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Abstract

Curvature properties of some generalizations of contact metric manifolds
are studied, with special attention to (κ, µ)-nullity conditions in the framework
of S-manifolds.

1 Basic definitions

An extensive research about contact geometry is done in recent years. In the present
paper we are concerned with a certain generalization of contact metric manifolds in
the context of f -manifolds. We recall the precise definitions. Let M be a (2n + s)–
dimensional manifold. We say that M is equipped with an f–structure with a

parallelizable kernel, more briefly f.pk–structure, if there are given on M an f–
structure ϕ, s global vector fields ξ1, . . . , ξs and 1-forms η1, . . . , ηs on M satisfying
the following conditions

ϕ(ξi) = 0, ηi ◦ ϕ = 0, ϕ2 = −Id +
s

∑

j=1

ηj ⊗ ξj, ηi(ξj) = δi
j (1.1)

for all i, j ∈ {1, . . . , s}; we denote by D the bundle Im (ϕ), and we set ξ := ξ1+· · ·+ξs,
η := η1 + · · ·+ ηs. The structure (ϕ, ξi, ηj) on M is said to be normal if and only if
Nϕ = 0, where Nϕ is the (2, 1)-tensor on M given by Nϕ := [ϕ, ϕ] + 2

∑s
i=1 dηi ⊗ ξi.
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On a manifold equipped with an f.pk–structure there always exists a compatible

Riemannian metric g in the sense that for each X, Y ∈ Γ(TM)

g(X, Y ) = g(ϕ(X), ϕ(Y )) +
s

∑

j=1

ηj(X)ηj(Y ). (1.2)

However such a metric on M is not unique: we fix one of them; then the structure
obtained is called a metric f.pk–structure. Let F be the Sasaki form of ϕ defined
by F (X, Y ) := g(X, ϕY ) for X, Y ∈ Γ(TM). It may be observed that D is the
orthogonal complement of the bundle ker (ϕ) = 〈ξ1, . . . , ξs〉.

The metric f.pk–manifold (M, ϕ, ξi, ηj, g) is said to be an almost S–manifold if
and only if dη1 = · · · = dηs = F . Almost S-manifolds which are normal are called
S-manifolds.

The study of f -manifolds was started by D.E. Blair, S.I. Goldberg, K. Yano,
J. Vanzura, cf. [1, 11, 14]. Almost S–structures were studied, without being pre-
cisely named, by J.L. Cabrerizo, L.M. Fernández and M. Fernández, cf. [4]. Then
K. Duggal, A.M. Pastore and S. Ianus, cf. [10], also studied such manifolds and gave
them the name ”almost S–manifolds”. S-manifolds were introduced by D.E. Blair
(cf. [1]), who proved that the space of a principal toroidal bundle over a Kähler
manifold is an S-manifold. S-structures are a natural generalization of Sasakian
structures, but unlike Sasakian manifolds, no S-structure can be realized on a sim-
ply connected, compact manifold (cf. [6]). In [8] there is an example of an even
dimensional principal toroidal bundle over a Kähler manifold which does not carry
any Sasakian structure. On the other hand, there is constructed an S-structure
on the even dimensional manifold U(2). It is well known that U(2) does not ad-
mit a Kähler structure. We conclude that there exist manifolds such that the best
structure we can hope to obtain on them is an S-structure.

On an almost S–manifold (M, ϕ, ξi, ηj , g) there are defined the (1,1)-tensor fields
hi := (1/2)Lξi

ϕ for i = 1, . . . , s, cf. [4, (2.5)]. We use extensively the properties
of these tensor fields in the present paper. In particular these operators are self
adjoint, traceless, anticommute with ϕ and for each i, j ∈ {1, . . . , s}

hiξj = 0, ηi ◦ hj = 0, (1.3)

cf. [4]. Moreover the following identities hold, cf. [10],

∇Xξi = −ϕX − ϕhiX, ∇ξi
ϕ = 0, ∇ξi

ξj = 0 (1.4)

where ∇ is the Levi Civita connection of g, X ∈ Γ(TM) and i, j ∈ {1, . . . , s}. We
shall sometimes use the following curvature identity related to ∇

RξiXξj − ϕ(RξiϕXξj) = 2
(

(hi ◦ hj)X + ϕ2X
)

(1.5)

which can be immediately obtained combining the first equation on [4, pag. 158]
and (1.4).

In 1995 D. Blair, T. Koufogiogos and B.J. Papantoniou, cf. [2], studied contact
metric manifolds such that the characteristic vector field belongs to the (κ, µ)–nullity
distribution. We generalize this concept for almost S–manifolds as follows.
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Definition 1.1. Let M be an almost S-manifold, κ, µ real constants. We say
that M verifies the (κ, µ)-nullity condition if and only if for each i ∈ {1, . . . , s},
X, Y ∈ Γ(TM) the following identity holds

RXY ξi = κ
(

η(X)ϕ2Y − η(Y )ϕ2X
)

+ µ (η(Y )hiX − η(X)hiY ) . (1.6)

Lemma 1.1. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition.

Then we have

(i). hi ◦ hj = hj ◦ hi, for each i, j ∈ {1, . . . , s}
(ii). κ ≤ 1

(iii). if κ < 1 then, for each i ∈ {1, . . . , s}, hi has eigenvalues 0,±
√

1 − κ.

Proof. From (1.6) it follows that for each X ∈ Γ(TM), i, j ∈ {1, . . . , s} RξjXξi −
ϕRξjϕXξi = 2κϕ2X. Using (1.5) we obtain

(hi ◦ hj)X = (κ − 1)ϕ2X = (hj ◦ hi)X (1.7)

and then (i) is verified. Next, from (1.7) we get

h2
i = (k − 1)ϕ2 (1.8)

h2
i X = (1 − κ)X, X ∈ Γ(D). (1.9)

Then, using (1.3), (1.9) we obtain that the eigenvalues of h2
i are 0 and 1 − κ.

Moreover, since hi is symmetric, ‖hiX‖2 = (1 − κ)‖X‖2. Hence κ ≤ 1. Finally,
let t be a real eigenvalue of hi and X be an eigenvector corresponding to t. Then
t2‖X‖2 = ‖hiX‖2 = (1 − κ)‖X‖2 and t = ±

√
1 − κ. Taking (1.3) into account we

get (iii). �

Proposition 1.1. Let M be an almost S-manifold verifying the (κ, µ)-nullity con-

dition. Then

h1 = · · · = hs. (1.10)

Proof. If κ = 1 then from (1.8) and the symmetry of each hi we have h1 = · · · =
hs = 0. Let now κ < 1. We fix x ∈ M and i ∈ {1, . . . , s}. Since hi is symmetric then
we have Dx = (D+)x ⊕ (D−)x, where (D+)x is the eigenspace of hi corresponding to
the eigenvalue λ =

√
1 − κ and (D−)x is the eigenspace of hi corresponding to the

eigenvalue −λ. If X ∈ Dx then we can write X = X+ + X−, where X+ ∈ (D+)x,
X− ∈ (D−)x, so that hiX = λ(X+ − X−). We fix j ∈ {1, . . . , s}, j 6= i. Then from

(1.7) we get hjX = hj(X+ + X−) = hj

(

1
λ
hiX+ − 1

λ
hiX−

)

= 1
λ
(hj ◦ hi)(X+ − X−) =

λ(X+ − X−) = hiX. Taking (1.3) into account we obtain (1.10). �

Remark 1.1. Throughout all this paper whenever (1.6) holds we put h := h1 =
· · · = hs. Then (1.6) becomes

RXY ξi = κ
(

η(X)ϕ2Y − η(Y )ϕ2X
)

+ µ (η(Y )hX − η(X)hY ) . (1.11)

Furthermore, using (1.11), the symmetry properties of the curvature tensor and the
symmetry of ϕ2 and h, we get

RξiXY = κ
(

η̄(Y )ϕ2X − g(X, ϕ2Y )ξ̄
)

+ µ
(

g(X, hY )ξ̄ − η̄(Y )hX
)

. (1.12)
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Remark 1.2. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition,
with κ 6= 1. We denote by D+ and D− the n-dimensional distributions of the
eigenspaces of λ =

√
1 − κ and −λ, respectively. We have that D+ and D− are

mutually orthogonal. Moreover, since ϕ anticommutes with h, we have ϕ(D+) = D−

and ϕ(D−) = D+. In other words, D+ is a Legendrian distribution and D− is the
conjugate Legendrian distribution of D+ (cf. [5]).

Proposition 1.2. Let M be an almost S-manifold verifying the (κ, µ)-nullity con-

dition. Then M is an S-manifold if and only if κ = 1.

Proof. We observed in the proof of Proposition 1.1 that if κ = 1 then h = 0. It
follows that (1.6) reduces to RXY ξi = η(X)ϕ2Y − η(Y )ϕ2X. From [4, Proposition
3.4 and Theorem 4.3] we get the claim. �

Remark 1.3. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition.
If there exists i ∈ {1, . . . , s} such that ξi is a Killing vector field then from [4,
Theorem 2.6] we have h = hi = 0. From (1.9) we get κ = 1 and using Proposition
1.2 we have that M is an S-manifold.

The notion of D-homothetic transformation for contact metric manifolds has
been deeply studied (cf. for example [13]). Now we generalize this concept for a
metric f.pk-manifold (in particular for an almost S-manifold).

Definition 1.2. Let (ϕ, ξi, ηj, g) be an f.pk-structure on a manifold M2n+s and a
be a real positive constant. By a D-homothetic transformation of constant a we
mean a change of the structure tensors in the following way:

ϕ̃ = ϕ η̃i = aηi ξ̃i =
1

a
ξi g̃ = ag + a(a − 1)

s
∑

j=1

ηj ⊗ ηj (1.13)

for each i ∈ {1, . . . , s}.
It is straightforward to prove that if (ϕ̃, ξ̃i, η̃j, g̃), i, j ∈ {1, . . . , s}, is a struc-

ture on the manifold M obtained by a D-homothetic transformation from the f.pk-
structure (ϕ, ξi, ηj , g), then (ϕ̃, ξ̃i, η̃j, g̃) is an (almost) S-structure if and only if
(ϕ, ξi, ηj, g) is an (almost) S-structure.

Lemma 1.2. Let M2n+sbe a manifold and (ϕ̃, ξ̃i, η̃j, g̃), i, j ∈ {1, . . . , s}, be an

almost S-structure on M obtained from the almost S-structure (ϕ, ξi, ηj, g) by a

D-homothetic transformation. Then for each i ∈ {1, . . . , s}, X, Y ∈ Γ(TM) the

following identities hold

ah̃i = hi (1.14)

a∇̃X ξ̃i = ∇Xξi + (1 − a)ϕX (1.15)

ηi(∇̃XY ) = X(ηi(Y )) − g(Y, ϕX + ϕh̃iX) (1.16)

a∇̃XY = a∇XY + (1 − a)
(

s
∑

l=1

g(ϕhlX, Y )ξl (1.17)

+a (η̄(Y )ϕX + η̄(X)ϕY )
)

where ∇̃ and ∇ denote the Levi Civita connections of g̃ and g, respectively, and

h̃i = 1
2
Lξ̃i

ϕ̃.
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Proof. Identity (1.14) is an immediate consequence of the definitions of hi, h̃i. By
an easy direct computation, from (1.4), using (1.14), we get (1.15). Since ηi(X) =
g(X, ξi), for each i ∈ {1, . . . , s}, X ∈ Γ(TM), using (1.14) we have (1.16). Next,
applying the Koszul formulas, cf. [12, pag.160], for ∇̃, ∇ and dη1 = · · · = dηs = F
we get

2g̃(∇̃XY, Z) = 2ag(∇XY, Z) + a(a − 1)
s

∑

i=1

[

2g(X, ϕZ)ηi(Y )

+ 2g(Y, ϕZ)ηi(X) + g
(

(X(ηi(Y )) + Y (ηi(X)) + ηi([X, Y ])) ξi, Z
)]

.

Here we substitute the expression of g̃ in (1.13) and then using (1.16) and dη1 =
· · · = dηs = F we obtain

∇̃XY = ∇XY + (1 − a)
s

∑

i=1

[

ηi(Y )ϕX + ηi(X)ϕY − 1

2

(

X(ηi(Y ))

+ Y (ηi(X)) + ηi([X, Y ])
)

ξi +
(

X(ηi(Y )) + g(ϕX, Y ) + g(ϕh̃iX, Y )
)

ξi

]

.

Taking (1.14) into account we get (1.17). �

Remark 1.4. Under the same hypotheses of Proposition 1.2, from (1.14) and [4,
Theorem 2.6] it follows that ξi is a Killing vector field if and only if ξ̃i is a Killing
vector field, i ∈ {1, . . . , s}.

Proposition 1.3. Let M2n+sbe a manifold and (ϕ̃, ξ̃i, η̃j , g̃), i, j ∈ {1, . . . , s}, be

an almost S-structure on M obtained from the almost S-structure (ϕ, ξi, ηj, g)
by a D-homothetic transformation of constant a. Then for each i ∈ {1, . . . , s},
X, Y ∈ Γ(TM) the following identity holds

aR̃XY ξ̃i = RXY ξi +
1 − a

a

s
∑

l=1

(

g(hlY, hiX) − g(hlX, hiY )
)

ξl (1.18)

+(1 − a)
[

η̄(X)(hiY − ϕ2Y ) − η̄(Y )(hiX − ϕ2X)

+(∇Xϕ)Y − (∇Y ϕ)X
]

+ (1 − a)2
(

η̄(X)ϕ2Y − η̄(Y )ϕ2X
)

.

Proof. Using (1.15), (1.17), (1.2), (1.4), (1.3) and the symmetry of each hi we can
straightforwardly obtain (1.18). �

2 Properties of the curvature

Let (M2n+s, ϕ, ξi, ηj, g), i, j ∈ {1, . . . , s}, be an almost S-manifold. We consider the
(1, 1)-tensor fields defined by

lij(X) = RXξi
ξj

for each i, j ∈ {1, . . . , s}, X ∈ Γ(TM) and put li = lii.
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Lemma 2.1. For each i, j, k ∈ {1, . . . , s} the following identities hold

ϕ ◦ lij ◦ ϕ − lij = 2(hj ◦ hi + ϕ2) (2.1)

ηk ◦ lij = 0 (2.2)

lij(ξk) = 0 (2.3)

∇ξi
hj = ϕ − ϕ ◦ lij − ϕ ◦ hj ◦ hi + ϕ ◦ (hj − hi) (2.4)

∇ξi
hi = ϕ − ϕ ◦ li − ϕ ◦ h2

i . (2.5)

Proof. Identity (2.1) is a rewriting of [9, (3.4)]; (2.2) and (2.3) are an immediate
consequence of (2.1). Next from (1.4) and ηl◦(∇ξi

hk) = 0 we get (ϕ−ϕ◦ lij−ϕ◦hj ◦
hi)(X) = −ϕ2 ((∇ξi

hj)X)− (ϕ ◦ hi − ϕ ◦ hj) (X) = (∇ξi
hj)(X) + ϕ ((hj − hi)(X)) ,

for each X ∈ Γ(TM), from which it follows (2.4). Finally, identity (2.5) is (2.4)
when i = j. �

Remark 2.1. In the case when ξi is Killing for each i ∈ {1, . . . , s}, from [4, Theorem
2.6] we get that (2.4) reduces to ϕ ◦ lij = ϕ. Then from (2.2) we have lij = −ϕ2 so
that all the lij ’s coincide.

Remark 2.2. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition.
Then for each i, j ∈ {1, . . . , s} we have

lij = −κϕ2 + µh. (2.6)

It follows that all the lij ’s coincide. We put l = lij

Lemma 2.2. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition.

Then for each X, Y ∈ Γ(TM), i ∈ {1, . . . , s}, the following identities hold

∇ξi
h = µ h ◦ ϕ (2.7)

l ◦ ϕ − ϕ ◦ l = 2µ h ◦ ϕ (2.8)

l ◦ ϕ + ϕ ◦ l = 2κ ϕ (2.9)

Qξi = 2nκ ξ̄. (2.10)

Proof. From (2.5), using (2.6), we obtain (2.7). Identities (2.8) and (2.9) follow
directly from (2.6) using h ◦ ϕ = −ϕ ◦ h. For the proof of (2.10) we fix x ∈ M and
{E1, . . . , E2n+s} a local ϕ-basis around x with E2n+1 = ξ1, . . . , E2n+s = ξs. Then
using (1.12) and trace (h) = 0 we get Qξi =

∑2n
α=1 RξiEα

Eα =
∑2n

α=1 κg(ϕ2Eα, Eα)ξ̄ =
κ

∑2n
α=1 δααξ̄ = 2nκξ̄. �

Remark 2.3. Let M be an almost S-manifold. Then from [7, (2.2)] using
(∇hiXF )(Y, Z) = −g((∇hiXϕ)Y, Z), for each X, Y, Z ∈ Γ(TM), we get

(∇hiXϕ)Y =
1

2
(ϕRξiϕXY − RξiϕXϕY − ϕRξiXϕY − RξiXY ) (2.11)

−g(ϕ2X − hiX, Y )ξ̄ + η̄(Y )(ϕ2X − hiX).
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Lemma 2.3. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition.

Then the following identities hold

(∇Xϕ)Y = g(Y, hX − ϕ2X)ξ̄ − η̄(Y )(hX − ϕ2X) (2.12)

(∇Xh)Y − (∇Y h)X = (1 − κ)
(

2g(X, ϕY )ξ̄ + η̄(X)ϕY − η̄(Y )ϕX
)

+(1 − µ) (η̄(X)ϕhY − η̄(Y )ϕhX) . (2.13)

Proof. From (2.11) we obtain (∇hXϕ)Y = κ
(

g(X, ϕ2Y )ξ̄ − η̄(Y )ϕ2X
)

− g(ϕ2X −
hX, Y )ξ̄+η̄(Y )(ϕ2X−hX). Here we replace X with hX and by a direct computation,
taking (1.4), (1.8) into account, we get (2.12). From (2.12), since h and ϕ2 are self-

adjoint, we have (∇X(ϕ◦h))Y − (∇Y (ϕ◦h))X = ϕ
(

(∇Xh)Y − (∇Y h)X
)

. It follows

that for each Z ∈ Γ(TM)

g(RXY ξi, Z) = g
(

g(X, hZ − ϕ2Z)ξ̄, Y
)

− g
(

η̄(X)(hZ − ϕ2Z), Y
)

+g
(

ϕ((∇Y h)X − (∇Xh)Y ), Z
)

, (2.14)

where we use (2.1) of [7] and (2.12). From (2.14) and the symmetry of h and ϕ2

it follows that ϕ((∇Y h)X − (∇Xh)Y ) = RXY ξi − η̄(Y )(hX − ϕ2X) + η̄(X)(hY −
ϕ2Y ). Then, applying ϕ to both the sides of the last identity, using (1.11) and

ηl

(

(∇Y h)X − (∇Xh)Y
)

= 2(k − 1)g(X, ϕY ), l ∈ {1, . . . , s}, we get (2.13). �

Theorem 2.1. Let Z = (M2n+s, ϕ, ξi, ηj, g) be an almost S-manifold and (ϕ̃, ξ̃i, η̃j, g̃)
be an almost S-structure on M obtained by a D-homothetic transformation of con-

stant a. If Z verifies the (κ, µ)-nullity condition for certain real constants (κ, µ)
then (M, ϕ̃, ξ̃i, η̃j, g̃) verifies the (κ̃, µ̃)-nullity condition, where

κ̃ =
κ + a2 − 1

a2
, µ̃ =

µ + 2(a − 1)

a
.

Proof. From (1.14) and Proposition 1.1 it follows that h̃1 = · · · = h̃s. Then, using
(1.18) and (2.12), by a direct calculation we get the claim. �

Remark 2.4. In [7] there are studied almost S-manifolds such that RXY ξi = 0
for all X, Y ∈ Γ(TM), i ∈ {1, . . . , s}. This is the case when (1.6) is verified for
κ = µ = 0. If we consider a > 0 and a D-homothetic transformation of constant
a on such a manifold, then from Theorem 2.1 we obtain an almost S-manifold
verifying the (κ̃, µ̃)-nullity condition where κ̃ = a2

−1
a2 and µ̃ = 2(a−1)

a
. This result can

be applied for the examples of flat S-manifolds of dimension 2 + s, s ≥ 2 given in
[9] so that we easily obtain examples of S-manifolds of dimension 2+ s verifying the
(κ, µ)-nullity condition with (κ, µ) 6= (0, 0) and (κ, µ) 6= (1, 0).

Lemma 2.4. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition.

Then

X, Y ∈ Γ(D+) ⇒ ∇XY ∈ Γ(D+) (2.15)

X, Y ∈ Γ(D−) ⇒ ∇XY ∈ Γ(D−) (2.16)

X ∈ Γ(D+), ∈ Γ(D−) ⇒ ∇XY ∈ Γ(D− ⊕ ker (ϕ)) (2.17)

X ∈ Γ(D−), Y ∈ Γ(D+) ⇒ ∇XY ∈ Γ(D+ ⊕ ker (ϕ)) (2.18)
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Proof. From (2.13) we get g((∇Xh)ϕZ − (∇ϕZh)X, Y ) = 0, for each X, Y, Z ∈
Γ(D+). On the other hand, since h is symmetric, from Remark 1.2 we have
g((∇Xh)ϕZ − (∇ϕZh)X, Y ) = −2λg(∇X(ϕZ), Y ).
Then g(ϕZ,∇XY ) = −g(∇X(ϕZ), Y ) = 0, that is ∇XY is normal to D−. Moreover
from (1.4) and Remark 1.2 it follows that, for each i ∈ {1, . . . , s}, g(∇XY, ξi) =
−g(Y,∇Xξi) = 0. Then we have (2.15). The proof of (2.16) is analogous. If
X ∈ Γ(D+), Y ∈ Γ(D−) then from (2.15) and Remark 1.2 we get that, for each
Z ∈ Γ(D+), g(∇XY, Z) = −g(Y,∇XZ) = 0 and then we have (2.17). Analogously
we prove (2.18). �

Remark 2.5. It follows from (2.15)-(2.16) that D± define two orthogonal totally
geodesic Legendrian foliations F± on M .

Example 2.1. Let g be a (2n + s)-dimensional Lie algebra and let {X1, . . . , Xn, Y1,
. . . , Yn, ξ1, . . . , ξs} be a basis of g. The Lie bracket is defined as follows:

[Xα, Xβ] = 0 for any α, β ∈ {1, . . . , n} ,

[Yα, Yβ] = 0 for any α 6= 2, [Y2, Yβ] = 2Yβ for any β 6= 2

[X1, Y1] = 2ξ − 2X2, [X1, Yβ] = 0 for any β ≥ 2,

[Xh, Yk] = δhk

(

2ξ − 2X2

)

for any h, k ≥ 3, [X2, Yβ] = 2Xβ for any β 6= 2,

[X2, Y2] = 2ξ, [Xk, Y1] = [Xk, Y2] = 0 for any k ≥ 3,

[ξi, ξj] = 0, [ξi, Xβ] = 0 and [ξi, Yβ] = 2Xβ for any β ∈ {1, . . . , n} ,

for all i, j ∈ {1, . . . , s}, where ξ = ξ1 + . . . + ξs. Let G be the Lie group whose Lie
algebra is g. On G one can define an almost S-structure by defining ϕ (Xα) = Yα,

ϕ (Yα) = −Xα , ϕ (ξ1) = · · · = ϕ (ξs) = 0 , for all α ∈ {1, . . . , n}, considering
the left invariant Riemannian metric g such that {X1, . . . , Xn, Y1, . . . , Yn, ξ1, . . . , ξs}
is an orthonormal frame and, finally, defining each 1-form ηi as the dual 1-form of
the vector field ξi with respect to the metric g. Taking into account the previous
relations, we have, for all h, k ∈ {3, . . . , n} and i, j ∈ {1, . . . , s},

∇X1
Y2 = 0, ∇X1

Yk = 0, ∇X1
ξi = −2Y1,

∇X2
Y1 = 0, ∇X2

Yk = 0, ∇X2
ξi = −2Y2,

∇Xk
Y1 = 0, ∇Xk

Y2 = 0, ∇Xk
Yh = 2δhkξ, ∇Xk

ξi = −2Yk,

∇Y1
Y1 = 2Y2, ∇Y1

ξi = 0,

∇Y2
Y1 = 0, ∇Y2

Y2 = 0, ∇Y2
ξi = 0,

∇Yk
Y1 = 0, ∇Yk

Y2 = −2Yk, ∇Yk
Yh = 2δhkY2, ∇Yk

ξi = 0,
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from which we get

R (X1X2) ξi = R (X1Xk) ξi = 0,

R (X1Y1) ξi = R (X1Y2) ξi = R (X1Yk) ξi = 0,

R (X2Xk) ξi = R (X2Y1) ξi = R (X2Y2) ξi = R (X2Yk) ξi = 0,

R (XkXh) ξi = R (XkY1) ξi = R (XkY2) ξi = R (XkYh) ξi = 0,

R (Y1Y2) ξi = R (Y1Yk) ξi = R (Y2Yk) ξi = R (YhYk) ξi = 0,

R (X1ξj) ξi = 4X1, R (X2, ξj) ξi = 4X2, R (Xkξj) ξi = 4Xk,

R (Y1ξj) ξi = −4Y1, R (Y2ξj) ξi = −4Y2, R (Ykξj) ξi = −4Yk,

R (ξlξj) ξi = 0.

Moreover, for the tensor fields h1, . . . , hs we find that, for each i ∈ {1, . . . , s},
hi (Xα) = Xα, hi (Yα) = −Yα, for all α ∈ {1, . . . , n}, and we conclude that G is
an almost S-manifold verifying the (κ, µ)-nullity condition with κ = 0 and µ = 4.
In this case, D+ = 〈X1, . . . , Xn〉, D− = 〈Y1, . . . , Yn〉 and λ = 1. Note that each
ξi is a foliate vector field with respect to the Legendrian foliation F+ defined by
D+, so that F+ is strongly flat (cf. [5]). Further note that a family of almost S-
manifolds satisfying the (κ (a) , µ (a))-nullity condition for any a > 0 is obtained
from (G, φ, ξi, ηj, g) by performing D-homothetic transformations of constant a.

Lemma 2.5. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition.

Then for each X, Y ∈ Γ(TM) we have

(∇Xh)Y =
(

(1 − κ)g(X, ϕY ) + g(X, hϕY )
)

ξ̄ (2.19)

+η̄(Y )h(ϕX + ϕhX) − µη̄(X)ϕhY

Proof. We fix x ∈ M and a local ϕ-basis {e1, . . . , en, ϕe1, . . . , ϕen, ξ1, . . . , ξs} around
x such that {e1, . . . , en} is a local basis of D+. If X ∈ Γ(D+), Y ∈ Γ(D−) from (1.3),
(2.17) and Remark 1.2 we have in x

(∇Xh)Y = −λ∇XY + λ
n

∑

α=1

g(∇XY, ϕeα)ϕeα = λ(1 + λ)g(X, ϕY )ξ̄. (2.20)

Moreover, from (1.3) and (2.18) we have h(∇Y X) = λ
∑n

α=1 g(∇Y X, eα)eα. Then
from (1.4) we have

(∇Y h)X = λ(1 − λ)g(X, ϕY )ξ̄. (2.21)

Let X, Y ∈ Γ(TM). We can write X = X+ + X− +
∑s

i=1 ηi(X)ξi, Y = Y+ + Y− +
∑s

i=1 ηi(Y )ξi because of the decomposition TM = D+ ⊕D− ⊕ ker (ϕ). On the other
hand we have λ (g(X+, ϕY−) − g(X−, ϕY+)) = g(hX, ϕY ) and λ2(g(X+, ϕY−) +
g(X−, ϕY+)) = g(hX, hϕY ). Then, from (2.7), (2.20), (2.21), (1.3) and (1.4) we get
(∇Xh)Y = η̄(X)µhϕY + η̄(Y )h(ϕX + ϕhX) + λ2 (g(X+, ϕY−) + g(X−, ϕY+)) ξ̄ +

λ
(

g(X+, ϕY−)− g(X−, ϕY+)
)

ξ̄. From the symmetry of h and (1.9) it follows (2.19).
�

Remark 2.6. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition.
Then using (2.12), (2.19) and (1.8) we get, for all X, Y ∈ Γ(TM)

(∇Xϕh)Y =
[

g(X, hY ) − (1 − κ)g(X, ϕ2Y )
]

ξ̄ (2.22)

+η̄(Y )
[

hX − (1 − κ)ϕ2X
]

+ µη̄(X)hY.
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Lemma 2.6. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition.

Then for each X, Y, Z ∈ Γ(D) we have

RXY hZ − hRXY Z = s
[

κ
(

g(Y, ϕZ)ϕhX − g(X, ϕZ)ϕhY + g(Z, ϕhY )ϕX

−g(Z, ϕhX)ϕY
)

− 2µg(X, ϕY )ϕhZ
]

. (2.23)

Proof. Let X, Y, Z ∈ Γ(TM). Then by a direct computation we get

(∇X∇Y h)Z = (1 − κ)
[(

g(∇XY, ϕZ) + g(Y, (∇Xϕ)Z)
)

ξ̄ − η̄(Z)
(

(∇Xϕ)Y

+ ϕ(∇XY )
)]

+
[

(1 − κ)g(Y, ϕZ) + g(Y, hϕZ)
]

∇X ξ̄ +
[

g(∇XY, hϕZ)

+ g(Y, (∇Xhϕ)Z)
]

ξ̄ + g(Z,∇X ξ̄)
[

hϕY − (1 − κ)ϕY
]

+ η̄(Z)
[

(∇Xhϕ)Y

+ hϕ(∇XY )
]

− µ
[(

η̄(∇XY ) + g(Y,∇X ξ̄)
)

ϕhZ − η̄(Y )(∇Xϕh)Z
]

where we use (2.19), (1.8) and the antisymmetry of ∇Xϕ. Hence, using the Ricci
identity RXY hZ − hRXY Z = (∇X∇Y h)Z − (∇Y ∇Xh)Z − (∇[X,Y ]h)Z, (2.19), the
symmetry of ∇X(h ◦ ϕ) and (1.4), we obtain

RXY hZ − hRXY Z = µ
[

η̄(Y )(∇Xϕh)Z − η̄(X)(∇Y ϕh)Z − 2sg(X, ϕY )ϕhZ
]

+
[

g(Y, hϕZ) + (1 − κ)g(Y, ϕZ)
]

∇X ξ̄ −
[

g(X, hϕZ) + (1 − κ)g(X, ϕZ)
]

∇Y ξ̄

+ g(Z,∇X ξ̄)
[

hϕY − (1 − κ)ϕY
]

− g(Z,∇Y ξ̄)
[

hϕX − (1 − κ)ϕX
]

+
[

(1 − κ)g
(

(∇Y ϕ)X − (∇Xϕ)Y, Z
)

+ g
(

(∇Xhϕ)Y − (∇Y hϕ)X, Z
)]

ξ̄

+ η̄(Z)
[

(∇Xhϕ)Y − (∇Y hϕ)X − (1 − κ)
(

(∇Xϕ)Y − (∇Y ϕ)X
)]

.

(2.24)

If we take X, Y, Z ∈ Γ(D) then from (2.24), using identities (2.22), (2.12) and (1.4),
we get (2.23) . �

Lemma 2.7. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition.

Then for each X, Y, Z ∈ Γ (TM) we have

RXY ϕZ − ϕRXY Z =
[

κ(η̄(Y )g(Z, ϕX)− η̄(X)g(Z, ϕY ))

+ µ(η̄(Y )g(Z, ϕhX)− η̄(X)g(Z, ϕhY ))
]

ξ̄

+ s[g(Z, ϕX + ϕhX)(hY − ϕ2Y ) − g(Z, ϕY + ϕhY )(hX − ϕ2X)

− g(Z, hY − ϕ2Y )(ϕX + ϕhX) + g(Z, hX − ϕ2X)(ϕY + ϕhY )]

− η̄(Z)[κ(η̄(Y )ϕX − η̄(X)ϕY ) + µ(η̄(Y )ϕhX − η̄(X)ϕhY )].

Proof. We proceed fixing a point x ∈ M and local vector fields X, Y, Z such that
∇X, ∇Y and ∇Z vanish at x. Applying several times (2.12) and using (1.4) and
the symmetry of ∇ϕ2, we get in x

∇X((∇Y ϕ)Z) −∇Y ((∇Xϕ)Z) =
[

g((∇Xh)Y − (∇Y h)X, Z)

+ η̄(Y )g(Z, ϕX + ϕhX) − η̄(X)g(Z, ϕY + ϕhY )
]

ξ̄

+ s
[

g(Z, ϕX + ϕhX)(hY − ϕ2Y ) − g(Z, ϕY + ϕhY )(hX − ϕ2X)

− g(Z, hY − ϕ2Y )(ϕX + ϕhX) + g(Z, hX − ϕ2X)(ϕY + ϕhY )
]

− η̄(Z)
[

(∇Xh)Y − (∇Y h)X + η̄(Y )(ϕX + ϕhX) − η̄(X)(ϕY + ϕhY )
)]

.
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From the last identity, using RXY ϕZ − ϕRXY Z = ∇X(∇Y ϕ)Z − ∇Y (∇Xϕ)Z and
(2.13), we get the claimed identity. �

Remark 2.7. In particular, from Lemma 2.7 it follows that for an S-manifold
(M, ϕ, ξi, ηj , g) the following formula holds, for all X, Y, Z ∈ Γ (TM),

RXY ϕZ − ϕRXY Z = η (Y ) g (Z, ϕX) − η (X) g (Z, ϕY )

+s
(

g (Z, ϕY ) ϕ2X − g (Z, ϕX)ϕ2Y + g
(

Z, ϕ2Y
)

ϕX − g
(

Z, ϕ2X
)

ϕY
)

−η (Z) (η (Y )ϕX − η (X)ϕY ) .

Theorem 2.2. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition

with κ < 1. Then for each X+, Y+, Z+ ∈ Γ(D+), X−, Y−, Z− ∈ Γ(D−), we have

RX
−

Y
−

Z+ = s(κ − µ)
(

g(ϕZ+, X−)ϕY− − g(ϕZ+, Y−)ϕX−

)

(2.25)

RX+Y+
Z+ = s

(

2(1 + λ) − µ
)(

g(Z+, Y+)X+ − g(Z+, X+)Y+

)

(2.26)

RX+Y+
Z− = s(κ − µ)

(

g(ϕZ−, X+)ϕY+ − g(ϕZ−, Y+)ϕX+

)

(2.27)

RX+Y
−

Z− = s
(

κg(ϕX+, Z−)ϕY− + µg(ϕX+, Y−)ϕZ−

)

(2.28)

RX+Y
−

Z+ = s
(

−κg(ϕY−, Z+)ϕX+ − µg(ϕY−, X+)ϕZ+

)

(2.29)

RX
−

Y
−

Z− = s
(

2(1 − λ) − µ
)(

g(Y−, Z−)X− − g(X−, Z−)Y−

)

(2.30)

Proof. Let {e1, . . . , en, ϕe1, . . . , ϕen, ξ1, . . . , ξs} be a local ϕ-basis such that {e1, . . . , en}
is a basis of D+. From Lemma 2.6 we get

λRZ+X
−

eα − hRZ+X
−

eα = 2sλ
[

κ
(

g(X−, ϕeα)ϕZ+ + g(Z+, ϕeα)ϕX−

)

−µg(Z+, ϕX−)ϕeα

]

. (2.31)

Taking the symmetry of h into account we have g(λRZ+X
−

eα − hRZ+X
−

eα, Y−)
= 2λg(RZ+X

−

eα, Y−) and then, from (2.31) and Remark 1.2, g(RZ+X
−

eα, Y−) =

s
(

κg(X−, ϕeα)g(ϕZ+, Y−) − µg(Z+, ϕX−)g(ϕeα, Y−)
)

. It follows that

g(RX
−

Y
−

Z+, eα) = s(κ − µ)
(

g(X−, ϕeα)g(ϕZ+, Y−) (2.32)

−g(Y−, ϕeα)g(ϕZ+, X−)
)

where we use g(RX
−

Y
−

Z+, eα) = −g(RZ+Y
−

eα, X−) + g(RZ+X
−

eα, Y−). From (2.16)
and Remark 1.2 we have g(RX

−
Y
−

Z+, ϕeα) = 0; moreover (1.11) yelds g(RX
−

Y
−

Z+, ξi)
= 0. Then RX

−
Y
−

Z+ =
∑n

β=1 g(RX
−

Y
−

Z+, eβ)eβ. Using (2.32) we get (2.25). Iden-
tity (2.26) follows from (2.15), (1.11) Lemma 2.7, (1.2), (2.25) and (1 + λ)2 + κ =
2(1 + λ). The other identities follow in a similar way and then are omitted. �

Theorem 2.3. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition

with κ < 1. Then the sectional curvature K of M is determined by

K(X, ξi) = κ + µg(hX, X) =







k + λµ if X ∈ D+

k − λµ if X ∈ D−

(2.33)

K(X, Y ) =



















s
(

2(1 + λ) − µ
)

if X, Y ∈ D+

s
(

2(1 − λ) − µ
)

if X, Y ∈ D−

−s(κ + µ)
(

g(X, ϕY )
)2

if X ∈ D+, Y ∈ D−

(2.34)
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where X, Y are orthonormal and in the first two cases of (2.34) n has to be strictly

greater then 1.

Proof. Identities (2.33) follow directly from (1.11), while identities (2.34) are a con-
sequence of (2.26), (2.30) and (2.28) respectively. �

Corollary 2.1. Let M be an almost S-manifold verifying the (κ, µ)-nullity condition

with κ < 1. Then the Ricci operator verifies the following identities

Q = s
[(

2(1 − n) + µn
)

ϕ2 +
(

2(n − 1) + µ
)

h
]

+ 2nκ η̄ ⊗ ξ̄, (2.35)

Q ◦ ϕ − ϕ ◦ Q = 2s
(

2(n − 1) + µ
)

h ◦ ϕ. (2.36)

Proof. Let{e1, . . . , en, ϕe1, . . . , ϕen, ξ1, . . . , ξs} be a local ϕ-basis such that {e1, . . . , es}
is a basis of D+ and let X = X+ + X− ∈ D+ ⊕ D−. From (2.26), (2.28) and (1.11)
we get

QX+ = s
[(

2(1 + λ) − µ
)

(n − 1)X+ − (κ + µ)X+ + κX+ + µhX+

]

. (2.37)

On the other hand from (2.29) and (2.30) we obtain

QX− = s
[

−(κ + µ)X− +
(

2(1 − λ) − µ
)

(n − 1)X− + κX− + µhX−)
]

. (2.38)

Taking (2.37), (2.38) and (2.10) into account we obtain (2.35). Finally, identity
(2.36) easily follows from (2.35). �

Corollary 2.2. Let M be an almost S-manifold verifying the (κ, µ)-nullity condi-

tion. Then the scalar curvature S of (M, g) is constant and verifies the identity

S = 2ns
(

2(n − 1) − µn + κ
)

. (2.39)

Proof. Let {e1, . . . , en, ϕe1, . . . , ϕen, ξ1, . . . , ξs} be a local ϕ-basis such that {e1, . . . , es}
is a basis of D+. Then from (2.26), (2.28) and (1.11) we have

g(Qeβ, eβ) = s
(

2(1 + λ) − µ
)

(n − 1) + s(−κ − µ) + s(κ + λµ)

= s
[

(n − 1)
(

2(1 + λ) − µ
)

+ (λ − 1)µ
]

. (2.40)

Furthermore from (2.29), (2.30) and (1.11) we get

g(Qϕeβ, ϕeβ) = s
[

(n − 1)
(

2(1 − λ) − µ
)

− (1 + λ)µ
]

; (2.41)

then (2.40), (2.41) and (2.10) yeld (2.39). �
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