\mathcal{D}-homothetic transformations for a generalization of contact metric manifolds*

Beniamino Cappelletti Montano

Luigia Di Terlizzi

Abstract

Curvature properties of some generalizations of contact metric manifolds are studied, with special attention to (κ, μ)-nullity conditions in the framework of \mathcal{S}-manifolds.

1 Basic definitions

An extensive research about contact geometry is done in recent years. In the present paper we are concerned with a certain generalization of contact metric manifolds in the context of f-manifolds. We recall the precise definitions. Let M be a $(2 n+s)-$ dimensional manifold. We say that M is equipped with an f-structure with a parallelizable kernel, more briefly $f . p k$-structure, if there are given on M an f structure φ, s global vector fields ξ_{1}, \ldots, ξ_{s} and 1-forms $\eta_{1}, \ldots, \eta_{s}$ on M satisfying the following conditions

$$
\begin{equation*}
\varphi\left(\xi_{i}\right)=0, \eta_{i} \circ \varphi=0, \varphi^{2}=-\mathrm{Id}+\sum_{j=1}^{s} \eta_{j} \otimes \xi_{j}, \eta_{i}\left(\xi_{j}\right)=\delta_{j}^{i} \tag{1.1}
\end{equation*}
$$

for all $i, j \in\{1, \ldots, s\}$; we denote by \mathcal{D} the bundle $\operatorname{Im}(\varphi)$, and we set $\bar{\xi}:=\xi_{1}+\cdots+\xi_{s}$, $\bar{\eta}:=\eta_{1}+\cdots+\eta_{s}$. The structure $\left(\varphi, \xi_{i}, \eta_{j}\right)$ on M is said to be normal if and only if $\mathcal{N}_{\varphi}=0$, where \mathcal{N}_{φ} is the $(2,1)$-tensor on M given by $\mathcal{N}_{\varphi}:=[\varphi, \varphi]+2 \sum_{i=1}^{s} d \eta_{i} \otimes \xi_{i}$.

[^0]On a manifold equipped with an $f . p k$-structure there always exists a compatible Riemannian metric g in the sense that for each $X, Y \in \Gamma(T M)$

$$
\begin{equation*}
g(X, Y)=g(\varphi(X), \varphi(Y))+\sum_{j=1}^{s} \eta_{j}(X) \eta_{j}(Y) \tag{1.2}
\end{equation*}
$$

However such a metric on M is not unique: we fix one of them; then the structure obtained is called a metric f.pk-structure. Let F be the Sasaki form of φ defined by $F(X, Y):=g(X, \varphi Y)$ for $X, Y \in \Gamma(T M)$. It may be observed that \mathcal{D} is the orthogonal complement of the bundle ker $(\varphi)=\left\langle\xi_{1}, \ldots, \xi_{s}\right\rangle$.

The metric $f . p k$-manifold $\left(M, \varphi, \xi_{i}, \eta_{j}, g\right)$ is said to be an almost \mathcal{S}-manifold if and only if $d \eta_{1}=\cdots=d \eta_{s}=F$. Almost \mathcal{S}-manifolds which are normal are called \mathcal{S}-manifolds.

The study of f-manifolds was started by D.E. Blair, S.I. Goldberg, K. Yano, J. Vanzura, cf. [1, 11, 14]. Almost \mathcal{S}-structures were studied, without being precisely named, by J.L. Cabrerizo, L.M. Fernández and M. Fernández, cf. [4]. Then K. Duggal, A.M. Pastore and S. Ianus, cf. [10], also studied such manifolds and gave them the name "almost \mathcal{S}-manifolds". \mathcal{S}-manifolds were introduced by D.E. Blair (cf. [1]), who proved that the space of a principal toroidal bundle over a Kähler manifold is an \mathcal{S}-manifold. \mathcal{S}-structures are a natural generalization of Sasakian structures, but unlike Sasakian manifolds, no \mathcal{S}-structure can be realized on a simply connected, compact manifold (cf. [6]). In [8] there is an example of an even dimensional principal toroidal bundle over a Kähler manifold which does not carry any Sasakian structure. On the other hand, there is constructed an \mathcal{S}-structure on the even dimensional manifold $U(2)$. It is well known that $U(2)$ does not admit a Kähler structure. We conclude that there exist manifolds such that the best structure we can hope to obtain on them is an \mathcal{S}-structure.

On an almost \mathcal{S}-manifold $\left(M, \varphi, \xi_{i}, \eta_{j}, g\right)$ there are defined the (1,1)-tensor fields $h_{i}:=(1 / 2) L_{\xi_{i}} \varphi$ for $i=1, \ldots, s$, cf. [4, (2.5)]. We use extensively the properties of these tensor fields in the present paper. In particular these operators are self adjoint, traceless, anticommute with φ and for each $i, j \in\{1, \ldots, s\}$

$$
\begin{equation*}
h_{i} \xi_{j}=0, \quad \eta_{i} \circ h_{j}=0, \tag{1.3}
\end{equation*}
$$

cf. [4]. Moreover the following identities hold, cf. [10],

$$
\begin{equation*}
\nabla_{X} \xi_{i}=-\varphi X-\varphi h_{i} X, \quad \nabla_{\xi_{i}} \varphi=0, \quad \nabla_{\xi_{i}} \xi_{j}=0 \tag{1.4}
\end{equation*}
$$

where ∇ is the Levi Civita connection of $g, X \in \Gamma(T M)$ and $i, j \in\{1, \ldots, s\}$. We shall sometimes use the following curvature identity related to ∇

$$
\begin{equation*}
R_{\xi_{i} X} \xi_{j}-\varphi\left(R_{\xi_{i} \varphi X} \xi_{j}\right)=2\left(\left(h_{i} \circ h_{j}\right) X+\varphi^{2} X\right) \tag{1.5}
\end{equation*}
$$

which can be immediately obtained combining the first equation on [4, pag. 158] and (1.4).

In 1995 D. Blair, T. Koufogiogos and B.J. Papantoniou, cf. [2], studied contact metric manifolds such that the characteristic vector field belongs to the (κ, μ)-nullity distribution. We generalize this concept for almost \mathcal{S}-manifolds as follows.

Definition 1.1. Let M be an almost \mathcal{S}-manifold, κ, μ real constants. We say that M verifies the (κ, μ)-nullity condition if and only if for each $i \in\{1, \ldots, s\}$, $X, Y \in \Gamma(T M)$ the following identity holds

$$
\begin{equation*}
R_{X Y} \xi_{i}=\kappa\left(\bar{\eta}(X) \varphi^{2} Y-\bar{\eta}(Y) \varphi^{2} X\right)+\mu\left(\bar{\eta}(Y) h_{i} X-\bar{\eta}(X) h_{i} Y\right) \tag{1.6}
\end{equation*}
$$

Lemma 1.1. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. Then we have
(i). $h_{i} \circ h_{j}=h_{j} \circ h_{i}$, for each $i, j \in\{1, \ldots, s\}$
(ii). $\kappa \leq 1$
(iii). if $\kappa<1$ then, for each $i \in\{1, \ldots, s\}$, h_{i} has eigenvalues $0, \pm \sqrt{1-\kappa}$.

Proof. From (1.6) it follows that for each $X \in \Gamma(T M), i, j \in\{1, \ldots, s\} R_{\xi_{j} X} \xi_{i}-$ $\varphi R_{\xi_{j} \varphi X} \xi_{i}=2 \kappa \varphi^{2} X$. Using (1.5) we obtain

$$
\begin{equation*}
\left(h_{i} \circ h_{j}\right) X=(\kappa-1) \varphi^{2} X=\left(h_{j} \circ h_{i}\right) X \tag{1.7}
\end{equation*}
$$

and then (i) is verified. Next, from (1.7) we get

$$
\begin{gather*}
h_{i}^{2}=(k-1) \varphi^{2} \tag{1.8}\\
h_{i}^{2} X=(1-\kappa) X, \quad X \in \Gamma(\mathcal{D}) . \tag{1.9}
\end{gather*}
$$

Then, using (1.3), (1.9) we obtain that the eigenvalues of h_{i}^{2} are 0 and $1-\kappa$. Moreover, since h_{i} is symmetric, $\left\|h_{i} X\right\|^{2}=(1-\kappa)\|X\|^{2}$. Hence $\kappa \leq 1$. Finally, let t be a real eigenvalue of h_{i} and X be an eigenvector corresponding to t. Then $t^{2}\|X\|^{2}=\left\|h_{i} X\right\|^{2}=(1-\kappa)\|X\|^{2}$ and $t= \pm \sqrt{1-\kappa}$. Taking (1.3) into account we get (iii).

Proposition 1.1. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. Then

$$
\begin{equation*}
h_{1}=\cdots=h_{s} . \tag{1.10}
\end{equation*}
$$

Proof. If $\kappa=1$ then from (1.8) and the symmetry of each h_{i} we have $h_{1}=\cdots=$ $h_{s}=0$. Let now $\kappa<1$. We fix $x \in M$ and $i \in\{1, \ldots, s\}$. Since h_{i} is symmetric then we have $\mathcal{D}_{x}=\left(\mathcal{D}_{+}\right)_{x} \oplus\left(\mathcal{D}_{-}\right)_{x}$, where $\left(\mathcal{D}_{+}\right)_{x}$ is the eigenspace of h_{i} corresponding to the eigenvalue $\lambda=\sqrt{1-\kappa}$ and $\left(\mathcal{D}_{-}\right)_{x}$ is the eigenspace of h_{i} corresponding to the eigenvalue $-\lambda$. If $X \in \mathcal{D}_{x}$ then we can write $X=X_{+}+X_{-}$, where $X_{+} \in\left(\mathcal{D}_{+}\right)_{x}$, $X_{-} \in\left(\mathcal{D}_{-}\right)_{x}$, so that $h_{i} X=\lambda\left(X_{+}-X_{-}\right)$. We fix $j \in\{1, \ldots, s\}, j \neq i$. Then from (1.7) we get $h_{j} X=h_{j}\left(X_{+}+X_{-}\right)=h_{j}\left(\frac{1}{\lambda} h_{i} X_{+}-\frac{1}{\lambda} h_{i} X_{-}\right)=\frac{1}{\lambda}\left(h_{j} \circ h_{i}\right)\left(X_{+}-X_{-}\right)=$ $\lambda\left(X_{+}-X_{-}\right)=h_{i} X$. Taking (1.3) into account we obtain (1.10).

Remark 1.1. Throughout all this paper whenever (1.6) holds we put $h:=h_{1}=$ $\cdots=h_{s}$. Then (1.6) becomes

$$
\begin{equation*}
R_{X Y} \xi_{i}=\kappa\left(\bar{\eta}(X) \varphi^{2} Y-\bar{\eta}(Y) \varphi^{2} X\right)+\mu(\bar{\eta}(Y) h X-\bar{\eta}(X) h Y) \tag{1.11}
\end{equation*}
$$

Furthermore, using (1.11), the symmetry properties of the curvature tensor and the symmetry of φ^{2} and h, we get

$$
\begin{equation*}
R_{\xi_{i} X} Y=\kappa\left(\bar{\eta}(Y) \varphi^{2} X-g\left(X, \varphi^{2} Y\right) \bar{\xi}\right)+\mu(g(X, h Y) \bar{\xi}-\bar{\eta}(Y) h X) \tag{1.12}
\end{equation*}
$$

Remark 1.2. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition, with $\kappa \neq 1$. We denote by \mathcal{D}_{+}and \mathcal{D}_{-}the n-dimensional distributions of the eigenspaces of $\lambda=\sqrt{1-\kappa}$ and $-\lambda$, respectively. We have that \mathcal{D}_{+}and \mathcal{D}_{-}are mutually orthogonal. Moreover, since φ anticommutes with h, we have $\varphi\left(\mathcal{D}_{+}\right)=\mathcal{D}_{-}$ and $\varphi\left(\mathcal{D}_{-}\right)=\mathcal{D}_{+}$. In other words, \mathcal{D}_{+}is a Legendrian distribution and \mathcal{D}_{-}is the conjugate Legendrian distribution of \mathcal{D}_{+}(cf. [5]).
Proposition 1.2. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. Then M is an \mathcal{S}-manifold if and only if $\kappa=1$.
Proof. We observed in the proof of Proposition 1.1 that if $\kappa=1$ then $h=0$. It follows that (1.6) reduces to $R_{X Y} \xi_{i}=\bar{\eta}(X) \varphi^{2} Y-\bar{\eta}(Y) \varphi^{2} X$. From [4, Proposition 3.4 and Theorem 4.3] we get the claim.

Remark 1.3. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. If there exists $i \in\{1, \ldots, s\}$ such that ξ_{i} is a Killing vector field then from [4, Theorem 2.6] we have $h=h_{i}=0$. From (1.9) we get $\kappa=1$ and using Proposition 1.2 we have that M is an \mathcal{S}-manifold.

The notion of \mathcal{D}-homothetic transformation for contact metric manifolds has been deeply studied (cf. for example [13]). Now we generalize this concept for a metric $f . p k$-manifold (in particular for an almost \mathcal{S}-manifold).
Definition 1.2. Let $\left(\varphi, \xi_{i}, \eta_{j}, g\right)$ be an $f . p k$-structure on a manifold $M^{2 n+s}$ and a be a real positive constant. By a \mathcal{D}-homothetic transformation of constant a we mean a change of the structure tensors in the following way:

$$
\begin{equation*}
\tilde{\varphi}=\varphi \quad \tilde{\eta}_{i}=a \eta_{i} \quad \tilde{\xi}_{i}=\frac{1}{a} \xi_{i} \quad \tilde{g}=a g+a(a-1) \sum_{j=1}^{s} \eta_{j} \otimes \eta_{j} \tag{1.13}
\end{equation*}
$$

for each $i \in\{1, \ldots, s\}$.
It is straightforward to prove that if $\left(\tilde{\varphi}, \tilde{\xi}_{i}, \tilde{\eta}_{j}, \tilde{g}\right), i, j \in\{1, \ldots, s\}$, is a structure on the manifold M obtained by a \mathcal{D}-homothetic transformation from the $f . p k$ structure $\left(\varphi, \xi_{i}, \eta_{j}, g\right)$, then $\left(\tilde{\varphi}, \tilde{\xi}_{i}, \tilde{\eta}_{j}, \tilde{g}\right)$ is an (almost) \mathcal{S}-structure if and only if $\left(\varphi, \xi_{i}, \eta_{j}, g\right)$ is an (almost) \mathcal{S}-structure.
Lemma 1.2. Let $M^{2 n+s}$ be a manifold and $\left(\tilde{\varphi}, \tilde{\xi}_{i}, \tilde{\eta}_{j}, \tilde{g}\right), i, j \in\{1, \ldots, s\}$, be an almost \mathcal{S}-structure on M obtained from the almost \mathcal{S}-structure $\left(\varphi, \xi_{i}, \eta_{j}, g\right)$ by a \mathcal{D}-homothetic transformation. Then for each $i \in\{1, \ldots, s\}, X, Y \in \Gamma(T M)$ the following identities hold

$$
\begin{align*}
a \tilde{h}_{i}= & h_{i} \tag{1.14}\\
a \tilde{\nabla}_{X} \tilde{\xi}_{i}= & \nabla_{X} \xi_{i}+(1-a) \varphi X \tag{1.15}\\
\eta_{i}\left(\tilde{\nabla}_{X} Y\right)= & X\left(\eta_{i}(Y)\right)-g\left(Y, \varphi X+\varphi \tilde{h}_{i} X\right) \tag{1.16}\\
a \tilde{\nabla}_{X} Y= & a \nabla_{X} Y+(1-a)\left(\sum_{l=1}^{s} g\left(\varphi h_{l} X, Y\right) \xi_{l}\right. \tag{1.17}\\
& +a(\bar{\eta}(Y) \varphi X+\bar{\eta}(X) \varphi Y))
\end{align*}
$$

$\tilde{W}^{\text {where }} \tilde{\nabla}$ and ∇ denote the Levi Civita connections of \tilde{g} and g, respectively, and $\tilde{h}_{i}=\frac{1}{2} L_{\tilde{\xi}_{i}} \tilde{\varphi}$.

Proof. Identity (1.14) is an immediate consequence of the definitions of h_{i}, \tilde{h}_{i}. By an easy direct computation, from (1.4), using (1.14), we get (1.15). Since $\eta_{i}(X)=$ $g\left(X, \xi_{i}\right)$, for each $i \in\{1, \ldots, s\}, X \in \Gamma(T M)$, using (1.14) we have (1.16). Next, applying the Koszul formulas, cf. [12, pag.160], for $\tilde{\nabla}, \nabla$ and $d \eta_{1}=\cdots=d \eta_{s}=F$ we get

$$
\begin{aligned}
& 2 \tilde{g}\left(\tilde{\nabla}_{X} Y, Z\right)=2 a g\left(\nabla_{X} Y, Z\right)+a(a-1) \sum_{i=1}^{s}\left[2 g(X, \varphi Z) \eta_{i}(Y)\right. \\
& \left.+2 g(Y, \varphi Z) \eta_{i}(X)+g\left(\left(X\left(\eta_{i}(Y)\right)+Y\left(\eta_{i}(X)\right)+\eta_{i}([X, Y])\right) \xi_{i}, Z\right)\right]
\end{aligned}
$$

Here we substitute the expression of \tilde{g} in (1.13) and then using (1.16) and $d \eta_{1}=$ $\cdots=d \eta_{s}=F$ we obtain

$$
\begin{aligned}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+(1-a) \sum_{i=1}^{s}\left[\eta_{i}(Y) \varphi X+\eta_{i}(X) \varphi Y-\frac{1}{2}\left(X\left(\eta_{i}(Y)\right)\right.\right. \\
& \left.\left.+Y\left(\eta_{i}(X)\right)+\eta_{i}([X, Y])\right) \xi_{i}+\left(X\left(\eta_{i}(Y)\right)+g(\varphi X, Y)+g\left(\varphi \tilde{h}_{i} X, Y\right)\right) \xi_{i}\right]
\end{aligned}
$$

Taking (1.14) into account we get (1.17).

Remark 1.4. Under the same hypotheses of Proposition 1.2, from (1.14) and [4, Theorem 2.6] it follows that ξ_{i} is a Killing vector field if and only if $\tilde{\xi}_{i}$ is a Killing vector field, $i \in\{1, \ldots, s\}$.

Proposition 1.3. Let $M^{2 n+s}$ be a manifold and $\left(\tilde{\varphi}, \tilde{\xi}_{i}, \tilde{\eta}_{j}, \tilde{g}\right), i, j \in\{1, \ldots, s\}$, be an almost \mathcal{S}-structure on M obtained from the almost \mathcal{S}-structure $\left(\varphi, \xi_{i}, \eta_{j}, g\right)$ by a \mathcal{D}-homothetic transformation of constant a. Then for each $i \in\{1, \ldots, s\}$, $X, Y \in \Gamma(T M)$ the following identity holds

$$
\begin{align*}
a \tilde{R}_{X Y} \tilde{\xi}_{i}= & R_{X Y} \xi_{i}+\frac{1-a}{a} \sum_{l=1}^{s}\left(g\left(h_{l} Y, h_{i} X\right)-g\left(h_{l} X, h_{i} Y\right)\right) \xi_{l} \tag{1.18}\\
& +(1-a)\left[\bar{\eta}(X)\left(h_{i} Y-\varphi^{2} Y\right)-\bar{\eta}(Y)\left(h_{i} X-\varphi^{2} X\right)\right. \\
& \left.+\left(\nabla_{X} \varphi\right) Y-\left(\nabla_{Y} \varphi\right) X\right]+(1-a)^{2}\left(\bar{\eta}(X) \varphi^{2} Y-\bar{\eta}(Y) \varphi^{2} X\right)
\end{align*}
$$

Proof. Using (1.15), (1.17), (1.2), (1.4), (1.3) and the symmetry of each h_{i} we can straightforwardly obtain (1.18).

2 Properties of the curvature

Let $\left(M^{2 n+s}, \varphi, \xi_{i}, \eta_{j}, g\right), i, j \in\{1, \ldots, s\}$, be an almost \mathcal{S}-manifold. We consider the (1,1)-tensor fields defined by

$$
l_{i j}(X)=R_{X \xi_{i}} \xi_{j}
$$

for each $i, j \in\{1, \ldots, s\}, X \in \Gamma(T M)$ and put $l_{i}=l_{i i}$.

Lemma 2.1. For each $i, j, k \in\{1, \ldots, s\}$ the following identities hold

$$
\begin{align*}
\varphi \circ l_{i j} \circ \varphi-l_{i j} & =2\left(h_{j} \circ h_{i}+\varphi^{2}\right) \tag{2.1}\\
\eta_{k} \circ l_{i j} & =0 \tag{2.2}\\
l_{i j}\left(\xi_{k}\right) & =0 \tag{2.3}\\
\nabla_{\xi_{i}} h_{j} & =\varphi-\varphi \circ l_{i j}-\varphi \circ h_{j} \circ h_{i}+\varphi \circ\left(h_{j}-h_{i}\right) \tag{2.4}\\
\nabla_{\xi_{i}} h_{i} & =\varphi-\varphi \circ l_{i}-\varphi \circ h_{i}^{2} . \tag{2.5}
\end{align*}
$$

Proof. Identity (2.1) is a rewriting of [9, (3.4)]; (2.2) and (2.3) are an immediate consequence of (2.1). Next from (1.4) and $\eta_{l} \circ\left(\nabla_{\xi_{i}} h_{k}\right)=0$ we get $\left(\varphi-\varphi \circ l_{i j}-\varphi \circ h_{j} \circ\right.$ $\left.h_{i}\right)(X)=-\varphi^{2}\left(\left(\nabla_{\xi_{i}} h_{j}\right) X\right)-\left(\varphi \circ h_{i}-\varphi \circ h_{j}\right)(X)=\left(\nabla_{\xi_{i}} h_{j}\right)(X)+\varphi\left(\left(h_{j}-h_{i}\right)(X)\right)$, for each $X \in \Gamma(T M)$, from which it follows (2.4). Finally, identity (2.5) is (2.4) when $i=j$.

Remark 2.1. In the case when ξ_{i} is Killing for each $i \in\{1, \ldots, s\}$, from [4, Theorem 2.6] we get that (2.4) reduces to $\varphi \circ l_{i j}=\varphi$. Then from (2.2) we have $l_{i j}=-\varphi^{2}$ so that all the $l_{i j}$'s coincide.

Remark 2.2. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. Then for each $i, j \in\{1, \ldots, s\}$ we have

$$
\begin{equation*}
l_{i j}=-\kappa \varphi^{2}+\mu h . \tag{2.6}
\end{equation*}
$$

It follows that all the $l_{i j}$'s coincide. We put $l=l_{i j}$
Lemma 2.2. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. Then for each $X, Y \in \Gamma(T M), i \in\{1, \ldots, s\}$, the following identities hold

$$
\begin{align*}
\nabla_{\xi_{i}} h & =\mu h \circ \varphi \tag{2.7}\\
l \circ \varphi-\varphi \circ l & =2 \mu h \circ \varphi \tag{2.8}\\
l \circ \varphi+\varphi \circ l & =2 \kappa \varphi \tag{2.9}\\
Q \xi_{i} & =2 n \kappa \bar{\xi} . \tag{2.10}
\end{align*}
$$

Proof. From (2.5), using (2.6), we obtain (2.7). Identities (2.8) and (2.9) follow directly from (2.6) using $h \circ \varphi=-\varphi \circ h$. For the proof of (2.10) we fix $x \in M$ and $\left\{E_{1}, \ldots, E_{2 n+s}\right\}$ a local φ-basis around x with $E_{2 n+1}=\xi_{1}, \ldots, E_{2 n+s}=\xi_{s}$. Then using (1.12) and trace $(h)=0$ we get $Q \xi_{i}=\sum_{\alpha=1}^{2 n} R_{\xi_{i} E_{\alpha}} E_{\alpha}=\sum_{\alpha=1}^{2 n} \kappa g\left(\varphi^{2} E_{\alpha}, E_{\alpha}\right) \bar{\xi}=$ $\kappa \sum_{\alpha=1}^{2 n} \delta_{\alpha \alpha} \bar{\xi}=2 n \kappa \bar{\xi}$.

Remark 2.3. Let M be an almost \mathcal{S}-manifold. Then from [7, (2.2)] using $\left(\nabla_{h_{i} X} F\right)(Y, Z)=-g\left(\left(\nabla_{h_{i} X} \varphi\right) Y, Z\right)$, for each $X, Y, Z \in \Gamma(T M)$, we get

$$
\begin{align*}
\left(\nabla_{h_{i} X} \varphi\right) Y= & \frac{1}{2}\left(\varphi R_{\xi_{i} \varphi X} Y-R_{\xi_{i} X} \varphi Y-\varphi R_{\xi_{i} X} \varphi Y-R_{\xi_{i} X} Y\right) \tag{2.11}\\
& -g\left(\varphi^{2} X-h_{i} X, Y\right) \bar{\xi}+\bar{\eta}(Y)\left(\varphi^{2} X-h_{i} X\right)
\end{align*}
$$

Lemma 2.3. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. Then the following identities hold

$$
\begin{align*}
\left(\nabla_{X} \varphi\right) Y= & g\left(Y, h X-\varphi^{2} X\right) \bar{\xi}-\bar{\eta}(Y)\left(h X-\varphi^{2} X\right) \tag{2.12}\\
\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X= & (1-\kappa)(2 g(X, \varphi Y) \bar{\xi}+\bar{\eta}(X) \varphi Y-\bar{\eta}(Y) \varphi X) \\
& +(1-\mu)(\bar{\eta}(X) \varphi h Y-\bar{\eta}(Y) \varphi h X) \tag{2.13}
\end{align*}
$$

Proof. From (2.11) we obtain $\left(\nabla_{h X} \varphi\right) Y=\kappa\left(g\left(X, \varphi^{2} Y\right) \bar{\xi}-\bar{\eta}(Y) \varphi^{2} X\right)-g\left(\varphi^{2} X-\right.$ $h X, Y) \bar{\xi}+\bar{\eta}(Y)\left(\varphi^{2} X-h X\right)$. Here we replace X with $h X$ and by a direct computation, taking (1.4), (1.8) into account, we get (2.12). From (2.12), since h and φ^{2} are selfadjoint, we have $\left(\nabla_{X}(\varphi \circ h)\right) Y-\left(\nabla_{Y}(\varphi \circ h)\right) X=\varphi\left(\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X\right)$. It follows that for each $Z \in \Gamma(T M)$

$$
\begin{align*}
g\left(R_{X Y} \xi_{i}, Z\right)= & g\left(g\left(X, h Z-\varphi^{2} Z\right) \bar{\xi}, Y\right)-g\left(\bar{\eta}(X)\left(h Z-\varphi^{2} Z\right), Y\right) \\
& +g\left(\varphi\left(\left(\nabla_{Y} h\right) X-\left(\nabla_{X} h\right) Y\right), Z\right), \tag{2.14}
\end{align*}
$$

where we use (2.1) of [7] and (2.12). From (2.14) and the symmetry of h and φ^{2} it follows that $\varphi\left(\left(\nabla_{Y} h\right) X-\left(\nabla_{X} h\right) Y\right)=R_{X Y} \xi_{i}-\bar{\eta}(Y)\left(h X-\varphi^{2} X\right)+\bar{\eta}(X)(h Y-$ $\left.\varphi^{2} Y\right)$. Then, applying φ to both the sides of the last identity, using (1.11) and $\eta_{l}\left(\left(\nabla_{Y} h\right) X-\left(\nabla_{X} h\right) Y\right)=2(k-1) g(X, \varphi Y), l \in\{1, \ldots, s\}$, we get (2.13).

Theorem 2.1. Let $\mathcal{Z}=\left(M^{2 n+s}, \varphi, \xi_{i}, \eta_{j}, g\right)$ be an almost \mathcal{S}-manifold and $\left(\tilde{\varphi}, \tilde{\xi}_{i}, \tilde{\eta}_{j}, \tilde{g}\right)$ be an almost \mathcal{S}-structure on M obtained by a \mathcal{D}-homothetic transformation of constant a. If \mathcal{Z} verifies the (κ, μ)-nullity condition for certain real constants (κ, μ) then $\left(M, \tilde{\varphi}, \tilde{\xi}_{i}, \tilde{\eta}_{j}, \tilde{g}\right)$ verifies the $(\tilde{\kappa}, \tilde{\mu})$-nullity condition, where

$$
\tilde{\kappa}=\frac{\kappa+a^{2}-1}{a^{2}}, \quad \tilde{\mu}=\frac{\mu+2(a-1)}{a} .
$$

Proof. From (1.14) and Proposition 1.1 it follows that $\tilde{h}_{1}=\cdots=\tilde{h}_{s}$. Then, using (1.18) and (2.12), by a direct calculation we get the claim.

Remark 2.4. In [7] there are studied almost \mathcal{S}-manifolds such that $R_{X Y} \xi_{i}=0$ for all $X, Y \in \Gamma(T M), i \in\{1, \ldots, s\}$. This is the case when (1.6) is verified for $\kappa=\mu=0$. If we consider $a>0$ and a \mathcal{D}-homothetic transformation of constant a on such a manifold, then from Theorem 2.1 we obtain an almost \mathcal{S}-manifold verifying the $(\tilde{\kappa}, \tilde{\mu})$-nullity condition where $\tilde{\kappa}=\frac{a^{2}-1}{a^{2}}$ and $\tilde{\mu}=\frac{2(a-1)}{a}$. This result can be applied for the examples of flat \mathcal{S}-manifolds of dimension $2+s, s \geq 2$ given in [9] so that we easily obtain examples of \mathcal{S}-manifolds of dimension $2+s$ verifying the (κ, μ)-nullity condition with $(\kappa, \mu) \neq(0,0)$ and $(\kappa, \mu) \neq(1,0)$.

Lemma 2.4. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. Then

$$
\begin{align*}
& X, Y \in \Gamma\left(\mathcal{D}_{+}\right) \Rightarrow \nabla_{X} Y \in \Gamma\left(\mathcal{D}_{+}\right) \tag{2.15}\\
& X, Y \in \Gamma\left(\mathcal{D}_{-}\right) \Rightarrow \nabla_{X} Y \in \Gamma\left(\mathcal{D}_{-}\right) \tag{2.16}\\
& X \in \Gamma\left(\mathcal{D}_{+}\right), \in \Gamma\left(\mathcal{D}_{-}\right) \Rightarrow \nabla_{X} Y \in \Gamma\left(\mathcal{D}_{-} \oplus \operatorname{ker}(\varphi)\right) \tag{2.17}\\
& X \in \Gamma\left(\mathcal{D}_{-}\right), Y \in \Gamma\left(\mathcal{D}_{+}\right) \Rightarrow \nabla_{X} Y \in \Gamma\left(\mathcal{D}_{+} \oplus \operatorname{ker}(\varphi)\right) \tag{2.18}
\end{align*}
$$

Proof. From (2.13) we get $g\left(\left(\nabla_{X} h\right) \varphi Z-\left(\nabla_{\varphi Z} h\right) X, Y\right)=0$, for each $X, Y, Z \in$ $\Gamma\left(\mathcal{D}_{+}\right)$. On the other hand, since h is symmetric, from Remark 1.2 we have $g\left(\left(\nabla_{X} h\right) \varphi Z-\left(\nabla_{\varphi Z} h\right) X, Y\right)=-2 \lambda g\left(\nabla_{X}(\varphi Z), Y\right)$.
Then $g\left(\varphi Z, \nabla_{X} Y\right)=-g\left(\nabla_{X}(\varphi Z), Y\right)=0$, that is $\nabla_{X} Y$ is normal to \mathcal{D}_{-}. Moreover from (1.4) and Remark 1.2 it follows that, for each $i \in\{1, \ldots, s\}, g\left(\nabla_{X} Y, \xi_{i}\right)=$ $-g\left(Y, \nabla_{X} \xi_{i}\right)=0$. Then we have (2.15). The proof of (2.16) is analogous. If $X \in \Gamma\left(\mathcal{D}_{+}\right), \quad Y \in \Gamma\left(\mathcal{D}_{-}\right)$then from (2.15) and Remark 1.2 we get that, for each $Z \in \Gamma\left(\mathcal{D}_{+}\right), g\left(\nabla_{X} Y, Z\right)=-g\left(Y, \nabla_{X} Z\right)=0$ and then we have (2.17). Analogously we prove (2.18).

Remark 2.5. It follows from (2.15)-(2.16) that $\mathcal{D}_{ \pm}$define two orthogonal totally geodesic Legendrian foliations $\mathcal{F}_{ \pm}$on M.

Example 2.1. Let \mathfrak{g} be a $(2 n+s)$-dimensional Lie algebra and let $\left\{X_{1}, \ldots, X_{n}, Y_{1}\right.$, $\left.\ldots, Y_{n}, \xi_{1}, \ldots, \xi_{s}\right\}$ be a basis of \mathfrak{g}. The Lie bracket is defined as follows:

$$
\begin{gathered}
{\left[X_{\alpha}, X_{\beta}\right]=0 \text { for any } \alpha, \beta \in\{1, \ldots, n\},} \\
{\left[Y_{\alpha}, Y_{\beta}\right]=0 \text { for any } \alpha \neq 2, \quad\left[Y_{2}, Y_{\beta}\right]=2 Y_{\beta} \text { for any } \beta \neq 2} \\
{\left[X_{1}, Y_{1}\right]=2 \bar{\xi}-2 X_{2}, \quad\left[X_{1}, Y_{\beta}\right]=0 \text { for any } \beta \geq 2,} \\
{\left[X_{h}, Y_{k}\right]=\delta_{h k}\left(2 \bar{\xi}-2 X_{2}\right) \text { for any } h, k \geq 3, \quad\left[X_{2}, Y_{\beta}\right]=2 X_{\beta} \text { for any } \beta \neq 2,} \\
{\left[X_{2}, Y_{2}\right]=2 \bar{\xi}, \quad\left[X_{k}, Y_{1}\right]=\left[X_{k}, Y_{2}\right]=0 \text { for any } k \geq 3,} \\
{\left[\xi_{i}, \xi_{j}\right]=0, \quad\left[\xi_{i}, X_{\beta}\right]=0 \text { and }\left[\xi_{i}, Y_{\beta}\right]=2 X_{\beta} \text { for any } \beta \in\{1, \ldots, n\},}
\end{gathered}
$$

for all $i, j \in\{1, \ldots, s\}$, where $\bar{\xi}=\xi_{1}+\ldots+\xi_{s}$. Let G be the Lie group whose Lie algebra is \mathfrak{g}. On G one can define an almost \mathcal{S}-structure by defining $\varphi\left(X_{\alpha}\right)=Y_{\alpha}$, $\varphi\left(Y_{\alpha}\right)=-X_{\alpha}, \varphi\left(\xi_{1}\right)=\cdots=\varphi\left(\xi_{s}\right)=0$, for all $\alpha \in\{1, \ldots, n\}$, considering the left invariant Riemannian metric g such that $\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}, \xi_{1}, \ldots, \xi_{s}\right\}$ is an orthonormal frame and, finally, defining each 1-form η_{i} as the dual 1-form of the vector field ξ_{i} with respect to the metric g. Taking into account the previous relations, we have, for all $h, k \in\{3, \ldots, n\}$ and $i, j \in\{1, \ldots, s\}$,

$$
\begin{gathered}
\nabla_{X_{1}} Y_{2}=0, \quad \nabla_{X_{1}} Y_{k}=0, \quad \nabla_{X_{1}} \xi_{i}=-2 Y_{1}, \\
\nabla_{X_{2}} Y_{1}=0, \quad \nabla_{X_{2}} Y_{k}=0, \quad \nabla_{X_{2}} \xi_{i}=-2 Y_{2}, \\
\nabla_{X_{k}} Y_{1}=0, \quad \nabla_{X_{k}} Y_{2}=0, \quad \nabla_{X_{k}} Y_{h}=2 \delta_{h k} \bar{\xi}, \quad \nabla_{X_{k}} \xi_{i}=-2 Y_{k}, \\
\nabla_{Y_{1}} Y_{1}=2 Y_{2}, \quad \nabla_{Y_{1}} \xi_{i}=0, \\
\nabla_{Y_{2}} Y_{1}=0, \quad \nabla_{Y_{2}} Y_{2}=0, \quad \nabla_{Y_{2}} \xi_{i}=0, \\
\nabla_{Y_{k}} Y_{1}=0, \quad \nabla_{Y_{k}} Y_{2}=-2 Y_{k}, \quad \nabla_{Y_{k}} Y_{h}=2 \delta_{h k} Y_{2}, \quad \nabla_{Y_{k}} \xi_{i}=0,
\end{gathered}
$$

from which we get

$$
\begin{gathered}
R\left(X_{1} X_{2}\right) \xi_{i}=R\left(X_{1} X_{k}\right) \xi_{i}=0, \\
R\left(X_{1} Y_{1}\right) \xi_{i}=R\left(X_{1} Y_{2}\right) \xi_{i}=R\left(X_{1} Y_{k}\right) \xi_{i}=0, \\
R\left(X_{2} X_{k}\right) \xi_{i}=R\left(X_{2} Y_{1}\right) \xi_{i}=R\left(X_{2} Y_{2}\right) \xi_{i}=R\left(X_{2} Y_{k}\right) \xi_{i}=0, \\
R\left(X_{k} X_{h}\right) \xi_{i}=R\left(X_{k} Y_{1}\right) \xi_{i}=R\left(X_{k} Y_{2}\right) \xi_{i}=R\left(X_{k} Y_{h}\right) \xi_{i}=0, \\
R\left(Y_{1} Y_{2}\right) \xi_{i}=R\left(Y_{1} Y_{k}\right) \xi_{i}=R\left(Y_{2} Y_{k}\right) \xi_{i}=R\left(Y_{h} Y_{k}\right) \xi_{i}=0, \\
R\left(X_{1} \xi_{j}\right) \xi_{i}=4 X_{1}, \quad R\left(X_{2}, \xi_{j}\right) \xi_{i}=4 X_{2}, \quad R\left(X_{k} \xi_{j}\right) \xi_{i}=4 X_{k}, \\
R\left(Y_{1} \xi_{j}\right) \xi_{i}=-4 Y_{1}, \quad R\left(Y_{2} \xi_{j}\right) \xi_{i}=-4 Y_{2}, \quad R\left(Y_{k} \xi_{j}\right) \xi_{i}=-4 Y_{k}, \\
R\left(\xi_{l} \xi_{j}\right) \xi_{i}=0 .
\end{gathered}
$$

Moreover, for the tensor fields h_{1}, \ldots, h_{s} we find that, for each $i \in\{1, \ldots, s\}$, $h_{i}\left(X_{\alpha}\right)=X_{\alpha}, h_{i}\left(Y_{\alpha}\right)=-Y_{\alpha}$, for all $\alpha \in\{1, \ldots, n\}$, and we conclude that G is an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition with $\kappa=0$ and $\mu=4$. In this case, $\mathcal{D}_{+}=\left\langle X_{1}, \ldots, X_{n}\right\rangle, \mathcal{D}_{-}=\left\langle Y_{1}, \ldots, Y_{n}\right\rangle$ and $\lambda=1$. Note that each ξ_{i} is a foliate vector field with respect to the Legendrian foliation \mathcal{F}_{+}defined by \mathcal{D}_{+}, so that \mathcal{F}_{+}is strongly flat (cf. [5]). Further note that a family of almost \mathcal{S} manifolds satisfying the $(\kappa(a), \mu(a))$-nullity condition for any $a>0$ is obtained from $\left(G, \phi, \xi_{i}, \eta_{j}, g\right)$ by performing \mathcal{D}-homothetic transformations of constant a.
Lemma 2.5. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. Then for each $X, Y \in \Gamma(T M)$ we have

$$
\begin{align*}
\left(\nabla_{X} h\right) Y= & ((1-\kappa) g(X, \varphi Y)+g(X, h \varphi Y)) \bar{\xi} \tag{2.19}\\
& +\bar{\eta}(Y) h(\varphi X+\varphi h X)-\mu \bar{\eta}(X) \varphi h Y
\end{align*}
$$

Proof. We fix $x \in M$ and a local φ-basis $\left\{e_{1}, \ldots, e_{n}, \varphi e_{1}, \ldots, \varphi e_{n}, \xi_{1}, \ldots, \xi_{s}\right\}$ around x such that $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local basis of \mathcal{D}_{+}. If $X \in \Gamma\left(\mathcal{D}_{+}\right), Y \in \Gamma\left(\mathcal{D}_{-}\right)$from (1.3), (2.17) and Remark 1.2 we have in x

$$
\begin{equation*}
\left(\nabla_{X} h\right) Y=-\lambda \nabla_{X} Y+\lambda \sum_{\alpha=1}^{n} g\left(\nabla_{X} Y, \varphi e_{\alpha}\right) \varphi e_{\alpha}=\lambda(1+\lambda) g(X, \varphi Y) \bar{\xi} \tag{2.20}
\end{equation*}
$$

Moreover, from (1.3) and (2.18) we have $h\left(\nabla_{Y} X\right)=\lambda \sum_{\alpha=1}^{n} g\left(\nabla_{Y} X, e_{\alpha}\right) e_{\alpha}$. Then from (1.4) we have

$$
\begin{equation*}
\left(\nabla_{Y} h\right) X=\lambda(1-\lambda) g(X, \varphi Y) \bar{\xi} \tag{2.21}
\end{equation*}
$$

Let $X, Y \in \Gamma(T M)$. We can write $X=X_{+}+X_{-}+\sum_{i=1}^{s} \eta_{i}(X) \xi_{i}, Y=Y_{+}+Y_{-}+$ $\sum_{i=1}^{s} \eta_{i}(Y) \xi_{i}$ because of the decomposition $T M=\mathcal{D}_{+} \oplus \mathcal{D}_{-} \oplus \operatorname{ker}(\varphi)$. On the other hand we have $\lambda\left(g\left(X_{+}, \varphi Y_{-}\right)-g\left(X_{-}, \varphi Y_{+}\right)\right)=g(h X, \varphi Y)$ and $\lambda^{2}\left(g\left(X_{+}, \varphi Y_{-}\right)+\right.$ $\left.g\left(X_{-}, \varphi Y_{+}\right)\right)=g(h X, h \varphi Y)$. Then, from (2.7), (2.20), (2.21), (1.3) and (1.4) we get $\left(\nabla_{X} h\right) Y=\bar{\eta}(X) \mu h \varphi Y+\bar{\eta}(Y) h(\varphi X+\varphi h X)+\lambda^{2}\left(g\left(X_{+}, \varphi Y_{-}\right)+g\left(X_{-}, \varphi Y_{+}\right)\right) \bar{\xi}+$ $\lambda\left(g\left(X_{+}, \varphi Y_{-}\right)-g\left(X_{-}, \varphi Y_{+}\right)\right) \bar{\xi}$. From the symmetry of h and (1.9) it follows (2.19).

Remark 2.6. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. Then using (2.12), (2.19) and (1.8) we get, for all $X, Y \in \Gamma(T M)$

$$
\begin{align*}
\left(\nabla_{X} \varphi h\right) Y= & {\left[g(X, h Y)-(1-\kappa) g\left(X, \varphi^{2} Y\right)\right] \bar{\xi} } \tag{2.22}\\
& +\bar{\eta}(Y)\left[h X-(1-\kappa) \varphi^{2} X\right]+\mu \bar{\eta}(X) h Y .
\end{align*}
$$

Lemma 2.6. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. Then for each $X, Y, Z \in \Gamma(\mathcal{D})$ we have

$$
\begin{align*}
R_{X Y} h Z-h R_{X Y} Z= & s[\kappa(g(Y, \varphi Z) \varphi h X-g(X, \varphi Z) \varphi h Y+g(Z, \varphi h Y) \varphi X \\
& -g(Z, \varphi h X) \varphi Y)-2 \mu g(X, \varphi Y) \varphi h Z] . \tag{2.23}
\end{align*}
$$

Proof. Let $X, Y, Z \in \Gamma(T M)$. Then by a direct computation we get

$$
\begin{aligned}
& \left(\nabla_{X} \nabla_{Y} h\right) Z=(1-\kappa)\left[\left(g\left(\nabla_{X} Y, \varphi Z\right)+g\left(Y,\left(\nabla_{X} \varphi\right) Z\right)\right) \bar{\xi}-\bar{\eta}(Z)\left(\left(\nabla_{X} \varphi\right) Y\right.\right. \\
& \left.\left.+\varphi\left(\nabla_{X} Y\right)\right)\right]+[(1-\kappa) g(Y, \varphi Z)+g(Y, h \varphi Z)] \nabla_{X} \bar{\xi}+\left[g\left(\nabla_{X} Y, h \varphi Z\right)\right. \\
& \left.+g\left(Y,\left(\nabla_{X} h \varphi\right) Z\right)\right] \bar{\xi}+g\left(Z, \nabla_{X} \bar{\xi}\right)[h \varphi Y-(1-\kappa) \varphi Y]+\bar{\eta}(Z)\left[\left(\nabla_{X} h \varphi\right) Y\right. \\
& \left.+h \varphi\left(\nabla_{X} Y\right)\right]-\mu\left[\left(\bar{\eta}\left(\nabla_{X} Y\right)+g\left(Y, \nabla_{X} \bar{\xi}\right)\right) \varphi h Z-\bar{\eta}(Y)\left(\nabla_{X} \varphi h\right) Z\right]
\end{aligned}
$$

where we use (2.19), (1.8) and the antisymmetry of $\nabla_{X} \varphi$. Hence, using the Ricci identity $R_{X Y} h Z-h R_{X Y} Z=\left(\nabla_{X} \nabla_{Y} h\right) Z-\left(\nabla_{Y} \nabla_{X} h\right) Z-\left(\nabla_{[X, Y]} h\right) Z$, (2.19), the symmetry of $\nabla_{X}(h \circ \varphi)$ and (1.4), we obtain

$$
\begin{align*}
& R_{X Y} h Z-h R_{X Y} Z=\mu\left[\bar{\eta}(Y)\left(\nabla_{X} \varphi h\right) Z-\bar{\eta}(X)\left(\nabla_{Y} \varphi h\right) Z-2 s g(X, \varphi Y) \varphi h Z\right] \\
& +[g(Y, h \varphi Z)+(1-\kappa) g(Y, \varphi Z)] \nabla_{X} \bar{\xi}-[g(X, h \varphi Z)+(1-\kappa) g(X, \varphi Z)] \nabla_{Y} \bar{\xi} \\
& +g\left(Z, \nabla_{X} \bar{\xi}\right)[h \varphi Y-(1-\kappa) \varphi Y]-g\left(Z, \nabla_{Y} \bar{\xi}\right)[h \varphi X-(1-\kappa) \varphi X] \\
& +\left[(1-\kappa) g\left(\left(\nabla_{Y} \varphi\right) X-\left(\nabla_{X} \varphi\right) Y, Z\right)+g\left(\left(\nabla_{X} h \varphi\right) Y-\left(\nabla_{Y} h \varphi\right) X, Z\right)\right] \bar{\xi} \\
& +\bar{\eta}(Z)\left[\left(\nabla_{X} h \varphi\right) Y-\left(\nabla_{Y} h \varphi\right) X-(1-\kappa)\left(\left(\nabla_{X} \varphi\right) Y-\left(\nabla_{Y} \varphi\right) X\right)\right] . \tag{2.24}
\end{align*}
$$

If we take $X, Y, Z \in \Gamma(\mathcal{D})$ then from (2.24), using identities (2.22), (2.12) and (1.4), we get (2.23).

Lemma 2.7. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. Then for each $X, Y, Z \in \Gamma(T M)$ we have

$$
\begin{aligned}
& R_{X Y} \varphi Z-\varphi R_{X Y} Z=[\kappa(\bar{\eta}(Y) g(Z, \varphi X)-\bar{\eta}(X) g(Z, \varphi Y)) \\
& +\mu(\bar{\eta}(Y) g(Z, \varphi h X)-\bar{\eta}(X) g(Z, \varphi h Y))] \bar{\xi} \\
& +s\left[g(Z, \varphi X+\varphi h X)\left(h Y-\varphi^{2} Y\right)-g(Z, \varphi Y+\varphi h Y)\left(h X-\varphi^{2} X\right)\right. \\
& \left.-g\left(Z, h Y-\varphi^{2} Y\right)(\varphi X+\varphi h X)+g\left(Z, h X-\varphi^{2} X\right)(\varphi Y+\varphi h Y)\right] \\
& -\bar{\eta}(Z)[\kappa(\bar{\eta}(Y) \varphi X-\bar{\eta}(X) \varphi Y)+\mu(\bar{\eta}(Y) \varphi h X-\bar{\eta}(X) \varphi h Y)] .
\end{aligned}
$$

Proof. We proceed fixing a point $x \in M$ and local vector fields X, Y, Z such that $\nabla X, \nabla Y$ and ∇Z vanish at x. Applying several times (2.12) and using (1.4) and the symmetry of $\nabla \varphi^{2}$, we get in x

$$
\begin{aligned}
& \nabla_{X}\left(\left(\nabla_{Y} \varphi\right) Z\right)-\nabla_{Y}\left(\left(\nabla_{X} \varphi\right) Z\right)=\left[g\left(\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X, Z\right)\right. \\
& +\bar{\eta}(Y) g(Z, \varphi X+\varphi h X)-\bar{\eta}(X) g(Z, \varphi Y+\varphi h Y)] \bar{\xi} \\
& +s\left[g(Z, \varphi X+\varphi h X)\left(h Y-\varphi^{2} Y\right)-g(Z, \varphi Y+\varphi h Y)\left(h X-\varphi^{2} X\right)\right. \\
& \left.-g\left(Z, h Y-\varphi^{2} Y\right)(\varphi X+\varphi h X)+g\left(Z, h X-\varphi^{2} X\right)(\varphi Y+\varphi h Y)\right] \\
& \left.-\bar{\eta}(Z)\left[\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X+\bar{\eta}(Y)(\varphi X+\varphi h X)-\bar{\eta}(X)(\varphi Y+\varphi h Y)\right)\right] .
\end{aligned}
$$

From the last identity, using $R_{X Y} \varphi Z-\varphi R_{X Y} Z=\nabla_{X}\left(\nabla_{Y} \varphi\right) Z-\nabla_{Y}\left(\nabla_{X} \varphi\right) Z$ and (2.13), we get the claimed identity.

Remark 2.7. In particular, from Lemma 2.7 it follows that for an \mathcal{S}-manifold $\left(M, \varphi, \xi_{i}, \eta_{j}, g\right)$ the following formula holds, for all $X, Y, Z \in \Gamma(T M)$,

$$
\begin{gathered}
R_{X Y} \varphi Z-\varphi R_{X Y} Z=\bar{\eta}(Y) g(Z, \varphi X)-\bar{\eta}(X) g(Z, \varphi Y) \\
+s\left(g(Z, \varphi Y) \varphi^{2} X-g(Z, \varphi X) \varphi^{2} Y+g\left(Z, \varphi^{2} Y\right) \varphi X-g\left(Z, \varphi^{2} X\right) \varphi Y\right) \\
-\bar{\eta}(Z)(\bar{\eta}(Y) \varphi X-\bar{\eta}(X) \varphi Y)
\end{gathered}
$$

Theorem 2.2. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition with $\kappa<1$. Then for each $X_{+}, Y_{+}, Z_{+} \in \Gamma\left(\mathcal{D}_{+}\right), X_{-}, Y_{-}, Z_{-} \in \Gamma\left(\mathcal{D}_{-}\right)$, we have

$$
\begin{align*}
& R_{X_{-} Y_{-}} Z_{+}=s(\kappa-\mu)\left(g\left(\varphi Z_{+}, X_{-}\right) \varphi Y_{-}-g\left(\varphi Z_{+}, Y_{-}\right) \varphi X_{-}\right) \tag{2.25}\\
& R_{X_{+} Y_{+}} Z_{+}=s(2(1+\lambda)-\mu)\left(g\left(Z_{+}, Y_{+}\right) X_{+}-g\left(Z_{+}, X_{+}\right) Y_{+}\right) \tag{2.26}\\
& R_{X_{+} Y_{+}} Z_{-}=s(\kappa-\mu)\left(g\left(\varphi Z_{-}, X_{+}\right) \varphi Y_{+}-g\left(\varphi Z_{-}, Y_{+}\right) \varphi X_{+}\right) \tag{2.27}\\
& R_{X_{+} Y_{-}} Z_{-}=s\left(\kappa g\left(\varphi X_{+}, Z_{-}\right) \varphi Y_{-}+\mu g\left(\varphi X_{+}, Y_{-}\right) \varphi Z_{-}\right) \tag{2.28}\\
& R_{X_{+} Y_{-}} Z_{+}=s\left(-\kappa g\left(\varphi Y_{-}, Z_{+}\right) \varphi X_{+}-\mu g\left(\varphi Y_{-}, X_{+}\right) \varphi Z_{+}\right) \tag{2.29}\\
& R_{X_{-} Y_{-}} Z_{-}=s(2(1-\lambda)-\mu)\left(g\left(Y_{-}, Z_{-}\right) X_{-}-g\left(X_{-}, Z_{-}\right) Y_{-}\right) \tag{2.30}
\end{align*}
$$

Proof. Let $\left\{e_{1}, \ldots, e_{n}, \varphi e_{1}, \ldots, \varphi e_{n}, \xi_{1}, \ldots, \xi_{s}\right\}$ be a local φ-basis such that $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of \mathcal{D}_{+}. From Lemma 2.6 we get

$$
\begin{align*}
\lambda R_{Z_{+} X_{-}} e_{\alpha}-h R_{Z_{+} X_{-}} e_{\alpha}= & 2 s \lambda\left[\kappa\left(g\left(X_{-}, \varphi e_{\alpha}\right) \varphi Z_{+}+g\left(Z_{+}, \varphi e_{\alpha}\right) \varphi X_{-}\right)\right. \\
& \left.-\mu g\left(Z_{+}, \varphi X_{-}\right) \varphi e_{\alpha}\right] . \tag{2.31}
\end{align*}
$$

Taking the symmetry of h into account we have $g\left(\lambda R_{Z_{+} X_{-}} e_{\alpha}-h R_{Z_{+} X_{-}} e_{\alpha}, Y_{-}\right)$ $=2 \lambda g\left(R_{Z_{+} X_{-}} e_{\alpha}, Y_{-}\right)$and then, from (2.31) and Remark 1.2, $g\left(R_{Z_{+} X_{-}} e_{\alpha}, Y_{-}\right)=$ $s\left(\kappa g\left(X_{-}, \varphi e_{\alpha}\right) g\left(\varphi Z_{+}, Y_{-}\right)-\mu g\left(Z_{+}, \varphi X_{-}\right) g\left(\varphi e_{\alpha}, Y_{-}\right)\right)$. It follows that

$$
\begin{align*}
g\left(R_{X_{-} Y_{-}} Z_{+}, e_{\alpha}\right)= & s(\kappa-\mu)\left(g\left(X_{-}, \varphi e_{\alpha}\right) g\left(\varphi Z_{+}, Y_{-}\right)\right. \tag{2.32}\\
& \left.-g\left(Y_{-}, \varphi e_{\alpha}\right) g\left(\varphi Z_{+}, X_{-}\right)\right)
\end{align*}
$$

where we use $g\left(R_{X_{-} Y_{-}} Z_{+}, e_{\alpha}\right)=-g\left(R_{Z_{+} Y_{-}} e_{\alpha}, X_{-}\right)+g\left(R_{Z_{+} X_{-}} e_{\alpha}, Y_{-}\right)$. From (2.16) and Remark 1.2 we have $g\left(R_{X_{-} Y_{-}} Z_{+}, \varphi e_{\alpha}\right)=0$; moreover (1.11) yelds $g\left(R_{X_{-} Y_{-}} Z_{+}, \xi_{i}\right)$ $=0$. Then $R_{X_{-} Y_{-}} Z_{+}=\sum_{\beta=1}^{n} g\left(R_{X_{-} Y_{-}} Z_{+}, e_{\beta}\right) e_{\beta}$. Using (2.32) we get (2.25). Identity (2.26) follows from (2.15), (1.11) Lemma 2.7, (1.2), (2.25) and $(1+\lambda)^{2}+\kappa=$ $2(1+\lambda)$. The other identities follow in a similar way and then are omitted.

Theorem 2.3. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition with $\kappa<1$. Then the sectional curvature K of M is determined by

$$
\begin{align*}
& K\left(X, \xi_{i}\right)=\kappa+\mu g(h X, X)= \begin{cases}k+\lambda \mu & \text { if } X \in \mathcal{D}_{+} \\
k-\lambda \mu & \text { if } X \in \mathcal{D}_{-}\end{cases} \tag{2.33}\\
& K(X, Y)= \begin{cases}s(2(1+\lambda)-\mu) & \text { if } X, Y \in \mathcal{D}_{+} \\
s(2(1-\lambda)-\mu) & \text { if } X, Y \in \mathcal{D}_{-} \\
-s(\kappa+\mu)(g(X, \varphi Y))^{2} & \text { if } X \in \mathcal{D}_{+}, Y \in \mathcal{D}_{-}\end{cases} \tag{2.34}
\end{align*}
$$

where X, Y are orthonormal and in the first two cases of (2.34) n has to be strictly greater then 1 .

Proof. Identities (2.33) follow directly from (1.11), while identities (2.34) are a consequence of (2.26), (2.30) and (2.28) respectively.

Corollary 2.1. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition with $\kappa<1$. Then the Ricci operator verifies the following identities

$$
\begin{gather*}
Q=s\left[(2(1-n)+\mu n) \varphi^{2}+(2(n-1)+\mu) h\right]+2 n \kappa \bar{\eta} \otimes \bar{\xi}, \tag{2.35}\\
Q \circ \varphi-\varphi \circ Q=2 s(2(n-1)+\mu) h \circ \varphi . \tag{2.36}
\end{gather*}
$$

Proof. Let $\left\{e_{1}, \ldots, e_{n}, \varphi e_{1}, \ldots, \varphi e_{n}, \xi_{1}, \ldots, \xi_{s}\right\}$ be a local φ-basis such that $\left\{e_{1}, \ldots, e_{s}\right\}$ is a basis of \mathcal{D}_{+}and let $X=X_{+}+X_{-} \in \mathcal{D}_{+} \oplus \mathcal{D}_{-}$. From (2.26), (2.28) and (1.11) we get

$$
\begin{equation*}
Q X_{+}=s\left[(2(1+\lambda)-\mu)(n-1) X_{+}-(\kappa+\mu) X_{+}+\kappa X_{+}+\mu h X_{+}\right] \tag{2.37}
\end{equation*}
$$

On the other hand from (2.29) and (2.30) we obtain

$$
\begin{equation*}
\left.Q X_{-}=s\left[-(\kappa+\mu) X_{-}+(2(1-\lambda)-\mu)(n-1) X_{-}+\kappa X_{-}+\mu h X_{-}\right)\right] \tag{2.38}
\end{equation*}
$$

Taking (2.37), (2.38) and (2.10) into account we obtain (2.35). Finally, identity (2.36) easily follows from (2.35).

Corollary 2.2. Let M be an almost \mathcal{S}-manifold verifying the (κ, μ)-nullity condition. Then the scalar curvature S of (M, g) is constant and verifies the identity

$$
\begin{equation*}
S=2 n s(2(n-1)-\mu n+\kappa) . \tag{2.39}
\end{equation*}
$$

Proof. Let $\left\{e_{1}, \ldots, e_{n}, \varphi e_{1}, \ldots, \varphi e_{n}, \xi_{1}, \ldots, \xi_{s}\right\}$ be a local φ-basis such that $\left\{e_{1}, \ldots, e_{s}\right\}$ is a basis of \mathcal{D}_{+}. Then from (2.26), (2.28) and (1.11) we have

$$
\begin{align*}
g\left(Q e_{\beta}, e_{\beta}\right) & =s(2(1+\lambda)-\mu)(n-1)+s(-\kappa-\mu)+s(\kappa+\lambda \mu) \\
& =s[(n-1)(2(1+\lambda)-\mu)+(\lambda-1) \mu] . \tag{2.40}
\end{align*}
$$

Furthermore from (2.29), (2.30) and (1.11) we get

$$
\begin{equation*}
g\left(Q \varphi e_{\beta}, \varphi e_{\beta}\right)=s[(n-1)(2(1-\lambda)-\mu)-(1+\lambda) \mu] \tag{2.41}
\end{equation*}
$$

then (2.40), (2.41) and (2.10) yeld (2.39).
\mathcal{D}-homothetic transformations for a generalization of contact metric manifolds 289

References

[1] D.E. Blair: Geometry of manifolds with structural group $\mathcal{U}(n) \times \mathcal{O}(s)$, J. Diff. Geom., 4(2) (1970), 155-167.
[2] D.E. Blair, T. Koufogiorgos, B.J. Papantoniou: Contact metric manifolds satisfyng a nullity condition, Israel J. Math., 91 (1995), 189-214.
[3] E. Boeckx: A full classification of contact metric (κ, μ)-spaces, Ill. J. Math., 44 (2000), 212-219
[4] J.L. Cabrerizo, L.M. Fernández, M. Fernández: The curvature tensor fields on f-manifolds with complemented frames, An. Univ. 'Al.I. Cuza', Iaşi, Mat., 36 (1990), 151-161.
[5] B. Cappelletti Montano: Legendrian foliations on almost \mathcal{S}-manifolds, Balkan J. Geom. Appl. 10 (2005), 11-32.
[6] G. Dileo, A. Lotta: On the structure and symmetry properties of almost \mathcal{S} manifolds, Geom. Dedicata 110 (2005), 191-211.
[7] L. Di Terlizzi: On the curvature of a generalization of contact metric manifolds, Acta Math. Hungar. 110(3) (2006), 225-239.
[8] L. Di Terlizzi, J. Konderak: Examples of a generalization of a contact metric manifolds, Journal of Geometry, to appear.
[9] L. Di Terlizzi, J.J. Konderak, A.M. Pastore: On the flatness of a class of metric f-manifolds, Bull. Belgian Math. Soc. 10 (2003), 461-474.
[10] K.L. Duggal, S. Ianus, A.M. Pastore: Maps interchanging f-structures and their harmonicity, Acta Appl. Math., 67 (1) (2001), 91-115.
[11] S.I. Goldberg, K. Yano: On normal globally framed f-manifolds, Tôhoku Math. J., 22 (1970), 362-370.
[12] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry, vol.I Interscience Publ., New York, 1963.
[13] S. Tanno: The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-717.
[14] J. Vanzura: Almost r-contact structures, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 26 (1972), 97-115.

Dipartimento di Matematica,
Università di Bari
Via E. Orabona 4, 70125 Bari, Italy
cappelletti@dm.uniba.it,terlizzi@dm.uniba.it

[^0]: *Research supported by the Italian MIUR 60\% and GNSAGA
 Received by the editors March 2006 - In revised form in August 2006.
 Communicated by L. Vanhecke.
 2000 Mathematics Subject Classification : 53D10, 70G45.
 Key words and phrases : metric f-structure, \mathcal{S}-manifolds, curvature, φ-sectional curvature.

