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D-EQUIVALENCE AND K-EQUIVALENCE

YUJIRO KAWAMATA

Abstract
Let X and Y be smooth projective varieties over C. They are called D-
equivalent if their derived categories of bounded complexes of coherent
sheaves are equivalent as triangulated categories, and K-equivalent if they
are birationally equivalent and the pull-backs of their canonical divisors to a
common resolution coincide. We expect that the two equivalences coincide
for birationally equivalent varieties. We shall provide a partial answer to
the above problem in this paper.

1. Introduction

Let X be a smooth projective variety. We denote by D(X) =
Db(Coh(X)) the derived category of bounded complexes of coherent
sheaves on X (in §6, we shall consider a generalization where X has
singularities). It is known that D(X) has a structure of a triangulated
category.

Definition 1.1. Let X and Y be smooth projective varieties. They
are called D-equivalent if their derived categories D(X) and D(Y ) of
bounded complexes of coherent sheaves are equivalent as triangulated
categories, i.e., there exists an equivalence of categories Φ : D(X) →
D(Y ) which commutes with the translations and sends any distinguished
triangle to a distinguished triangle. They are called K-equivalent if
they are birationally equivalent and if there exists a smooth projec-
tive variety Z with birational morphisms f : Z → X and g : Z → Y
such that the pull-backs of the canonical divisors are linearly equivalent:
f∗KX ∼ g∗KY .
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148 y. kawamata

We shall consider the following conjecture which predicts that the
D and K-equivalences coincide for birationally equivalent varieties.

Conjecture 1.2. Let X and Y be birationally equivalent smooth
projective varieties. Then the following are equivalent.

(1) There exists an equivalence of triangulated categories D(X) ∼=
D(Y ).

(2) There exists a smooth projective variety Z and birational mor-
phisms f : Z → X and g : Z → Y such that f∗KX ∼ g∗KY .

The category of coherent sheaves Coh(X) reflects the biregular ge-
ometry of X, but we expect that the derived category D(X) captures
more essential properties such as its birational geometry.

A derived category is a purely algebraic object. But one can some-
times recover the geometry from it:

Theorem 1.3 ([2]). Let X be a smooth projective variety. Assume
that KX or −KX is ample.

(1) Let Y be another smooth projective variety. Assume that there
exists an equivalence of categories Φ : D(X) → D(Y ) which
commutes with the translations. Then there is an isomorphism
φ : X → Y .

(2) The group of isomorphism classes of exact autoequivalences of
D(X) is isomorphic to the semi-direct product of Aut(X) and
Pic(X)⊕ Z.

We shall prove a generalization of Bondal-Orlov’s theorem in this
paper:

Theorem 1.4 (= Theorem 2.3). Let X and Y be smooth pro-
jective varieties. Assume that the bounded derived categories of coher-
ent sheaves on them are equivalent as triangulated categories: D(X) ∼=
D(Y ). Then the following hold:

(0) dimX = dimY . Let n be the common dimension.

(1) If KX (resp. −KX) is nef, then KY (resp. −KY ) is also nef, and
an equality on the numerical Kodaira dimension ν(X) = ν(KY )
(resp. ν(X,−KX) = ν(Y,−KY )) holds.
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(2) If κ(X) = n, i.e., X is of general type, or if κ(X,−KX) = n,
then X and Y are birationally equivalent. Moreover, there exist
birational morphisms f : Z → X and g : Z → Y from a smooth
projective variety Z such that f∗KX ∼ g∗KY .

We also consider the following conjecture:

Conjecture 1.5. For a given smooth projective variety X, there ex-
ist only finitely many smooth projective varieties Y up to isomorphisms
such that D(Y ) is equivalent to D(X) as a triangulated category.

We shall give an affirmative answer for surfaces in §3 by extending
a result of Bridgeland and Maciocia [7]:

Theorem 1.6 (= Theorems 3.1 and 3.2). Let X be a smooth pro-
jective surface. Then there exist at most finitely many smooth projective
surfaces Y up to isomorphism such that the derived categories D(X) and
D(Y ) are equivalent as triangulated categories. Moreover, if X contains
a (−1)-curve but is not isomorphic to a relatively minimal elliptic ra-
tional surface, then any such Y is isomorphic to X.

The above conjecture can be regarded as a generalization of the
conjecture which predicts that there exist only finitely many minimal
models up to isomorphisms in a fixed birational equivalence class ([11]).
Note that we do not assume the minimality of X in Conjecture 1.5.

We consider the reverse direction from K-equivalence to D-equi-
valence in the latter half of the paper. We collect some facts from
minimal model theory in §4, and we calculate some examples in arbitrary
dimension in §5. In the case of dimension 3, we have a complete answer
even for the case of singular varieties:

Theorem 1.7 (= Theorems 4.6 and 6.5). Let X and Y be normal
projective varieties of dimension 3 having only Q-factorial terminal sin-
gularities, and let X and Y be their canonical covering stacks. Assume
that X and Y are K-equivalent. Then the bounded derived categories of
coherent orbifold sheaves D(X ) and D(Y) are equivalent as triangulated
categories.
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2. From D-equivalence to K-equivalence

We need the concept of Fourier-Mukai transformation:

Definition 2.1. Let X and Y be smooth projective varieties, and
let p1 : X × Y → X and p2 : X × Y → Y be projections. For an object
e ∈ D(X × Y ), we define an integral functor Φe

X→Y : D(X)→ D(Y ) by

Φe
X→Y (a) = p2∗(p∗1(a)⊗ e)

for a ∈ D(X), where p∗1 and ⊗ are the right derived functors and p2∗
is the left derived functor. An integral functor is said to be a Fourier-
Mukai transformation if it is an equivalence.

The following theorem by Orlov is fundamental for the proof of The-
orem 2.3.

Theorem 2.2 ([19]). Let Φ : D(X) → D(Y ) be a functor of
bounded derived categories of coherent sheaves which commutes with the
translations and sends any distinguished triangle to a distinguished tri-
angle. Assume that Φ is fully faithful and has a right adjoint. Then
there exists an object e ∈ D(X × Y ) such that Φ is isomorphic to the
integral functor Φe

X→Y . Moreover, e is uniquely determined up to iso-
morphism.

The following theorem guarantees that the D-equivalence implies
the K-equivalence at least for general type varieties.

Theorem 2.3. Let X and Y be smooth projective varieties. As-
sume that the bounded derived categories of coherent sheaves on them
are equivalent as triangulated categories: D(X) ∼= D(Y ). Then the
following hold:

(0) dimX = dimY . Let n be the common dimension.

(1) If KX (resp. −KX) is nef, then KY (resp. −KY ) is also nef, and
an equality on the numerical Kodaira dimension ν(X) = ν(Y )
(resp. ν(X,−KX) = ν(Y,−KY )) holds.

(2) If κ(X) = n, i.e., X is of general type, or if κ(X,−KX) = n,
then X and Y are birationally equivalent. Moreover, there exist
birational morphisms f : Z → X and g : Z → Y from a smooth
projective variety Z such that f∗KX ∼ g∗KY .
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Proof. By Theorem 2.2, there exists an object e ∈ D(X × Y ) such
that Φe

X→Y : D(X)→ D(Y ) is an equivalence. Let

e∨ = RHomOX×Y
(e,OX×Y ),

the the derived dual object. By the Grothendieck duality, the right and
left adjoint functors of Φ = Φe

X→Y are given by Φe∨⊗p∗1ωX [dimX]
Y→X and

Φe∨⊗p∗2ωY [dimY ]
Y→X .

Since Φ is an equivalence, the right and left adjoint functors of Φ =
Φe
X→Y are isomorphic. By Theorem 2.2 again, we have an isomorphism

of objects

e∨ ⊗ p∗1ωX [dimX] ∼= e∨ ⊗ p∗2ωY [dimY ].

It follows immediately that dimX = dimY .
Let H i(e∨) be the cohomology sheaves, Γ the union of the supports

of the H i(e∨) for all i, Γ =
⋃
j Zj the decomposition to irreducible

components, and let νj : Z̃j → Zj be the normalizations. We take a
Zj and assume that it is an irreducible component of the support of
H i(e∨). By taking the determinant of both sides of the isomorphism

ν∗j (H
i(e∨)⊗ p∗1ωX) ∼= ν∗j (H

i(e∨)⊗ p∗2ωY )

we obtain

ν∗j p
∗
1ω

⊗mj

X
∼= ν∗j p

∗
2ω

⊗mj

Y

where mj is the rank of ν∗jH
i(e∨).

(1) Since Φe
X→Y is an equivalence, the projections p1|Γ : Γ→ X and

p2|Γ : Γ → Y are surjective. Let Z1 be an irreducible component of Γ
which dominates Y . If KX is nef, then m1ν

∗
1p

∗
1KX ∼ m1ν

∗
1p

∗
2KY is also

nef, hence so is KY . We have also ν(X) ≥ ν(Z̃1, ν
∗
1p

∗
2KY ) = ν(Y ), thus

ν(X) = ν(Y ). The case where −KX is nef is proved similarly.

(2) If κ(X) = n, then there exist an ample Q-divisor A and an
effective Q-divisor B on X such that KX ∼Q A+B by Kodaira’s lemma.
Let Z1 be an irreducible component of Γ which dominates X. Then the
projection p2|Z1 : Z1 → Y is quasi-finite on Z1\p−1

1 (Supp(B)). Indeed, if
there exists a curve C which is contained in Z1∩p−1

2 (y) for a point y ∈ Y
but not entirely in p−1

1 (Supp(B)), then we have (p∗2KY · C) = 0 while
(p∗1KX ·C) ≥ (p∗1A ·C) > 0, a contradiction. Since dimX = dimY = n,
it follows that dimZ1 = n and Z1 also dominates Y .
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We claim that the set Γ ∩ p−1
1 (x) consisits of 1 point for a gen-

eral point x ∈ X. Indeed, the previous argument showed already that
Γ ∩ p−1

1 (x) is a finite set. If it is not connected, then the natural map
HomD(X)(Ox,Ox) → HomD(Y )(Φ(Ox),Φ(Ox)) is not surjective, a con-
tradiction. Therefore, Z1 is a graph of a birational map. If we take Z
to be any resolution of Z1, then the conclusion holds.

The case where κ(X,−KX) = n is proved similarly. q.e.d.

Remark 2.4.

(0) The differential geometric picture of the above proof is that the
kernel object e of the Fourier-Mukai transformation cannot spread itself
if the Ricci curvature is non-vanishing.

(1) In the case where KX or −KX is ample, we can also reprove
Theorem 1.3 (2) by a similar argument as above.

Indeed, if we take B = 0, then Z1 becomes a graph of an isomor-
phism, say h. Now e can be considered as a complex of sheaves on X
so that we have Φ(Ox) ∼= h(e⊗OX

Ox) for any x ∈ X, where the tensor
product is taken in D(X). Since

Homp
D(X)(Φ(Ox),Φ(Ox)) = 0

for any p < 0, it follows that there exists an integer i0 such that e[i0] is
a sheaf. Since

HomD(X)(Φ(Ox),Φ(Ox)) = C

e[i0] is invertible.
We note that we did not assume in Theorem 1.3 that Φ sends any

distinguished triangle to a distinguished triangle.

(2) We can extend Theorem 1.3 (2) to the case where X admits
quotient singularities if KX generates the local class group at any point
as in [12]. Namely, let X be the smooth stack which lies naturally above
X and let D(X ) = Db(Coh(X )) be the derived category of bounded
complexes of coherent sheaves on X (see §6). Then Auteq(D(X )) is
isomorphic to the semi-direct product of Aut(X) and Pic(X )⊕ Z. The
proof is the same as in [2].

On the other hand, if KX does not generate the local class group,
then the group of autoequivalences is much larger. For example, if Y is a
smooth projective minimal surface of general type and X is its canonical
model, then D(X ) is equivalent to D(Y ). If C is an exceptional curve
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of the resolution Y → X, then OC(−1) is a 2-spherical object in D(Y )
and generates an autoequivalence of infinite order ([21], see also §4).

(3) If ν(X) = ν(Y ) = 0 in Theorem 2.3 (1), then KX ∼ 0 if and
only if KY ∼ 0 because Φ commutes with the Serre functors. More
generally, it is known that the orders of the canonical divisors coincide
([7] Lemma 2.1).

3. Fourier-Mukai partners of surfaces

We have a complete picture of D and K-equivalences for surfaces.
We start with the case of minimal surfaces:

Theorem 3.1 ([7]). Let X be a smooth projective surface. Assume
that there is no (−1)-curve on X. Then there exist at most finitely many
smooth projective surfaces Y such that the derived categories D(X) and
D(Y ) are equivalent as triangulated categories.

We note that there are Fourier-Mukai partners which are not bira-
tionally equivalent in the case of abelian or K3 or elliptic surfaces ([16],
[17], [19], [20], [7], [10]). It is rather surprising that the existence of a
(−1)-curve reduces the symmetry drastically:

Theorem 3.2. Let X be a smooth projective surface. Assume that
there exists a (−1)-curve on X. Then there exist at most finitely many
smooth projective surfaces Y such that the derived categories D(X) and
D(Y ) are equivalent as triangulated categories. Moreover, if X is not
isomorphic to a relatively minimal elliptic rational surface, then any
such Y is isomorphic to X.

Proof. We use the notation of the proof of Theorem 2.3. Let C be a
(−1)-curve and ΓC = p−1

1 (C)∩Γ. Since −KX |C is ample, the projection
p2|ΓC

: ΓC → Y is a finite morphism. We have two possibilities that
dim ΓC = 1 or 2.

Assume first that dim ΓC = 1. We take an irreducible component Z1

of Γ which dominates X, and let Z1,C = p−1
1 (C)∩Z1 and C ′ = p2(Z1,C).

We know that dimZ1,C = dimC ′ = 1. It follows that dimZ1 = 2 and
the projection p1|Z1 : Z1 → X is generically finite, hence a birational
morphism as in the proof of Theorem 2.3.

If Z1 dominates Y , then the other projection p2|Z1 : Z1 → Y is also
birational, and X and Y are K-equivalent through Z1. Hence X and Y
are isomorphic (cf. Lemma 4.2).
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Otherwise, we have p2(Z1) = C ′. There exists an open dense subset
U ⊂ X such that p1 induces an isomorphism p−1

1 (U)∩Γ = p−1
1 (U)∩Z1 →

U . Take two distinct points x1, x2 ∈ U which correspond to the same
point y ∈ C ′, i.e., y = p2(p−1

1 (x1) ∩ Γ) = p2(p−1
1 (x2) ∩ Γ). Then both

Φ(Ox1) and Φ(Ox2) are supported at y, hence Homp
D(Y )(Φ(Ox1),Φ(Ox2))

	= 0 for some p, a contradiction.
Assume next that dim ΓC = 2. Then p2|ΓC

: ΓC → Y is dominant.
Since (KX · C) < 0, we deduce that −KY is nef and ν(Y,−KY ) = 1.
Hence −KX is also nef and ν(X,−KX) = 1 by Theorem 2.3. By the
classification of surfaces, such a surface is isomorphic to either a minimal
elliptic ruled surface or a rational surface with Euler number 12. Since
X has a (−1)-curve, X is a rational surface. By [7] Proposition 2.3, Y
is also a rational surface.

We have the possibilities that dim Γ = 2 or 3. If dim Γ = 2, then we
obtain our result as before. If dim Γ = 3, then X and Y are dominated
by families of curves whose intersection numbers with the canonical
divisors vanish. Thus X and Y are relatively minimal rational elliptic
surfaces. By [7] Proposition 4.4, we obtain our result. Here we note
that the proof there works also for relatively minimal elliptic surfaces
of negative Kodaira dimension. q.e.d.

We can extend some of the above argument to higher dimensional
case:

Proposition 3.3. Let X and Y be smooth projective varieties. As-
sume that κ(X) ≥ 0 but KX is not nef, and that there is an extremal
contraction morphism φ : X → W which contracts a prime divisor D
to a point. Assume that the derived categories D(X) and D(Y ) are
equivalent as triangulated categories. Then X and Y are birational and
K-equivalent.

Proof. We use the notation of the proof of Theorem 2.3. The proof
is similar to that of Theorem 3.2.

Let ΓD = p−1
1 (D) ∩ Γ. If dim ΓD = n− 1 for n = dimX, then there

exists an irreducible component Z1 of Γ of dimension n which dominates
X. Then it follows that X and Y are birational and K-equivalent as in
the proof of Theorem 3.2.

Assume that dim ΓD ≥ n. Since −KX |D is ample, the projection
p2|ΓD

: ΓD → Y is a finite morphism. Hence dim ΓD = n, and −KY is
nef with ν(Y,−KY ) = n− 1, a contradiction to κ(X). q.e.d.

Remark 3.4. We cannot expect similar statements for other types
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of contractions. For example, let A be an abelian surface, Â its dual,
and S a smooth projective surface which contains a (−1)-curve. Let
X = A × S and Y = Â × S. Then X has a divisorial contraction,
D(X) ∼= D(Y ), but X and Y are not birational in general.

4. Flops and minimal models

We consider normal varieties which are not necessarily smooth in
this section.

Definition 4.1. Let X and Y be normal quasiprojective varieties
whose canonical divisors are Q-Cartier divisors. A birational map α :
X ��� Y is said to be crepant if there exists a smooth quasiprojective
variety Z with birational projective morphisms f : Z → X and g : Z →
Y such that α ◦ f = g and f∗KX ∼Q g∗KY .

Lemma 4.2. Let α : X ��� Y be a crepant birational map be-
tween quasiprojective varieties with only terminal singularities. Then α
is an isomorphism in codimension 1; i.e., there exist closed subvarieties
E ⊂ X and F ⊂ Y of codimension at least 2 such that α induces an
isomorphism X \ E ∼= Y \ F .

Proof. Since X has only terminal singularities, a prime divisor D on
Z is mapped by f to a subvariety of codimension at least 2 on X if and
only if it appears in the relative canonical divisor KZ/X = KZ − f∗KX

as an irreducible component. Since a similar statement holds for g, our
assertion follows from the equality KZ/X = KZ/Y . q.e.d.

Definition 4.3. A projective variety X with only canonical singu-
larities is called minimal if KX is nef.

The minimality of a variety is characterized by the minimality of its
canonical divisor:

Lemma 4.4. Let X and Y be normal projective varieties whose
canonical divisors are Q-Cartier divisors. Assume that X and Y are
birationally equivalent, X has only canonical singularities and that KX

is nef. Then the inequality KX ≤ KY holds in the following sense: Let
Z any smooth projective variety with projective birational morphisms
f : Z → X and g : Z → Y . Then there exists a positive integer m such
that m(g∗KY − f∗KX) is linearly equivalent to an effective divisor. In
particular, any birational map between minimal varieties is crepant.
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Proof. We write f∗KX+A = g∗KY +B, where A and B are effective
divisors without common irreducible components. Since X has only
canonical singularities, we may assume that codim g(Supp(B)) ≥ 2.

Assuming that B 	= 0, we shall derive a contradiction. Let H and
M be very ample divisors on Y and Z, respectively, and let n = dimY
and d = dim g(Supp(B)). We consider a generic surface section

S = g∗H1 ∩ · · · ∩ g∗Hd ∩M1 ∩ · · · ∩Mn−d−2

for Hi ∈ |H| and Mj ∈ |M |. By the Hodge index theorem, we have
(g∗Hd·Mn−d−2·B2) < 0, while (g∗Hd·Mn−d−2·B·(f∗KX+A−g∗KY )) ≥
0 because KX is nef and (g∗Hd ·g∗KY ·Mn−d−2 ·B) = 0, a contradiction.

q.e.d.

We consider a special kind of crepant birational maps called flops:

Definition 4.5. Let X and Y be quasiprojective varieties with only
canonical singularities, and D a Q-Cartier divisor on X. A birational
map α : X ��� Y is said to be a D-flop, or simply a flop, if there exist
a normal quasiprojective variety W and crepant birational projective
morphisms φ : X → W and ψ : Y → W which satisfy the following
conditions:

(1) φ = ψ ◦ α.

(2) φ and ψ are isomorphisms in codimension 1.

(3) D is φ-ample, and for any Q-Cartier divisor A on X, there exist
a Q-Cartier divisor A0 on W and a rational number r such that
A ∼Q φ∗A0 + rD.

(4) Let D′ be the strict transform of D on Y . Then −D′ is ψ-ample,
and for any Q-Cartier divisor B on Y , there exist a Q-Cartier
divisor B0 on W and a rational number r′ such that B ∼Q ψ∗B0 +
r′D′.

We can define flops of complex analytic spaces instead of quasipro-
jective varieties in a similar way. In this case, X and Y are complex
analytic spaces which are relatively projective over a complex analytic
space W .

Any crepant birational map between projective varieties with only
Q-factorial terminal singularities is expected to be decomposed into a
sequence of flops:
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Theorem 4.6. Let α : X ��� Y be a crepant birational map be-
tween projective varieties of dimension 3 with only Q-factorial terminal
singularities. Then α is decomposed into a sequence of flops.

Proof. We may assume that the subvariety E of Lemma 4.2 is purely
1-dimensional. We may also assume that any irreducible component of
E is the image of a curve on Z which is mapped to a point on Y . Since
α is crepant, we have KX |E ∼Q 0. Let H be an ample Cartier divisor on
Y such that H −KY is still ample, and let H ′ be its strict transform on
X. By construction, any curve C such that (H ′ ·C) ≤ 0 is contained in
E. We run the minimal model program with respect to KX+εH ′, where
ε is a small positive number, for only those extremal rays on which H ′

is nonpositive. Then the associated extremal curves are contained in E,
so we obtain an H ′-flop. We denote the result after the flop again by
the same letters such as X,E and H ′. After a finite flops, we have no
more extremal rays on which H ′ is nonpositive. Then H ′ becomes nef
and big. Since H ′ is ample outside E, H ′ −KX is also nef and big, By
the base point free theorem, we obtain a birational morphism X → Y ,
which should be an isomorphism. q.e.d.

5. From K-equivalence to D-equivalence

The following is a special case of the implication from (2) to (1) in
Conjecture 1.2:

Conjecture 5.1. Let X and Y be smooth projective varieties and
α : X →W ← Y a flop. Then there exists an equivalence of triangulated
categories Φ : D(X)→ D(Y ).

The examples in this section suggest that the integral functor Φe
X→Y

for the structure sheaf e = OX×WY of the subscheme X×W Y ⊂ X×Y
might work.

We consider the following two examples of flops in this section:

Example 5.2.

(1) A standard flop. Let X be a smooth projective variety of di-
mension 2m+ 1 for some positive integer m, and E a subvariety of X.
Assume that E ∼= Pm, and NE/X

∼= OPm(−1)m+1. Let f : Z → X
be the blowing-up with center E. Then the exceptional divisor G is
isomorphic to Pm × Pm and can be blown-down to another direction,
so that we obtain a birational morphism g : Z → Y and a subvariety
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F = g(G) ∼= Pm. There is a projective variety W with contraction mor-
phisms φ : X → W and ψ : Y → W whose exceptional loci are E and
F , respectively, and such that w0 = φ(E) = ψ(F ) is the only singular
point of W . Then α = g ◦ f−1 = ψ−1 ◦ φ is a flop.

(2) Mukai’s flop. Let W0 be a generic hypersurface section of W in
(1) through the singular point w0. Let X0 = φ−1(W0), Y0 = ψ−1(W0),
φ0 = φ|X0 , and ψ0 = ψ|Y0 . Then X0 and Y0 are smooth, and α0 =
ψ−1

0 ◦ φ0 is a flop. The inverse image Z̃0 = f−1(X0) = g−1(Y0) is
reducible with 2 irreducible components G and Z0, where Z0 is smooth.
The restrictions f0 = f |Z0 and g0 = g|Z0 are again birational morphisms,
and α0 = g0 ◦ f−1

0 . We set G0 = G ∩ Z0. Then f0(G0) = E and
g0(G0) = F .

We need the following concepts:

Definition 5.3. A set Ω of objects of D(X) is said to a spanning
class if the following hold for any a ∈ D(X).

(1) Homp(a, ω) = 0 for all p ∈ Z and all ω ∈ Ω implies that a ∼= 0

(2) Homp(ω, a) = 0 for all p ∈ Z and all ω ∈ Ω implies that a ∼= 0.

For example, the set of point sheaves {OP } for a smooth projective
variety is a spanning class ([3] Example 2.2).

Definition 5.4. A Serre functor SX : D(X) → D(X) is an autoe-
quivalence of triangulated categories which induces bifunctorial isomor-
phisms

HomD(X)(a, b)→ HomD(X)(b, SX(a))∗

for a, b ∈ D(X).

If a Serre functor exists, then it is unique up to isomorphisms. If
X is smooth and projective, then SX(a) = a ⊗ ωX [dimX] is a Serre
functor.

In order to prove that a functor Φ : D(X)→ D(Y ) to be fully faith-
ful, it is sufficient to check it for the spanning class ([3] Theorem 2.3):

Φ : Homp(ω1, ω2) ∼= Homp(Φ(ω1),Φ(ω2))

for all p ∈ Z and all ω1, ω2 ∈ Ω. Moreover, by [5] Theorem 2.3, provided
that Φ = Φe

X→Y is fully faithful, it is an equivalence if and only if it
commutes with the Serre functor. Theorefore, in order to prove our
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conjecture, we may consider locally over an analytic neighborhood of
a point of W and replace the given flop by any other flop which is
analytically isomorphic to the original one. If Φ is proved to be fully
faithful, then it is automatically an equivalence in our case.

Proposition 5.5 ([1]). In Example 5.2 (1), Z is isomorphic to the
fiber product X ×W Y which is a closed subscheme of X × Y , and the
functor

g∗f∗ = ΦOZ
X→Y : D(X)→ D(Y )

is an equivalence of triangulated categories.

Proof. We may replace X, Y and Z by the total space of the vector
bundles NE/X , NF/Y and NG/Z , respectively. We denote by OX(k),
OY (l) and OZ(k, l) the pull-backs of OE(k), OF (l) and OG(k, l), re-
spectively. The set of objects

{OX(−k) ∈ D(X)|k = 0, 1, . . . ,m}
spans D(X). Since KZ/X ∼ mG, we have

OX(−k) f∗−−−→ OZ(−k, 0) ∼= OZ(0, k)(kG)
g∗−−−→ OY (k).

We have

Homp(OX(−k1),OX(−k1)) ∼= Homp(OY (k1),OY (k1)) ∼= 0

for p 	= 0 and k1, k2 = 0, 1, . . . ,m by the vanishing theorem, and

ΦOZ
X→Y : Hom(OX(−k1),OX(−k1)) ∼= Hom(OY (k1),OY (k1))

because X and Y are isomorphic in codimension 1. Therefore, ΦOZ
X→Y

is an equivalence by the remarks preceding to the proposition. q.e.d.

Lemma 5.6 ([8]). Let πX : X → S and πY : Y → S be smooth
projective morphisms from smooth quasiprojective varieties to a smooth
quasiprojective curve. Let s0 ∈ S be a point, and let X0 = π−1

X (s0)
and Y0 = π−1

X (s0) be fibers. Let iX0 : X0 → X, iY0 : Y0 → Y and
iX×SY : X ×S Y → X × Y be the embeddings. Let e ∈ D(X ×S Y ) be
an object, and let e0 = e ⊗ OX0×Y0 and e′ = iX×SY ∗(e). Then there is
an isomorphism of functors from D(X0) to D(Y ):

iY0∗ ◦ Φe0
X0→Y0

∼= Φe′
X→Y ◦ iX0∗.
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Proof. Let iX0×Y0 : X0 × Y0 → X ×S Y be the embedding. Let
p1 : X ×S Y → X, p2 : X ×S Y → Y , p1,0 : X0 × Y0 → X0 and
p2,0 : X0 × Y0 → Y0 be projections. For a ∈ D(X0), we have

iY0∗ ◦ Φe0
X0→Y0

(a) ∼= iY0∗p2,0∗(p∗1,0(a)⊗ e0) ∼= p2∗iX0×Y0∗(p
∗
1,0(a)⊗ e0)

∼= p2∗(iX0×Y0∗p
∗
1,0(a)⊗ e) ∼= p2∗(p∗1iX0∗(a)⊗ e)

∼= Φe′
X→Y ◦ iX0∗(a).

q.e.d.

Corollary 5.7. In Example 5.2 (2), the functor

Φ
O

Z̃0
X0→Y0

: D(X0)→ D(Y0)

is an equivalence of triangulated categories.

Proof. Since Z = X ×W Y is a subscheme of X ×S Y , we have the
following isomorphisms:

iX0∗Φ
O

Z̃0
(mG)

Y0→X0
Φ
O

Z̃0
X0→Y0

∼= ΦOZ(mG)
Y→X ΦOZ

X→Y iX0∗ ∼= iX0∗.

For any a ∈ D(X0), let b ∈ D(X0) be the cone of the natural morphism

a→ Φ
O

Z̃0
(mG)

Y0→X0
Φ
O

Z̃0
X0→Y0

(a).

Then iX0∗(b) ∼= 0, hence b ∼= 0. q.e.d.

The following concept is useful for constructing autoequivalences of
derived categories.

Definition 5.8 ([21]). An object s ∈ D(X) is called n-spherical if

Homp
D(X)(s, s)

∼=
{

C if p = 0, n
0 otherwise.

The twisting functors Ts, T ′
s : D(X) → D(X) are defined such that the

following triangles are distinguished:

RHomX(s, a)⊗ s→ a→ Ts(a)→ RHomX(s, a)⊗ s[1]
T ′
s(a)→ a→ RHomC(RHomX(a, s), s)→ T ′

s(a)[1]

where RHomX denotes the derived global Hom. If s is n-spherical for
n = dimX, then Ts and T ′

s are equivalences and Ts ◦ T ′
s
∼= IdD(X).
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Example 5.9.

(1) OE in Example 5.2 (1) is a (2m + 1)-sherical object. Indeed,
since NE/X

∼= OE(−1)m+1, we have

ExtpOX0
(OE ,OE) ∼=

p∧
(OE(−1)m+1).

Hence

Homp
D(X)(OE ,OE) ∼=

{
C if p = 0, 2m+ 1
0 otherwise.

(2) OE in Example 5.2 (2) is not a 2m-sherical object. Indeed, since
NE/X0

∼= Ω1
E , we have

ExtpOX0
(OE ,OE) ∼= Ωp

E .

Hence

Homp
D(X0)(OE ,OE) ∼=

{
C if p = 0, 2, . . . , 2m
0 otherwise.

There is some relationship between the flops and the twistings.

Example 5.10. If m = 1 in Example 5.2 (1), then there are iso-
morphisms

ΦOZ
Y→X ◦ ΦOZ

X→Y (OX(−k)) ∼= T ′
OE(−1)(OX(−k))

for k = 0, 1.
Indeed, we have

OX
Φ

OZ
X→Y−−−−→ OY

Φ
OZ
Y →X−−−−→ OX

OX(−1)
Φ

OZ
X→Y−−−−→ OY (1)

Φ
OZ
Y →X−−−−→ IE(−1)

where IE is the ideal sheaf of E in X. On the other hand,

RHomX(OX ,OE(−1)) = 0, RHomX(OX(−1),OE(−1)) = C

hence

T ′
OE(−1)(OX) = OX , T ′

OE(−1)(OX(−1)) = IE(−1).
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Example 5.11. In Example 5.2 (2), there are isomorphisms

Φ
OZ0
X0→Y0

◦ (Φ
O

Z̃0
X0→Y0

)−1(OY0(k)) ∼= TOF (−1)(OY0(k))

for k = 0, 1, . . . ,m.
Indeed, since

Homp
D(Y0)(OF (−1),OY0(k))

∼= HomD(Y0)(OY0(k),OF (−1)[2m− p])∗

∼=


0 if k = 0, . . . ,m− 1
0 if k = m and p 	= m

C if k = m and p = m.

we have

TOF (−1)(OY0(k)) ∼= OY0(k)

for k = 0, 1, . . . ,m− 1, and

OF (−1)[−m]→ OY0(m)→ TOF (−1)(OY0(m))→ OF (−1)[−m+ 1]

is a distinguished triangle, where the first arrow is nontrivial.
On the other hand, we have an exact sequence

0→ OX → OX → OX0 → 0

where the first arrow is the multiplication by an equation of W0 ⊂ W .
Hence

Φ
O

Z̃0
X0→Y0

(OX0(−k)) ∼= OY0(k)

for k = 0, 1, . . . ,m. If k = 0, 1, . . . ,m− 1, then we also have

OX0(−k)
f∗0−−−→ OZ0(−k, 0) ∼= OZ0(0, k)(kG0)

g0∗−−−→ OY0(k)

because KZ0/Y0
= (m− 1)G0.

For k = m, we have an exact sequence

0→ OZ0(0,m)((m− 1)G0)→ OZ0(0,m)(mG0)→ ωG0(0,m)→ 0.

Since g0∗(ωG0) ∼= ωF [−m + 1] ∼= OF (−m − 1)[−m + 1], we obtain a
distinguished triangle

OF (−1)[−m]→ OY0(m)→ g0∗f∗0 (OX0(−m))→ OF (−1)[−m+ 1].
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We claim that the first arrow is nontrivial as an element of

HomD(Y0)(OF (−1)[−m],OY0(m)) ∼= C.

Indeed, if not, then we would have

HomD(Y0)(OF (−1)[−m],OY0(m))
∼= Hom1

D(Y0)(g0∗f
∗
0 (OX0(−m)),OY0(m))

but

Hom1
D(Y0)(g0∗f

∗
0 (OX0(−m)),OY0(m))

∼= Hom1
D(Z0)(f

∗
0 (OX0(−m)), g!

0OY0(m))
∼= Hom1

D(Z0)(OZ0(0,m)(mG0),OZ0(0,m)((m− 1)G0))
∼= H1(Z0,OZ0(−G0)) ∼= 0

a contradiction. Therefore, we have the desired isomorphisms.

Proposition 5.12. In Example 5.2 (2), if m ≥ 2, then the functor

g0∗f∗0 = Φ
OZ0
X0→Y0

: D(X0)→ D(Y0)

is not an equivalence.

Proof. Let us write Φ = Φ
OZ0
X0→Y0

and a = OX0(−m). We consider a
spectral sequence

Ep,q2 =
⊕
i∈Z

Extp(H i(Φ(a)), Hq+i(Φ(a)))⇒ Homp+q
D(Y0)(Φ(a),Φ(a))

given by the last line of [24] 4.6.10. We have

Hq(Φ(a)) ∼=


OY0(m) if q = 0
OF (−1) if q = m− 1
0 otherwise
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and

Extp(OY0(m),OY0(m)) ∼= Extp(OX0(−m),OX0(−m)) = 0 for p 	= 0

Extp(OY0(m),OF (−1)) ∼=
{

C if p = m

0 otherwise

Extp(OF (−1),OY0(m)) ∼=
{

C if p = m

0 otherwise

Extp(OF (−1),OF (−1)) ∼=
{

C if p = 0, 2, . . . , 2m
0 otherwise.

Then the terms Ep,02 for p = 2, . . . , 2m−2 survive, hence Homp
D(X0)(a, a)

and Homp
D(Y0)(Φ(a),Φ(a)) are not isomorphic for these p. q.e.d.

Remark 5.13. After this paper was written, Jan Wierzba informed
us that Corollary 5.7 and Proposition 5.12 were already proved by
Namikawa [18], though the proofs are different. Combining with a re-
sult in [9] or [26] (see also [14]), we obtain the implication from (2) to
(1) in Conjecture 1.2 in the case of symplectic projective manifolds of
dimension 4.

6. Flops of terminal 3-folds

We shall deal with singular verieties in this section.
The smoothness of the given varieties is an important assumption

for the study of derived categories. For example, any coherent sheaf on
a smooth projective variety has a finite locally free resolution, hence the
Serre functor exists.

We can compare our situation with the deformation theory of maps
from curves to varieties. The latter is not applicable to singular varieties
because the smoothness assumption is essential for a good obstruction
theory. However it provides deep results such as the theory of rationally
connected varieties.

We can still deal with singular varieties as if they are smooth in
some cases:

(1) If X is a variety with only quotient singularities, then we consider
a smooth stack X above X as a natural substitute (cf. [12]).



D-equivalence and K-equivalence 165

(2) If X has only hypersurface singularities, then we embed X into a
smooth variety by deformations (cf. [8]).

(3) If X is a normal crossing variety, then we replace X by its smooth
hypercovering (cf. [15]).

We consider a mixture of (1) and (2) in this section.

Definition 6.1. Let X be a normal quasiprojective variety such
that the canonical divisor KX is a Q-Cartier divisor. Each point x ∈ X
has an open neighborhood Ux such that mxKX is a principal Cartier
divisor on Ux for a minimum positive integermx. The canonical covering
πx : Ũx → Ux is a finite morphism of degree mx from a normal variety
which is etale in codimension 1 and such that K

Ũx
is a Cartier divisor.

The canonical coverings are etale locally uniquely determined, thus we
can define the canonical covering stack X as the stack above X given
by the collection of canonical coverings πx : Ũx → Ux.

We denote by D(X ) = Db(Coh(X )) the derived category of bounded
complexes of coherent orbifold sheaves on X (cf. [12]).

The following was suggested by Burt Totaro.

Proposition 6.2. Let X be a normal projective variety such that
the canonical divisor KX is a Q-Cartier divisor. Then there exists an
embedding

φ : X → P(a1, . . . , aN )

to a weighted projective space such that the stack structure on X induced
from the natural smooth stack structure of P(a1, . . . , aN ) coincides with
the one defined by the canonical coverings.

Proof. Let H be an ample Cartier divisor such that KX + H is
still ample as a Q-Cartier divisor. The ring R =

⊕∞
m=0H

0(X,m(KX +
H)) is a finitely generated algebra over C. Let x1, . . . , xN be a set of
homogeneous generators of R of degree a1, . . . , aN . Then we obtain an
embedding of X to a weighted projective space

φ : X → P(a1, . . . , aN ).

Since KX +H is ample, g.c.d.(a1, . . . , aN ) = 1.
We claim that

g.c.d.(a1, . . . , ǎi, . . . , aN ) = 1
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for any i = 1, . . . , N , i.e., the sequence of integers (a1, . . . , aN ) is well-
formed. Indeed, suppose that (a2, . . . , aN ) = c 	= 1. Let m be a suffi-
ciently large integer which is not divisible by c, and consider an exact
sequence

0→ OX((m− a1)(KX +H))→ OX(m(KX +H))→ Fm → 0

given by the multiplication by x1, where Fm is a sheaf on X1 = div(x1).
By assumption, we have H0(X, (m− a1)(KX +H)) ∼= H0(X,m(KX +
H)), while H0(X1,Fm) 	= 0 and H1(X, (m−a1)(KX+H)) = 0 for large
m, a contradiction.

Let us fix a point p ∈ X. Then there exists a homogeneous coodi-
nate, say x1, such that x1(p) 	= 0. We have a commutative diagram

U
φ−−−→ Ux1

⊂−−−→ P(a1, . . . , aN )

πU

� �π1

Ũ
φ̃−−−→ Ũx1

where U is a small open neighborhood of p, Ux1 is the open subset of
P(a1, . . . , aN ) defined by x1 	= 0, πU : Ũ → U is a canonical covering,
and π1 : Ũx1 → Ux1 is the natural covering from an affine space with
coordinates

x2x
−a2/a1

1 , . . . , xNx
−aN/a1

1 .

Note that both πU and π1 are etale in codimension 1.
Since x1(p) 	= 0, we may choose a branch of x1/a1

1 on sufficiently
small U . Then φ can be lifted to a morphism φ̃ : Ũ → Ũx1 which we can
check to be etale. Therefore, the two stack structures coincide. q.e.d.

Remark 6.3.

(1) By the proposition, any coherent orbifold sheaf on the canonical
covering stack X has a surjection from a locally free orbifold sheaf on X .
But the Serre functor for the category D(X ) does not exist in general.

(2) Totaro ([22]) proved the following resolution theorem: on a
smooth orbifold whose coarse moduli space is a separated scheme, any
coherent orbifold sheaf has a finite resolution by locally free orbifold
sheaves.

We still have a good spanning class for terminal 3-folds:



D-equivalence and K-equivalence 167

Lemma 6.4. Let X be a normal projective variety of dimension 3
with only terminal singularities, mx the index of KX at x ∈ X, and X
the canonical covering stack of X. Then the set {Ox(iKX)|x ∈ X, 0 ≤
i < mx} is a spanning class of D(X ).

Proof (cf. [3] Example 2.2 and [8] Lemma 3.4). Let a be a nonzero
object of D(X ). Take a point x0 in the support of a, and let q0 be the
maximal value of q such that Hq(a)x0 	= 0. Then there exists an integer
i0 such that Hom(Hq0(a),Ox0(i0KX)) 	= 0. Then

Hom−q0
D(X)(a,Ox0(i0KX)) 	= 0.

If the support of a is not contained in the singular locus of X, then
we take the above point x0 from the smooth locus of X. By the Serre
duality, we have Homn+q0(Ox0 , a) 	= 0, where n = dimX. Other-
wise, let q1 be the minimal value of q such that Hq(a)x0 	= 0. Since
X has only isolated singularities, there exists an integer i1 such that
Hom(Ox0(i1KX), Hq1(a)) 	= 0. Hence Homq1

D(X)(Ox0(i1KX), a) 	= 0.
q.e.d.

Theorem 6.5. Let X and Y be normal quasiprojective varieties of
dimension 3 with only Q-factorial terminal singularities,

X
φ−−−→ W

ψ←−−− Y

a flop, and X and Y the canonical covering stacks above X and Y ,
respectively. Then the bounded derived categories of coherent orbifold
sheaves D(X ) and D(Y) are equivalent as triangulated categories.

Proof. The assertion is already proved in the case where KX is a
Cartier divisor by Bridgeland [4] and Chen [8] (see also [23]). Indeed, it
is proved that the structure sheaf OZ of the fiber product Z = X×W Y
is quasi-isomorphic to a finite complex of sheaves on X × Y flat over X
so that the integral functor ΦOZ

X→Y : D(X)→ D(Y ) is defined and is an
equivalence ([8] Lemma 2.1 and Proposition 4.2).

We shall give a new simpler proof, which is based on [23] §4.1, that
Φ = ΦOZ

X→Y : D(X)→ D(Y ) is an equivalence in the case where KX is a
Cartier divisor. We may assume that W is a hypersurface singularity of
multiplicity 2. Thus W has an involution σ such that W/〈σ〉 is smooth.
We may take Y = X and ψ = σ ◦ φ.

First we prove that Φ(OX) ∼= OY . Indeed, for any closed point
y ∈ Y , the scheme theoretic fiber g−1(y) is isomorphic to the fiber
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f−1(ψ(y)). We have H0(Of−1(ψ(y))) ∼= C, hence the natural homomor-
phism OY → R0g∗OZ is an isomorphism.

Any subscheme of Z which is mapped by g to an infinitesimal sub-
scheme y of Y supported at y is isomorphic to a subscheme of the
product C × y for a subscheme C of X which is mapped by φ to an
infinitesimal subscheme w of W supported at φ(y). Since R1φ∗OX = 0,
it follows that R1g∗OZ = 0.

Let Cj (j = 1, . . . , t) be the exceptional curves of φ, and Li (i =
1, . . . , t) invertible sheaves on X such that (Li · Cj) = δij . Then Li are
generated by global sections for all i. We note that R1φ∗L∗

i may not
necessarily vanish.

According to [23] §4.1, we construct locally free sheaves Mi and Ni

on X by the following exact sequences:

0→ OriX →Mi → Li → 0
0→ Ni → Osi

X → Li → 0

for some integers ri, si such that we have the vanishing higher direct im-
age sheaves R1φ∗M∗

i = 0 and R1φ∗Ni = 0. By [23] Proposition 4.1.2, if
we take ri and si to be the minimal possible integers under the vanishing
conditions, then we have

φ∗Ni
∼= σ∗φ∗Mi

where we note that σ∗Li ∼= L∗
i . By construction, Mi and N∗

i are gener-
ated by global sections.

It follows that R1g∗f∗Ni = 0 from R1φ∗Ni = 0 as before. We
consider an exact sequence

0→ g∗f∗Ni → Osi
Y → g∗f∗Li → 0.

Since there is a non-natural injection g∗f∗Li → g∗OZ , the sheaf g∗f∗Li
is torsion free. Hence g∗f∗Ni is a reflexive sheaf. Since ψ∗g∗f∗Ni

∼=
φ∗Ni

∼= ψ∗Mi, we conclude that Φ(Ni) ∼= Mi.
The set of sheaves Ω = {OX , N1, . . . , Nt} is a spanning class of

D(X). ω is locally free, ω∗ is generated by global sections and R1φ∗ω =
0 for any ω ∈ Ω. Hence

Homp
D(X)(ω1, ω2) = 0

for p > 0 and ω1, ω2 ∈ Ω. Similarly we have

Homp
D(Y )(Φ(ω1),Φ(ω2)) = 0.
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Since X and Y are isomorphic in codimension 1, we have

HomX(ω1, ω2) ∼= HomY (Φ(ω1),Φ(ω2)).

Therefore, we have proved that Φ is an equivalence in the case where
KX is a Cartier divisor.

Now we consider the general case. Let W be the canonical covering
stack of W . Let w ∈W be a point, Ww its small neighborhood on which
mwKW is a principal Cartier divisor, and πw : W̃w → Ww a canonical
covering. Then mwKX and mwKY are also principal Cartier divisors
on Xw = φ−1(Ww) and Yw = ψ−1(Ww), respectively, and we have
corresponding canonical coverings πX : X̃w → Xw and πY : Ỹw → Yw.
Thus there are morphisms of stacks φ : X → W and ψ : Y → W. Let

Z = X ×W Y

be the fiber product as a stack. Then it is a stack above Z = X ×W Y
where local coverings are given by

Z̃w = X̃w ×W̃w
Ỹw → Zw = Xw ×Ww Yw.

Let f : Z → X and g : Z → Y be the induced morphisms.
We claim that the functor

g∗f∗ : D(X )→ D(Y)

is defined and is an equivalence. Indeed, over an open subset Ww, we
know already that the integral functor

Φ
O

Z̃w

X̃w→Ỹw
: D(X̃w)→ D(Ỹw)

is an equivalence. Let Xw = X|Xw = [X̃w/G], Yw = Y|Yw = [Ỹw/G],
Zw = Z|Zw = [Z̃w/G], fw = f|Zw and gw = g|Zw . The Galois group
G = Z/mw acts equivariantly so that we have D(X̃w)G ∼= D(Xw) and
D(Ỹw)G ∼= D(Xw) (cf. [7]). Hence we have a well-defined equivalence

gw∗f∗w : D(Xw)→ D(Yw).

By Lemma 6.4, we conclude the proof. q.e.d.
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Remark 6.6. We note that the equivalence Φ = g∗f∗ : D(X ) →
D(Y) does not induce an equivalence D(X) → D(Y ) of usual derived
categories for singular varieties. Indeed, we can construct a similar
example as in [12] Example 5.1. There is a skyscraper sheaf a ∈ D(X )
supported over a non-Gorenstein singular point ofX such that πX∗(a) =
0 in D(X), but its image Φ(a) ∈ D(Y) has a 1-dimensional support so
that πY ∗(Φ(a)) 	= 0 in D(Y ).
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