of poles ∆ = 2∆φ +

2n + J . By using the 6j symbol itself, Jd, instead of the Lorentzian inversion of a block,

Bd, we can determine the contribution of a partial wave in the t-channel to anomalous

dimensions in the s-channel. The resulting formulae match, for example, the anomalous

dimensions derived in eqs. 4.11 and 4.20 of [32].

3.4 6j open questions

We computed general 6j symbols in d = 1, 2 and a large class of 6j symbols in 4d using

the Lorentzian inversion formula. (All other 6j symbols in 4d can be obtained by applying

weight-shifting operators to the case we computed [42], or by applying the generalized

Lorentzian inversion formula [27].) For other values of d, we do not know a simple way

to proceed using this technique: in odd d, the explicit form of the partial waves is not

known, while in even d > 4, somewhat surprisingly, the Lorentzian inversion integral does

28Our results (3.55), (3.56) disagree with those of [33] for an interesting reason. The calculations of [33]

used an exact formula for an integral [25]

∫ 1

0

dz

z2
κ2hk2h(z)dDisc[ya] =

1

Γ(−a)2
Γ(h)2

Γ(2h− 1)

Γ(h− a− 1)

Γ(h+ a+ 1)
, (3.57)

where y = 1−z
z

and κ2h is given in [25]. By expanding t-channel blocks in powers of y, one can attempt

to perform the Lorentzian inversion term-by-term using (3.57) and then resum the result. This precisely

reproduces the solution to large-spin perturbation theory originally derived in [67]. (The right-hand side

of (3.57) is Sa(h), defined in [67].) However, while the expansion in y works well near z = 1, it is poorly

behaved near z = 0. This is reflected on the right-hand side of (3.57) which has poles at h = a + 1 − k,

k ∈ Z≥0. For larger a, these poles move farther to the right, resulting in a highly oscillatory function of

h. Because the expansion in y is only convergent for z ∈ [1/2, 1], it ultimately only gives an asymptotic

large-spin expansion for OPE data (which is determined by z ∼ 1) — it does not give correct result at finite

spin (which depends on all z ∈ [0, 1]).

The Mellin-space version of expanding in y is to miss certain poles in Mellin variables that contribute

when inverting a block. The inverse of a block with dimension ∆′ should decay in the right-half ∆′ plane,

so that it is picked up when deforming the contour in the spectral integral over ∆′.

If instead of inverting ya and resumming, one directly inverts k2h′(1− z) (or any function well-behaved

near z = 0), then unphysical poles are not present. Indeed, unphysical poles cancel between the two 4F3’s

in the formula (3.38) for Ωhi

h,h′,p
. We have checked that if we take our result (3.56) for γ

(4d)
0,J and artificially

remove one of the 4F3’s from each of the Ω’s, then we reproduce the formulas of [33]. This procedure

of removing a 4F3 also reproduces the formulas of [34, 35], which resummed the asymptotic large-spin

expansion but did not provide formulas at finite spin. Unphysical poles in h of the form (3.57) appear in

all of [33–35] and are discussed in [35].

These subtleties show why the Lorentzian inversion formula is a concrete improvement over the naive

procedure of solving the all-orders large-spin expansion and trying to resum it manually.

We thank David Poland, Soner Albayrak, Charlotte Sleight, and Massimo Taronna for discussion on

these points.
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not factorize into one-dimensional integrals. It would obviously be useful to find a way

to perform these integrals. Our method of computing 6j symbols breaks most of the

manifest tetrahedral symmetry of the starting point (3.1). Nevertheless, we have checked

numerically that the resulting expressions exhibit tetrahedral symmetry. In all cases, the

result can be written in terms of so-called “balanced” 4F3 hypergeometric functions, i.e.

4F3’s where the sum of the arguments in the first row minus the arguments in the second

row is −1. These functions enjoy nontrivial identities that are presumably responsible for

tetrahedral symmetry.29 The same functions appear in the 6j symbol for SU(2).

4 AdS applications of 6j symbols

We now show how the 6j symbol plays a central role in the computation of AdS amplitudes.

4.1 Tree-level

Consider a four-point function of identical scalars φ for simplicity. Restricting to tree-level

in AdS, the φ× φ OPE contains the operators

φ× φ ∼
∑

∆′,J ′

O∆′,J ′ +

∞∑

n=0

∞∑

J=0

[φφ]n,J (tree-level) (4.1)

where O∆′,J ′ are single-trace conformal primaries. The AdS amplitude Atree = 〈φφφφ〉tree
is a sum of exchange diagrams in the s-, t- and u-channels, with one such diagram for every

bulk cubic coupling λφφφ∆′,J′ , where φ∆′,J ′ is dual to O∆′,J ′ . There may also be φ4-type

contact interactions.

The information contained in Atree is the set of OPE data in (4.1). Given some set of

single-traces {O∆′,J ′}, the double-trace OPE data in (4.1) — i.e. the leading corrections to

the MFT dimensions ∆n,J = 2∆φ+2n+J and three-point functions 〈φφ[φφ]n,J〉 — receive

contributions fixed by crossing symmetry. In fact, the 6j symbol compactly packages

essentially all of the double-trace OPE data. Writing Atree in contour-integral form (3.9),

the main observation, to be explained below, is the following:

The OPE function I∆,J/n∆,J is a sum of 6j symbols, one for each single-trace

operator O∆′,J ′, plus terms non-analytic in J .

By “6j symbol” we mean the inversion of the conformal block G∆′,J ′ rather than the

partial wave Ψ∆′,J ′ — that is, Bd, not Jd. Note that for O∆′,J ′ exchange, the 6j symbol

fully determines the OPE data only for spins J > J ′, due to the Regge bound discussed

below (3.30). In particular, this excludes the conformal block for O∆′,J ′ itself, a fact to

which we return in section 4.3. Likewise, Atree may have contact contributions with N∂

derivatives, which contribute only to double-trace OPE data of spin J ≤ ⌊N∂/2⌋; these are
also not captured by the 6j symbol. In all, we may write

I∆,J

n∆,J
=
∑

∆′,J ′

λ2φφO∆′,J′

(
Bd(∆, J ; ∆

′, J ′|∆φ,∆φ,∆φ,∆φ)+(J ≤ J ′ terms)
)
+(contact terms)

(4.2)

29We thank Petr Kravchuk for these observations.
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In other words, the double-trace part of the OPE decomposition of the AdS exchange

diagrams is, modulo low-spin non-analyticities, determined by the residues of the inverted

blocks Bd.

It is straightforward to prove (4.2). The idea is that dDisc of the sum of exchange

diagrams kills all but the single-trace conformal blocks, whose Lorentzian inversion is the

definition of the 6j symbol. Consider the sum of exchange diagrams from a single O∆′,J ′ ,

W∆′,J ′ =W
(s)
∆′,J ′ +W

(t)
∆′,J ′ +W

(u)
∆′,J ′ (4.3)

The first statement is that dDisc of a crossed-channel exchange diagram vanishes: e.g.

dDisct[W
(s)
∆′,J ′ ] = dDisct[W

(u)
∆′,J ′ ] = 0 (4.4)

This follows from the fact that a crossed-channel exchange diagram branches into direct-

channel double-trace blocks only, and dDisc kills direct-channel double-trace blocks:

dDisct[G
(t)
∆′,J ′ ] = 2 sin2

(
π

(
∆′ − J ′

2
−∆φ

))
G

(t)
∆′,J ′ (4.5)

These zeroes are visible in our 6j symbols (3.35) and (3.41), and are present in all d. Next,

dDisc of a direct-channel exchange diagram is equivalent to dDisc of the single-trace block

alone:

dDisct[W
(t)
∆′,J ′ ] = dDisct[G

(t)
∆′,J ′ ] (4.6)

This follows because the exchange diagram branches into one single-trace block plus a sum

of double-trace blocks, but the latter are killed by the zeroes (4.5). Altogether, then

dDisct[W∆′,J ′ ] = dDisct[G
(t)
∆′,J ′ ] (4.7)

Plugging the result into the Lorentzian inversion formula (3.12) by recalling the defini-

tions (3.29) and (3.30), and adding the dDiscu pieces (which just multiplies (4.7) by an

overall 1+ (−1)J), the l.h.s. yields the s-channel OPE function I∆,J/n∆,J for the exchange

diagrams, while the r.h.s. yields the 6j symbol with the shadow contribution projected

away. This concludes the proof.

An interesting aspect of (4.7) is that conformal blocks are represented in AdS as

geodesic Witten diagrams [68]. Thus, the geometrization of the dDisc action (4.7) is that

the integration over bulk vertices becomes restricted to geodesics.

A holographic CFT with a weakly coupled, local bulk dual has a gap to single-trace

higher-spin operators (∆gap → ∞): all single-trace operators have J ≤ 2. Likewise, there

are only three quartic interactions — φ4, (∂φ)4, (∂φ)2(∂2φ)2 — that are consistent with the

chaos bound [69], all of which contribute only to J ′ ≤ 2.30 So for such theories, the 6j term

in (4.2) gives the complete answer for J > 2. Such CFTs typically have a finite number of

light single-trace operators (“sparseness”), so (4.2) is a finite sum.

30Of these, the last two are expected to be suppressed by powers of ∆gap predicted by dimensional

analysis, based on studies of higher-derivative contributions to cubic vertices and effective field theory

reasoning [25, 70–72]. However, this has not been proven.
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To summarize, 6j symbols determine the full OPE content of AdS tree-level exchange

diagrams W∆′,J ′ for all J > J ′: all double-trace data for [φφ]n,J>J ′ are sums of residues

of the 6j symbol, in the manner described in section 3.3. (The J ≤ J ′ corrections as

determined from crossing symmetry may be found in [31].) In (3.55) and (3.56), we gave

explicit formulas for the leading-twist anomalous dimensions in d = 2, 4. This is a concrete

situation where dDisc[A] is simpler than A, but can nevertheless be used to construct

(almost) the full amplitude.31 The preceding discussion applies without modification to

the case of distinct external operators.

4.2 One-loop

We now compute one-loop diagrams in AdS — specifically, n-gons, which have n external

legs of arbitrary spin, connected by cubic vertices to an internal loop made of scalars, and

show that they can be written as glued 6j symbols. The procedure used to prove this is

simple:

1) Write all internal propagators in the split representation.

2) Do the AdS three-point integrals.

From our expressions, it will be apparent that structure of the one-loop n-gon AdS diagram

is the same as that of the SYK bilinear n-point planar diagrams with no exchanged melons.

Let us first set up our notations.32 We work in Poincaré AdS, with bulk coordinates

y = (z, ~x), where the radial coordinate is z. We use shorthand

dy ≡ dd+1y
√
g(y) , dx ≡ ddx . (4.8)

We write scalar bulk-boundary propagators as K∆(x1, y), bulk-bulk propagators as

G∆(y1, y2), and harmonic functions as Ω∆(y1, y2). The latter may be defined by

Ων(y1, y2) =
iν

2π
(Gν(y1, y2)−G−ν(y1, y2)) , (4.9)

where we have introduced the spectral parameter ν,

∆ =
d

2
+ iν . (4.10)

We sometimes use ν as a subscript, with the understanding that it is related to ∆ by (4.10),

in order to make the shadow transformation more obvious. We normalize the bulk-

boundary propagators as

K∆(x1, y) = C∆
(

z

z2 + (~x− ~x1)2

)∆

, (4.11)

31One may construct the amplitude using a dispersion relation of the form A(z, z) =∫
dz′dz′K(z, z; z′, z′)dDisc[A(z′, z′)] for some kernel K(z, z; z′, z′), which can be determined by plugging

the inversion formula back into the original expression for the four-point function [73].
32Various identities used below may be found in many works, e.g. [12, 74]. We use the conventions of [32].

– 34 –



J
H
E
P
0
3
(
2
0
1
9
)
0
5
2

Figure 7. The AdS three-point triangle, A1−loop
123 . Orange points denote AdS integration.

where

C∆ =
Γ(∆)

2πd/2Γ(∆ + 1− d/2)
. (4.12)

With this choice of normalization of the bulk-to-boundary propagator, the two-point func-

tion of the dual operator is normalized as

〈O(x1)O(x2)〉 =
C∆
x2∆12

. (4.13)

The analogous normalization constant for a spinning operator is C∆,J = C∆
(
∆−1+J
∆−1

)
. In

all that follows, we set the bulk cubic couplings to one.

4.2.1 Three-point triangle

We start with the one-loop, three-point triangle diagram in AdS. For simplicity, we take all

operators to be scalars; the generalization to external spins will follow trivially. The exter-

nal legs are labeled O1,2,3, and the internal legs are O4,5,6, with corresponding conformal

dimensions, as in figure 7. The diagram is computed as

A1−loop
123 (xi)=

∫
dy1dy2dy3Kν1(x1,y1)Kν2(x2,y2)Kν3(x3,y3)Gν4(y1,y2)Gν5(y2,y3)Gν6(y3,y1),

(4.14)

where the three integrals run over all of AdS. Due to conformal symmetry,

A1−loop
123 (xi) = C1−loop

123 〈O1(x1)O2(x2)O3(x3)〉 . (4.15)

Let’s first study the simpler object — call it A1−loop
123 — where the propagators Gν ’s

are replaced by harmonic functions Ων :

A1−loop
123 (xi)=

∫
dy1dy2dy3Kν1(x1,y1)Kν2(x2,y2)Kν3(x3,y3)Ων4(y1,y2)Ων5(y2,y3)Ων6(y3,y1) .

(4.16)
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Figure 8. The AdS harmonic three-point triangle, A1−loop
123 , after using the split representation on

internal lines. Boundary vertices arising from the split representation are also integrated over.

As we will recall in a moment, A1−loop
123 is simply a triple spectral integral over A1−loop

123 .33

Again, by conformal symmetry,

A1−loop
123 (xi) = C1−loop

123 〈O1(x1)O2(x2)O3(x3)〉 . (4.17)

for some C1−loop
123 . To evaluate this, we use the split representation for the Ωνi ’s,

Ων(y1, y2) =
ν2

π

∫
dxKν(x1, y1)K−ν(x1, y2) , (4.18)

to write A1−loop
123 as three three-point functions stitched together along the boundary, as in

figure 8:

A1−loop
123 (xi) =


 ∏

i=4,5,6

ν2i
π



∫
dx4dx5dx6

(∫
dy1Kν1(x1, y1)K−ν6(x6, y1)Kν4(x4, y1)

)

×
(∫

dy2Kν2(x2, y2)K−ν4(x4, y2)Kν5(x5, y2)

)

×
(∫

dy3Kν2(x3, y3)K−ν5(x5, y3)Kν6(x6, y2)

)
. (4.19)

Each object in parenthesis is itself a boundary three-point function, times a factor obtained

by performing the AdS integral:

∫
dy1Kν1(x1, y1)K−ν6(x6, y1)Kν4(x4, y1) = bν1,−ν6,ν4〈O1(x1)Õ6(x6)O4(x4)〉 (4.20)

33For this reason, A1−loop
123 was referred to as a pre-amplitude in [75]. We point out that pre-amplitudes

correspond to physical quantities: namely, they may be seen as linear combinations of amplitudes (i.e. CFT

correlators) in which one employs either standard or alternative quantization for the fields propagating in

the internal lines. This is a loop-level version of the interpretation of the conformal partial wave, represented

in AdS as an exchange diagram with a harmonic function, as a difference of four-point functions in two

CFTs related by a double-trace RG flow [32, 76].
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where, in terms of the ∆’s (e.g. [74, 77]),

b∆1∆2∆3 = C∆1C∆2C∆3,J3 (4.21)

× πd/2Γ(∆1+∆2+∆3+J3−d
2 )Γ(∆1+∆2−∆3+J3

2 )Γ(∆2+∆3−∆1+J3
2 )Γ(∆3+∆1−∆2+J3

2 )

21−J3Γ(∆1)Γ(∆2)Γ(∆3 + J3)
.

(We have included the spin of O3 for later generalization to the spinning case.) The AdS

integrals are now gone, and we have

A1−loop
123 (xi) = fAdS(∆i)× I

(2)
{∆i}

(xi) , (4.22)

where fAdS(∆i) is a kinematic prefactor,

fAdS(∆i) ≡
ν24ν

2
5ν

2
6

π3
bν1,−ν6,ν4bν2,−ν4,ν5bν3,−ν5,ν6 , (4.23)

and34

I
(2)
{∆i}

(xi) ≡
∫
dx4dx5dx6〈O1(x1)Õ6(x6)O4(x4)〉〈O2(x2)Õ4(x4)O5(x5)〉

× 〈O3(x3)Õ5(x5)O6(x6)〉 .
(4.24)

Contracting both sides of (4.22) with a shadow three-point structure,

C1−loop
123 =

1

t0
(A1−loop

123 (xi), 〈Õ1Õ2Õ3〉) (4.25)

where t0 = (〈O1O2O3〉, 〈Õ1Õ2Õ3〉) = (2dvol(SO(d − 1)))−1 was computed in (2.38). The

conformally covariant pairing is proportional to the 6j symbol computed earlier,

Jd(∆̃4, 0;∆3, 0|∆6, ∆̃1, ∆̃2, ∆̃5) ≡
(
I
(2)
{∆i}

(xi), 〈Õ1Õ2Õ3〉
)
. (4.26)

Therefore, C1−loop
123 equals a d-dimensional 6j symbol times a universal kinematic prefactor:

C1−loop
123 =

fAdS(∆i)

t0
× Jd(∆̃4, 0;∆3, 0|∆6, ∆̃1, ∆̃2, ∆̃5) . (4.27)

Note that if we had used the split representation on only two of the three internal legs,

we would have obtained a convolution of two three-point functions and a conformal partial

wave, the latter being represented as a bulk four-point exchange diagram with Ω∆ exchange.

This makes the relation to the overlap of two four-point conformal partial waves more

transparent; the operators O3 and O4 are the internal operators when the diagram is

viewed as an overlap of conformal partial waves, as is visible in figure 8.

34It is perhaps useful to write the bulk diagram slightly differently, using the bulk-boundary identity

K−ν(x1, y) = −2iν

∫
dx2Kν(x2, y)〈Õ1(x1)Õ2(x2)〉

where we normalize the shadow two-point function as in (4.13). This allows us to trade shadow operators

Õ’s for O’s in (4.24).
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Now we return to the full one-loop triangle diagram, A1−loop
123 (xi), where the Ω∆i

are

replaced by bulk-to-bulk propagators G∆i
. The propagators admit a split representation

G∆(y1, y2) =

∫ ∞

−∞

dν

(ν2 + (∆− d
2)

2)
Ων(y1, y2) , (4.28)

which implies that A1−loop
123 is also a spectral integral over A1−loop

123 ,

A1−loop
123 (xi) =

∏

i=4,5,6

∫ ∞

−∞

dνi

(ν2i + (∆i − d
2)

2)
A1−loop

123 (xi) . (4.29)

Since ∆4,5,6 are only internal leg variables, the OPE coefficient C1−loop
123 is just a spectral

integral over C1−loop
123 ,

C1−loop
123 =


 ∏

i=4,5,6

∫ ∞

−∞

dνi

(ν2i + (∆i − d
2)

2)


C1−loop

123 , (4.30)

where C1−loop
123 was determined in (4.27).

We have thus reached our final result: in any dimension d, the one-loop correction

to 〈O1O2O3〉 is a spectral integral over the 6j symbol for the conformal group, times the

universal kinematic factor fAdS(∆i). Both the 6j symbol and fAdS(∆i) are meromorphic

functions, whose poles and zeroes may be read off from our explicit expressions and the

discussions in sections 3.3 and 4.1; this concludes our computation.

The generalization of the above to the case of external spinning operators O1,2,3, still

with internal scalars O4,5,6, is immediate. The result follows from the same manipula-

tions, which only really involve the internal scalar propagators. Now we have a sum over

structures,

A1−loop
123 (xi) =

∑

a

C1−loop
123,a 〈O1(x1)O2(x2)O3(x3)〉a (4.31)

The result for C1−loop
123,a is given by essentially the same formula, now with a sum over

structures:

C1−loop
123,a = fAdS(∆i)× (t−1

0 )ab Jd(∆̃4, 0;∆3, J3|∆6, ∆̃1, ∆̃2, ∆̃5)b (4.32)

where (t0)
ab was defined in (2.49).

4.2.2 n-gons

This story generalizes to more legs, with arbitrary external spins. We focus on n-gons,

which are one-loop diagrams with n external legs and only cubic vertices. We take the

external legs to have labels i = 1, 2, . . . , n, and internal legs with labels i = n + 1, n +

2, . . . , 2n, as in figure 9. Let us introduce the n-point pre-amplitude A1−loop
n (xi), which is

the n-gon with harmonic functions in the internal legs. Equivalently, it is the integrand of

the n spectral integrals of A1−loop
n (xi):

A1−loop
n (xi) =

(
2n∏

i=n+1

∫ ∞

−∞

dνi

(ν2i + (∆i − d
2)

2)

)
A1−loop

n (xi) , (4.33)
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Figure 9. The AdS n-gon.

where νi are spectral parameters of the n internal legs.

One can perform the same straightforward procedure for A1−loop
n (xi) as was done in

the previous section for the triangle diagram, A1−loop
3 (xi): one uses the split representation

for the Ωνi and then does the AdS integrals. For the 4-gon (box diagram) the result is a

gluing of four three-point structures,

A1−loop
4 (xi)= fAdS,4(∆i)

∫
dx5dx6dx7dx8

(
〈O1(x1)Õ6(x6)O5(x5)〉〈O2(x2)Õ7(x7)O6(x6)〉

×〈O3(x3)Õ8(x8)O7(x7)〉〈O4(x4)Õ5(x5)O8(x8)〉
)
, (4.34)

where fAdS,4(∆i) is the n = 4 analog of (4.23). The n-gon generalization is evident.

This integral, and the integral in the evaluation of the AdS triangle diagram (4.24),

are of course familiar from our study of the SYK correlation function. Indeed, the integral

that appeared in the evaluation of the AdS triangle diagram, eq. (4.24), is identical to the

one that appeared in the planar bilinear three-point diagram in SYK, eq. (2.46), while

eq. (4.34) is identical to the one that appeared in the evaluation of the planar bilinear

four-point diagram in SYK with no exchanged melons, eq. (2.62).35

This connection continues to hold for any n: A1−loop
n equals a simple prefactor times

the planar bilinear n-point function of SYK with no exchanged melons,

A1−loop
n (xi) = fAdS,n(∆i)

× (SYK bilinear n-point planar diagram with no exchanged melons)

where the relevant SYK diagram for n = 3 was shown in figure 2(a), for n = 4 in figure 5,

and the generalization to higher n is evident. In addition, the right hand side above denotes

just the functional form of the integral that appears — i.e. without factors of b, J, c∆,J or

shadow factors from amputation — in the same sense observed above in the connection

between the AdS triangle diagram and the SYK bilinear three-point planar diagram. The

35The AdS diagrams were set up to be slightly more general, in that there are distinct internal operators

instead of just one (φ). To generalize on the SYK side, one can generalize the diagrams to involve multiple

species φ, something like what occurs in the flavored SYK model [52].
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prefactor above is given by the product of AdS kinematic factors arising from each use of

the split representation:

fAdS,n(∆i) =
2n∏

i=n+1

ν2i
π
bνi+1−n,−νi,νi+1 , where ν2n+j ≡ νn+j . (4.35)

4.2.3 Example: box diagram (n = 4) and OPE structure

Let us give a further treatment of the particularly interesting case n = 4, the box diagram,

with internal scalars O5,6,7,8 and external operators O1,2,3,4 with spins J1,2,3,4. We follow

the labeling convention of figure 9.

The pre-amplitude for the box diagram was given by eq. (4.34). It would be useful

to have an expression that is in terms of conformal blocks. In fact, since (4.34) already

appeared in the context of the SYK model (in the form of eq. (2.62)), we can use the

results found there, which showed that eq. (2.62) is equal to the conformal block expansion

eq. (2.63). We need only to generalize eq. (2.63), to account for the distinct internal opera-

torsO5,6,7,8. This involves using ρ
MFT(∆, J) for the disconnected correlator 〈O5O5〉〈O7O7〉,

which is, following the same steps that led to (2.40),

ρMFT(∆, J) =
t0
n∆,J

S
∆̃5,[∆,J ]

∆̃7
S
∆7,[∆,J ]

∆̃5
. (4.36)

Thus, the conformal block expansion of A1−loop
4 is,

A1−loop
4 (xi) =

∞∑

J=0

∫ d
2
+i∞

d
2
−i∞

d∆

2πi
ρ1−loop
4;a,b (∆, J)G∆i,Ji;a,b

∆,J (xi) . (4.37)

where

ρ1−loop
4;a,b (∆, J) ≡ fAdS,4(∆i)×K∆5,∆7

[∆̃,J ]
ρMFT(∆, J) I(2)

∆1,J1,∆2,J2,∆,J ;a I
(2)
∆,J,∆3,J3,∆4,J4;b

. (4.38)

Recalling that I(2)
∆1,J1,∆2,J2,∆,J ;a and I(2)

∆,J,∆3,J3,∆4,J4;a
are just 6j symbols, we have

I(2)
∆1,J1,∆2,J2,∆,J ;a = (t−1

0 )abJd(∆6, 0;∆, J |∆̃1, ∆̃5,∆7, ∆̃2)b ,

I(2)
∆,J,∆3,J3,∆4,J4;a

= (t−1
0 )abJd(∆8, 0;∆, J |∆5, ∆̃4, ∆̃3, ∆̃7)b .

(4.39)

This is our final expression for the conformal block decomposition of the box pre-amplitude

A1−loop
4 , with external operators O1,2,3,4 of arbitrary spins and arbitrary internal scalars

O5,6,7,8, in the s-channel 12 → 34. One may thus view the construction of the box diagram

as two 6j symbols “glued together” by the conformal block.

In general, diagrams involving glued three-point functions can be simplified into prod-

ucts of 6j symbols by repeatedly applying crossing transformations (3.11). For example,
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in the case of a box diagram, we can write schematically

=
∑

J

∫
d∆

{
· · ·

}

∆, J

=
∑

J

∫
d∆

{
· · ·

}{
· · ·

}

∆, J
. (4.40)

In the notation above, the dots represent conformal three-point functions, and lines between

them represent conformally-invariant integrals over common points
∫
ddxO(x)Õ(x). The

{· · · } represent 6j symbols, and we suppress their arguments for brevity. In the first line,

we have interpreted the right-half of the box diagram as a partial wave and applied a

crossing transformation, expressing it as an integral of a 6j symbol times a partial wave in

the other channel. In the second line, we use the fact that a triangle diagram is itself a 6j

symbol to obtain the integral of a partial wave times a product of two 6j symbols. This

is what the formulas (4.37) and (4.38) express in more detail for the case of the box pre-

amplitude in AdS, which we previously showed to be a gluing of four three-point functions.36

Note that when some of the lines represent identical operators, the box diagram can be

automatically crossing-symmetric. In this case, the expression on the last line of (4.40) is

a crossing symmetric combination of partial waves. This solution to crossing symmetry

was written down in [1]. One can apply similar manipulations to (4.40) to express n-gon

diagrams in terms of integrals of multi-point partial waves times products of 6j symbols,

and similarly for higher-loop amplitudes.

The full amplitude A1−loop
4 , and hence its conformal block decomposition, follows from

spectral integration of (4.37). One new feature of the conformal block decomposition of

the one-loop diagrams, relative to tree-level, is the exchange of the double-trace operators

[O5O7]n,ℓ. In the bulk, these come from the “AdS unitarity cut” that crosses the two inter-

nal lines [14, 15]. Consequently, the full amplitude A1−loop
4 must have simple poles at twists

τ = ∆5 +∆7 + 2n (n ∈ Z≥0) . (4.41)

(There are also other poles, already present at tree-level, due to [O1O2]n,ℓ and [O3O4]n,ℓ
exchanges.) Bearing in mind that A1−loop

4 is a pre-amplitude, we can ask whether

ρ1−loop
4;a,b (∆, J) has the right poles. The poles (4.41) should be visible already in the

pre-amplitude, because they do not come from the region of integration where the bulk

points collide (unlike the [O1O2]n,ℓ and [O3O4]n,ℓ poles).37 Examining ρ1−loop
4;a,b (∆, J), we

36In this case, the right half of the box in (4.40) is literally the AdS geometrization of a partial wave (up

to a constant prefactor).
37A useful analogy at tree-level is the following. A four-point exchange Witten diagram where the internal

line is a harmonic function, not a propagator, is dual to a conformal partial wave for single-trace exchange.

In the direct-channel decomposition, there are obviously no double-traces. In the bulk, this happens because

the diagram is a difference of two exchange diagrams for bulk-bulk propagators with different quantizations,

and the contact region of integration, which gives rise to the double-trace exchanges in the dual CFT, cancels

in the difference.
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find these poles in S
∆7,[∆,J ]

∆̃5
:

S
∆7,[∆5+∆7+2n+J+ǫ,J ]

∆̃5
≈ (−1)n+1

ǫ

2πd/2 Γ
(
d
2 −∆5

)
Γ(∆5 + J + n)

n!Γ(∆5)Γ
(
d
2 −∆5 − n

)
Γ
(
d
2 + J + n

) . (4.42)

Indeed, these are the only poles of ρ1−loop
4;a,b (∆, J) at ∆ = ∆5 +∆7 + 2n+ J . This provides

a check on our computation.38

4.3 AdS open questions

In d = 2, one can also define a 6j symbol for the Virasoro algebra. This has, in fact, been

computed explicitly as a contour integral in [78, 79]. In a semiclassical limit, the Virasoro

6j symbol may be computed as the volume of a tetrahedron in hyperbolic space [80].

One might ask whether there is an analogous geometric picture in Euclidean AdS for the

higher-dimensional 6j symbols for the conformal group, perhaps involving the gluing of

two geodesic Witten diagrams [68].

In our tree-level discussion, recall the absence of the single-trace OPE data in the

Lorentzian inversion of exchange Witten diagrams W∆′,J ′ : since the inversion formula is

only valid down to spins greater than the Regge spin of the object being inverted, it is

not possible to recover the O∆′,J ′ exchange in CFT from Lorentzian inversion of W∆′,J ′ ,

despite the obvious fact that W∆′,J ′ includes the O∆′,J ′ conformal block. Nor does the 6j

symbol, whose only poles are at double-trace twists, have a pole at twist ∆′ − J ′. This

reflects the fact that light single-trace operators in holographic CFTs seem not to belong

to families analytic in spin: in CFTs with parametrically large higher spin gap, ∆gap ≫ 1,

all higher-spin members parametrically decouple.39 This suggests the possibility of relating

the spectra of low-energy elementary fields and high-energy states in consistent theories

of AdS quantum gravity, by combining the demand for single-trace poles from Lorentzian

inversion with the requirement of consistent Regge behavior.

We have computed the four-point box diagram in AdS for internal scalars and external

spinning operators. It would be worthwhile to do a thorough analysis of our result, e.g.

extracting the dual CFT OPE data for all double-trace operators. It also would be valuable

to derive our result for the box diagram in different ways: for instance, using a crossing

symmetry-based derivation a lá [15] or the Lorentzian inversion formula, or in Mellin space.

Further extension of the crossing technique in [16, 19, 81] has essentially developed the

necessary ingredients. On the other hand, our derivation provides an interpretation of the

one-loop amplitudes as a gluing of 6j symbols. It would be interesting to develop a set of

“Feynman rules” for this gluing with which one generates higher-loop amplitudes.

A simple case of our result is the pre-amplitude of the box diagram in φ3 theory,

or other pure-scalar theories in AdS. Together with previous results for the four-point

38Note that the operators [O5O7]n,ℓ are singlet bilinears from the SYK perspective of this diagram.
39A stark version of this issue concerns a theory of “pure” Einstein gravity, i.e. general relativity with no

other parametrically light elementary fields, dual to a large N CFT whose only light operators are the unit

operator and the stress tensor. In this case, the question is how to recover the stress tensor contribution

from the Lorentzian inversion formula.
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bubble and triangle diagrams [12, 14, 15], we now have a catalog of all one-loop, four-point

amplitudes of scalar theories in AdS. In flat space, four-point boxes, three-point triangles,

two-point bubbles and tadpoles form a basis for all one-loop amplitudes [82]; moreover, the

one-loop scalar amplitudes appear after imposing unitarity cuts of higher-loop amplitudes.

Are there sharp analogous statements in AdS?
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A Further properties of the four-point function

In this appendix we discuss some properties of the four-point function of fundamentals in

the d-dimensional SYK model.

Non-singlet operator dimensions from large spin asymptotics. As is by now well-

known, the large spin spectrum of any CFT contains double-twist operators of asymptoti-

cally large spin [29, 30]. For any two conformal primaries φ1 and φ2, there exist “double-

twist” primaries [φ1φ2]n,J , of schematic form

[φ1φ2]n,J = φ1∂
2n∂µ1 . . . ∂µJ

φ2 − (traces) , (A.1)

with twists τ = ∆−J asymptotically approaching ∆1+∆2+2n at large spin J ≫ 1, where

n ∈ Z≥0. At large N , these are double-trace operators, that exist for all J .

In section 2.1.3 we computed the four-point function 〈φiφiφjφj〉, expanding it in terms

of conformal blocks of the singlet operators [φiφi]n,J , whose dimensions are given by solu-

tions to k(∆, J) = 1, where k(∆, J) are the eigenvalues of the kernel, (2.30). Here we will

look at the kernel at large spin, and extract the anomalous dimensions γn,J of [φiφi]n,J in a

1/J expansion. Applying the lightcone bootstrap to this correlator, computed above in the

singlet channel φiφi → φjφj , allows us to read off the dimensions of low-twist non-singlet

operators in the crossed channel φiφj → φiφj .
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We evaluate the kernel k(∆, J) at ∆ = 2d
q + J + γ0,0, expand in J ≫ 1 and γ0,0 ≪ 1,

and set k(∆, J) = 1. This yields the anomalous dimension γ0,0 for the leading scalar

double-twist operator, [φiφi]0,0:

γ0,0 ≈
2(q − 1)Γ

(
d(q−2)

2q

)
Γ
(
d(q−1)

q

)

Γ
(
d(2−q)

2q

)
Γ
(
d
q

)
Γ
(
d(q−2)

q

) J
−

d(q−2)
q . (A.2)

Note that this is negative for all unitary q, and becomes zero precisely at the unitarity

bound q ≤ 2d
d−2 . We now match this to the lightcone bootstrap formula [29, 30],

γ0,0 ≈ −cτ∗J−τ∗ , (A.3)

where τ∗ is the twist of Oij , the lowest-twist operator in the φi × φj OPE. The coefficient

is

cτ∗ =
21−J∗Γ (τ∗ + 2J∗) Γ(∆φ)

2

Γ
(
τ∗
2 + J∗

)2
Γ
(
∆φ − τ∗

2

)2
f2φiφjOij

C2
φφCOO

, (A.4)

where fφiφjOij
is the OPE coefficient, and with norms defined as 〈O(x)O(0)〉 = COO/|x|2∆i .

By matching to (A.2), we read off the dimension of the tensor operator Oij ,

∆(Oij) =
d

q
(q − 2) . (A.5)

This simple result — with vanishing order one anomalous dimension — may be motivated

heuristically40 by cutting the ladder diagram (figure 3) “along the middle”, representing

the φiφj → φiφj channel. The cut crosses (q − 2) lines, each of which represents a φ field

with ∆ = d/q. The fact that ∆(Oij) is given by the free value implies that in the large N

melonic limit, the two-point function of this class of operators receives no renormalization

due to ladder diagrams. Similar behavior was observed for bilinears of the form ψabc∂nτ ψ
ade

in fermionic q = 4 tensor models in d = 1 [83]. Highly systematic approaches to large spin

perturbation theory have been developed in many works, e.g. [25, 66, 67], which could be

applied to the present case.

Central charge. The contribution of the stress tensor to the conformal block expansion

of a four point function in the limit χ≪ χ≪ 1 is [84]

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 ⊃
d∆2

φ

d− 1

Cfree

CT

1

4
(χχ)(d−2)/2χ2 , (A.6)

where Cfree is the central charge for the free boson in d dimensions. In d-dimensional SYK,

the coefficient of these powers in χ, χ is

− Res
∆=d

ρMFT(∆, 2)K
∆φ,∆φ

∆̃,2

1− k(∆, 2)
. (A.7)

40We thank Douglas Stanford for this observation.
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Thus we have

CT (d, q) ≡
CT

Cfree
= −1

4

d∆2
φ

d− 1


Res

∆=d

ρMFT(∆, 2)K
∆φ,∆φ

∆̃,2

1− k(∆, 2)




−1

= −
Γ
(
1 + d− d

q

)
Γ
(
d+q
q

)
sin
(
dπ(q−2)

2q

)

2πqΓ
(
d
2

)
Γ
(
4+d
2

)

×
(
d(q − 2)

(
π cot

(
dπ(q − 2)

2q

)
+H

(
d(q − 1)

q

)
−H

(
d

q

))
− 2q

)
, (A.8)

where

H(x) = ψ(x+ 1) + γ (A.9)

is the analytic continuation of the harmonic number to non-integer argument and γ is the

Euler-Mascheroni constant. Setting d = 2, we recover the result from [9] ,

CT (d = 2, q) =
(q − 2)3

q3
. (A.10)

For q ≤ 2d
d−2 such that an infrared fixed point exists, the central charge is always

positive, and obeys dCT (d, q)/dq > 0, i.e. a “CT -theorem” in the space of SYK-like models

due to the possibility of flowing from larger to smaller q. While the central charge shows

no pathology, the bosonic d-dimensional SYK models are certainly unphysical, due to the

Lagrangian being unbounded from below, as noted previously. This manifests itself in, for

instance, the presence of bilinear operators of complex dimension [11].

B One dimensional 6j symbol

In this appendix we compute the 6j symbols in one dimension. An operator in one dimen-

sion has no spin, and its dimension is labeled by h. In this notation, the 6j symbols (3.5) are

J1 =

∫
dx1 · · · dx4

vol(SO(2, 1))
Ψh̃1,h̃2,h̃3,h̃4

h̃
(x1, x2, x3, x4)Ψ

h3,h2,h1,h4

h′ (x3, x2, x1, x4) , (B.1)

where, as before, h̃ ≡ 1− h is the dimension of the shadow operator. The partial wave in

one dimension is a sum of a conformal block — a hypergeometric function of one cross ratio

— and the shadow block. The above integral is thus similar to an integral we encountered

earlier, see eq. (3.37); however, the integration range above is over the entire xi axis. As

a result, to evaluate the integral in this manner, we would need to split it into different

integration regions; a straightforward but tedious exercise. A faster route is to use the form

of the 6j symbol as an integral of four three-point functions (3.1), which we write out as,

J1 =

∫
dx1dx2dxa

vol(SO(2, 1))
〈O

h̃1
(x1)Oh̃2

(x2)Oh̃
(xa)〉Ih,h

′

hi
(xa, x1, x2) , (B.2)

where we defined,

Ih,h
′

hi
(xa, x1, x2) =

∫
dx3dx4dxb〈Oh(xa)O1−h3(x3)O1−h4(x4)〉

× 〈Oh3(x3)Oh2(x2)Oh′(xb)〉〈Oh̃′(xb)Oh1(x1)Oh4(x4)〉 . (B.3)
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By conformal invariance, Ih,h
′

hi
will take the form of a three-point function,

Ih,h
′

hi
(xa, x1, x2) = Ih,h′

hi
〈Oh(xa)Oh1(x1)Oh2(x2)〉 , (B.4)

and the 6j symbol becomes, J1 = t0 Ih,h′

hi
. Let us now evaluate Ih,h

′

hi
. Written out, we have,

Ih,h
′

hi
=

∫
dx3dx4dxb

|x34|h+h3+h4−2|x3b|h23−h′ |x4b|h14−h̃′

|xa3|h−h34 |xa4|h+h34 |x23|h2+h3−h′ |x2b|h′+h23 |x1b|h̃′+h14 |x14|h1+h4−h̃′
,

(B.5)

where we use notation xij ≡ xi − xj and hij ≡ hi − hj . We do a change of variables,

A =
xb1xa2
xb2xa1

, B =
x1axb4
x1bxa4

, C =
x2bxa3
x2axb3

, (B.6)

which gives,

Ih,h′

hi
=

∫
dAdBdC (B.7)

× |1−ABC|h+h3+h4−2

|A|−h′+h1+h4 |1−A|1+h−h1−h2 |B|1−h′−h1+h4 |1−B|−1+h′+h1+h4 |C|h−h3+h4 |1−C|h2+h3−h′ .

We evaluate this integral using the method in [8], where a similar integral appeared in the

evaluation of the SYK three-point function of bilinears. The result is,

J1/t0 = Ih,h′

hi
=
(
γ Fh1,h2,h3,h4

h,h′ + ηFh1,h2,h3,h̃4

h,h′

)
+ (1 ↔ 3, 2 ↔ 4, h↔ h̃, h′ ↔ h̃′) . (B.8)

where,

Fh1,h2,h3,h4

h,h′ = 4F3

(
1+h′−h1−h4, h′+h1−h4, 2−h3−h4−h, 1+h3−h4−h

2−2h4, 2+h
′−h2−h4−h, 1+h′+h2−h4−h

; 1

)
. (B.9)

and

γ = B1+h−h1−h2
−h′+h1+h4

B−1+h′+h1+h4
1−h′−h1+h4

Bh2+h3−h′

h−h3+h4
, η = B1+h−h1−h2

1−h′+h1−h4
B2−h−h3−h4
2h4

Bh2+h3−h′

1−h3−h4+h ,

(B.10)

where we defined,

Ba2
a1 = π

1
2
Γ(1−a1

2 )

Γ(a12 )

Γ(1−a2
2 )

Γ(a22 )

Γ(a1+a2−1
2 )

Γ(2−a1−a2
2 )

. (B.11)

C Contact diagram in higher dimensions

In the main body of the paper we focused on the contribution of the planar Feynman

diagrams to the SYK three-point function of bilinears. There is, however, an additional

contribution to the three-point function, shown in figure 10, which was named the contact

diagram in [54]. In one dimension, the result for the contact diagram was found to be a gen-

eralized hypergeometric function, 3F2, which simplified to a ratio of gamma functions [8].

In this appendix we evaluate the contact diagram in two and four dimensions. Our

strategy will be similar to the one used in the evaluation of the 6j symbols: we apply the
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Figure 10. The contribution of the “contact” diagrams to the SYK bilinear three-point function.

Even though this diagram is nonplanar, it appears at the same order in 1/N as the planar diagram,

shown previously in figure 2 (a).

Lorentzian inversion formula, factorizing the integral into a product of two one-dimensional

integrals, and find a result that is expressed as a product of two 3F2 functions.

The contribution of the contact diagrams is,

〈O∆1,J1(x1)O∆2,J2(x2)O∆3,J3(x3)〉1

= (q − 1)(q − 2)J2
∫
ddxad

dxbG(τab)
q−3

3∏

i=1

〈O∆i,Ji(xi)φ(xa)φ(xb)〉phys . (C.1)

Separating the coefficients from the functional form of the arguments, this becomes

〈O∆1,J1(x1)O∆2,J2(x2)O∆3,J3(x3)〉1 = c∆1,J1 c∆2,J2 c∆3,J3 (q − 1)(q − 2)J2bq I
(1)
∆i,Ji

(xi) ,

(C.2)

where

I
(1)
∆i,Ji

(xi) =

∫
ddxad

dxb
1

|xab|2(d−3∆φ)

3∏

i=1

〈O∆i,Ji(xi)φ(xa)φ(xb)〉 . (C.3)

By conformal invariance, the result after integration will take the form of a conformal three-

point function. As in the discussion of the planar diagrams in section 2.2, we extract the

coefficient of the integral by contracting with a three-point function of shadow operators,

see eqs. (2.47) and (2.48), to get

I(1)
∆i,Ji,a

= (t−1
0 )ab

∫
ddx1d

dx2d
dx3 d

dxad
dxb

vol(SO(d+ 1, 1))

1

|xab|2(d−3∆φ)

3∏

i=1

〈O∆i,Ji(xi)φ(xa)φ(xb)〉

× 〈Õ∆1,J1(x1)Õ∆2,J2(x2)Õ∆3,J3(x3)〉b . (C.4)

We now recognize that, for instance, the integral over (say) x1 yields a conformal partial

wave.

I(1)
∆i,Ji

=
1

t0

∫
ddx2d

dx3 d
dxad

dxb
vol(SO(d+ 1, 1))

Ψ
∆φ,∆φ,∆̃2,∆̃3

∆̃1,J1
(xa, xb, x2, x3)

∏3
i=2〈O∆i,0(xi)φ(xa)φ(xb)〉

|xab|2(d−3∆φ)

(C.5)

where, for simplicity, we set the spins J2 = J3 = 0. This integral is now of the type we are

familiar with: an inner product between a four-point function and a partial wave.41

41The integrand is actually independent of ∆φ, as is evident by writing it out explicitly.
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It is convenient at this stage to change notation. We will evaluate

Ud =

∫
ddx1d

dx2d
dx3d

dx4
vol(SO(d+ 1, 1))

〈O1O2O3O4〉Ψ∆̃i

∆̃,J
(xi) , (C.6)

where

〈O1O2O3O4〉 =
1

|x12|2∆κ−∆3−∆4

1

|x23|∆3

1

|x13|∆3

1

|x24|∆4

1

|x14|∆4
. (C.7)

and ∆1 = ∆2 = ∆κ. We get back t0 I(1)
∆i,Ji

by sending ∆κ → ∆̃φ, ∆3 → ∆2, ∆4 → ∆3, and

∆, J → ∆1, J1.

C.1 Two dimensions

We begin in two dimensions. In the notation of hi, hi, the integral U2 is

U2 =

∫
d2z1d

2z2d
2z3d

2z4
vol(SO(3, 1))

〈O1(z1)O2(z2)O3(z3)O4(z4)〉Ψh̃i,h̃i

h̃,h̃
(zi) , (C.8)

where,

〈O1O2O3O4〉 =
1

[z12]
2hκ−h3−h4

1

[z32]
h3

1

[z14]
h4

1

[z13]
h3

1

[z42]
h4
, (C.9)

and h1 = h2 = hκ and h1 = h2 = hκ. We will evaluate this integral by applying the

Lorentzian inversion formula, (3.26). The four-point function with external factors stripped

off, as a function of the cross-ratio, is,

g(χ, χ) =
〈O1O2O3O4〉

|Ts|
= |χ|h3+h4 |χ|h3+h4 |1− χ|−h3 |1− χ|−h3 , (C.10)

From this we compute the double commutator, to get,

〈[O3,O2] [O1,O4]〉
|Ts|

=
〈[O4,O2] [O1,O3]〉

|Ts|
=

−4π2

Γ(h3)Γ(1− h3)Γ(h4)Γ(1− h4)
g(χ, χ) .

(C.11)

The two regions of integration, R1 and R2, will contribute equally when jH is even and

will cancel when jH is odd, where jH was defined previously, below (3.23). The result is,

U2 = (1 + (−1)jH )
π2Γ2(h)Γ(h43 + 1− h)Γ(h34 + 1− h)

4Γ(2h)Γ(2− 2h)Γ(h3)Γ(1− h3)Γ(h4)Γ(1− h4)

×
∫ 1

0
dχχh3+h4+h−2(1− χ)−h3×2F1(h+ h43, h, 2h;χ)

×
∫ 1

0
dχχh3+h4−h−1(1− χ)−h3×2F1(1− h, 1− h+ h43, 2− 2h;χ) . (C.12)

The integrals that appear are just the definition of 3F2, so we arrive at

U2 =
π2

4
(1 + (−1)jH )

Γ2(h)Γ(h3 + h4 + h− 1)Γ(1− h3)

Γ(2h)Γ(h4 + h)

× 3F2(h+ h43, h, h3 + h4 + h− 1; 2h, h4 + h; 1)

× Γ(h43 + 1− h)Γ(h34 + 1− h)Γ(h3 + h4 − h)

Γ(2− 2h)Γ(h3)Γ(h4)Γ(1− h4)Γ(h4 − h+ 1)

× 3F2(1− h, 1− h+ h43, h3 + h4 − h; 2− 2h, h4 − h+ 1; 1) . (C.13)
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C.2 Four dimensions

The computation in four dimensions is similar to the one in two dimensions. The result is,

U4 =
A∆i

∆,J

24
(Λ

(1),∆i

∆+J Λ
(2),∆i

∆̃+J
− Λ

(1),∆i

∆̃+J
Λ
(2),∆i

∆+J ) , (C.14)

where

A∆i

∆,J =
−8π2α∆,J

(
(−1)J + 1

)

Γ(∆3/2)Γ(1−∆3/2)Γ(∆4/2)Γ(1−∆4/2)
,

Λ
(1),∆i

∆ =
Γ(∆3+∆4+∆

2 − 1)Γ(1− ∆3
2 )

Γ(∆4+∆
2 )

×3F2

(
∆

2
,
∆−∆34

2
,
∆3 +∆4 +∆

2
− 1;∆,

∆4 +∆

2
; 1

)
,

Λ
(2),∆i

∆ =
Γ(∆3+∆4+∆

2 − 2)Γ(1− ∆3
2 )

Γ(∆4+∆
2 − 1)

×3F2

(
∆

2
,
∆−∆34

2
,
∆3 +∆4 +∆

2
− 2;∆,

∆4 +∆

2
− 1; 1

)
.

where α∆,J was defined earlier, in (3.14).

D Shadow transforms of three-point functions

In this section, we give explicit computations of some shadow factors obtained by shadow

transforming scalar-scalar-spin-J three point functions. These are generalizations of the

famous star-triangle relation [43]. Shadow factors can also be computed efficiently using

weight-shifting operators [42, 53]. Here we give elementary computations using embedding-

space integrals. We follow the notation of [85, 86].

D.1 Shadow transforming the scalar

The shadow transform of an operator was defined earlier in eq. (2.23). Let’s compute the

shadow transform of the three-point function 〈φ1(x1)φ2(x2)Oµ1···µJ (x3)〉 with respect to

x1. In the embedding space, the three-point structure is given by

〈φ1(X1)φ2(X2)O(X3, Z3)〉 =
V J
3,12

X
∆1+∆2−∆3

2
12 X

∆2+∆3−∆1
2

23 X
∆1+∆3−∆2

2
13

, (D.1)

where

Xij = −2Xi ·Xj ,

V3,12 = −2
(Z3 ·X1)(X2 ·X3)− (Z3 ·X2)(X1 ·X3)

X
1/2
12 X

1/2
23 X

1/2
13

=
X14

X
1/2
12 X

1/2
23 X

1/2
13

,

X4 ≡ Z3(X2 ·X3)−X3(Z3 ·X2) . (D.2)
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Note that

X2
4 = 0 , X4 ·X2 = 0 , X4 ·X3 = 0 . (D.3)

Thus, the shadow integral we’d like to perform is

〈S[φ1](X0)φ2(X2)O(X3,Z3)〉=
1

X
∆2+∆3−∆1+J

2
23

∫
DdX1

1

Xd−∆1
01

XJ
14

X
∆1+∆2−∆3+J

2
12 X

∆1+∆3−∆2+J

2
13

.

(D.4)

Let us temporarily think of J as continuous and treat this as a conformal four-point in-

tegral. It will be simpler than the usual four-point integral because of the orthogonality

conditions (D.3).

We will need the following result for a simple conformal integral [86]

∫
DdX

1

(−2X · Y )d
=
π

d
2Γ(d2)

Γ(d)

1

(−Y 2)d/2
, (D.5)

and also the following formula for combining factors using Feynman/Schwinger parameters

1∏
iA

ai
i

=
Γ(
∑

i ai)∏
i Γ(ai)

∫ ∞

0

n∏

i=2

dαi

αi
αai
i

1

(A1 +
∑n

i=2 αiAi)
∑

i ai
. (D.6)

As a special case of the latter formula, we have
∫
dα

α
αb 1

(A+ αB)c
=

Γ(c− b)Γ(b)

Γ(c)

1

Ac−bBb
. (D.7)

Let us define

a1 = d−∆1 , a2 =
∆1 +∆2 −∆3 + J

2
, a3 =

∆1 +∆3 −∆2 + J

2
, a4 = −J , (D.8)

which satisfy a1+a2+a3+a4 = d. We start by combining the factors in (D.4) using (D.6),

and then applying (D.5)
∫
DdX1

1

Xa1
01X

a2
12X

a3
13X

a4
14

=
Γ(d)

Γ(a1)Γ(a2)Γ(a3)Γ(a4)

∫
dα

α
αa2 dβ

β
βa3

dγ

γ
γa4

×
∫
DdX1

1

(−2X1 · (X0 + αX2 + βX3 + γX4))d

=
Γ(d)

Γ(a1)Γ(a2)Γ(a3)Γ(a4)

π
d
2Γ(d2)

Γ(d)

×
∫
dα

α
αa2 dβ

β
βa3

dγ

γ
γa4

1

(αX02 + βX03 + αβX23 + γX04)d/2
. (D.9)

The factor in the denominator is relatively simple because of the orthogonality condi-

tions (D.3). Now we repeatedly use (D.7), first for γ, then β, then α, giving

=
π

d
2Γ(d2 − a3 − a4)Γ(

d
2 − a2 − a4)Γ(

d
2 − a1)

Γ(a1)Γ(a2)Γ(a3)

1

X
d
2
−a3−a4

02 X
d
2
−a2−a4

03 X
d
2
−a1

23 Xa4
04

. (D.10)
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Plugging everything back in, we find

〈S[φ1](X0)φ2(X2)O(X3, Z3)〉 = S
∆2,[∆3,J ]
∆1

〈φ̃1(X0)φ2(X2)O(X3, Z3)〉

S
∆2,[∆3,J ]
∆1

=
π

d
2Γ(∆1 − d

2)Γ(
∆̃1+∆2−∆3+J

2 )Γ( ∆̃1+∆3−∆2+J
2 )

Γ(d−∆1)Γ(
∆1+∆2−∆3+J

2 )Γ(∆1+∆3−∆2+J
2 )

. (D.11)

D.2 Shadow transforming the spinning operator

Let us also compute the shadow transform with respect to the spinning operator,

S[O]m1···mJ
(X) =

∫
DdY

∏
i−2(ηmini(X · Y )− Y mXn)

(−2X · Y )d−∆+J
On1···nJ

(Y ) , (D.12)

or in index-free notation

S[O](X,Z) =

∫
DdY

1

(−2X · Y )d−∆+J
O(Y, 2X(Z · Y )− 2Z(X · Y )) , (D.13)

Thus, we would like to compute
∫
DdX3

1

(−2X0 ·X3)d−∆3+J
〈O(X3, 2X0(Z0 ·X3)− 2Z0(X0 ·X3))φ1(X1)φ2(X2)〉

=

∫
DdX3

1

(−2X0 ·X3)d−∆3+J

× (−2(2X0(Z0 ·X3)− 2Z0(X0 ·X3)) · (X1(X2 ·X3)−X2(X1 ·X3)))
J

X
∆1+∆2−∆3+J

2
12 X

∆2+∆3−∆1+J

2
23 X

∆1+∆3−∆2+J

2
13

. (D.14)

The factor in the numerator is given by

−2(2X0(Z0 ·X3)−2Z0(X0 ·X3))·(X1(X2 ·X3)−X2(X1 ·X3)) = X23X31′−X13X32′ , (D.15)

where

X ′
1 ≡ (X1 · Z0)X0 − (X1 ·X0)Z0 ,

X ′
2 ≡ (X2 · Z0)X0 − (X2 ·X0)Z0 . (D.16)

We have defined X ′
1 and X ′

2 in this way because many dot products involving them vanish,

using X2
0 = Z0 ·X0 = Z2

0 = 0. The only nonzero dot products involving them are

X21′ = −X12′ = −2((X2 ·X0)(X1 · Z0)− (X2 · Z0)(X1 ·X0))

= V0,12X
1
2
12X

1
2
20X

1
2
10 . (D.17)

In terms of these quantities, our integral becomes
∫
DdX3

1

Xd−∆3+J
03

(X23X31′ −X13X32′)
J

X
∆1+∆2−∆3+J

2
12 X

∆2+∆3−∆1+J

2
23 X

∆1+∆3−∆2+J

2
13

=
1

X
∆1+∆2−∆3+J

2
12

J∑

n=0

(
J

n

)
(−1)J−n

×
∫
DdX3

1

Xd−∆3+J
03

Xn
31′X

J−n
32′

X
∆2+∆3−∆1+J

2
−n

23 X
∆1+∆3−∆2+J

2
+n−J

13

. (D.18)
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We can evaluate the integral overX3 using the same techniques as before: combining factors

using (D.6), applying the basic conformal integral (D.5), and then repeatedly using (D.7)

to split the factors apart. The result is

π
d
2Γ(a1 + a2 − d

2)Γ(
d
2 − a1 − b1)Γ(

d
2 − a2 − b2)

Γ(a0)Γ(a1)Γ(a2)
X

a2+b2−
d
2

10 X
a1+b1−

d
2

20 X
−a1−a2+

d
2

12 X−b2
12′ X

−b1
21′ .

(D.19)

Plugging this in to the above and performing the sum over n, we obtain

〈φ1(X1)φ2(X2)S[O](X0,Z0)〉=S∆1,∆2

[∆3,J ]
〈φ1(X1)φ2(X2)Õ(X0,Z0)〉 (D.20)

S∆1,∆2

[∆3,J ]
=
π

d
2Γ(∆3− d

2)Γ(∆3+J−1)Γ( ∆̃3+∆1−∆2+J
2 )Γ( ∆̃3+∆2−∆1+J

2 )

Γ(∆3−1)Γ(d−∆3+J)Γ(
∆3+∆1−∆2+J

2 )Γ(∆3+∆2−∆1+J
2 )

.

As a check, when J = 0, we have S∆1,∆2

[∆3,0]
= S

∆1,[∆2,0]
∆3

.
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